151
|
Schechter NM, Brass LF, Lavker RM, Jensen PJ. Reaction of mast cell proteases tryptase and chymase with protease activated receptors (PARs) on keratinocytes and fibroblasts. J Cell Physiol 1998; 176:365-73. [PMID: 9648924 DOI: 10.1002/(sici)1097-4652(199808)176:2<365::aid-jcp15>3.0.co;2-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protease activated receptors (PARs) compose a family of G protein signal transduction receptors activated by proteolysis. In this study, the susceptibility of PARs expressed on human keratinocytes and dermal fibroblasts to the human mast cell proteases tryptase and chymase was evaluated. PAR activation was measured by monitoring cytosolic [Ca2+] in cells loaded with the fluorescent Ca2+ probe Fura-2. Tryptase produced transient cytosolic Ca2+ mobilization in keratinocytes, but not in fibroblasts. Ca2+ mobilization in keratinocytes required enzymatically active tryptase, demonstrated desensitization, and was blocked by pretreatment of cells with the PAR-2 peptide agonist SLIGKV, trypsin, or the phospholipase inhibitor U73122. Heparin, a GAG that binds to tryptase, stabilizing its functional form, also inhibited tryptase-induced Ca2+ mobilization. The maximal response elicited by tryptase was smaller than that observed upon treatment of keratinocytes with trypsin, a known activator of PAR-2, and keratinocytes made refractory to tryptase by pretreatment with the protease remained responsive to trypsin. Pretreatment of keratinocytes with thrombin, an activator of PAR-1 and -3 (thrombin receptors), had no detectable effect on the tryptase or trypsin responses. These data suggest that in keratinocytes tryptase may be activating a subpopulation of PAR-2 receptors. Treatment of keratinocytes or fibroblasts with human chymase did not produce Ca2+ mobilization, nor did it affect Ca2+ mobilization produced by trypsin. However, chymase pretreatment of fibroblasts rapidly inhibited the ability of these cells to respond to thrombin. Inhibition was dependent on chymase enzymatic activity and was not significantly affected by the presence of heparin. This finding is consistent with studies indicating that PAR-1 may be susceptible to proteases with chymotrypsin-like specificity. These results suggest that the proteases tryptase and chymase secreted from mast cells in skin may affect the behavior of surrounding cells by the hydrolysis of PARs expressed by these cells.
Collapse
Affiliation(s)
- N M Schechter
- Department of Dermatology, University of Pennsylvania, Philadelphia 19104-6142, USA.
| | | | | | | |
Collapse
|
152
|
Hou L, Kapas S, Cruchley AT, Macey MG, Harriott P, Chinni C, Stone SR, Howells GL. Immunolocalization of protease-activated receptor-2 in skin: receptor activation stimulates interleukin-8 secretion by keratinocytes in vitro. Immunology 1998; 94:356-62. [PMID: 9767417 PMCID: PMC1364253 DOI: 10.1046/j.1365-2567.1998.00528.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protease-activated receptor-2 (PAR-2) is a seven transmembrane domain receptor related to the thrombin receptor, which is activated in vitro by cleavage by trypsin. Affinity-purified rabbit IgG raised against a peptide corresponding to the trypsin cleavage site of PAR-2 was used for an immunohistochemical study of skin. The expression of PAR-2 in epidermis was striking, with keratinocytes showing abundant intercellular and cytoplasmic staining. Basal cells showed the strongest staining intensity and the stratum corneum was negative. Staining with control IgG used at the same concentration was consistently negative. The functional expression of PAR-2 by the simian virus transformed human skin keratinocyte cell line SVK14 was demonstrated by Northern blot analysis, flow cytometric analysis and the measurement of intracellular calcium. Treatment of SVK14 with trypsin or a receptor agonist peptide (SLIGKV-NH2) caused a dose-dependent increase in the secretion of the chemokine interleukin-8 (IL-8) in vitro. The effect of the peptide was specific, since control acetylated peptide was without activity. We conclude that PAR-2 is highly expressed by epidermal keratinocytes and receptor activation in vitro leads to increased IL-8 secretion by keratinocytes. These data raise the possibility that PAR-2 may play a role in epidermal homeostasis and inflammatory conditions.
