151
|
Smith GC, Cary RB, Lakin ND, Hann BC, Teo SH, Chen DJ, Jackson SP. Purification and DNA binding properties of the ataxia-telangiectasia gene product ATM. Proc Natl Acad Sci U S A 1999; 96:11134-9. [PMID: 10500142 PMCID: PMC17999 DOI: 10.1073/pnas.96.20.11134] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human neurodegenerative and cancer predisposition condition ataxia-telangiectasia is characterized at the cellular level by radiosensitivity, chromosomal instability, and impaired induction of ionizing radiation-induced cell cycle checkpoint controls. Recent work has revealed that the gene defective in ataxia-telangiectasia, termed ATM, encodes an approximately 350-kDa polypeptide, ATM, that is a member of the phosphatidylinositol 3-kinase family. We show that ATM binds DNA and exploit this to purify ATM to near homogeneity. Atomic force microscopy reveals that ATM exists in two populations, with sizes consistent with monomeric and tetrameric states. Atomic force microscopy analyses also show that ATM binds preferentially to DNA ends. This property is similar to that displayed by the DNA-dependent protein kinase catalytic subunit, a phosphatidylinositol 3-kinase family member that functions in DNA damage detection in conjunction with the DNA end-binding protein Ku. Furthermore, purified ATM contains a kinase activity that phosphorylates serine-15 of p53 in a DNA-stimulated manner. These results provide a biochemical assay system for ATM, support genetic data indicating distinct roles for DNA-dependent protein kinase and ATM, and suggest how ATM may signal the presence of DNA damage to p53 and other downstream effectors.
Collapse
Affiliation(s)
- G C Smith
- Wellcome Trust, Institute of Cancer, Department of Zoology, Tennis Court Road, Cambridge CB2 1QR, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
152
|
Gell D, Jackson SP. Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. Nucleic Acids Res 1999; 27:3494-502. [PMID: 10446239 PMCID: PMC148593 DOI: 10.1093/nar/27.17.3494] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammalian cells, the Ku and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) proteins are required for the correct and efficient repair of DNA double-strand breaks. Ku comprises two tightly-associated subunits of approximately 69 and approximately 83 kDa, which are termed Ku70 and Ku80 (or Ku86), respectively. Previously, a number of regions of both Ku subunits have been demonstrated to be involved in their interaction, but the molecular mechanism of this interaction remains unknown. We have identified a region in Ku70 (amino acid residues 449-578) and a region in Ku80 (residues 439-592) that participate in Ku subunit interaction. Sequence analysis reveals that these interaction regions share sequence homology and suggests that the Ku subunits are structurally related. On binding to a DNA double-strand break, Ku is able to interact with DNA-PKcs, but how this interaction is mediated has not been defined. We show that the extreme C-terminus of Ku80, specifically the final 12 amino acid residues, mediates a highly specific interaction with DNA-PKcs. Strikingly, these residues appear to be conserved only in Ku80 sequences from vertebrate organisms. These data suggest that Ku has evolved to become part of the DNA-PK holo-enzyme by acquisition of a protein-protein interaction motif at the C-terminus of Ku80.
Collapse
Affiliation(s)
- D Gell
- Wellcome/CRC Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | | |
Collapse
|
153
|
Lewis LK, Westmoreland JW, Resnick MA. Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining. Genetics 1999; 152:1513-29. [PMID: 10430580 PMCID: PMC1460701 DOI: 10.1093/genetics/152.4.1513] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Repair of double-strand breaks (DSBs) in chromosomal DNA by nonhomologous end-joining (NHEJ) is not well characterized in the yeast Saccharomyces cerevisiae. Here we demonstrate that several genes associated with NHEJ perform essential functions in the repair of endonuclease-induced DSBs in vivo. Galactose-induced expression of EcoRI endonuclease in rad50, mre11, or xrs2 mutants, which are deficient in plasmid DSB end-joining and some forms of recombination, resulted in G2 arrest and rapid cell killing. Endonuclease synthesis also produced moderate cell killing in sir4 strains. In contrast, EcoRI caused prolonged cell-cycle arrest of recombination-defective rad51, rad52, rad54, rad55, and rad57 mutants, but cells remained viable. Cell-cycle progression was inhibited in excision repair-defective rad1 mutants, but not in rad2 cells, indicating a role for Rad1 processing of the DSB ends. Phenotypic responses of additional mutants, including exo1, srs2, rad5, and rdh54 strains, suggest roles in recombinational repair, but not in NHEJ. Interestingly, the rapid cell killing in haploid rad50 and mre11 strains was largely eliminated in diploids, suggesting that the cohesive-ended DSBs could be efficiently repaired by homologous recombination throughout the cell cycle in the diploid mutants. These results demonstrate essential but separable roles for NHEJ pathway genes in the repair of chromosomal DSBs that are structurally similar to those occurring during cellular development.
