151
|
Collett MA, Dunlap JC, Loros JJ. Circadian clock-specific roles for the light response protein WHITE COLLAR-2. Mol Cell Biol 2001; 21:2619-28. [PMID: 11283242 PMCID: PMC86893 DOI: 10.1128/mcb.21.8.2619-2628.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To understand the role of white collar-2 in the Neurospora circadian clock, we examined alleles of wc-2 thought to encode partially functional proteins. We found that wc-2 allele ER24 contained a conservative mutation in the zinc finger. This mutation results in reduced levels of circadian rhythm-critical clock gene products, frq mRNA and FRQ protein, and in a lengthened period of the circadian clock. In addition, this mutation altered a second canonical property of the clock, temperature compensation: as temperature increased, period length decreased substantially. This temperature compensation defect correlated with a temperature-dependent increase in overall FRQ protein levels, with the relative increase being greater in wc-2 (ER24) than in wild type, while overall frq mRNA levels were largely unaltered by temperature. We suggest that this temperature-dependent increase in FRQ levels partially rescues the lowered levels of FRQ resulting from the wc-2 (ER24) defect, yielding a shorter period at higher temperatures. Thus, normal activity of the essential clock component WC-2, a positive regulator of frq, is critical for establishing period length and temperature compensation in this circadian system.
Collapse
Affiliation(s)
- M A Collett
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
152
|
Lillo C, Meyer C, Ruoff P. The nitrate reductase circadian system. The central clock dogma contra multiple oscillatory feedback loops. PLANT PHYSIOLOGY 2001; 125:1554-7. [PMID: 11299336 PMCID: PMC1539380 DOI: 10.1104/pp.125.4.1554] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- C Lillo
- School of Technology and Science, Stavanger University College, Box 2557 Ullandhaug, N-4091 Stavanger, Norway.
| | | | | |
Collapse
|
153
|
Ruoff P, Vinsjevik M, Monnerjahn C, Rensing L. The Goodwin model: simulating the effect of light pulses on the circadian sporulation rhythm of Neurospora crassa. J Theor Biol 2001; 209:29-42. [PMID: 11237568 DOI: 10.1006/jtbi.2000.2239] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Goodwin oscillator is a minimal model that describes the oscillatory negative feedback regulation of a translated protein which inhibits its own transcription. Now, over 30 years later this scheme provides a basic description of the central components in the circadian oscillators of Neurospora, Drosophila, and mammals. We showed previously that Neurospora's resetting behavior by pulses of temperature, cycloheximide or heat shock can be simulated by this model, in which degradation processes play an important role for determining the clock's period and its temperature-compensation. Another important environmental factor for the synchronization is light. In this work, we show that on the basis of a light-induced transcription of the frequency (frq) gene phase response curves of light pulses as well as the influence of the light pulse length on phase shifts can be described by the Goodwin oscillator. A relaxation variant of the model predicts that directly after a light pulse inhibition in frq -transcription occurs, even when the inhibiting factor Z (FRQ) has not reached inhibitory concentrations. This has so far not been experimentally investigated for frq transcription, but it complies with a current model of light-induced transcription of other genes by a phosphorylated white-collar complex. During long light pulses, the relaxational model predicts that the sporulation rhythm is arrested in a steady state of high frq -mRNA levels. However, experimental results indicate the possibility of oscillations around this steady state and more in favor of the results by the original Goodwin model. In order to explain the resetting behavior by two light pulses, a biphasic first-order kinetics recovery period of the blue light receptor or of the light signal transduction pathway has to be assumed.
Collapse
Affiliation(s)
- P Ruoff
- School of Science and Technology, Stavanger University College, Ullandhaug, Stavanger, N-4091, Norway.
| | | | | | | |
Collapse
|
154
|
Affiliation(s)
- J W Hastings
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138-2020, USA
| |
Collapse
|
155
|
Cheng P, Yang Y, Heintzen C, Liu Y. Coiled-coil domain-mediated FRQ-FRQ interaction is essential for its circadian clock function in Neurospora. EMBO J 2001; 20:101-8. [PMID: 11226160 PMCID: PMC140186 DOI: 10.1093/emboj/20.1.101] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The frequency (frq) gene, the central component of the frq-based circadian negative feedback loop, regulates various aspects of the circadian clock in NEUROSPORA: However, the biochemical function of its protein products, FRQ, is poorly understood. In this study, we demonstrated that the most conserved region of FRQ forms a coiled-coil domain. FRQ interacts with itself in vivo, and the deletion of the coiled-coil region results in loss of the interaction. Point mutations, which are designed to disrupt the coiled-coil structure, weaken or completely abolish the FRQ self-association and lead to the arrhythmicity of the overt rhythm. Mutations of the FRQ coiled-coil that inhibit self-association also prevent its interaction with two other key components of the NEUROSPORA: circadian clock, namely WC-1 and WC-2, the two PAS domain-containing transcription factors. Taken together, these data strongly suggest that the formation of the FRQ-FRQ and FRQ-WC complexes is essential for the function of the NEUROSPORA: clock.
