151
|
Panda DK, Al Kawas S, Seldin MF, Hendy GN, Goltzman D. 25-hydroxyvitamin D 1alpha-hydroxylase: structure of the mouse gene, chromosomal assignment, and developmental expression. J Bone Miner Res 2001; 16:46-56. [PMID: 11149489 DOI: 10.1359/jbmr.2001.16.1.46] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The murine homologue of the 25-hydroxyvitamin D [25(OH)D] 1alpha-hydroxylase gene [1alpha(OH)ase; Cyp27bl], which is mutated in humans with vitamin D-dependent rickets type I (VDDR-I; also known as pseudovitamin D-deficiency rickets [PDDR]) was cloned and characterized. Like the human, the mouse gene has nine exons, and the exon-intron organization is well conserved. By interspecific backcross analysis, the Cyp27bl gene was mapped to 70.5 cM on mouse Chr 10. This is in a region syntenic with human Chr 12q13.1-q13.3 to which the human 1alpha(OH)ase gene was previously mapped. Kidney expression of the 1alpha(OH)ase was localized to cortical tubules and was higher in the adult mouse than in the fetus, consistent with the increased role of its product as a circulating hormone postnatally. Prenatally, the 1alpha(OH)ase gene, together with the vitamin D receptor (VDR) gene, was expressed in embryonic stem cells, and expression of 1alpha(OH)ase in bone and intestine was higher in the fetus than in the adult. These observations suggest that 1,25-dihydroxyvitamin D [1,25(OH)2D] plays a role in fetal development. In view of the fact that humans lacking 1alpha(OH)ase have apparently normal prenatal development, this may point to functional redundancy in the fetal vitamin D system, which now can be explored further in mouse models in which the 1alpha(OH)ase gene has been deleted.
Collapse
Affiliation(s)
- D K Panda
- Calcium Research Laboratory, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
152
|
Abstract
The rate-limiting, hormonally regulated step in the bioactivation of vitamin D is renal 1 alpha-hydroxylation by P450c1 alpha. In late 1997, we reported the cloning of the human cDNA and gene from keratinocytes, and established that P450c1 alpha mutations cause vitamin D-dependent rickets, type I, while three other groups reported the cloning of the rodent enzyme. The genetics of P450c1 alpha are well established, with studies of over 30 patients, but the molecular mechanisms for the hormonal regulation of P450c1 alpha are still under investigation.
Collapse
Affiliation(s)
- W L Miller
- Department of Pediatrics, Building MR-IV, Room 209, University of California San Francisco, San Francisco, CA 94143-0978, USA.
| | | |
Collapse
|
153
|
Abstract
The GNAS1 gene (chromosome 20q13.3) encodes the alpha subunit of the stimulatory G protein (Gs alpha) and at least three additional, alternatively spliced transcripts, XL alpha s, NESP55, and the antisense transcript AS. Gs alpha transcripts seem to be derived exclusively, at least in the renal cortex, from the maternal allele. XL alpha s and AS are transcribed only from the paternal allele, and NESP55 is transcribed only from the maternal allele. Numerous GNAS1 mutations have been identified in PHP-Ia and pPHP. Patients with either disorder show skeletal and developmental defects now referred to as AHO. Owing to paternal imprinting, that is, inactivation of the paternal allele, which may be tissue- or cell-specific, resistance toward PTH and, often, other hormones is only observed in patients with PHP-Ia. Patients with PHP-Ib show PTH-resistant hypocalcemia and hyperphosphatemia but no AHO. The abnormal regulation of mineral ion homeostasis is paternally imprinted, such as in PHP-Ia/pPHP kindreds, Gs alpha activity/protein is normal in fibroblasts and blood cells, and no GNAS1 mutations have been identified. Recent linkage studies have mapped the genetic defect responsible for PHP-Ib to chromosome 20q13.3, making it likely that mutations in distinct regions of the GNAS1 gene are the cause of at least three different forms of PHP.