Collapse
Affiliation(s)
- L K Lewis
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
154
|
Abstract
Ku is a heterodimeric protein with high binding affinity for ends, nicks, and gaps in double-stranded DNA. Both in mammalian cells and in budding yeast, Ku plays a role in nonhomologous end joining in the double strand break repair pathway. However, Ku has a more significant role in DNA repair in mammalian cells compared with yeast, in which a homology-dependent pathway is the predominant one. Recently Ku has been shown to be a likely component of the telomeric complex in yeast, suggesting the possibility of a similar role for Ku at mammalian telomeres. However, long single-stranded G-rich overhangs are continuously present at mammalian but not at yeast telomeres. These overhangs have the potential to fold in vitro into G-G base-paired conformations, such as G-quartets, that might prevent Ku from recognizing telomeric ends and thus offer a mechanism to sequester the telomere from the prevalent double strand break repair pathway in mammals. We show here that Ku binds to mammalian telomeric DNA ends in vitro and that G-quartet conformations are unable to prevent Ku from binding with high affinity to the DNA. Our results indicate that the DNA binding characteristics of Ku are consistent with its direct interaction with telomeric DNA in mammalian cells and its proposed role as a telomere end factor.
Collapse
Affiliation(s)
- A Bianchi
- Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
155
|
Changes in expression of the DNA repair protein complex DNA-dependent protein kinase after ischemia and reperfusion. J Neurosci 1999. [PMID: 10366606 DOI: 10.1523/jneurosci.19-12-04727.1999] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reperfusion of ischemic tissue causes an immediate increase in DNA damage, including base lesions and strand breaks. Damage is reversible in surviving regions indicating that repair mechanisms are operable. DNA strand breaks are repaired by nonhomologous end joining in mammalian cells. This process requires DNA-dependent protein kinase (DNA-PK), composed of heterodimeric Ku antigen and a 460,000 Da catalytic subunit (DNA-PKcs). In this study, a rabbit spinal cord model of reversible ischemia was used to demonstrate the effect of acute CNS injury on the activity and expression of DNA-dependent protein kinase. The DNA-binding activity of Ku antigen, analyzed by an electrophoretic mobility shift assay, increased during reperfusion after a short ischemic insult (15 min of occlusion), from which the animals recover neurological function. After severe ischemic injury (60 min of occlusion) and reperfusion that results in permanent paraplegia, Ku DNA binding was reduced. Protein levels of the DNA-PK components-Ku70, Ku80, and DNA-PKcs-were monitored by immunoblotting. After 60 min of occlusion, the amount of DNA-PKcs and the enzyme poly(ADP-ribose) polymerase (PARP) decreased with the same time course during reperfusion. Concurrently 150 and 120 kDa fragments were immunostained by an anti-DNA-PKcs monoclonal antibody. This antibody was shown to cross-react with alpha-fodrin breakdown products. The 120 kDa fodrin peptide is associated with caspase-3 activation during apoptosis. Both DNA-PKcs and PARP are also substrates for caspase-3-like activities. The results are consistent with a model in which after a short ischemic insult, DNA repair proteins such as DNA-PK are activated. After severe ischemic injury, DNA damage overwhelms repair capabilities, and cell death programs are initiated.
Collapse
|
156
|
Shackelford DA, Tobaru T, Zhang S, Zivin JA. Changes in expression of the DNA repair protein complex DNA-dependent protein kinase after ischemia and reperfusion. J Neurosci 1999; 19:4727-38. [PMID: 10366606 PMCID: PMC6782663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Reperfusion of ischemic tissue causes an immediate increase in DNA damage, including base lesions and strand breaks. Damage is reversible in surviving regions indicating that repair mechanisms are operable. DNA strand breaks are repaired by nonhomologous end joining in mammalian cells. This process requires DNA-dependent protein kinase (DNA-PK), composed of heterodimeric Ku antigen and a 460,000 Da catalytic subunit (DNA-PKcs). In this study, a rabbit spinal cord model of reversible ischemia was used to demonstrate the effect of acute CNS injury on the activity and expression of DNA-dependent protein kinase. The DNA-binding activity of Ku antigen, analyzed by an electrophoretic mobility shift assay, increased during reperfusion after a short ischemic insult (15 min of occlusion), from which the animals recover neurological function. After severe ischemic injury (60 min of occlusion) and reperfusion that results in permanent paraplegia, Ku DNA binding was reduced. Protein levels of the DNA-PK components-Ku70, Ku80, and DNA-PKcs-were monitored by immunoblotting. After 60 min of occlusion, the amount of DNA-PKcs and the enzyme poly(ADP-ribose) polymerase (PARP) decreased with the same time course during reperfusion. Concurrently 150 and 120 kDa fragments were immunostained by an anti-DNA-PKcs monoclonal antibody. This antibody was shown to cross-react with alpha-fodrin breakdown products. The 120 kDa fodrin peptide is associated with caspase-3 activation during apoptosis. Both DNA-PKcs and PARP are also substrates for caspase-3-like activities. The results are consistent with a model in which after a short ischemic insult, DNA repair proteins such as DNA-PK are activated. After severe ischemic injury, DNA damage overwhelms repair capabilities, and cell death programs are initiated.