Collapse
Affiliation(s)
| | | | - Christian Heintzen
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9040 and
Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA Corresponding author e-mail:
| | - Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9040 and
Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA Corresponding author e-mail:
| |
Collapse
|
156
|
Abstract
The term 'circadian rhythm' describes an oscillatory behavior in the absence of exogenous environmental cues, with a period of about a day. As yet, we don't fully understand which biological mechanisms join together to supply a stable and self-sustained oscillation with such a long period. By chipping away at the molecular mechanism with genetic approaches, some common features are emerging. In combining molecular analyses and physiological experiments, those features that are crucial for structuring a circadian day could be uncovered.
Collapse
Affiliation(s)
- M Merrow
- Institute for Medical Psychology, Goethestrasse 31, 80336 Munich, Germany.
| | | |
Collapse
|
157
|
Ruoff P, Behzadi A, Hauglid M, Vinsjevik M, Havås H. pH homeostasis of the circadian sporulation rhythm in clock mutants of Neurospora crassa. Chronobiol Int 2000; 17:733-50. [PMID: 11128290 DOI: 10.1081/cbi-100102109] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The influence of environmental (extracellular) pH on the sporulation rhythm in Neurospora crassa was investigated for wild-type (frq+) and the mutants chr, frq1, frq7, and frq8. In all mutants, including wild type, the growth rate was found to be influenced strongly by extracellular pH in the range 4-9. On the other hand, for the same pH range, the period length of the sporulation rhythm is little influenced in wild type, chr, and frq1. A loss of pH homeostasis of the period, however, was observed in the mutants frq7 and frq8, which also are known to have lost temperature compensation. Concerning the influence of extracellular pH on growth rates, a clear correspondence between growth rates and the concentration of available H2PO4- ion has been found, indicating that the uptake of H2PO4- may be a limiting factor for growth under our experimental conditions. The loss of pH compensation in the frq7 and frq8 mutants may be related to less easily degradable FRQ7,8 proteins when compared with wild-type FRQ. Results from recent model considerations and experimental results predict that, with increasing extra-and intracellular pH, the FRQ7 protein degradation increases and should lead to shorter period lengths.
Collapse
Affiliation(s)
- P Ruoff
- School of Science and Technology, Stavanger University College, Norway.
| | | | | | | | | |
Collapse
|
158
|
Abstract
Living organisms adapt to light-dark rhythmicity using a complex programme based on internal clocks. These circadian clocks, which are regulated by the environment, direct various physiological functions. As the molecular mechanisms that govern clock function are unravelled, we are starting to appreciate simple patterns as well as exquisite layers of regulation.
Collapse
Affiliation(s)
- N Cermakian
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS-INSERM-Université Louis Pasteur, 1, Rue Laurent Fries, 67404 Illkirch-Strasbourg, France
| | | |
Collapse
|
159
|
Abstract
In Neurospora crassa, white collar 1 (WC-1), a transcriptional activator and positive clock element, is rhythmically expressed from a nonrhythmic steady-state pool of wc-1 transcript, consistent with posttranscriptional regulation of rhythmicity. Mutations in frq influence both the level and periodicity of WC-1 expression, and driven FRQ expression not only depresses its own endogenous levels, but positively regulates WC-1 synthesis with a lag of about 8 hours, a delay similar to that seen in the wild-type clock. FRQ thus plays dual roles in the Neurospora clock and thereby, with WC-1, forms a second feedback loop that would promote robustness and stability in this circadian system. The existence also of interlocked loops in Drosophila melanogaster and mouse clocks suggests that such interlocked loops may be a conserved aspect of circadian timing systems.