Collapse
Affiliation(s)
- M Bastepe
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
154
|
Brenza HL, DeLuca HF. Regulation of 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression by parathyroid hormone and 1,25-dihydroxyvitamin D3. Arch Biochem Biophys 2000; 381:143-52. [PMID: 11019830 DOI: 10.1006/abbi.2000.1970] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) takes place mainly in the kidney and is catalyzed by the enzyme 1alpha-hydroxylase. Parathyroid hormone (PTH) and 1,25-(OH)2D3 are well-known regulators of this tightly controlled step, but the mechanisms by which they modulate 1alpha-hydroxylase activity have not been fully delineated. Northern analysis showed PTH and forskolin rapidly and transiently increase 1alpha-hydroxylase expression in AOK-B50 cells and HKC-8 cells. Actinomycin D treatment blocks the increase, but cycloheximide does not. No decrease of 1alpha-hydroxylase transcript by 1,25-(OH)2D3 was observed in either cell line, although 24-hydroxylase levels were strongly induced by 1,25-(OH)2D3 treatment. 1,25-(OH)2D3 suppressed the 1alpha-hydroxylase transcript in vivo both in the presence and absence of exogenously supplied PTH. These results suggest that the stimulatory action of PTH is directly on the 1alpha-hydroxylase gene, while the repressive action of 1,25-(OH)2D3 does not involve the parathyroid gland but is nevertheless indirect.
Collapse
Affiliation(s)
- H L Brenza
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706, USA
| | | |
Collapse
|
155
|
Monkawa T, Yoshida T, Hayashi M, Saruta T. Identification of 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression in macrophages. Kidney Int 2000; 58:559-68. [PMID: 10916079 DOI: 10.1046/j.1523-1755.2000.00202.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The 25-hydroxyvitamin D3 1alpha-hydroxylase (1alpha-hydroxylase) is almost exclusively expressed in the kidney. However, 1alpha-hydroxylase activities have been observed in some extrarenal tissues, including inflammatory cells of the monocyte/macrophage lineage. In sarcoidosis, macrophage 1alpha-hydroxylase causes overproduction of 1,25-(OH)2D3, resulting in hypercalcemia. In this study, we investigated the regulation of macrophage 1alpha-hydroxylase at a molecular level. METHODS We used the human monocytic cell line THP-1, which can be differentiated into macrophage-like cells by treatment with phorbol ester. The expression of 1alpha-hydroxylase in THP-1 cells was examined by Northern blotting and immunoblotting using an antibody raised against a synthetic peptide corresponding to the 14 C-terminal amino acids of 1alpha-hydroxylase. We investigated the regulation of 1alpha-hydroxylase mRNA expression by RNase protection assay. RESULTS Northern blot and immunoblot analyses confirmed the expression of 1alpha-hydroxylase in THP-1 cells at the mRNA and protein levels. Although parathyroid hormone and calcitonin, known stimulators of renal 1alpha-hydroxylase, did not affect the expression of 1alpha-hydroxylase mRNA, 8-Br-cAMP (5 x 10-4 mol/L) increased the expression of 1alpha-hydroxylase mRNA in THP-1 cells (198 +/- 9%). 1,25-(OH)2D3, known as a suppressor of renal 1alpha-hydroxylase, did not affect the expression of 1alpha-hydroxylase mRNA. By contrast, 1,25-(OH)2D3 markedly increased the expression of 25-hydroxyvitamin D3 24-hydroxylase mRNA. Interferon-gamma (2000 IU/mL) increased the expression of 1alpha-hydroxylase mRNA in differentiated THP-1 cells (922 +/- 25%). CONCLUSIONS The present results suggest that 1alpha-hydroxylase activity in macrophages is mediated by the same enzyme as in kidney. Interferon-gamma treatment increases macrophage 1alpha-hydroxylase levels via directly increasing gene expression of this enzyme.
Collapse
Affiliation(s)
- T Monkawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | |
Collapse
|
156
|
Kimmel-Jehan C, DeLuca HF. Cloning of the mouse 25-hydroxyvitamin D(3)-1alpha-hydroxylase (CYP1alpha) gene. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1475:109-13. [PMID: 10832023 DOI: 10.1016/s0304-4165(00)00065-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A genomic clone for 25-hydroxyvitamin D(3)-1alpha-hydroxylase (1alpha-hydroxylase) was isolated from a mouse embryonic stem cell P1 genomic library. It contains nine exons spanning 4.8 kb from the transcriptional start site. All the intron insertion sites are identical to that of the human 1alpha-hydroxylase and human vitamin D(3) 25-hydroxylase genes. A polyadenylation signal AUUAAA that differs from the consensus sequence at the second residue was identified 16 bp downstream of the 3' end of the previously reported mouse cDNA. This element is the only common natural variant described. The 3' end of the gene was determined using a RACE technique. Three poly(A) addition sites were observed 12, 15 and 22 bases from the AUUAAA element. Such distances are in agreement with what is required for maturation of mammalian pre-mRNAs. This molecular cloning makes possible the generation of transgenic mice in order to further investigate the role and importance of the 25-hydroxyvitamin D(3)-1alpha-hydroxylase (CYP1alpha).
