151
|
Higley MJ, Hermer-Vazquez L, Levitsky DA, Strupp BJ. Recovery of associative function following early amygdala lesions in rats. Behav Neurosci 2001; 115:154-64. [PMID: 11256439 DOI: 10.1037/0735-7044.115.1.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adult rats with amygdala lesions made at either Postnatal Day (PND) 10 or PND40 were tested on a series of reversal tasks that tap the ability to form stimulus-reward associations. PND40 rats were significantly impaired relative to both controls and PND10 rats on learning rate of the original discrimination and subsequent reversals. Analyses of discrete learning phases revealed that the impairment was specific to the postchance phase. The PND10 group was not impaired relative to controls on any measure. These results confirm prior findings that amygdala lesions sustained in adulthood impair the formation of stimulus-reward associations. They also demonstrate that substantial sparing or recovery of function is possible when the lesion is made during early development. Furthermore, the findings support the view that behavioral recovery may be more likely if the lesion is sustained near the time of peak synaptogenesis.
Collapse
Affiliation(s)
- M J Higley
- Department of Psychology, Cornell University, USA
| | | | | | | |
Collapse
|
152
|
Krupa DJ, Brisben AJ, Nicolelis MA. A multi-channel whisker stimulator for producing spatiotemporally complex tactile stimuli. J Neurosci Methods 2001; 104:199-208. [PMID: 11164246 DOI: 10.1016/s0165-0270(00)00345-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A system is described that delivers complex, biologically realistic, tactile stimuli to the rat's facial whisker pad by independently stimulating up to 16 individual facial whiskers in a flexible yet highly controlled and repeatable manner. The system is technically simple and inexpensive to construct. The system consists of an array of 16 miniature-solenoid driven actuators that are attached to 16 individual facial whiskers via very small (130 microm dia.) Teflon-coated stainless steel wires. When individual solenoids are energized, the wire is rapidly retracted, resulting in a deflection of individual whiskers. The rise time of deflection is approx. 1 mm/ms. Repeatable stimulation of individual whiskers can be achieved without touching adjacent whiskers, thereby allowing a very high density of stimulators to be attached within the spatially restricted region of the facial whisker pad. Complex patterns of whisker stimulation (designed to mimic biologically realistic stimuli) are delivered to the whisker pad by activating individual solenoid actuators in precisely controlled temporal patterns. These stimulations can be combined with multi-electrode single-unit ensemble recordings at multiple sites within the rat trigeminal somatosensory system. Analysis of neuronal population responses to these complex stimuli is intended to examine how the trigeminal somatosensory system encodes and processes spatiotemporally complex stimuli.
Collapse
Affiliation(s)
- D J Krupa
- Department of Neurobiology, Duke University Medical Center, Box 3209, 101 Research Drive, Durham, NC 27710, USA.
| | | | | |
Collapse
|
153
|
Rouiller EM, Welker E. A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Res Bull 2000; 53:727-41. [PMID: 11179837 DOI: 10.1016/s0361-9230(00)00364-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent anatomical tracing methods have revealed new principles underlying the organization of corticothalamic connections in the mammalian nervous system. These data demonstrated the distribution of two types of synaptic contacts in the corticothalamic projection: small (<1 microm) and giant (2-10 microm) axon terminals. We compare the organization of corticothalamic projections in the auditory, somatosensory, visual, and motor systems of a variety of mammalian species, including the monkey. In all these systems and species, both types of corticothalamic terminals have been observed. Small endings formed the major corticothalamic terminal field, whereas giant terminals were less numerous and formed additional terminal fields together with small terminals. After comparing their spatial distribution, as well as the degree of reciprocity between the corticothalamic and thalamocortical projections, different roles are proposed for small and giant endings. Small terminals are typically present in the projection serving the feed-back control of the cerebral cortex on the thalamic nucleus from which it receives its main projection. In contrast, giant terminals are involved in feed-forward projections by which activity from a cortical area is distributed, via the thalamus, to other parts of the cerebral cortex. The cross-species and cross-systems comparison reveals differences in the mode of feed-forward projection, which may be involved in the activation of other parts of the same cortical area or form part of a projection that activates other cortical areas.
Collapse
Affiliation(s)
- E M Rouiller
- Institute of Physiology, University of Fribourg, Fribourg, Switzerland.