Collapse
Affiliation(s)
- D A Shackelford
- Department of Neurosciences, University of California at San Diego, La Jolla, California 92093-0624, USA
| | | | | | | |
Collapse
|
157
|
Abstract
The Ku protein binds to DNA ends and other types of discontinuity in double-stranded DNA. It is a tightly associated heterodimer of approximately 70 kDa and approximately 80 kDa subunits that together with the approximately 470 kDa catalytic subunit, DNA-PKcs, form the DNA-dependent protein kinase. This enzyme is involved in repairing DNA double-strand breaks (DSBs) caused, for example, by physiological oxidation reactions, V(D)J recombination, ionizing radiation and certain chemotherapeutic drugs. The Ku-dependent repair process, called illegitimate recombination or nonhomologous end joining (NHEJ), appears to be the main DNA DSB repair mechanism in mammalian cells. Ku itself is probably involved in stabilizing broken DNA ends, bringing them together and preparing them for ligation. Ku also recruits DNA-PKcs to the DSB, activating its kinase function. Targeted disruption of the genes encoding Ku70 and Ku80 has identified significant differences between Ku-deficient mice and DNA-PKcs-deficient mice. Although all three gene products are clearly involved in repairing ionizing radiation-induced damage and in V(D)J recombination, Ku-knockout mice are small, and their cells fail to proliferate in culture and show signs of premature senescence. Recent findings have implicated yeast Ku in telomeric structure in addition to NHEJ. Some of the phenotypes of the Ku-knockout mice may indicate a similar role for Ku at mammalian telomeres.
Collapse
Affiliation(s)
- C Featherstone
- Wellcome/Cancer Research Campaign Institute, Cambridge University, UK.
| | | |
Collapse
|
158
|
Pietrasanta LI, Thrower D, Hsieh W, Rao S, Stemmann O, Lechner J, Carbon J, Hansma H. Probing the Saccharomyces cerevisiae centromeric DNA (CEN DNA)-binding factor 3 (CBF3) kinetochore complex by using atomic force microscopy. Proc Natl Acad Sci U S A 1999; 96:3757-62. [PMID: 10097110 PMCID: PMC22367 DOI: 10.1073/pnas.96.7.3757] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yeast centromeric DNA (CEN DNA) binding factor 3 (CBF3) is a multisubunit protein complex that binds to the essential CDEIII element in CEN DNA. The four CBF3 proteins are required for accurate chromosome segregation and are considered to be core components of the yeast kinetochore. We have examined the structure of the CBF3-CEN DNA complex by atomic force microscopy. Assembly of CBF3-CEN DNA complexes was performed by combining purified CBF3 proteins with a DNA fragment that includes the CEN region from yeast chromosome III. Atomic force microscopy images showed DNA molecules with attached globular bodies. The contour length of the DNA containing the complex is approximately 9% shorter than the DNA alone, suggesting some winding of DNA within the complex. The measured location of the single binding site indicates that the complex is located asymmetrically to the right of CDEIII extending away from CDEI and CDEII, which is consistent with previous data. The CEN DNA is bent approximately 55 degrees at the site of complex formation. A significant fraction of the complexes are linked in pairs, showing three to four DNA arms, with molecular volumes approximately three times the mean volumes of two-armed complexes. These multi-armed complexes indicate that CBF3 can bind two DNA molecules together in vitro and, thus, may be involved in holding together chromatid pairs during mitosis.
Collapse
Affiliation(s)
- L I Pietrasanta
- Department of Physics, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Calsou P, Frit P, Humbert O, Muller C, Chen DJ, Salles B. The DNA-dependent protein kinase catalytic activity regulates DNA end processing by means of Ku entry into DNA. J Biol Chem 1999; 274:7848-56. [PMID: 10075677 DOI: 10.1074/jbc.274.12.7848] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) is required for double-strand break repair in mammalian cells. DNA-PK contains the heterodimer Ku and a 460-kDa serine/threonine kinase catalytic subunit (p460). Ku binds in vitro to DNA termini or other discontinuities in the DNA helix and is able to enter the DNA molecule by an ATP-independent process. It is clear from in vitro experiments that Ku stimulates the recruitment to DNA of p460 and activates the kinase activity toward DNA-binding protein substrates in the vicinity. Here, we have examined in human nuclear cell extracts the influence of the kinase catalytic activity on Ku binding to DNA. We demonstrate that, although Ku can enter DNA from free ends in the absence of p460 subunit, the kinase activity is required for Ku translocation along the DNA helix when the whole Ku/p460 assembles on DNA termini. When the kinase activity is impaired, DNA-PK including Ku and p460 is blocked at DNA ends and prevents their processing by either DNA polymerization, degradation, or ligation. The control of Ku entry into DNA by DNA-PK catalytic activity potentially represents an important regulation of DNA transactions at DNA termini.