Collapse
Affiliation(s)
- C Kimmel-Jehan
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | |
Collapse
|
157
|
Wu Y, Kumar R. Parathyroid hormone regulates transforming growth factor beta1 and beta2 synthesis in osteoblasts via divergent signaling pathways. J Bone Miner Res 2000; 15:879-84. [PMID: 10804017 DOI: 10.1359/jbmr.2000.15.5.879] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Parathyroid hormone 1-34 [PTH(1-34)] was shown to increase transforming growth factor beta1 (TGF-beta1) and TGF-beta2 concentrations in supernatants of cultured human osteoblasts and to increase TGF-beta1 and TGF-beta2 messenger RNA (mRNA) concentrations and gene transcription in these cells. Because PTH(1-34) activates both protein kinase C (PKC) and protein kinase A (PKA) pathways in osteoblasts, we investigated the role of each kinase pathway in activation of TGF-beta isoforms. PTH(29-32), which activates the PKC pathway in rat osteoblasts, increased TGF-beta1 but not TGF-beta2 concentrations in supernatants of osteoblasts. Phorbol myristate acetate (PMA), a PKC agonist, increased TGF-beta1 but not TGF-beta2 concentrations. Specific PKC antagonists safingol and Gö6976 attenuated PTH(1-34)-mediated increases in TGF-beta1 but not TGF-beta2 synthesis. PTH(1-31), which increases PKA activity in several cell culture systems, increased TGF-beta2 but not TGF-beta1 concentrations in human osteoblast supernatants. Forskolin, a PKA agonist, increased TGF-beta2 but not TGF-beta1 concentrations in supernatants of human osteoblasts. The PKA antagonist H-89 blunted PTH(1-34)-mediated increases in TGF-beta2 but not TGF-beta1 synthesis. Our results are consistent with the concept that PTH increases TGF-beta1 expression and secretion by pathways that involve the PKC pathway, whereas it increases TGF-beta2 expression and secretion via the PKA pathway.
Collapse
Affiliation(s)
- Y Wu
- Department of Medicine, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
158
|
Abstract
Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks.
Collapse
Affiliation(s)
- P Honkakoski
- Department of Pharmaceutics, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | |
Collapse
|
159
|
Bland R, Zehnder D, Hewison M. Expression of 25-hydroxyvitamin D3-1alpha-hydroxylase along the nephron: new insights into renal vitamin D metabolism. Curr Opin Nephrol Hypertens 2000; 9:17-22. [PMID: 10654820 DOI: 10.1097/00041552-200001000-00004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Renal synthesis of the active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a pivotal step in calcium and phosphate homeostasis. Production of 1,25(OH)2D3 is catalyzed by the mitchondrial cytochrome P450, 25-hydroxyvitamin D3-1alpha-hydroxylase (1alpha-HYD). As a consequence of the tight regulation of vitamin D metabolism during normal physiology, studies of the expression and regulation of 1alpha-HYD have proved remarkably difficult. However, the recent cloning of the gene for 1alpha-HYD has enabled a more comprehensive analysis of the tissue distribution of 1alpha-HYD, as well as the mechanisms involved in controlling 1,25(OH)2D3 production. In particular, an understanding of site-specific expression and regulation of 1alpha-HYD along the nephron might help to elucidate a more versatile role for 1,25(OH)2D3 in renal physiology.
Collapse
Affiliation(s)
- R Bland
- Division of Medical Sciences, The University of Birmingham, UK
| | | | | |
Collapse
|
160
|
Abstract
The principal hormonal regulator of bone mineralization is vitamin D, which must be activated by a metabolic pathway consisting of a 25-hydroxylase and a 1 alpha-hydroxylase to yield 1,25 dihydroxy vitamin D. The hormonal regulation of vitamin D activation is at the level of the 1 alpha-hydroxylase. This article reviews the biology of vitamin D, and describes the biochemistry of its activation and the molecular biology of the vitamin D-metabolizing enzymes. Recent advances, principally in the authors' laboratories, have resulted in the cloning of the human vitamin D 1 alpha-hydroxylase and the identification of mutations in its gene that cause Vitamin D Dependent Rickets type I.