| | | |
Collapse
|
154
|
Arckens L, Schweigart G, Qu Y, Wouters G, Pow DV, Vandesande F, Eysel UT, Orban GA. Cooperative changes in GABA, glutamate and activity levels: the missing link in cortical plasticity. Eur J Neurosci 2000; 12:4222-32. [PMID: 11122334 DOI: 10.1046/j.0953-816x.2000.01328.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Different intracortical mechanisms have been reported to contribute to the substantial topographic reorganization of the mammalian primary visual cortex in response to matching lesions in the two retinas: an immediate expansion of receptive fields followed by a gradual shift of excitability into the deprived area and finally axonal sprouting of laterally projecting neurons months after the lesion. To gain insight into the molecular mechanisms of this adult plasticity, we used immunocytochemical and bioanalytical methods to measure the glutamate and GABA neurotransmitter levels in the visual cortex of adult cats with binocular central retinal lesions. Two to four weeks after the lesions, glutamate immunoreactivity was decreased in sensory-deprived cortex as confirmed by HPLC analysis of the glutamate concentration. Within three months normal glutamate immunoreactivity was restored. In addition, the edge of the unresponsive cortex was characterized by markedly increased glutamate immunoreactivity 2-12 weeks postlesion. This glutamate immunoreactivity peak moved into the deprived area over time. These glutamate changes corresponded to decreased spontaneous and visually driven activity in unresponsive cortex and to strikingly increased neuronal activity at the border of this cortical zone. Furthermore, the previously reported decrease in glutamic acid decarboxylase immunoreactivity was found to reflect decreased GABA levels in sensory-deprived cortex. Increased glutamate concentrations and neuronal activity, and decreased GABA concentrations, may be related to changes in synaptic efficiency and could represent a mechanism underlying the retinotopic reorganization that occurs well after the immediate receptive field expansion but long before the late axonal sprouting.
Collapse
Affiliation(s)
- L Arckens
- Laboratory of Neuroendocrinology and Immunological Biotechnology, Katholieke Universiteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Suga N, Gao E, Zhang Y, Ma X, Olsen JF. The corticofugal system for hearing: recent progress. Proc Natl Acad Sci U S A 2000; 97:11807-14. [PMID: 11050213 PMCID: PMC34353 DOI: 10.1073/pnas.97.22.11807] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peripheral auditory neurons are tuned to single frequencies of sound. In the central auditory system, excitatory (or facilitatory) and inhibitory neural interactions take place at multiple levels and produce neurons with sharp level-tolerant frequency-tuning curves, neurons tuned to parameters other than frequency, cochleotopic (frequency) maps, which are different from the peripheral cochleotopic map, and computational maps. The mechanisms to create the response properties of these neurons have been considered to be solely caused by divergent and convergent projections of neurons in the ascending auditory system. The recent research on the corticofugal (descending) auditory system, however, indicates that the corticofugal system adjusts and improves auditory signal processing by modulating neural responses and maps. The corticofugal function consists of at least the following subfunctions. (i) Egocentric selection for short-term modulation of auditory signal processing according to auditory experience. Egocentric selection, based on focused positive feedback associated with widespread lateral inhibition, is mediated by the cortical neural net working together with the corticofugal system. (ii) Reorganization for long-term modulation of the processing of behaviorally relevant auditory signals. Reorganization is based on egocentric selection working together with nonauditory systems. (iii) Gain control based on overall excitatory, facilitatory, or inhibitory corticofugal modulation. Egocentric selection can be viewed as selective gain control. (iv) Shaping (or even creation) of response properties of neurons. Filter properties of neurons in the frequency, amplitude, time, and spatial domains can be sharpened by the corticofugal system. Sharpening of tuning is one of the functions of egocentric selection.
Collapse
Affiliation(s)
- N Suga
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
156
|
Fox K, Glazewski S, Schulze S. Plasticity and stability of somatosensory maps in thalamus and cortex. Curr Opin Neurobiol 2000; 10:494-7. [PMID: 10981619 DOI: 10.1016/s0959-4388(00)00112-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Work on elucidating the mechanisms of plasticity in somatosensory maps continues apace. Recent work has focused on both the nature of the thalamocortical interactions that determine plasticity, and on the differences between plasticity induced by nerve block or damage versus that induced by experience. Recordings from awake behaving animals have thrown light on the thalamocortical circuit mechanisms that underlie map plasticity; meanwhile, intracellular recordings from cortical slices have thrown light on the precise synaptic mechanisms underlying plasticity.
Collapse
Affiliation(s)
- K Fox
- Cardiff School of Biosciences, Cardiff University, Wales, UK.
| | | | | |
Collapse
|
157
|
Canedo A, Aguilar J. Spatial and cortical influences exerted on cuneothalamic and thalamocortical neurons of the cat. Eur J Neurosci 2000; 12:2515-33. [PMID: 10947827 DOI: 10.1046/j.1460-9568.2000.00107.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This work aimed to study the responses of cuneothalamic and thalamocortical cells to electrical stimulation of the body surface in alpha-chloralose-anaesthetized cats. It was found that both classes of cells had a central excitatory receptive field, an edge overlapping the field centre whose stimulation elicited inhibitory-excitatory (cuneothalamic cells) and excitatory-inhibitory (thalamocortical cells) sequences, and a surrounding or peripheral area usually being inhibitory. Manipulating the descending corticofugal activity by removing the fronto-parietal cortex, electrical stimulation, or by placing picrotoxin or muscimol over the sensorimotor cortex demonstrated that the cortical feedback potentiated effects driven from the field centre and the surround. In particular this potentiated centre-driven excitation and surround-driven inhibition, but some of the data points to more complex patterns. The inhibition elicited in cuneothalamic cells from the edge and the surround of the field was faster than the excitation induced from the field centre. Effects at the edge of the field centre included late excitatory responses relayed via the cerebral cortex. There were also direct corticofugal excitatory inputs to the field centre. Excitatory surrounds were occasionally observed, the assumption being that in most cases these were suppressed by the enhanced inhibition driven from the cortex. The data indicate that the cortico-subcortical feedback contributes not only to enhance the surround antagonism of a centre response but also to increase the time resolution of thalamic and cuneate relay somesthetic neurons.