Collapse
Affiliation(s)
- L Hou
- Clinical Sciences Research Centre, St. Bartholomew's, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Hamilton JR, Nguyen PB, Cocks TM. Atypical protease-activated receptor mediates endothelium-dependent relaxation of human coronary arteries. Circ Res 1998; 82:1306-11. [PMID: 9648727 DOI: 10.1161/01.res.82.12.1306] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Protease-activated receptors (PARs) are a family of G protein-coupled receptors activated by a tethered ligand sequence within the amino terminal that are revealed by site-specific proteolysis. The thrombin-sensitive PAR-1 and trypsin-activated PAR-2 mediate endothelium-dependent vascular relaxation in a number of species. Because both thrombin and trypsin-like enzymes have been implicated in coronary artery disease, the purpose of this study was to investigate whether similar receptors are present in human coronary arteries. Thrombin (0.001 to 0.1 U/mL) and trypsin (0.001 to 1 U/mL) caused concentration- and endothelium-dependent relaxations of human coronary artery ring segments suspended in organ chambers for isometric tension recording and contracted with the thromboxane A2 mimetic U46619. These relaxations were dependent on the catalytic activity of each enzyme and were inhibited by the NO synthase inhibitor NG-nitro-L-arginine (100 micromol/L) and the NO scavenger oxyhemoglobin (20 micromol/L). The synthetic PAR-1 tethered ligand sequence SFLLRN-NH2 (0.01 to 10 micromol/L) also caused endothelium-dependent relaxation of U46619-contracted human coronary arteries; however, the equivalent PAR-2 ligand SLIGKV-NH2 caused almost no relaxation. In addition, desensitization to either thrombin or trypsin resulted in cross-desensitization to the other enzyme but had only a minimal affect on the response to SFLLRN-NH2. Therefore, we conclude that human coronary artery endothelial cells possess a PAR-1-like receptor that is potently activated by thrombin, trypsin, and SFLLRN-NH2 to cause NO-mediated vascular relaxation. Once cleaved, this receptor is recycled in a truncated form, able to respond to exogenous application of only its tethered ligand sequence, suggesting the presence of another endogenous activator possibly acting independently of receptor cleavage.
Collapse
Affiliation(s)
- J R Hamilton
- Department of Pharmacology, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
154
|
Vergnolle N, Macnaughton WK, Al-Ani B, Saifeddine M, Wallace JL, Hollenberg MD. Proteinase-activated receptor 2 (PAR2)-activating peptides: identification of a receptor distinct from PAR2 that regulates intestinal transport. Proc Natl Acad Sci U S A 1998; 95:7766-71. [PMID: 9636225 PMCID: PMC22751 DOI: 10.1073/pnas.95.13.7766] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The effects of PAR2-activating PAR2-activating peptides, SLIGRL (SL)-NH2, and trans-cinnamoyl-LIGRLO (tc)-NH2 were compared with the action of trypsin, thrombin, and the PAR1 selective-activating peptide: Ala-parafluoroPhe-Arg-cyclohexylAla-Citrulline-Tyr (Cit)-NH2 for stimulating intestinal ion transport. These agonists were added to the serosa of stripped rat jejunum segments mounted in Ussing chambers, and short circuit current (Isc) was used to monitor active ion transport. The relative potencies of these agonists also were evaluated in two bioassays specific for the activation of rat PAR2: a cloned rat PAR2 cell calcium-signaling assay (PAR2-KNRK cells) and an aorta ring relaxation (AR) assay. In the Isc assay, all agonists, except thrombin, induced an Isc increase. The SL-NH2-induced Isc changes were blocked by indomethacin but not by tetrodotoxin. The relative potencies of the agonists in the Isc assay (trypsin>>SL-NH2>tc-NH2>Cit-NH2) were strikingly different from their relative potencies in the cloned PAR2-KNRK cell calcium assay (trypsin>>>tc-NH2 congruent with SL-NH2>>>Cit-NH2) and in the AR assay (trypsin>>>tc-NH2 congruent with SL-NH2). Furthermore, all agonists were maximally active in the PAR2-KNRK cell and AR assays at concentrations that were one (PAR2 -activating peptides) or two (trypsin) orders of magnitude lower than those required to activate intestinal transport. Based on the distinct potency profile for these agonists and the considerable differences in the concentration ranges required to induce an Isc effect in the intestinal assay compared with the PAR2-KNRK and AR assays, we conclude that a proteinase-activated receptor, pharmacologically distinct from PAR2 and PAR1, is present in rat jejunum and regulates intestinal transport via a prostanoid-mediated mechanism.