Collapse
Affiliation(s)
- W L Miller
- Department of Pediatrics, University of California, San Francisco School of Medicine, USA
| | | |
Collapse
|
161
|
Kato S. Genetic mutation in the human 25-hydroxyvitamin D3 1alpha-hydroxylase gene causes vitamin D-dependent rickets type I. Mol Cell Endocrinol 1999; 156:7-12. [PMID: 10612418 DOI: 10.1016/s0303-7207(99)00128-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vitamin D is deeply involved in a wide variety of biological events such as calcium homeostasis, bone formation and cellular differentiation. An active form of vitamin D, 1alpha,25(OH)2D3, serves as a vitamin D receptor (VDR)-specific ligand to activate the expression of a particular set of target genes. 1Alpha,25(OH)2D3, is biosynthesized from cholesterol, and at the final biosynthesis step, 25-hydroxyvitamin D3 1alpha-hydroxylase [1alpha(OH)ase] in kidney conducts 1alpha-hydroxylation of 25(OH)2D3. This enzymatic activity is under multihormonal regulation and critical for the biosynthesis. Molecular cloning of 1alpha(OH)ase from several species has revealed that this enzyme belongs to a member of the cytochrome P450 enzyme superfamily, with highest homologies to the P450 hydroxylases for vitamin D derivatives. The renal gene expression is strictly regulated at the transcriptional level through its gene promoter by PTH and calcitonine (positive) and 1alpha,25(OH)2D3 (negative). Most importantly in clinical aspects, genetic mutations in this gene to abolish the enzymatic activity are now shown to cause the one of three kinds of hereditary rickets, vitamin D-dependent rickets type I.
Collapse
Affiliation(s)
- S Kato
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan.
| |
Collapse
|
162
|
Abstract
Dietary deficiency of vitamin D, genetic disorders of its bioactivation to 1,25-dihydroxyvitamin D [1,25(OH)2D], or disorders of vitamin D action can cause rickets. The rate-limiting, hormonally-regulated, biologically activating step in the synthesis of 1,25(OH)2D is the 1 alpha-hydroxylation of 25-hydroxyvitamin D, which occurs in kidney and other tissues and is mediated by a mitochondrial cytochrome P450 enzyme, P450c1 alpha. After many years of effort, the cDNA and gene for this enzyme were cloned in late 1997. Mutations in the P450c1 alpha gene, located on chromosome 12, cause 1 alpha-hydroxylase deficiency, also known as vitamin D-dependent rickets type I, an autosomal recessive disease characterized by rickets and impaired growth due to failure of renal synthesis of 1,25(OH)2D. X-linked hypophosphatemic rickets, a dominantly inherited disease, is caused by mutations in the PHEX gene, whose function in regulating renal phosphate and vitamin D metabolism remains to be elucidated.
Collapse
Affiliation(s)
- W L Miller
- Department of Pediatrics, University of California at San Francisco, Berkeley, USA
| | | |
Collapse
|
163
|
Abstract
The vitamin D endocrine systems plays a critical role in calcium and phosphate homeostasis. The active form of vitamin D, 1, 25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], binds with high affinity to a specific cellular receptor that acts as a ligand-activated transcription factor. The activated vitamin D receptor (VDR) dimerizes with another nuclear receptor, the retinoid X receptor (RXR), and the heterodimer binds to specific DNA motifs (vitamin D response elements, VDREs) in the promoter region of target genes. This heterodimer recruits nuclear coactivators and components of the transcriptional preinitiation complex to alter the rate of gene transcription. 1,25(OH)(2)D(3) also binds to a cell-surface receptor that mediates the activation of second messenger pathways, some of which may modulate the activity of the VDR. Recent studies with VDR-ablated mice confirm that the most critical role of 1, 25(OH)(2)D(3) is the activation of genes that control intestinal calcium transport. However, 1,25(OH)(2)D(3) can control the expression of many genes involved in a plethora of biological actions. Many of these nonclassic responses have suggested a number of therapeutic applications for 1,25(OH)(2)D(3) and its analogs.
