151
|
Lee JK, Moon KY, Jiang Y, Hurwitz J. The Schizosaccharomyces pombe origin recognition complex interacts with multiple AT-rich regions of the replication origin DNA by means of the AT-hook domains of the spOrc4 protein. Proc Natl Acad Sci U S A 2001; 98:13589-94. [PMID: 11717425 PMCID: PMC61085 DOI: 10.1073/pnas.251530398] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2001] [Indexed: 11/18/2022] Open
Abstract
The interaction between an origin sequence and the origin recognition complex (ORC), which is highly conserved in eukaryotes, is critical for the initiation of DNA replication. In this report, we have examined the interaction between the Schizosaccharomyces pombe (sp) autonomously replicating sequence 1 (ars1) and the spORC. For this purpose, we have purified the spORC containing all six subunits, a six-subunit complex containing the N-terminal-deleted spOrc4 subunit (spORC(Delta N-Orc4)), and the spOrc4 subunit by using the baculovirus expression system. Wild-type spORC showed sequence-specific binding to ars1, and the spOrc4 protein alone showed the same DNA-binding properties as wild-type spORC. In contrast, the spORC(Delta N-Orc4) and the Delta N-spOrc4p alone did not bind significantly to ars1. These findings indicate that the N-terminal domain of the spOrc4 protein that contains multiple AT-hook motifs is essential for the ars1-binding activity. DNA-binding competition assays with fragments of ars1 and DNase I footprinting studies with full-length ars1 revealed that the spORC interacted with several AT-rich sequence regions of ars1. These DNA-binding properties of spORC correlate with the previously determined sequence requirements of the S. pombe ars1. These studies indicate that because of its unique Orc4 subunit, S. pombe uses a mechanism to recognize its origins different from that used by Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- J K Lee
- Program of Molecular Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 97, New York, NY 10021, USA
| | | | | | | |
Collapse
|
152
|
Baumbusch LO, Thorstensen T, Krauss V, Fischer A, Naumann K, Assalkhou R, Schulz I, Reuter G, Aalen RB. The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Res 2001; 29:4319-4333. [PMID: 11691919 PMCID: PMC60187 DOI: 10.1093/nar/29.21.4319] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2001] [Revised: 09/07/2001] [Accepted: 09/07/2001] [Indexed: 11/13/2022] Open
Abstract
SET domains are conserved amino acid motifs present in chromosomal proteins that function in epigenetic control of gene expression. These proteins can be divided into four classes as typified by their Drosophila members E(Z), TRX, ASH1 and SU(VAR)3-9. Homologs of all four classes have been identified in yeast and mammals, but not in plants. A BLASTP screening of the Arabidopsis genome identified 37 genes: three E(z) homologs, five trx homologs, four ash1 homologs and 15 genes similar to Su(var)3-9. Seven genes were assigned as trx-related and three as ash1-related. Only four genes have been described previously. Our classification is based on the characteristics of the SET domains, cysteine-rich regions and additional conserved domains, including a novel YGD domain. RT-PCR analysis, cDNA cloning and matching ESTs show that at least 29 of the genes are active in diverse tissues. The high number of SET domain genes, possibly involved in epigenetic control of gene activity during plant development, can partly be explained by extensive genome duplication in Arabidopsis. Additionally, the lack of introns in the coding region of eight SU(VAR)3-9 class genes indicates evolution of new genes by retrotransposition. The identification of putative nuclear localization signals and AT-hooks in many of the proteins supports an anticipated nuclear localization, which was demonstrated for selected proteins.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Amino Acid Motifs
- Amino Acid Sequence
- Arabidopsis/chemistry
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/chemistry
- Arabidopsis Proteins/classification
- Arabidopsis Proteins/genetics
- Conserved Sequence
- Cysteine/metabolism
- Databases, Protein
- Evolution, Molecular
- Gene Duplication
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Duplicate/genetics
- Genes, Plant/genetics
- Genome, Plant
- Histone-Lysine N-Methyltransferase/chemistry
- Histone-Lysine N-Methyltransferase/classification
- Histone-Lysine N-Methyltransferase/genetics
- Introns/genetics
- Molecular Sequence Data
- Nuclear Localization Signals
- Open Reading Frames/genetics
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Retroelements/genetics
- Sequence Alignment
Collapse
Affiliation(s)
- L O Baumbusch
- Division of Molecular Biology, Department of Biology, University of Oslo, PO Box 1031 Blindern, N-0315 Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Chesnokov I, Remus D, Botchan M. Functional analysis of mutant and wild-type Drosophila origin recognition complex. Proc Natl Acad Sci U S A 2001; 98:11997-2002. [PMID: 11593009 PMCID: PMC59756 DOI: 10.1073/pnas.211342798] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2001] [Indexed: 11/18/2022] Open