Collapse
Affiliation(s)
- P Calsou
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, 205 route de Narbonne, F-31077 Toulouse Cedex, France.
| | | | | | | | | | | |
Collapse
|
160
|
Lieber MR. The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular eukaryotes. Genes Cells 1999; 4:77-85. [PMID: 10320474 DOI: 10.1046/j.1365-2443.1999.00245.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent progress over the past year has provided new insights into the proteins involved in nonhomologous end joining. The assembly of Ku and DNA-dependent protein kinase at DNA ends is now understood in greater detail. Murine genetic knockouts for DNA ligase IV and XRCC4 are embryonic lethal, indicating that nonhomologous end joining is essential for viability. Interestingly, neurones, in addition to lymphocytes, are particularly vulnerable to an absence of NHEJ.
Collapse
Affiliation(s)
- M R Lieber
- Norris Comprehensive Cancer Center, Department of Pathology, Los Angeles, CA 90033, USA.
| |
Collapse
|
161
|
Chiu CY, Cary RB, Chen DJ, Peterson SR, Stewart PL. Cryo-EM imaging of the catalytic subunit of the DNA-dependent protein kinase. J Mol Biol 1998; 284:1075-81. [PMID: 9837727 DOI: 10.1006/jmbi.1998.2212] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The DNA-dependent protein kinase (DNA-PK) plays an important role in mammalian DNA double-strand break repair and immunoglobulin gene rearrangement. The DNA-PK holoenzyme is activated by assembly at DNA ends and is comprised of DNA-PKcs, a 460 kDa protein kinase catalytic subunit, and Ku, a 70 kDa/80 kDa heterodimeric DNA-targeting component. We have solved the three-dimensional structure of DNA-PKcs to approximately 21 A resolution by analytically combining images of nearly 9500 individual particles extracted from cryo-electron micrographs. The DNA-PKcs protein has an open, pseudo 2-fold symmetric structure with a gap separating a crown-shaped top from a rounded base. Columns of density are observed to protrude into the gap from both the crown and the base. Measurements of the enclosed volume indicate that the interior of the protein is largely hollow. The structure of DNA-PKcs suggests that its association with DNA may involve the internalization of double-stranded ends.
Collapse
Affiliation(s)
- C Y Chiu
- Department of Molecular and Medical Pharmacology, Crump Institute for Biological Imaging, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
162
|
Frit P, Calsou P, Chen DJ, Salles B. Ku70/Ku80 protein complex inhibits the binding of nucleotide excision repair proteins on linear DNA in vitro. J Mol Biol 1998; 284:963-73. [PMID: 9837719 DOI: 10.1006/jmbi.1998.2257] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that the incision efficiency of the nucleotide excision repair (NER) reaction measured in vitro with cell-free human protein extracts was reduced by up to 80% on a linearized damaged plasmid DNA substrate when compared to supercoiled damaged DNA. The inhibition stemed from the presence of the DNA-end binding Ku70/Ku80 heterodimer which is the regulatory subunit of the DNA-dependent protein kinase (DNA-PK). Here, the origin of the repair inhibition was assessed by a new in vitro assay in which circular or linear plasmid DNA, damaged or undamaged, was quantitatively adsorbed on sensitized microplate wells. The binding of two NER proteins, XPA and p62-TFIIH, indispensable for the incision step of the reaction, was quantified either directly in an ELISA-like reaction in the wells with specific antibodies or in Western blotting experiments on the DNA-bound fraction. We report a dramatic inhibition of XPA and p62-TFIIH association with UVC photoproducts on linear DNA. XPA and p62-TFIIH binding to DNA damage was regained when the reaction was performed with extracts lacking Ku activity (extracts from xrs6 rodent cells) whereas addition of purified human Ku complex to these extracts restored the inhibition. Despite the fact that DNA-PK was active during the NER reaction, the mechanism of inhibition relied on the sole Ku complex, since mutant protein extracts lacking the catalytic DNA-PK subunit (extracts from the human M059J glioma cells) exhibited a strong binding inhibition of XPA and p62-TFIIH proteins on linear damaged DNA, identical to the inhibition observed with the DNA-PK+ control extracts (from M059K cells).
Collapse
Affiliation(s)
- P Frit
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, 205 route de Narbonne, Toulouse, 31077, France
| | | | | | | |
Collapse
|
163
|
Abstract
DNA double-strand breaks (DSBs) are major threats to the genomic integrity of cells. If not taken care of properly, they can cause chromosome fragmentation, loss and translocation, possibly resulting in carcinogenesis. Upon DSB formation, cell-cycle checkpoints are triggered and multiple DSB repair pathways can be activated. Recent research on the Nijmegen breakage syndrome, which predisposes patients to cancer, suggests a direct link between activation of cell-cycle checkpoints and DSB repair. Furthermore, the biochemical activities of proteins involved in the two major DSB repair pathways, homologous recombination and DNA end-joining, are now beginning to emerge. This review discusses these new findings and their implications for the mechanisms of DSB repair.