Collapse
Affiliation(s)
- A J Brown
- Renal Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
164
|
Shinki T, Ueno Y, DeLuca HF, Suda T. Calcitonin is a major regulator for the expression of renal 25-hydroxyvitamin D3-1alpha-hydroxylase gene in normocalcemic rats. Proc Natl Acad Sci U S A 1999; 96:8253-8. [PMID: 10393981 PMCID: PMC22221 DOI: 10.1073/pnas.96.14.8253] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of vitamin D metabolism has long been examined by using vitamin D-deficient hypocalcemic animals. We previously reported that, in a rat model of chronic hyperparathyroidism, expression of 25-hydroxyvitamin D3-1alpha-hydroxylase (CYP27B1) mRNA was markedly increased in renal proximal convoluted tubules. It is believed that the major regulator for the expression of renal CYP27B1 is parathyroid hormone (PTH). However, in the normocalcemic state, the mechanism to regulate the renal CYP27B1 gene could be different, since plasma levels of PTH are very low. In the present study, the effect of PTH and calcitonin (CT) on the expression of renal CYP27B1 mRNA was investigated in normocalcemic sham-operated rats and normocalcemic thyroparathyroidectomized (TPTX) rats generated by either PTH or CaCl2 infusion. A single injection of CT dose-dependently decreased the expression of vitamin D receptor mRNA in the kidney of normocalcemic sham-TPTX rats. Concomitantly, CT greatly increased the expression of CYP27B1 mRNA in the kidney of normocalcemic sham-TPTX rats. CT also increased the expression of CYP27B1 mRNA in the kidney of normocalcemic TPTX rats. Conversion of serum [3H]1alpha,25(OH)2D3 from 25-hydroxy[3H]vitamin D3 in vivo was also greatly increased by the injection of CT into sham-TPTX rats and normocalcemic TPTX rats, but not into hypocalcemic TPTX rats. In contrast, administration of PTH did not induce the expression of CYP27B1 mRNA in the kidney of vitamin D-replete sham-TPTX rats and hypocalcemic TPTX rats. PTH increased the expression of renal CYP27B1 mRNA only in vitamin D-deficient hypocalcemic TPTX rats. These results suggest that CT plays an important role in the maintenance of serum 1alpha,25(OH)2D3 under normocalcemic physiological conditions, at least in rats.
Collapse
Affiliation(s)
- T Shinki
- Department of Biochemistry, School of Dentistry, Showa University, Hatanodai, Shinagawa-ku, Tokyo 142-8555, USA.
| | | | | | | |
Collapse
|
165
|
Abstract
Vitamin D undergoes a first hydroxylation in the liver to generate 25-hydroxyvitamin D, then this metabolite is further hydroxylated in the kidney to yield either 1alpha,25-dihydroxyvitamin D [1alpha,25(OH)2D], or 24R,25-dihydroxyvitamin D[24,25(OH)2D]. The production of 1alpha,25(OH)2D is catalyzed by the enzyme 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-OHase), while the synthesis of 24,25(OH)2D is catalyzed by the enzyme 25-hydroxyvitamin D-24-hydroxylase (24-OHase). To determine the role of each of these enzymes in vivo and their putative role during development, we have inactivated each gene by homologous recombination in embryonic stem cells. The targeting vector for the 1alpha-OHase gene was constructed to allow tissue-specific gene inactivation in order to study the hypothesized paracrine/autocrine roles of the 1alpha-OHase enzyme in particular target tissues such as skin, brain, or macrophages. The targeting vector for the 24-OHase gene utilized standard methodology, and analysis of the phenotype of 24-OHase-deficient mice confirmed the role of the 24-OHase enzyme in the catabolism of 1alpha,25(OH)2D. The phenotype of the second generation 24-OHase-null mice also suggests a key role for 24,25(OH)2D in intramembranous bone formation during development.
Collapse
Affiliation(s)
- R St-Arnaud
- Shriners Hospital for Children, and Department of Surgery, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
166
|
Jones G, Ramshaw H, Zhang A, Cook R, Byford V, White J, Petkovich M. Expression and activity of vitamin D-metabolizing cytochrome P450s (CYP1alpha and CYP24) in human nonsmall cell lung carcinomas. Endocrinology 1999; 140:3303-10. [PMID: 10385427 DOI: 10.1210/endo.140.7.6799] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Extrarenal 25-hydroxyvitamin D3-1alpha-hydroxylase is believed to play a major role in the pathogenesis of hypercalcemia associated with various types of granulomatous and lymphoproliferative diseases and certain solid tumors. In this paper, we describe the cloning of the cytochrome P450 component of the extrarenal enzyme from a human nonsmall cell lung carcinoma, SW 900. The cytochrome P450 for the extrarenal 1alpha-hydroxylase has an amino acid sequence identical to that of the cytochrome P450 component of the CYP1alpha, the renal form of the enzyme, and appears to be a product of the same gene. CYP1alpha messenger RNA (mRNA) and 1alpha-hydroxylase enzyme activity were detected in two (SW 900, SK-Luci-6) of a series of five nonsmall cell lung carcinoma cell lines. All five lung cell lines were cultured with the same medium under the same conditions, but only two of the five expressed 1alpha-hydroxylase enzyme; two others (WT-E, Calu-1) expressed high levels of the reciprocally regulated enzyme, 25-hydroxyvitamin D3-24-hydroxylase, with its specific cytochrome P450 component, CYP24. Although under basal conditions the lung cell line SW 900 expressed only CYP1alpha and showed 1alpha-hydroxylase enzyme activity, when treated with small concentrations of 1alpha,25-dihydroxyvitamin D3 or high concentrations of 25-hydroxyvitamin D3, it began to express CYP24 and exhibit 24-hydroxylase enzyme activity. Somewhat surprisingly, SW 900 cells still had detectable CYP1alpha mRNA some 24 h after vitamin D treatment despite the fact that 1alpha-hydroxylase enzyme activity was unmeasurable. These data are consistent with the emerging hypothesis that vitamin D through its active form does not directly turn off CYP1alpha mRNA production but, rather, strongly stimulates CYP24, thereby masking CYP1alpha activity. The factor(s) responsible for the basal expression of CYP1alpha in SW 900 and SK-Luci-6 is currently unknown.