Abstract
The origin recognition complex (ORC) is the DNA replication initiator protein in eukaryotes. We have reconstituted a functional recombinant Drosophila ORC and compared activities of the wild-type and several mutant ORC variants. Drosophila ORC is an ATPase, and our studies show that the ORC1 subunit is essential for ATP hydrolysis and for ATP-dependent DNA binding. Moreover, DNA binding by ORC reduces its ATP hydrolysis activity. In vitro, ORC binds to chromatin in an ATP-dependent manner, and this process depends on the functional AAA(+) nucleotide-binding domain of ORC1. Mutations in the ATP-binding domain of ORC1 are unable to support cell-free DNA replication. However, mutations in the putative ATP-binding domain of either the ORC4 or ORC5 subunits do not affect either of these functions. We also provide evidence that the Drosophila ORC6 subunit is directly required for all of these activities and that a large pool of ORC6 is present in the cytoplasm, cytologically proximal to the cell membrane. Studies reported here provide the first functional dissection of a metazoan initiator and highlight the basic conserved and divergent features among Drosophila and budding yeast ORC complexes.
Collapse
Affiliation(s)
- I Chesnokov
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
154
|
Abstract
DNA replication is the process by which cells make one complete copy of their genetic information before cell division. In bacteria, readily identifiable DNA sequences constitute the start sites or origins of DNA replication. In eukaryotes, replication origins have been difficult to identify. In some systems, any DNA sequence can promote replication, but other systems require specific DNA sequences. Despite these disparities, the proteins that regulate replication are highly conserved from yeast to humans. The resolution may lie in a current model for once-per-cell-cycle regulation of eukaryotic replication that does not require defined origin sequences. This model implies that the specification of precise origins is a response to selective pressures that transcend those of once-per-cell-cycle replication, such as the coordination of replication with other chromosomal functions. Viewed in this context, the locations of origins may be an integral part of the functional organization of eukaryotic chromosomes.
Collapse
Affiliation(s)
- D M Gilbert
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
155
|
Takahashi T, Masukata H. Interaction of fission yeast ORC with essential adenine/thymine stretches in replication origins. Genes Cells 2001; 6:837-49. [PMID: 11683912 DOI: 10.1046/j.1365-2443.2001.00468.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Eukaryotic DNA replication is initiated from distinct regions on the chromosome. However, the mechanism for recognition of replication origins is not known for most eukaryotes. In fission yeast, replication origins are isolated as autonomously replicating sequences (ARSs). Multiple adenine/thymine clusters are essential for replication, but no short consensus sequences are found. In this paper, we examined the interaction of adenine/thymine clusters with the replication initiation factor ORC. RESULTS The SpOrc1 or SpOrc2 immunoprecipitates (IPs) containing at least four subunits of SpORC, interacted with the ars2004 fragment, which is derived from a predominant replication origin on the chromosome. SpORC-IPs preferentially interacted with two regions of the ars2004, which consist of consecutive adenines and AAAAT repeats and are essential for ARS activity. The nucleotide sequences required for the interaction with SpORC-IPs correspond closely to those necessary for in vivo ARS activity. CONCLUSION Our results suggest that the SpORC interacts with adenine/thymine stretches, which have been shown to be the most important component in the fission yeast replication origin. The presence of multiple SpORC-binding sites, with certain sequence variations, is characteristic for the fission yeast replication origins.
Collapse
Affiliation(s)
- T Takahashi
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043 Japan
| | | |
Collapse
|
156
|
Abstract
Site-specific initiation of DNA replication is a conserved function in all organisms. In Escherichia coli and Saccharomyces cerevisiae, DNA replication origins are sequence specific, but in multicellular organisms, origins are not so clearly defined. In this article, I present a model of origin specification by epigenetic mechanisms that allows the establishment of stable chromatin domains, which are characterized by autonomous replication. According to this model, origins of DNA replication help to establish domains of gene expression for the generation of cell diversity.