Collapse
Affiliation(s)
- R Kanaar
- Dept of Cell Biology and Genetics, Erasmus University Rotterdam, The Netherlands
| | | | | |
Collapse
|
164
|
Abstract
Mammalian cells defective in DNA end-joining are highly sensitive to ionizing radiation and are immunodeficient because of a failure to complete V(D)J recombination. By using cell-free extracts prepared from human lymphoblastoid cell lines, an in vitro system for end-joining has been developed. Intermolecular ligation was found to be accurate and to depend on DNA ligase IV/Xrcc4 and requires Ku70, Ku86, and DNA-PKcs, the three subunits of the DNA-activated protein kinase DNA-PK. Because these activities are involved in the cellular resistance to x-irradiation and V(D)J recombination, the development of this in vitro system provides an important advance in the study of the mechanism of DNA end-joining in human cells.
Collapse
Affiliation(s)
- P Baumann
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, United Kingdom
| | | |
Collapse
|
165
|
Wang J, Dong X, Reeves WH. A model for Ku heterodimer assembly and interaction with DNA. Implications for the function of Ku antigen. J Biol Chem 1998; 273:31068-74. [PMID: 9813006 DOI: 10.1074/jbc.273.47.31068] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ku autoantigen, a heterodimer of 70- and 80-kDa subunits, is a DNA end-binding factor critical for DNA repair. Two domains of p70 mediate DNA binding, one on the C-terminal and one on the N-terminal portion. The latter must dimerize with p80 in order to bind DNA, whereas the former is p80-independent. Both must be intact for end binding activity in gel shift assays. To evaluate the role of p80 in DNA binding, deletion mutants were co-expressed with full-length p70 using recombinant baculoviruses. We show by several criteria that amino acids 371-510 of p80 interact with p70. Both of the p70 dimerization domains bind to the same region of p80, but apparently to separate sites within that region. In DNA immunoprecipitation assays, amino acids 179-510 of p80 were required for p80-dependent DNA binding of p70, whereas in gel shift assays, amino acids 179-732 were necessary. Interestingly, both the p80-dependent and the p80-independent DNA binding sites preferentially bound to DNA ends, suggesting a model in which a single Ku heterodimer may juxtapose two broken DNA ends physically, facilitating their rejoining by DNA ligases.
Collapse
Affiliation(s)
- J Wang
- Departments of Medicine, Microbiology and Immunology, Thurston Arthritis Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7280, USA
| | | | | |
Collapse
|
166
|
Yokota H, Nickerson DA, Trask BJ, van den Engh G, Hirst M, Sadowski I, Aebersold R. Mapping a protein-binding site on straightened DNA by atomic force microscopy. Anal Biochem 1998; 264:158-64. [PMID: 9866677 DOI: 10.1006/abio.1998.2851] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed an Atomic Force Microscopy (AFM)-based method for mapping protein-binding sites on individual, long DNA molecules (> 5 kb) at nanometer resolution. The protein is clearly detected at the apex of the bent DNA molecules. Randomly coiled DNA molecules or protein:DNA complexes were extended by a motor-controlled moving meniscus on an atomically flat surface. The immobilized molecules were detected by AFM. The straightened DNA displayed a sharp bend at the site of bound protein with the two DNA segments linearly extending from the protein-binding site. Using GAL4, a yeast transcription factor, we demonstrate good agreement of the position of the observed binding site on straightened DNA templates to the predicted binding site. The technique is expected to have significant implications in elucidating DNA and protein interactions in general, and specifically, for the measurement of promoter occupancy with unlabeled regulatory proteins at the single-molecule level.
Collapse
Affiliation(s)
- H Yokota
- Department of Molecular Biotechnology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
167
|
West RB, Yaneva M, Lieber MR. Productive and nonproductive complexes of Ku and DNA-dependent protein kinase at DNA termini. Mol Cell Biol 1998; 18:5908-20. [PMID: 9742108 PMCID: PMC109177 DOI: 10.1128/mcb.18.10.5908] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/1998] [Accepted: 06/26/1998] [Indexed: 11/20/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) is the only eukaryotic protein kinase known to be specifically activated by double-stranded DNA (dsDNA) termini, accounting for its importance in repair of dsDNA breaks and its role in physiologic processes involving dsDNA breaks, such as V(D)J recombination. In this study we conducted kinase and binding analyses using DNA-PK on DNA termini of various lengths in the presence and absence of Ku. We confirmed our previous observations that DNA-PK can bind DNA termini in the absence of Ku, and we determined rate constants for binding. However, in the presence of Ku, DNA-PK can assume either a productive or a nonproductive configuration, depending on the length of the DNA terminus. For dsDNA greater than 26 bp, the productive mode is achieved and Ku increases the affinity of the DNA-PK for the Ku:DNA complex. The change in affinity is achieved by increases in both the kinetic association rate and reduction in the kinetic dissociation rate. For dsDNA smaller than 26 bp, the nonproductive mode, in which DNA-PK is bound to Ku:DNA but is inactive as a kinase, is assumed. Both the productive and nonproductive configurations are likely to be of physiologic importance, depending on the distance of the dsDNA break site to other protein complexes, such as nucleosomes.