Collapse
Affiliation(s)
- G Jones
- Cytochroma, Inc., Kingston, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
167
|
Kong XF, Zhu XH, Pei YL, Jackson DM, Holick MF. Molecular cloning, characterization, and promoter analysis of the human 25-hydroxyvitamin D3-1alpha-hydroxylase gene. Proc Natl Acad Sci U S A 1999; 96:6988-93. [PMID: 10359826 PMCID: PMC22032 DOI: 10.1073/pnas.96.12.6988] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1998] [Accepted: 04/06/1999] [Indexed: 11/18/2022] Open
Abstract
The human 25-hydroxyvitamin D3-1alpha-hydroxylase (1alpha-OHase) gene has been cloned. It contained nine exons and eight introns spanning approximately 6.5 kb and a 1.4-kb 5'-flanking region. The 5'-flanking region contains consensus or highly conserved sequences for TATA, Pu, and CCAAT boxes, four cAMP response elements, two activator protein-1 (AP-1) response elements, two AP-2 response elements, three specific protein-1 (Sp1) response elements, and four NF-kappaB binding sites, but no vitamin D response element. By using luciferase reporter gene constructs of truncated forms of the 1alpha-OHase promoter transfected into a modified pig kidney cell line, AOK-B50, we identified regulatory regions of the 1.4-kb 1alpha-OHase promoter for parathyroid hormone 1-34 [PTH(1-34)], forskolin, and 1,25-hydroxyvitamin D3 [1,25(OH)2D3]. The 1.4-kb 1alpha-OHase promoter (AN1) modestly (1.7-fold) induced luciferase activity, whereas 1,100- (AN2), 827- (AN3), 672- (AN4), 463-(AN5), and 363-bp (AN6)-truncated promoters greatly stimulated luciferase activity by 494-fold, 18.4-fold, 55.3-fold, 643-fold, and 56.4-fold, respectively. PTH(1-34) and forskolin stimulated the activity of all constructs to varying degrees with significantly greater responsiveness for both compounds on AN2 and AN5. 1,25(OH)2D3 suppressed PTH(1-34)-induced activity on AN2 and AN5 constructs by 58% and 52%, respectively, but had no effect on the other constructs. These studies characterize the regulatory regions of the human 1alpha-OHase gene and provide insight into the physiologic basis for regulation of the expression of this gene by PTH and 1,25(OH)2D3.
Collapse
Affiliation(s)
- X F Kong
- Vitamin D, Skin and Bone Research Laboratory, Endocrinology, Nutrition, and Diabetes Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
168
|
Zhang MI, O'Neil RG. The diversity of calcium channels and their regulation in epithelial cells. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1999; 46:43-83. [PMID: 10332501 DOI: 10.1016/s1054-3589(08)60469-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- M I Zhang
- Department of Integrative Biology, Pharmacology, and Physiology, University of Texas-Houston Health Science Center 77030, USA
| | | |
Collapse
|
169
|
Murayama A, Takeyama K, Kitanaka S, Kodera Y, Kawaguchi Y, Hosoya T, Kato S. Positive and negative regulations of the renal 25-hydroxyvitamin D3 1alpha-hydroxylase gene by parathyroid hormone, calcitonin, and 1alpha,25(OH)2D3 in intact animals. Endocrinology 1999; 140:2224-31. [PMID: 10218975 DOI: 10.1210/endo.140.5.6691] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reflecting the prime role of 1alpha,25(OH)2D3 in calcium homeostasis, the activity of 25-hydroxyvitamin D3 1alpha-hydroxylase, a key enzyme for 1alpha,25(OH)2D3 biosynthesis, is tightly regulated by 1alpha,25(OH)2D3, PTH and calcitonin. Its significant activity is found in kidney, though the enzymatic activity is also reported in extra-renal tissues. In the present study, we found that the 1alpha-hydroxylase gene abundantly expresses in kidney, and at low levels in other tissues and in some cell lines. Positive and negative regulations of 1alpha-hydroxylase gene by PTH, calcitonin, or 1alpha,25(OH)2D3 were observed at transcriptional levels in kidneys of animals and in a mouse proximal tubule cell line. Moreover, the protein kinase A inhibitor abrogated the PTH-mediated positive regulation. In mice lacking the vitamin D receptor, the 1alpha-hydroxylase gene expression was overinduced, and the inducible effect of either PTH or calcitonin, but not the repression by 1alpha,25(OH)2D3, was evident. Thus, vitamin D receptor is essential for the negative regulation by 1alpha,25(OH)2D3. Moreover, we demonstrate that renal 1alpha-hydroxylase gene expression in chronic renal failure model rats was decreased and the positive effect by PTH and calcitonin was diminished. The present study demonstrates that PTH and calcitonin positively regulate renal 1alpha-hydroxylase gene expression via PKA-dependent and independent pathway, respectively, and that 1alpha,25(OH)2D3 negatively regulates it mediated by vitamin D receptor. Furthermore, in a moderate state of chronic renal failure, renal cells expressing the 1alpha-hydroxylase gene appear to have diminished potential in response to PTH and calcitonin.