Collapse
Affiliation(s)
- N Vergnolle
- Gastrointestinal, University of Calgary Faculty of Medicine, 3330 Hospital Drive NW, Calgary, Alberta Canada T2N4N1
| | | | | | | | | | | |
Collapse
|
155
|
Déry O, Corvera CU, Steinhoff M, Bunnett NW. Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1429-52. [PMID: 9696685 DOI: 10.1152/ajpcell.1998.274.6.c1429] [Citation(s) in RCA: 602] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although serine proteases are usually considered to act principally as degradative enzymes, certain proteases are signaling molecules that specifically regulate cells by cleaving and triggering members of a new family of proteinase-activated receptors (PARs). There are three members of this family, PAR-1 and PAR-3, which are receptors for thrombin, and PAR-2, a receptor for trypsin and mast cell tryptase. Proteases cleave within the extracellular NH2-terminus of their receptors to expose a new NH2-terminus. Specific residues within this tethered ligand domain interact with extracellular domains of the cleaved receptor, resulting in activation. In common with many G protein-coupled receptors, PARs couple to multiple G proteins and thereby activate many parallel mechanisms of signal transduction. PARs are expressed in multiple tissues by a wide variety of cells, where they are involved in several pathophysiological processes, including growth and development, mitogenesis, and inflammation. Because the cleaved receptor is physically coupled to its agonist, efficient mechanisms exist to terminate signaling and prevent uncontrolled stimulation. These include cleavage of the tethered ligand, receptor phosphorylation and uncoupling from G proteins, and endocytosis and lysosomal degradation of activated receptors.
Collapse
Affiliation(s)
- O Déry
- Department of Surgery, University of California, San Francisco 94143-0660, USA
| | | | | | | |
Collapse
|
156
|
Hou L, Ravenall S, Macey MG, Harriott P, Kapas S, Howells GL. Protease-activated receptors and their role in IL-6 and NF-IL-6 expression in human gingival fibroblasts. J Periodontal Res 1998; 33:205-11. [PMID: 9689616 DOI: 10.1111/j.1600-0765.1998.tb02192.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The serine protease thrombin is formed at sites of coagulation and inflammation and has been shown to have important proinflammatory cellular effects relevant to the pathogenesis of periodontal disease. Thrombin acts via specific cell surface receptors termed protease-activated receptor-1 (PAR-1) and PAR-3, which have a distinctive method of activation. Proteolytic cleavage of the extracellular domain by thrombin reveals a hidden amino terminus which then acts as a "tethered ligand". A short synthetic peptide (SFLLRN) can also mimic the tethered ligand and activate PAR-1 but not PAR-3. Also, a trypsin-sensitive receptor termed PAR-2 has been described which is activated by the PAR-1 activating peptide SFLLRN. Here we show conclusively by flow cytometric and Northern blot analysis that human gingival fibroblasts (HGF) express PAR-1 but not PAR-2. In functional studies we also show that thrombin and SFLLRN stimulated increased expression of mRNA encoding nuclear transcription factor NF-IL-6 and IL-6 in vitro. At optimal concentrations, thrombin (10(-7) M) induced 7.6 +/- 0.01 ng/ml immunoactive IL-6 and PAR-1 activating peptide (5 x 10(-5) M) induced 2.2 +/- 0.2 ng/ml (mean +/- standard error of mean). A proteolytically inactive recombinant thrombin (serine 195 to alanine) was without activity. These data show that HGF express PAR-1 and suggest that PAR-1 activation stimulates increased NF-IL-6 and IL-6 gene expression and IL-6 secretion by HGF in vitro. Whether HGF express PAR-3 is unknown, but the fact that SFLLRN was not a complete replacement for thrombin raises the possibility that HGF may express additional thrombin receptors. These findings add weight to the importance of the cytokine-like role played by thrombin and raise the possibility that protease-activated receptors may play a role in the pathogenesis of inflammatory periodontal disease.
Collapse
Affiliation(s)
- L Hou
- Oral Diseases Research Centre, St Bartholomew's and The Royal London School of Medicine and Dentistry, UK.