Collapse
Affiliation(s)
- R B West
- Departments of Pathology and of Biochemistry and Molecular Biology, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
168
|
Abstract
DNA non-homologous end-joining (NHEJ) is a crucial process that has been conserved highly throughout eukaryotic evolution. At its heart is a multiprotein complex containing the KU70-KU80 heterodimer. Recent work has identified additional proteins involved in this pathway, providing insights into the mechanism of NHEJ and revealing exciting links with the control of transcription, telomere length and chromatin structure.
Collapse
|
169
|
Abstract
The highlight of the past year is the unfolding and refolding of the muscle protein titin in the atomic force microscope. A related highlight in the intersection between experiment and theory is a recent review of the effects of molecular forces on biochemical kinetics. Other advances in scanning probe microscopy include entropic brushes, molecular sandwiches and applications of atomic force microscopy to gene therapy.
Collapse
Affiliation(s)
- H G Hansma
- Department of Physics, University of California, Santa Barbara 93106, USA
| | | |
Collapse
|
170
|
Torrance H, Giffin W, Rodda DJ, Pope L, Haché RJ. Sequence-specific binding of Ku autoantigen to single-stranded DNA. J Biol Chem 1998; 273:20810-9. [PMID: 9694826 DOI: 10.1074/jbc.273.33.20810] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoid-induced transcription of mouse mammary tumor virus is repressed by Ku antigen/DNA-dependent protein kinase (DNA-PK) through a DNA sequence element (NRE1) in the viral long terminal repeat. Nuclear factors binding to the separated single strands of NRE1 have been identified that may also be important for transcriptional regulation through this element. We report the separation of the upper-stranded NRE1 binding activity in Jurkat T cell nuclear extracts into two components. One component was identified as Ku antigen. The DNA sequence preference for Ku binding to single-stranded DNA closely paralleled the sequence requirements of Ku for double-stranded DNA. Recombinant Ku bound the single, upper strand of NRE1 with an affinity that was 3-4-fold lower than its affinity for double-stranded NRE1. Sequence-specific single-stranded Ku binding occurred rapidly (t1/2 on = 2.0 min) and was exceptionally stable, with an off rate of t1/2= 68 min. While Ku70 cross-linked to the upper strand of NRE1 when Ku was bound to double-stranded and single-stranded DNAs, the Ku80 subunit only cross-linked to single-stranded NRE1. Intriguingly, addition of Mg2+ and ATP, the cofactors required for Ku helicase activity, induced the cross-linking of Ku80 to a double-stranded NRE1-containing oligonucleotide, without completely unwinding the two strands.
Collapse
Affiliation(s)
- H Torrance
- Graduate Program in Biochemistry, University of Ottawa, Loeb Institute for Medical Research, Ottawa Civic Hospital, Ottawa, Ontario K1Y 4E9, Canada
| | | | | | | | | |
Collapse
|
171
|
Shen H, Schultz M, Kruh GD, Tew KD. Increased expression of DNA-dependent protein kinase confers resistance to adriamycin. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1381:131-8. [PMID: 9685611 DOI: 10.1016/s0304-4165(98)00020-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acquired resistance to adriamycin (ADR) in an HL60 cell line is shown to be accompanied by an increase in DNA-dependent protein kinase catalytic subunit (DNA-PKcs) at both the protein and mRNA levels (15-20-fold) and an overall 3-fold increase in DNA-PK enzyme activity. The other components of the DNA-PK Ku autoantigen complex, Ku70 and Ku80, were 3-fold increased and unchanged, respectively. Time dependent repair of ADR-induced DNA damage was measured by the neutral comet assay and found to be more efficient in the drug resistant cell line (HL60/ADR). Antisense RNA transfection reduced the protein expression of DNA-PKcs to 50% in HL60/ADR and partially reversed drug resistance. A fibroblast cell line from a severe combined immunodeficient (SCID) mouse was deficient in functional DNA-PKcs and showed increased sensitivity to ADR and other DNA damaging agents compared to wild type. These studies demonstrate that alteration in DNA-PK can contribute to chronic stress response leading to acquired drug resistance. The overexpression of DNA-PK is thus shown to be a novel cellular adaptation mechanistically contributing to the resistance of cancer cells to the anthracycline drug adriamycin, and as such, may have implications for its therapeutic use.