Collapse
Affiliation(s)
- K Lee
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755-3844, USA
| | | | | |
Collapse
|
160
|
Xu Y, Mori T, Johnson CH. Circadian clock-protein expression in cyanobacteria: rhythms and phase setting. EMBO J 2000; 19:3349-57. [PMID: 10880447 PMCID: PMC313937 DOI: 10.1093/emboj/19.13.3349] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2000] [Revised: 05/08/2000] [Accepted: 05/08/2000] [Indexed: 11/14/2022] Open
Abstract
The cyanobacterial gene cluster kaiABC encodes three essential circadian clock proteins: KaiA, KaiB and KaiC. The KaiB and KaiC protein levels are robustly rhythmical, whereas the KaiA protein abundance undergoes little if any circadian oscillation in constant light. The level of the KaiC protein is crucial for correct functioning of the clock because induction of the protein at phases when the protein level is normally low elicits phase resetting. Titration of the effects of the inducer upon phase resetting versus KaiC level shows a direct correlation between induction of the KaiC protein within the physiological range and significant phase shifting. The protein synthesis inhibitor chloramphenicol prevents the induction of KaiC and blocks phase shifting. When the metabolism is repressed by either translational inhibition or constant darkness, the rhythm of KaiC abundance persists; therefore, clock protein expression has a preferred status under a variety of conditions. These data indicate that rhythmic expression of KaiC appears to be a crucial component of clock precession in cyanobacteria.
Collapse
Affiliation(s)
- Y Xu
- Department of Biology, Box 1812-B, Vanderbilt University, Nashville, TN 37235, USA
| | | | | |
Collapse
|
161
|
Vielhaber E, Eide E, Rivers A, Gao ZH, Virshup DM. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol Cell Biol 2000; 20:4888-99. [PMID: 10848614 PMCID: PMC85940 DOI: 10.1128/mcb.20.13.4888-4899.2000] [Citation(s) in RCA: 240] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular oscillator that keeps circadian time is generated by a negative feedback loop. Nuclear entry of circadian regulatory proteins that inhibit transcription from E-box-containing promoters appears to be a critical component of this loop in both Drosophila and mammals. The Drosophila double-time gene product, a casein kinase I epsilon (CKIepsilon) homolog, has been reported to interact with dPER and regulate circadian cycle length. We find that mammalian CKIepsilon binds to and phosphorylates the murine circadian regulator mPER1. Unlike both dPER and mPER2, mPER1 expressed alone in HEK 293 cells is predominantly a nuclear protein. Two distinct mechanisms appear to retard mPER1 nuclear entry. First, coexpression of mPER2 leads to mPER1-mPER2 heterodimer formation and cytoplasmic colocalization. Second, coexpression of CKIepsilon leads to masking of the mPER1 nuclear localization signal and phosphorylation-dependent cytoplasmic retention of both proteins. CKIepsilon may regulate mammalian circadian rhythm by controlling the rate at which mPER1 enters the nucleus.
Collapse
Affiliation(s)
- E Vielhaber
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City 84132, USA
| | | | | | | | | |
Collapse
|
162
|
Abstract
In the not too distant past, it was common belief that rhythms in the physical environment were the driving force, to which organisms responded passively, for the observed daily rhythms in measurable physiological and behavioral variables. The demonstration that this was not the case, but that both plants and animals possess accurate endogenous time-measuring machinery (i.e., circadian clocks) contributed to heightening interest in the study of circadian biological rhythms. In the last few decades, flourishing studies have demonstrated that most organisms have at least one internal circadian timekeeping device that oscillates with a period close to that of the astronomical day (i.e., 24h). To date, many of the physiological mechanisms underlying the control of circadian rhythmicity have been described, while the improvement of molecular biology techniques has permitted extraordinary advancements in our knowledge of the molecular components involved in the machinery underlying the functioning of circadian clocks in many different organisms, man included. In this review, we attempt to summarize our current understanding of the genetic and molecular biology of circadian clocks in cyanobacteria, fungi, insects, and mammals.
Collapse
Affiliation(s)
- M Zordan
- Department of Biology, University of Padova, Italy
| | | | | | | | | |
Collapse
|
163
|
Iwasaki H, Dunlap JC. Microbial circadian oscillatory systems in Neurospora and Synechococcus: models for cellular clocks. Curr Opin Microbiol 2000; 3:189-96. [PMID: 10744993 DOI: 10.1016/s1369-5274(00)00074-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Common regulatory patterns have emerged among the feedback loops lying within circadian systems. Significant progress in dissecting the mechanism of clock resetting by temperature and the role of the WC proteins in the Neurospora light response has accompanied documentation of the importance of nuclear localization and phosphorylation-induced turnover of FRQ to this circadian cycle. The long-awaited molecular description of a transcription/translation loop in the Synechococcus circadian system represents a quantal step forward, followed by the identification of additional important proteins and interactions. Finally, the adaptive significance of rhythms in Synechococcus and by extension in all clocks nicely ties up an extraordinary year.
Collapse
Affiliation(s)
- H Iwasaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, 464-01, Japan
| | | |
Collapse
|