Collapse
Affiliation(s)
- M Méchali
- Marcel Méchali is at the Institute of Human Genetics, CNRS, Genome Dynamics and Development, 141 rue de la Cardonille, 34396 Montpellier, France.
| |
Collapse
|
157
|
Vashee S, Simancek P, Challberg MD, Kelly TJ. Assembly of the human origin recognition complex. J Biol Chem 2001; 276:26666-73. [PMID: 11323433 DOI: 10.1074/jbc.m102493200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The six-subunit origin recognition complex (ORC) was originally identified in the yeast Saccharomyces cerevisiae. Yeast ORC binds specifically to origins of replication and serves as a platform for the assembly of additional initiation factors, such as Cdc6 and the Mcm proteins. Human homologues of all six ORC subunits have been identified by sequence similarity to their yeast counterparts, but little is known about the biochemical characteristics of human ORC (HsORC). We have extracted HsORC from HeLa cell chromatin and probed its subunit composition using specific antibodies. The endogenous HsORC, identified in these experiments, contained homologues of Orc1-Orc5 but lacked a putative homologue of Orc6. By expressing HsORC subunits in insect cells using the baculovirus system, we were able to identify a complex containing all six subunits. To explore the subunit-subunit interactions that are required for the assembly of HsORC, we carried out extensive co-immunoprecipitation experiments with recombinant ORC subunits expressed in different combinations. These studies revealed the following binary interactions: HsOrc2-HsOrc3, HsOrc2-HsOrc4, HsOrc3-HsOrc4, HsOrc2-HsOrc6, and HsOrc3-HsOrc6. HsOrc5 did not form stable binary complexes with any other HsORC subunit but interacted with sub-complexes containing any two of subunits HsOrc2, HsOrc3, or HsOrc4. Complex formation by HsOrc1 required the presence of HsOrc2, HsOrc3, HsOrc4, and HsOrc5 subunits. These results suggest that the subunits HsOrc2, HsOrc3, and HsOrc4 form a core upon which the ordered assembly of HsOrc5 and HsOrc1 takes place. The characterization of HsORC should facilitate the identification of human origins of DNA replication.
Collapse
Affiliation(s)
- S Vashee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
158
|
Uchiyama M, Griffiths D, Arai K, Masai H. Essential role of Sna41/Cdc45 in loading of DNA polymerase alpha onto minichromosome maintenance proteins in fission yeast. J Biol Chem 2001; 276:26189-96. [PMID: 11344166 DOI: 10.1074/jbc.m100007200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Assembly of replication complexes at the replication origins is strictly regulated. Cdc45p is known to be a part of the active replication complexes. In Xenopus egg extracts, Cdc45p was shown to be required for loading of DNA polymerase alpha onto chromatin. The fission yeast cdc45 homologue was identified as a suppressor for nda4 and named sna41. Nevertheless, it is not known how Cdc45p facilitates loading of DNA polymerase alpha onto chromatin, particularly to prereplicative complexes. To gain novel insight into the function of this protein in fission yeast, we characterized the fission yeast Cdc45 homologue, Sna41p. We have constructed C-terminally epitope-tagged Sna41p and Pol alpha p and replaced the endogenous genes with the corresponding tagged genes. Analyses of protein-protein interactions in vivo by the use of these tagged strains revealed the following: Sna41p interacts with Pol alpha p throughout the cell cycle, whereas it interacts with Mis5p/Mcm6p in the chromatin fractions at the G(1)-S boundary through S phase. In an initiation-defective sna41 mutant, sna41(goa1), interaction of Pol alpha p with Mis5p is not observed, although Pol alpha p loading onto the chromatin that occurs before G(1) START is not affected. These results show that fission yeast Sna41p facilitates the loading of Pol alpha p onto minichromosome maintenance proteins. Our results are consistent with a model in which loading of Pol alpha p onto replication origins occurs through two steps, namely, loading onto chromatin at preSTART and association with prereplicative complexes at G(1)-S through Sna41p, which interacts with minichromosome maintenance proteins in a cell cycle-dependent manner.
Collapse
Affiliation(s)
- M Uchiyama
- Department of Molecular and Developmental Biology, Institute for Medical Science, The University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
159
|
Theis JF, Newlon CS. Two compound replication origins in Saccharomyces cerevisiae contain redundant origin recognition complex binding sites. Mol Cell Biol 2001; 21:2790-801. [PMID: 11283258 PMCID: PMC86909 DOI: 10.1128/mcb.21.8.2790-2801.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While many of the proteins involved in the initiation of DNA replication are conserved between yeasts and metazoans, the structure of the replication origins themselves has appeared to be different. As typified by ARS1, replication origins in Saccharomyces cerevisiae are <150 bp long and have a simple modular structure, consisting of a single binding site for the origin recognition complex, the replication initiator protein, and one or more accessory sequences. DNA replication initiates from a discrete site. While the important sequences are currently less well defined, metazoan origins appear to be different. These origins are large and appear to be composed of multiple, redundant elements, and replication initiates throughout zones as large as 55 kb. In this report, we characterize two S. cerevisiae replication origins, ARS101 and ARS310, which differ from the paradigm. These origins contain multiple, redundant binding sites for the origin recognition complex. Each binding site must be altered to abolish origin function, while the alteration of a single binding site is sufficient to inactivate ARS1. This redundant structure may be similar to that seen in metazoan origins.