| | | | | | | | | | | |
Collapse
|
157
|
Molino M, Raghunath PN, Kuo A, Ahuja M, Hoxie JA, Brass LF, Barnathan ES. Differential expression of functional protease-activated receptor-2 (PAR-2) in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1998; 18:825-32. [PMID: 9598843 DOI: 10.1161/01.atv.18.5.825] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protease-activated family of G protein-coupled receptors includes PAR-1 and PAR-3, which are activated by thrombin, and PAR-2, which is activated by trypsin and tryptase. PAR-2 has recently been shown to be expressed in human endothelial cells. In the present studies, we have examined the expression of PAR-2 in other cells, particularly vascular smooth muscle, and tested whether the receptors are functional. The results show that PAR-2 is present in human aorta and coronary artery smooth muscle cells, as well as in arteries traversing the walls of the small intestine. It was also detected in human keratinocytes, sweat glands, intestinal smooth muscle, and intestinal epithelium, but not at all in myocardial smooth muscle and only inconsistently in intestinal veins and venules. Activation of aortic smooth muscle cells in culture with PAR-2 peptide agonists caused a transient increase in the cytosolic Ca2+ concentration. In contrast, PAR-2 mRNA could not be detected in saphenous vein smooth muscle cells, and the same cells placed in culture showed little, if any, response to the PAR-2 agonist peptides. These observations show that PAR-2 is widely distributed in human vascular smooth muscle, particularly in arteries. However, this is not a universal finding and at least some venous smooth muscle cells, including those in saphenous veins, apparently do not express the receptor in detectable amounts.
Collapse
Affiliation(s)
- M Molino
- Istituto di Ricerche Farmacologiche Mario Negri, Santa Maria Imbaro, Italy
| | | | | | | | | | | | | |
Collapse
|
158
|
Hou L, Howells GL, Kapas S, Macey MG. The protease-activated receptors and their cellular expression and function in blood-related cells. Br J Haematol 1998; 101:1-9. [PMID: 9576174 DOI: 10.1046/j.1365-2141.1998.00696.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- L Hou
- Department of Oral Pathology, St Bartholomew's and the Royal London School of Medicine and Dentistry
| | | | | | | |
Collapse
|
159
|
Roy SS, Saifeddine M, Loutzenhiser R, Triggle CR, Hollenberg MD. Dual endothelium-dependent vascular activities of proteinase-activated receptor-2-activating peptides: evidence for receptor heterogeneity. Br J Pharmacol 1998; 123:1434-40. [PMID: 9579740 PMCID: PMC1565291 DOI: 10.1038/sj.bjp.0701726] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. The vascular actions of the proteinase-activated receptor-2-activating peptides (PAR2APs), SLIGRL-NH2 (SL-NH2) and SLIGKV-NH2 (KV-NH2) as well as the reverse-sequence peptide, LSIGRL-NH2 (LS-NH2) and an N-acylated PAR2AP derivative, trans-cinnamoyl-LIGRLO-NH2 (tcLI-NH2), were studied in rat intact and endothelium-denuded artery ring preparations, primarily from the pulmonary artery (RPA). 2. In RPA rings with but not without a functional endothelium, SL-NH2 (but not LS-NH2) caused either an endothelium-dependent relaxation (at concentrations: < 10 microM) or (at higher concentrations: > 10 microM), an endothelium-dependent contraction. No contractile response was observed in endothelium-denuded preparations, that otherwise contracted in response to the PAR1AP, TFLLR-NH2. 3. The endothelium-dependent contractile response to SL-NH2 was not blocked by the alpha-adrenoceptor antagonist prazosin, the endothelin antagonist BQ123, the angiotensin II antagonist DuP753, by tetrodotoxin; nor by the enzyme inhibitors, N(omega)-nitro-L-arginine-methylester (NO-synthase), indomethacin (cyclo-oxygenase), SKF-525A (epoxygenase) and MK886 (leukotriene synthesis inhibitor). 4. In the relaxation assay, KV-NH2 was 5 fold less potent than SL-NH2, whereas in the contractile assay KV-NH2 was about equipotent with SL-NH2. However, the maximal contractile response to KV-NH2 was lower than that of SL-NH2. 5. The PAR2AP analogue, tcLI-NH2, was as active as SL-NH2 in the relaxation assay but was inactive as a contractile agonist in the endothelium-intact RPA. 6. The relaxant responses caused by SL-NH2 and trypsin, as well as the contractile response caused by SL-NH2, did not desensitize in the course of repeated exposures of the tissue to agonist; whereas the contractile response to trypsin, only observed at concentrations greater than 30 u ml(-1), was desensitized by previous exposure of the tissue to either thrombin or trypsin. 7. In a contractile assay, where the tissue was desensitized to a concentration of trypsin that would otherwise cause a relaxant response, the preparation still contracted in response to SL-NH2. However, the trypsin-desensitized preparations were no longer contracted by thrombin. 8. From the cross-desensitization by thrombin of the contractile response to trypsin (and vice versa), we concluded that the contractile effect of trypsin was due to activation of the thrombin receptor and not PAR2. 9. We concluded that the endothelium-dependent contraction caused by high concentrations of SL-NH2 is due to an as yet unidentified contracting factor; whereas the endothelium-dependent relaxation response observed at low concentrations of SL-NH2 (< or = 10 microM) is mediated by nitric oxide. 10. The distinct structure activity profiles for the contractile response (potency of KV-NH2 < or = SL-NH2) compared with the relaxant response (potency of KV-NH2 << SL-NH2); the contractile responsiveness to SL-NH2 of an endothelium-intact RPA preparation, that did not contract in response to trypsin; and the lack of contractile activity of the PAR2AP analogue tcLI-NH2, that was as active as SL-NH2 in the relaxation assay all argue in favour of receptor heterogeneity in the vasculature for the PAR2APs. It remains to be determined if the distinct endothelial receptor responsible for the contractile action of SL-NH2 can be proteolytically activated, like PAR1 and PAR2.