Collapse
Affiliation(s)
- A Murayama
- The Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
170
|
Yoshida T, Yoshida N, Nakamura A, Monkawa T, Hayashi M, Saruta T. Cloning of porcine 25-hydroxyvitamin D3 1alpha-hydroxylase and its regulation by cAMP in LLC-PK1 cells. J Am Soc Nephrol 1999; 10:963-70. [PMID: 10232681 DOI: 10.1681/asn.v105963] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The 25-hydroxyvitamin D3 1alpha-hydroxylase, also referred to as CYP27B1, is a mitochondrial cytochrome P450 enzyme that catalyzes the biosynthesis of 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) from 25-hydroxyvitamin D3 in renal proximal tubular cells. Recently, human, mouse, and rat CYP27B1 cDNA have been cloned, however the gene regulation has not been fully elucidated. In the present study, porcine CYP27B cDNA was cloned, and the effects of cAMP and vitamin D3 on the regulation of CYP27B1 mRNA expression in LLC-PK1 cells were examined. PCR cloning revealed that porcine CYP27B1 cDNA consisted of 2316 bp, encoding a protein of 504 amino acids. The deduced amino acid sequence showed over 80% identity to the human, mouse, and rat enzyme. LLC-PK1 cells were incubated with humoral factors, and expression of CYP27B1 mRNA was measured by a quantitative reverse transcription-PCR. At the completion of 3-, 6-, 12-, and 24-h incubations, 500 micromol/L 8-bromo-cAMP had significantly increased CYP27B1 mRNA expression (260 to 340%). The adenylate cyclase activator forskolin at 50 micromol/L also had a stimulatory effect at 6 h (190%). Moreover, the protein kinase A inhibitor H-89 reduced the cAMP effect. On the other hand, 1alpha,25(OH)2D3 had no effect on CYP27B1 mRNA expression at 10 and 100 nmol/L, whereas expression of 25-hydroxyvitamin D3 24-hydroxylase (CYP24) mRNA was markedly increased by 1alpha,25(OH)2D3. These findings suggest that LLC-PK1 cells express CYP27B1 mRNA, and that cAMP is an upregulating factor of the CYP27B1 gene in vitro.
Collapse
Affiliation(s)
- T Yoshida
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
171
|
Armbrecht HJ, Hodam TL, Boltz MA, Kumar VB. Capacity of a low calcium diet to induce the renal vitamin D 1a-hydroxylase is decreased in adult rats. Biochem Biophys Res Commun 1999; 255:731-4. [PMID: 10049779 DOI: 10.1006/bbrc.1999.0271] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Young animals adapt to a low calcium diet by increasing renal production of 1,25-dihydroxyvitamin D [1,25(OH)2D], the active metabolite of vitamin D. However, the capacity of adult animals to adapt is markedly diminished. With the recent cloning of the cytochrome P450 component (CYP1a) of the renal 1-hydroxylase enzyme complex, it is now possible to determine directly the effect of dietary calcium and maturation on the expression of renal 1-hydroxylase. Using a ribonuclease protection assay, it was found that feeding a low Ca diet markedly increased renal CYP1a mRNA levels in young rats. However, feeding this diet to adult rats produced an increase in CYP1a mRNA that was only 10% that of the young rats. These studies demonstrate that a low calcium diet increases renal 1,25-dihydroxyvitamin D production in young animals but not in adult animals by increasing CYP1a expression. Since the low calcium diet increased plasma parathyroid hormone levels to similar levels in both age groups, this suggests that in the adult there is a renal refractoriness to parathyroid hormone.