Collapse
Affiliation(s)
- J F Theis
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | |
Collapse
|
160
|
Abstract
The initiation of DNA replication in eukaryotic cells is tightly controlled to ensure that the genome is faithfully duplicated once each cell cycle. Genetic and biochemical studies in several model systems indicate that initiation is mediated by a common set of proteins, present in all eukaryotic species, and that the activities of these proteins are regulated during the cell cycle by specific protein kinases. Here we review the properties of the initiation proteins, their interactions with each other, and with origins of DNA replication. We also describe recent advances in understanding how the regulatory protein kinases control the progress of the initiation reaction. Finally, we describe the checkpoint mechanisms that function to preserve the integrity of the genome when the normal course of genome duplication is perturbed by factors that damage the DNA or inhibit DNA synthesis.
Collapse
Affiliation(s)
- T J Kelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
161
|
Altman AL, Fanning E. The Chinese hamster dihydrofolate reductase replication origin beta is active at multiple ectopic chromosomal locations and requires specific DNA sequence elements for activity. Mol Cell Biol 2001; 21:1098-110. [PMID: 11158297 PMCID: PMC99564 DOI: 10.1128/mcb.21.4.1098-1110.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify cis-acting genetic elements essential for mammalian chromosomal DNA replication, a 5.8-kb fragment from the Chinese hamster dihydrofolate reductase (DHFR) locus containing the origin beta (ori-beta) initiation region was stably transfected into random ectopic chromosomal locations in a hamster cell line lacking the endogenous DHFR locus. Initiation at ectopic ori-beta in uncloned pools of transfected cells was measured using a competitive PCR-based nascent strand abundance assay and shown to mimic that at the endogenous ori-beta region in Chinese hamster ovary K1 cells. Initiation activity of three ectopic ori-beta deletion mutants was reduced, while the activity of another deletion mutant was enhanced. The results suggest that a 5.8-kb fragment of the DHFR ori-beta region is sufficient to direct initiation and that specific DNA sequences in the ori-beta region are required for efficient initiation activity.
Collapse
Affiliation(s)
- A L Altman
- Department of Molecular Biology and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232-6838, USA
| | | |
Collapse
|
162
|
Kim SM, Zhang DY, Huberman JA. Multiple redundant sequence elements within the fission yeast ura4 replication origin enhancer. BMC Mol Biol 2001; 2:1. [PMID: 11178109 PMCID: PMC29090 DOI: 10.1186/1471-2199-2-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2000] [Accepted: 01/18/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Some origins in eukaryotic chromosomes fire more frequently than others. In the fission yeast, Schizosaccharomyces pombe, the relative firing frequencies of the three origins clustered 4-8 kbp upstream of the ura4 gene are controlled by a replication enhancer - an element that stimulates nearby origins in a relatively position-and orientation-independent fashion. The important sequence motifs within this enhancer were not previously localized. RESULTS Systematic deletion of consecutive segments of approximately 50, approximately 100 or approximately 150 bp within the enhancer and its adjacent core origin (ars3002) revealed that several of the approximately 50-bp stretches within the enhancer contribute to its function in partially redundant fashion. Other stretches within the enhancer are inhibitory. Some of the stretches within the enhancer proved to be redundant with sequences within core ars3002. Consequently the collection of sequences important for core origin function was found to depend on whether the core origin is assayed in the presence or absence of the enhancer. Some of the important sequences in the core origin and enhancer co-localize with short runs of adenines or thymines, which may serve as binding sites for the fission yeast Origin Recognition Complex (ORC). Others co-localize with matches to consensus sequences commonly found in fission yeast replication origins. CONCLUSIONS The enhancer within the ura4 origin cluster in fission yeast contains multiple sequence motifs. Many of these stimulate origin function in partially redundant fashion. Some of them resemble motifs also found in core origins. The next step is to identify the proteins that bind to these stimulatory sequences.