Collapse
Affiliation(s)
- H Shen
- Department of Pharmacology, Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
172
|
Errami A, He DM, Friedl AA, Overkamp WJ, Morolli B, Hendrickson EA, Eckardt-Schupp F, Oshimura M, Lohman PH, Jackson SP, Zdzienicka MZ. XR-C1, a new CHO cell mutant which is defective in DNA-PKcs, is impaired in both V(D)J coding and signal joint formation. Nucleic Acids Res 1998; 26:3146-53. [PMID: 9628911 PMCID: PMC147672 DOI: 10.1093/nar/26.13.3146] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) plays an important role in DNA double-strand break (DSB) repair and V(D)J recombination. We have isolated a new X-ray-sensitive CHO cell line, XR-C1, which is impaired in DSB repair and which was assigned to complementation group 7, the group that is defective in the XRCC7 / SCID ( Prkdc ) gene encoding the catalytic subunit of DNA-PK (DNA-PKcs). Consistent with this complementation analysis, XR-C1 cells lackeddetectable DNA-PKcs protein, did not display DNA-PK catalytic activity and were complemented by the introduction of a single human chromosome 8 (providing the Prkdc gene). The impact of the XR-C1 mutation on V(D)J recombination was quite different from that found in most rodent cells defective in DNA-PKcs, which are preferentially blocked in coding joint formation, whereas XR-C1 cells were defective in forming both coding and signal joints. These results suggest that DNA-PKcs is required for both coding and signal joint formation during V(D)J recombination and that the XR-C1 mutant cell line may prove to be a useful tool in understanding this pathway.
Collapse
Affiliation(s)
- A Errami
- Department of Radiation Genetics and Chemical Mutagenesis, MGC, Leiden University-Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Ruscetti T, Lehnert BE, Halbrook J, Le Trong H, Hoekstra MF, Chen DJ, Peterson SR. Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J Biol Chem 1998; 273:14461-7. [PMID: 9603959 DOI: 10.1074/jbc.273.23.14461] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) is a heterotrimeric enzyme that binds to double-stranded DNA and is required for the rejoining of double-stranded DNA breaks in mammalian cells. It has been proposed that DNA-PK functions in this DNA repair pathway by binding to the ends of broken DNA molecules and phosphorylating proteins that bind to the damaged DNA ends. Another enzyme that binds to DNA strand breaks and may also function in the cellular response to DNA damage is the poly(ADP-ribose) polymerase (PARP). Here, we show that PARP can be phosphorylated by purified DNA-PK, and the catalytic subunit of DNA-PK is ADP-ribosylated by PARP. The protein kinase activity of DNA-PK can be stimulated by PARP in the presence of NAD+ in a reaction that is blocked by the PARP inhibitor 1, 5-dihydroxyisoquinoline. The stimulation of DNA-PK by PARP-mediated protein ADP-ribosylation occurs independent of the Ku70/80 complex. Taken together, these results show that PARP can modify the activity of DNA-PK in vitro and suggest that these enzymes may function coordinately in vivo in response to DNA damage.
Collapse
Affiliation(s)
- T Ruscetti
- Cell and Molecular Biology Group (LS-4), Life Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | | | | | |
Collapse
|
174
|
Laroche T, Martin SG, Gotta M, Gorham HC, Pryde FE, Louis EJ, Gasser SM. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr Biol 1998; 8:653-6. [PMID: 9635192 DOI: 10.1016/s0960-9822(98)70252-0] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian Ku70 and Ku86 proteins form a heterodimer that binds to the ends of double-stranded DNA in vitro and is required for repair of radiation-induced strand breaks and V(D)J recombination [1,2]. Deletion of the Saccharomyces cerevisiae genes HDF1 and HDF2--encoding yKu70p and yKu80p, respectively--enhances radiation sensitivity in a rad52 background [3,4]. In addition to repair defects, the length of the TG-rich repeat on yeast telomere ends shortens dramatically [5,6]. We have shown previously that in yeast interphase nuclei, telomeres are clustered in a limited number of foci near the nuclear periphery [7], but the elements that mediate this localization remained unknown. We report here that deletion of the genes encoding yKu70p or its partner yKu80p altered the positioning of telomeric DNA in the yeast nucleus. These are the first mutants shown to affect the subnuclear localization of telomeres. Strains deficient for either yKu70p or yKu80p lost telomeric silencing, although they maintained repression at the silent mating-type loci. In addition, the telomere-associated silencing factors Sir3p and Sir4p and the TG-repeat-binding protein Rap1p lost their punctate pattern of staining and became dispersed throughout the nucleoplasm. Our results implicate the yeast Ku proteins directly in aspects of telomere organization, which in turn affects the repression of telomere-proximal genes.