Collapse
Affiliation(s)
- H J Armbrecht
- Geriatric Research, Education, and Clinical Center, St. Louis VA Medical Center, St. Louis, Missouri, 63125, USA.
| | | | | | | |
Collapse
|
172
|
Murayama A, Takeyama K, Kitanaka S, Kodera Y, Hosoya T, Kato S. The promoter of the human 25-hydroxyvitamin D3 1 alpha-hydroxylase gene confers positive and negative responsiveness to PTH, calcitonin, and 1 alpha,25(OH)2D3. Biochem Biophys Res Commun 1998; 249:11-6. [PMID: 9705822 DOI: 10.1006/bbrc.1998.9098] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
25-Hydroxyvitamin D3 1 alpha-hydroxylase (1 alpha-hydroxylase) catalyzes hydroxylation, mainly in the kidney, of 25-hydroxyvitamin D3 [25(OH)D3] into 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3], a hormonal form of vitamin D, acting as a key enzyme of vitamin D biosynthesis. Reflecting its biological significance, this enzymatic activity is differentially regulated by several factors involving calcium homeostasis, though the molecular mechanism is poorly understood. In our recent study (K. Takeyama, et al., 1997), we cloned the cDNA of mouse 1 alpha-hydroxylase, and this led us to investigate the regulation of gene expression and the function of the promoter of this gene. Here we report the isolation of the 5' flanking region of the human 1 alpha-hydroxylase gene and the identification of the human 1 alpha-hydroxylase promoter by a primer extension assay. We found that in the identified promoter, a positively regulatory region to parathyroid hormone (PTH) and calcitonin and a negatively regulatory region to 1 alpha,25(OH)2D3 are located around -4 and -0.5 kb, respectively. Thus, we provide direct evidence that the positive and negative regulation of 1 alpha-hydroxylase gene expression by hormones takes place at transcriptional levels through two distinct promoter regions.
Collapse
Affiliation(s)
- A Murayama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
173
|
|
174
|
Reinholz GG, DeLuca HF. Inhibition of 25-hydroxyvitamin D3 production by 1, 25-dihydroxyvitamin D3 in rats. Arch Biochem Biophys 1998; 355:77-83. [PMID: 9647669 DOI: 10.1006/abbi.1998.0706] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulation of the hepatic vitamin D3 25-hydroxylase enzyme system by 1,25-dihydroxyvitamin D3 was examined using male rats. Circulating 25-hydroxyvitamin D3 levels decreased in response to increasing doses of 1,25-dihydroxyvitamin D3 as determined by HPLC and serum protein binding assay. A maximum reduction in serum 25-hydroxyvitamin D3 of 57.7% was achieved by the administration of 1,25-dihydroxyvitamin D3 and higher doses produced no further reduction. The in vitro rate of vitamin D 25-hydroxylation by liver homogenates from rats given 1,25-dihydroxyvitamin D3 was also reduced by 60.4%. Whole rat extracts from animals given [3H]vitamin D3 contained 50.4% less 25-[3H]hydroxyvitamin D3 in treated rats given 1,25-dihydroxyvitamin D3 than in those given only the vehicle. Further, 1,25-dihydroxyvitamin D3 treatment had no effect on in vivo disappearance of 25-[3H]hydroxyvitamin D3. Taken together, these results demonstrate that the decrease in 25-hydroxyvitamin D3 levels observed in 1,25-dihydroxyvitamin D3-treated rats results from a decrease in production and not an increase in the metabolic clearance of 25-[3H]hydroxyvitamin D3.
Collapse
Affiliation(s)
- G G Reinholz
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | | |
Collapse
|
175
|
Abstract
The function of 1,25-dihydroxyvitamin D3, the biologically active form of vitamin D, extends from bone and mineral homeostasis to the control of cell growth and differentiation in a variety of tissues. Most of these actions are mediated by activation of the nuclear vitamin D receptor, which regulates the transcription of vitamin D target genes. Considerable progress has been made in the understanding of vitamin D receptor function (especially regarding its interaction with coactivators), as well as in the identification of novel vitamin D responsive genes related to cell growth, differentiation and cytokine production.
Collapse
Affiliation(s)
- S Segaert
- Laboratory for Experimental Medicine and Endocrinology, Faculty of Medicine, Gasthuisberg, Katholieke Universiteit Leuven, Belgium
| | | |
Collapse
|