Collapse
Affiliation(s)
- Soo-Mi Kim
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Dong-Yi Zhang
- Division of Developmental Biology, Children's Hospital Research Foundation, Cincinnati, OH, USA
| | - Joel A Huberman
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
163
|
Abstract
A new protein was cloned and identified as the sixth member of the human origin recognition complex (ORC). The newly identified 30-kDa protein hsORC6 is 28% identical and 49% similar to ORC6p from Drosophila melanogaster, which is consistent with the identities and similarities found among the other ORC members reported in the two species. The human ORC6 gene is located on chromosome 16q12. ORC6 protein level did not change through the cell cycle. Like ORC1, ORC6 did not co-immunoprecipitate with other ORC subunits but was localized in the nucleus along with the other ORC subunits. Several cellular proteins co-immunoprecipitated with ORC6, including a 65-kDa protein that was hyperphosphorylated in G(1) and dephosphorylated in mitosis. Therefore, unlike the tight stoichiometric association of six yeast ORC subunits in one holo-complex, only a small fraction of human ORC1 and ORC6 is likely to be associated with a subcomplex of ORC2, 3, 4, and 5, suggesting differences in the architecture and regulation of human ORC.
Collapse
Affiliation(s)
- S K Dhar
- Division of Molecular Oncology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
164
|
Wismar J, Habtemichael N, Warren JT, Dai JD, Gilbert LI, Gateff E. The mutation without children(rgl) causes ecdysteroid deficiency in third-instar larvae of Drosophila melanogaster. Dev Biol 2000; 226:1-17. [PMID: 10993670 DOI: 10.1006/dbio.2000.9811] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Larvae homozygous for the recessive lethal allele without children(rgl) (woc(rgl)) fail to pupariate. Application of exogenous 20-hydroxyecdysone elicits puparium formation and pupation. Ecdysteroid titer measurements on mutant larvae show an endocrine deficiency in the brain-ring gland complex, which normally synthesizes ecdysone, resulting in a failure of the larvae to achieve a threshold whole body hormone titer necessary for molting. Ultrastructural investigation revealed extensive degeneration of the prothoracic cells of the ring gland in older larvae. The woc gene, located in polytene chromosomal region 97F, consists of 11 exons. A 6.8-kb transcript is expressed throughout development but is absent in the mutant woc(rgl) larvae. The woc gene encodes a protein of 187 kDa. Eight zinc fingers of the C2-C2 type point to a possible function as a transcription factor. The woc protein shows considerable homology to human proteins which have been implicated in both mental retardation and a leukemia/lymphoma syndrome.
Collapse
Affiliation(s)
- J Wismar
- Institut für Genetik, Johannes Gutenberg Universität, Saarstrasse 21a, Mainz, 55099, Germany
| | | | | | | | | | | |
Collapse
|
165
|
Abstract
The mechanism for initiation of eukaryotic DNA replication is highly conserved: the proteins required to initiate replication, the sequence of events leading to initiation, and the regulation of initiation are remarkably similar throughout the eukaryotic kingdom. Nevertheless, there is a liberal attitude when it comes to selecting initiation sites. Differences appear to exist in the composition of replication origins and in the way proteins recognize these origins. In fact, some multicellular eukaryotes (the metazoans) can change the number and locations of initiation sites during animal development, revealing that selection of initiation sites depends on epigenetic as well as genetic parameters. Here we have attempted to summarize our understanding of this process, to identify the similarities and differences between single cell and multicellular eukaryotes, and to examine the extent to which origin recognition proteins and replication origins have been conserved among eukaryotes. Published 2000 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- J A Bogan
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20894, USA.
| | | | | |
Collapse
|
166
|
Kearsey SE, Montgomery S, Labib K, Lindner K. Chromatin binding of the fission yeast replication factor mcm4 occurs during anaphase and requires ORC and cdc18. EMBO J 2000; 19:1681-90. [PMID: 10747035 PMCID: PMC310236 DOI: 10.1093/emboj/19.7.1681] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1999] [Revised: 02/09/2000] [Accepted: 02/09/2000] [Indexed: 11/13/2022] Open
Abstract
We describe an in situ technique for studying the chromatin binding of proteins in the fission yeast Schizosaccharomyces pombe. After tagging the protein of interest with green fluorescent protein (GFP), chromatin-associated protein is detected by GFP fluorescence following cell permeabilization and washing with a non-ionic detergent. Cell morphology and nuclear structure are preserved in this procedure, allowing structures such as the mitotic spindle to be detected by indirect immunofluorescence. Cell cycle changes in the chromatin association of proteins can therefore be determined from individual cells in asynchronous cultures. We have applied this method to the DNA replication factor mcm4/cdc21, and find that chromatin association occurs during anaphase B, significantly earlier than is the case in budding yeast. Binding of mcm4 to chromatin requires orc1 and cdc18 (homologous to Cdc6 in budding yeast). Release of mcm4 from chromatin occurs during S phase and requires DNA replication. Upon overexpressing cdc18, we show that mcm4 is required for re-replication of the genome in the absence of mitosis and is associated with chromatin in cells undergoing re-replication.