Collapse
Affiliation(s)
- A Canedo
- Department of Physiology, Faculty of Medicine, Laboratory of Neuroscience and Neuronal Computation, associated to the Cajal Institute (CSIC), Santiago de Compostela, Spain.
| | | |
Collapse
|
158
|
Florence SL, Hackett TA, Strata F. Thalamic and cortical contributions to neural plasticity after limb amputation. J Neurophysiol 2000; 83:3154-9. [PMID: 10805710 DOI: 10.1152/jn.2000.83.5.3154] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Little is known about the substrates for the large-scale shifts in the cortical representation produced by limb amputation. Subcortical changes likely contribute to the cortical remodeling, yet there is little data regarding the extent and pattern of reorganization in thalamus after such a massive deafferentation. Moreover, the relationship between changes in thalamus and in cortex after injuries of this nature is virtually unexplored. Multiunit microelectrode maps were made in the somatosensory thalamus and cortex of two monkeys that had long-standing, accidental forelimb amputations. In the deprived portion of the ventroposterior nucleus of the thalamus (VP), where stimulation to the hand would normally activate neurons, new receptive fields had emerged. At some recording sites within the deprived zone of VP, neurons responded to stimulation of the remaining stump of the arm and at other sites neurons responded to stimulation of both the stump and the face. This same overall pattern of reorganization was present in the deprived hand representation of cortical area 3b. Thus thalamic changes produced by limb amputation appear to be an important substrate of cortical reorganization. However, a decrease in the frequency of abnormal stump/face fields in area 3b compared with VP and a reduction in the size of the fields suggests that cortical mechanisms of plasticity may refine the information relayed from thalamus.
Collapse
Affiliation(s)
- S L Florence
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240, USA
| | | | | |
Collapse
|
159
|
Abstract
We studied coactivation-based cortical plasticity at a psychophysical level in humans. For induction of plasticity, we used a protocol of simultaneous pairing of tactile stimulation to follow as closely as possible the idea of Hebbian learning. We reported previously that a few hours of tactile coactivation resulted in selective and reversible reorganization of receptive fields and cortical maps of the hindpaw representation of the somatosensory cortex of adult rats (Godde et al., 1996). In the present study, simultaneous spatial two-point discrimination was tested on the tip of the right index finger in human subjects as a marker of plastic changes. After 2 hr of coactivation we found a significant improvement in discrimination performance that was reversible within 8 hr. Reduction of the duration of the coactivation protocol revealed that 30 min was not sufficient to drive plastic changes. Repeated application of coactivation over 3 consecutive days resulted in a delayed recovery indicating stabilization of the improvement over time. Perceptual changes were highly selective because no transfer of improved performance to fingers that were not stimulated was found. The results demonstrate the potential role of sensory input statistics (i.e., their probability of occurrence and spatiotemporal relationships) in the induction of cortical plasticity without involving cognitive factors such as attention or reinforcement.
Collapse
|
160
|
Godde B, Stauffenberg B, Spengler F, Dinse HR. Tactile coactivation-induced changes in spatial discrimination performance. J Neurosci 2000; 20:1597-604. [PMID: 10662849 PMCID: PMC6772356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
We studied coactivation-based cortical plasticity at a psychophysical level in humans. For induction of plasticity, we used a protocol of simultaneous pairing of tactile stimulation to follow as closely as possible the idea of Hebbian learning. We reported previously that a few hours of tactile coactivation resulted in selective and reversible reorganization of receptive fields and cortical maps of the hindpaw representation of the somatosensory cortex of adult rats (Godde et al., 1996). In the present study, simultaneous spatial two-point discrimination was tested on the tip of the right index finger in human subjects as a marker of plastic changes. After 2 hr of coactivation we found a significant improvement in discrimination performance that was reversible within 8 hr. Reduction of the duration of the coactivation protocol revealed that 30 min was not sufficient to drive plastic changes. Repeated application of coactivation over 3 consecutive days resulted in a delayed recovery indicating stabilization of the improvement over time. Perceptual changes were highly selective because no transfer of improved performance to fingers that were not stimulated was found. The results demonstrate the potential role of sensory input statistics (i.e., their probability of occurrence and spatiotemporal relationships) in the induction of cortical plasticity without involving cognitive factors such as attention or reinforcement.
Collapse
Affiliation(s)
- B Godde
- Institute of Medical Psychology, University of Tübingen, 72074 Tübingen, Germany.
| | | | | | | |
Collapse
|
161
|
|
162
|
Affiliation(s)
- J H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|