Collapse
Affiliation(s)
- S S Roy
- Department of Pharmacology & Therapeutics, The University of Calgary, Faculty of Medicine, AB Canada
| | | | | | | | | |
Collapse
|
160
|
Enenstein J, Gupta K, Vercellotti GM, Hebbel RP. Thrombin-stimulated calcium mobilization is inhibited by thrombospondin via CD36. Exp Cell Res 1998; 238:465-71. [PMID: 9473355 DOI: 10.1006/excr.1997.3863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activation of the G-protein-linked thrombin receptor in endothelial cells normally leads to an increase in free intracellular calcium, [Ca2+]i, which is the proximate stimulus for many important cell functions. We present evidence showing that signals from CD36, the thrombospondin (TSP) receptor, can inhibit this thrombin-mediated calcium response. Human endothelial cells preloaded with Indo-1 exhibited rapid calcium mobilization in response to thrombin. The presence of TSP inhibited the thrombin-stimulated calcium response in CD36-positive microvascular endothelial cells but not in CD36-negative umbilical vein endothelial cells. This TSP effect was mimicked by anti-CD36 antibodies and a TSP peptide (CSVTCG), but not by an alternative CD36 ligand (collagen IV) or an antibody to an alternative TSP receptor (alphavbeta3). TSP also inhibited the calcium response to the thrombin receptor-tethered ligand peptide, SFLLRN. In addition, TSP and anti-CD36 antibodies inhibited the calcium response of a closely related receptor, the trypsin/SLIGKVD-activated receptor PAR-2. TSP did not indiscriminately inhibit all calcium release pathways, since histamine- or VEGF-stimulated calcium responses were not inhibited by TSP. We conclude that cross-talk from the CD36 receptor influences the responsive state of the endothelial thrombin receptor family and/or its signaling pathway.
Collapse
Affiliation(s)
- J Enenstein
- Department of Medicine and Hematology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
161
|
Cheung WM, Andrade-Gordon P, Derian CK, Damiano BP. Receptor-activating peptides distinguish thrombin receptor (PAR-1) and protease activated receptor 2 (PAR-2) mediated hemodynamic responses in vivo. Can J Physiol Pharmacol 1998. [DOI: 10.1139/y97-176] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular expression and cellular functions of the thrombin receptor (PAR-1) and protease activated receptor 2 (PAR-2) suggest similar but distinct vascular regulatory roles. The vascular actions of PAR-1 and PAR-2 in vivo were differentiated by monitoring mean arterial pressure (MAP) and heart rate (HR) of anesthetized mice in response to intravenous SFLLRN (0.1, 0.3, and 1 µmol/kg) and SLIGRL (0.1, 0.3, and 1 µmol/kg), the respective receptor-activating sequences for PAR-1 and PAR-2, and TFLLRNPNDK (0.3, 1, and 3 µmol/kg), a synthetic peptide selective for PAR-1. All peptides dose dependently decreased MAP (order of potency: SLIGRL >> SFLLRN >> TFLLRNPNDK). SLIGRL induced a more prolonged hypotension with a slow return to baseline, whereas SFLLRN- and TFLLRNPNDK-induced hypotension was followed by a rapid return towards baseline and a sustained moderate hypotension. SFLLRN and TFLLRNPNDK, but not SLIGRL, decreased HR. N omega -Nitro-L-arginine methyl ester HCl (L-NAME), an inhibitor of nitric oxide synthesis, attenuated the cumulative hypotensive response to SLIGRL but had no effect on the SFLLRN and TFLLRNPNDK hypotension. However, L-NAME revealed a rebound hypertension in response to SFLLRN and TFLLRNPNDK but not SLIGRL. In conclusion, activation of either PAR-1 or PAR-2 in vivo results in hypotension. In addition, only PAR-1 activation induced hypertension following L-NAME, reflecting concurrent PAR-1-mediated vasoconstriction. Thus, these different hemodynamic responses in vivo suggest distinct physiological or pathophysiological roles for PAR-1 and PAR-2 in local vascular regulation. Key words: protease activated receptor, thrombin receptor, protease activated receptor 2 (PAR-2), arterial pressure.