Collapse
Affiliation(s)
- S E Kearsey
- Department of Zoology, South Parks Road, Oxford OX1 3PS, UK.
| | | | | | | |
Collapse
|
167
|
Pasero P, Schwob E. Think global, act local--how to regulate S phase from individual replication origins. Curr Opin Genet Dev 2000; 10:178-86. [PMID: 10753785 DOI: 10.1016/s0959-437x(00)00067-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
All eukaryotes use similar proteins to licence replication origins but, paradoxically, origin DNA is much less conserved. Specific binding sites for these proteins have now been identified on fission yeast and Drosophila chromosomes, suggesting that the DNA-binding activity of the origin recognition complex has diverged to recruit conserved initiation factors on polymorphic replication origins. Once formed, competent origins are activated by cyclin- and Dbf4-dependent kinases. The latter have been shown to control S phase in several organisms but, in contrast to cyclin-dependent kinases, seem regulated at the level of individual origins. Global and local regulations generate specific patterns of DNA replication that help establish epigenetic chromosome states.
Collapse
Affiliation(s)
- P Pasero
- Institut de Génétique Moléculaire, Centre National de la Recherche Scientifique (UMR 5535) & Université Montpellier II, Montpellier, F-34293, France.
| | | |
Collapse
|
168
|
Ritzi M, Knippers R. Initiation of genome replication: assembly and disassembly of replication-competent chromatin. Gene 2000; 245:13-20. [PMID: 10713440 DOI: 10.1016/s0378-1119(00)00020-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Considerable progress has been made in research on the initiation of eukaryotic genome replication. This has generated a number of recent review articles. Here, we briefly summarize the major conclusions described in these articles and also include the results of more recent primary articles. The consensus view that has emerged is that a pre-replication complex assembles during the G1 phase of the cell cycle, making chromatin competent for replication. The complex consists of Orc proteins, Cdc6p, and the family of Mcm proteins. Chromatin, thus 'licenced' for replication, is guided into the S phase by the activation of cell-cycle-regulated protein kinases. Upon entry into S phase, the pre-replication complex is partially dissolved, first by the dissociation of Cdc6p and then by the gradual release of Mcm proteins. This appears to be accompanied by a recruitment of chain elongation factors and the establishment of replication forks.
Collapse
Affiliation(s)
- M Ritzi
- Department of Biology Universität Konstanz D - 78457, Konstanz, Germany
| | | |
Collapse
|
169
|
|
170
|
Houchens CR, Montigny W, Zeltser L, Dailey L, Gilbert JM, Heintz NH. The dhfr oribeta-binding protein RIP60 contains 15 zinc fingers: DNA binding and looping by the central three fingers and an associated proline-rich region. Nucleic Acids Res 2000; 28:570-81. [PMID: 10606657 PMCID: PMC102514 DOI: 10.1093/nar/28.2.570] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/1999] [Revised: 11/16/1999] [Accepted: 11/16/1999] [Indexed: 11/12/2022] Open
Abstract
Initiation of DNA replication occurs with high frequency within oribeta, a short region 3' to the Chinese hamster dhfr gene. Homodimers of RIP60 (replication initiation-region protein 60 kDA) purified from nuclear extract bind two ATT-rich sites in oribeta and foster the formation of a twisted 720 bp DNA loop in vitro. Using a one hybrid screen in yeast, we have cloned the cDNA for human RIP60. RIP60 contains 15 C(2)H(2)zinc finger (ZF) DNA binding motifs organized in three clusters, termed hand Z1 (ZFs 1-5), hand Z2 (ZFs 6-8) and hand Z3 (ZFs 9-15). A proline-rich region is located between hands Z2 and Z3. Gel mobility shift and DNase I footprinting experiments show hands Z1 and Z2 independently bind the oribeta RIP60 sites specifically, but with different affinities. Hand Z3 binds DNA, but displays no specificity for RIP60 sites. Ligation enhancement, DNase I footprinting, and atomic force microscopy assays show that hand Z2 and a portion of the associated proline-rich region is sufficient for protein multimerization on DNA and DNA looping in vitro. Polyomavirus origin-dependent plasmid replication assays show RIP60 has weak replication enhancer activity, suggesting that RIP60 does not harbor a transcriptional transactivation domain. Because vertebrate origins of replication have no known consensus sequence, we suggest that sequence-specific DNA binding proteins such as RIP60 may act as accessory factors in origin identification prior to the assembly of pre-initiation complexes.