Collapse
Affiliation(s)
- T Laroche
- Swiss Institute for Experimental Cancer Research, Chemin des Boveresses, Epalinges/Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
175
|
Dynan WS, Yoo S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 1998; 26:1551-9. [PMID: 9512523 PMCID: PMC147477 DOI: 10.1093/nar/26.7.1551] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Ku protein-DNA-dependent protein kinase system is one of the major pathways by which cells of higher eukaryotes respond to double-strand DNA breaks. The components of the system are evolutionarily conserved and homologs are known from a number of organisms. The Ku protein component binds directly to DNA ends and may help align them for ligation. Binding of Ku protein to DNA also nucleates formation of an active enzyme complex containing the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The interaction between Ku protein, DNA-PKcs and nucleic acids has been extensively investigated. This review summarizes the results of these biochemical investigations and relates them to recent molecular genetic studies that reveal highly characteristic repair and recombination defects in mutant cells lacking Ku protein or DNA-PKcs.
Collapse
Affiliation(s)
- W S Dynan
- Program in Gene Regulation, Institute of Molecular Medicine and Genetics, Room CB-2803, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA.
| | | |
Collapse
|
176
|
Abstract
DNA double-strand breaks formed by ionizing irradiation or other stresses are repaired by homologous recombination or DNA end-joining. This review focuses on the mechanism of double-strand break repair mediated by DNA end-joining, in which many factors have recently been identified. After DNA double-strand breakage, DNA end-joining takes place between the DNA ends that have nonhomologous sequences or very short regions ofhomology. The broken DNA is repaired if the DNA end-joining occurs in the same molecule, while it causes chromosome aberrations such as deletions, insertions, translocations and inversions if it occurs between different molecules. Rad50 and its relatives, Ku-proteins, DNA ligase VI and silencing factors, are involved in DNA end-joining in yeast and mammalian cells. These findings led us to propose a model in which the formation of a heterochromatin-like complex at broken ends is an important element in DNA end-joining.
Collapse
Affiliation(s)
- Y Tsukamoto
- Department of Molecular Biology, Institute of Medical Science, University of Tokyo, Japan
| | | |
Collapse
|
177
|
Cary RB, Chen F, Shen Z, Chen DJ. A central region of Ku80 mediates interaction with Ku70 in vivo. Nucleic Acids Res 1998; 26:974-9. [PMID: 9461456 PMCID: PMC147353 DOI: 10.1093/nar/26.4.974] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ku, the DNA binding component of DNA-dependent protein kinase (DNA-PK), is a heterodimer composed of 70 and 86 kDa subunits, known as Ku70 and Ku80 respectively . Defects in DNA-PK subunits have been shown to result in a reduced capacity to repair DNA double-strand breaks. Assembly of the Ku heterodimer is required to obtain DNA end binding activity and association of the DNA-PK catalytic subunit. The regions of the Ku subunits responsible for heterodimerization have not been clearly defined in vivo . A previous study has suggested that the C-terminus of Ku80 is required for interaction with Ku70. Here we examine Ku subunit interaction using N- and C-terminal Ku80 deletions in a GAL4-based two-hybrid system and an independent mammalian in vivo system. Our two-hybrid study suggests that the central region of Ku80, not its C-terminus, is capable of mediating interaction with Ku70. To determine if this region mediates interaction with Ku70 in mammalian cells we transfected xrs-6 cells, which lack endogenous Ku80, with epitope-tagged Ku80 deletions carrying a nuclear localization signal. Immunoprecipitation from transfected cell extracts revealed that the central domain identified by the GAL4 two-hybrid studies stabilizes and co-immunoprecipitates with endogenous xrs-6 Ku70. The central interaction domain maps to the internally deleted regions of Ku80 in the mutant cell lines XR-V9B and XR-V15B. These findings indicate that the internally deleted Ku80 mutations carried in these cell lines are incapable of heterodimerization with Ku70.
Collapse
Affiliation(s)
- R B Cary
- Life Sciences Division, Los Alamos National Laboratory, Mail Stop M888, Los Alamos, NM 87545, USA
| | | | | | | |
Collapse
|
178
|
Ramsden DA, Gellert M. Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBO J 1998; 17:609-14. [PMID: 9430651 PMCID: PMC1170410 DOI: 10.1093/emboj/17.2.609] [Citation(s) in RCA: 231] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ku protein binds to DNA ends and is a cofactor for the DNA-dependent protein kinase. Both of these components are involved in DNA double-strand break repair, but it has not been clear if they function indirectly, by sensing DNA damage and activating other factors, or if they are more directly involved in the processing and rejoining of DNA breaks. We demonstrate that intermolecular ligation of DNA fragments is highly dependent on Ku under conditions designed to mimic those existing in the cell. This effect of Ku is specific to eukaryotic DNA ligases. Ku protein, therefore, has an activity consistent with a direct role in rejoining DNA breaks and independent of DNA-dependent protein kinase.
Collapse
Affiliation(s)
- D A Ramsden
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892-0540, USA
| | | |
Collapse
|