Collapse
Affiliation(s)
- C R Houchens
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | |
Collapse
|
171
|
Lygerou Z, Nurse P. The fission yeast origin recognition complex is constitutively associated with chromatin and is differentially modified through the cell cycle. J Cell Sci 1999; 112 ( Pt 21):3703-12. [PMID: 10523506 DOI: 10.1242/jcs.112.21.3703] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The origin recognition complex (ORC) binds to the well defined origins of DNA replication in budding yeast. Homologous proteins in other eukaryotes have been identified but are less well characterised. We report here the characterisation of a fission yeast ORC complex (SpORC). Database searches identified a fission yeast Orc5 homologue. SpOrc5 is essential for cell viability and its deletion phenotype is identical to that of two previously identified ORC subunit homologues, SpOrc1 (Orp1/Cdc30) and SpOrc2 (Orp2). Co-immunoprecipitation experiments demonstrate that SpOrc1 forms a complex with SpOrc2 and SpOrc5 and gel filtration chromatography shows that SpOrc1 and SpOrc5 fractionate as high molecular mass complexes. SpORC subunits localise to the nucleus in a punctate distribution which persists throughout interphase and mitosis. We developed a chromatin isolation protocol and show that SpOrc1, 2 and 5 are associated with chromatin at all phases of the cell cycle. While the levels, nuclear localisation and chromatin association of SpORC remain constant through the cell cycle, one of its subunits, SpOrc2, is differentially modified. We show that SpOrc2 is a phosphoprotein which is hypermodified in mitosis and is rapidly converted to a faster migrating isoform as cells proceed into G(1) in preparation for S-phase.
Collapse
Affiliation(s)
- Z Lygerou
- Imperial Cancer Research Fund, London, WC2A 3PX, UK. z.lygerou@icrf. icnet.uk
| | | |
Collapse
|
172
|
Moon KY, Kong D, Lee JK, Raychaudhuri S, Hurwitz J. Identification and reconstitution of the origin recognition complex from Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 1999; 96:12367-72. [PMID: 10535928 PMCID: PMC22923 DOI: 10.1073/pnas.96.22.12367] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The origin recognition complex (ORC), first identified in Saccharomyces cerevisiae (sc), is a six-subunit protein complex that binds to DNA origins. Here, we report the identification and cloning of cDNAs encoding the six subunits of the ORC of Schizosaccharomyces pombe (sp). Sequence analyses revealed that spOrc1, 2, and 5 subunits are highly conserved compared with their counterparts from S. cerevisiae, Xenopus, Drosophila, and human. In contrast, both spOrc3 and spOrc6 subunits are poorly conserved. As reported by Chuang and Kelly [(1999) Proc. Natl. Acad. Sci. USA 96, 2656-2661], the C-terminal region of spOrc4 is also conserved whereas the N terminus uniquely contains repeats of a sequence that binds strongly to AT-rich DNA regions. Consistent with this, extraction of S. pombe chromatin with 1 M NaCl, or after DNase I treatment, yielded the six-subunit ORC, whereas extraction with 0.3 M resulted in five-subunit ORC lacking spOrc4p. The spORC can be reconstituted in vitro with all six recombinant subunits expressed in the rabbit reticulocyte system. The association of spOrc4p with the other subunits required the removal of DNA from reaction mixture by DNase I. This suggests that a strong interaction between spOrc4p and DNA can prevent the isolation of the six-subunit ORC. The unique DNA-binding properties of the spORC may contribute to our understanding of the sequence-specific recognition required for the initiation of DNA replication in S. pombe.
Collapse
Affiliation(s)
- K Y Moon
- Program of Molecular Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 97, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
173
|
Austin RJ, Orr-Weaver TL, Bell SP. Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element. Genes Dev 1999; 13:2639-49. [PMID: 10541550 PMCID: PMC317108 DOI: 10.1101/gad.13.20.2639] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the yeast Saccharomyces cerevisiae, sequence-specific DNA binding by the origin recognition complex (ORC) is responsible for selecting origins of DNA replication. In metazoans, origin selection is poorly understood and it is unknown whether specific DNA binding by metazoan ORC controls replication. To address this problem, we used in vivo and in vitro approaches to demonstrate that Drosophila ORC (DmORC) binds to replication elements that direct repeated initiation of replication to amplify the Drosophila chorion gene loci in the follicle cells of egg chambers. Using immunolocalization, we observe that ACE3, a 440-bp chorion element that contains information sufficient to drive amplification, directs DmORC localization in follicle cells. Similarly, in vivo cross-linking and chromatin immunoprecipitation assays demonstrate association of DmORC with both ACE3 and two other amplification control elements, AER-d and ACE1. To demonstrate that the in vivo localization of DmORC is related to its DNA-binding properties, we find that purified DmORC binds to ACE3 and AER-d in vitro, and like its S. cerevisiae counterpart, this binding is dependent on ATP. Our findings suggest that sequence-specific DNA binding by ORC regulates initiation of metazoan DNA replication. Furthermore, adaptation of this experimental approach will allow for the identification of additional metazoan ORC DNA-binding sites and potentially origins of replication.
Collapse
Affiliation(s)
- R J Austin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
174
|
Ogawa Y, Takahashi T, Masukata H. Association of fission yeast Orp1 and Mcm6 proteins with chromosomal replication origins. Mol Cell Biol 1999; 19:7228-36. [PMID: 10490657 PMCID: PMC84715 DOI: 10.1128/mcb.19.10.7228] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that replication of fission yeast chromosomes is initiated in distinct regions. Analyses of autonomous replicating sequences have suggested that regions required for replication are very different from those in budding yeast. Here, we present evidence that fission yeast replication origins are specifically associated with proteins that participate in initiation of replication. Most Orp1p, a putative subunit of the fission yeast origin recognition complex (ORC), was found to be associated with chromatin-enriched insoluble components throughout the cell cycle. In contrast, the minichromosome maintenance (Mcm) proteins, SpMcm2p and SpMcm6p, encoded by the nda1(+)/cdc19(+) and mis5(+) genes, respectively, were associated with chromatin DNA only during the G(1) and S phases. Immunostaining of spread nuclei showed SpMcm6p to be localized at discrete foci on chromatin during the G(1) and S phases. A chromatin immunoprecipitation assay demonstrated that Orp1p was preferentially localized at the ars2004 and ars3002 origins of the chromosome throughout the cell cycle, while SpMcm6p was associated with these origins only in the G(1) and S phases. Both Orp1p and SpMcm6p were associated with a 1-kb region that contains elements required for autonomous replication of ars2004. The results suggest that the fission yeast ORC specifically interacts with chromosomal replication origins and that Mcm proteins are loaded onto the origins to play a role in initiation of replication.
Collapse
Affiliation(s)
- Y Ogawa
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | | | | |
Collapse
|
175
|
Okuno Y, Satoh H, Sekiguchi M, Masukata H. Clustered adenine/thymine stretches are essential for function of a fission yeast replication origin. Mol Cell Biol 1999; 19:6699-709. [PMID: 10490609 PMCID: PMC84658 DOI: 10.1128/mcb.19.10.6699] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have determined functional elements required for autonomous replication of the Schizosaccharomyces pombe ars2004 that acts as an intrinsic chromosomal replication origin. Internal deletion analysis of a 940-bp fragment (ars2004M) showed three regions, I to III, to be required for autonomously replicating sequence (ARS) activity. Eight-base-pair substitutions in the 40-bp region I, composed of arrays of adenines on a DNA strand, resulted in a great reduction of ARS activity. Substitutions of region I with synthetic sequences showed that no specific sequence but rather repeats of three or more consecutive adenines or thymines, without interruption by guanine or cytosine, are required for the ARS activity. The 65-bp region III contains 11 repeats of the AAAAT sequence, while the 165-bp region II has short adenine or thymine stretches and a guanine- and cytosine-rich region which enhances ARS activity. All three regions in ars2004M can be replaced with 40-bp poly(dA/dT) fragments without reduction of ARS activity. Although spacer regions in the ars2004M enhance ARS activity, all could be deleted when an 40-bp poly(dA/dT) fragment was added in place of region I. Our results suggest that the origin activity of fission yeast replicators depends on the number of adenine/thymine stretches, the extent of their clustering, and presence of certain replication-enhancing elements.
Collapse
Affiliation(s)
- Y Okuno
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Japan
| | | | | | | |
Collapse
|