Collapse
|
162
|
Mitogenic Responses Mediated Through the Proteinase-Activated Receptor-2 Are Induced by Expressed Forms of Mast Cell α- or β-Tryptases. Blood 1997. [DOI: 10.1182/blood.v90.10.3914] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe proteinase-activated receptor-2 (PAR-2) is the second member of a putative larger class of proteolytically activated receptors that mediate cell activation events by receptor cleavage or synthetic peptidomimetics corresponding to the newly generated N-terminus. To further study the previously identified mitogenic effects of PAR-2, we used the interleukin-3 (IL-3)–dependent murine lymphoid cell line, BaF3, for generation of stable cell lines expressing PAR-2 (BaF3/PAR-2) or the noncleavable PAR-2 mutant PAR-2Arg36 → Ala36. Only BaF3 cells expressing either wild-type or mutated receptor exhibited mitogenic responses when grown in IL-3–deficient media supplemented with PAR-2 activating peptide (SLIGRL, PAR39-44). This effect was dose dependent with an EC50 of ∼80 μmol/L, sustained at 24, 48, and 72 hours, and was also demonstrable using thrombin receptor peptide TR42-47. Because tryptase shares ∼70% homology with trypsin (previously shown to activate PAR-2), we studied recombinantly expressed forms of α- and β-tryptases as candidate protease agonists for PAR-2. Hydrolytic activity of the chromogenic substrate tosyl-glycyl-prolyl-argly-4-nitroanilide acetate was present as a sharp peak at Mr ∼130, confirming the presence of secretable and functionally active homotetrameric α- and β-tryptases in transfected COS-1 cells. Dose-dependent proliferative responses were evident using either secreted form of tryptase with maximal responses seen at ∼3 pmol/L (0.1 U/L). Receptor proteolysis was necessary and sufficient for mitogenesis because active site-blocked tryptase failed to induce this response, and proliferative responses were abrogated in BaF3 cells expressing PAR-2Arg36 → Ala36. These results specifically identify both forms of mast cell tryptases as serine protease agonists for PAR-2 and have implications for elucidating molecular mechanisms regulating cellular activation events mediated by proteases generated during inflammatory, fibrinolytic, or hemostatic-regulated pathways.
Collapse
|
163
|
Hollenberg MD, Saifeddine M, al-Ani B, Kawabata A. Proteinase-activated receptors: structural requirements for activity, receptor cross-reactivity, and receptor selectivity of receptor-activating peptides. Can J Physiol Pharmacol 1997. [PMID: 9315351 DOI: 10.1139/y97-110] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used three distinct bioassay systems (rat aorta (RA) relaxation; rat gastric longitudinal muscle (LM) contraction; human embryonic kidney 293 (HEK293) cell calcium signal) to evaluate the activity and receptor selectivity of analogues of the receptor-activating peptides derived either from the thrombin receptor (TRAPs, based on the human receptor sequence, SFLLRNPNDK...) or the proteinase-activated receptor 2 (PAR2APs, based on the rat receptor sequence SLIGRL...). Our main focus was on the activation of PAR2 by PAR2APs and the cross-activation of PAR2 by the TRAPs. In the RA and LM assay systems, PAR2APs that were either N-acetylated (N-acetyl-SLIGRL-NH2) or had a reverse N-terminal sequence (LSIGRL-NH2) were inactive, either as agonists or antagonists. An alanine substitution at position 3 of the PAR2AP (SLAGRL-NH2) led to a dramatic reduction of biological activity, as did substitution of threonine for serine at position 1 (TLIGRL-NH2). However, alanine substitution at PAR2AP position 4 caused only a modest reduction in activity, resulting in a peptide (SLIARL-NH2) with a potency equivalent to that of the human PAR2AP, SLIGKV-NH2. The order of potency of the PAR2APs in the RA, LM, and HEK assay systems was SLIGRL-NH2 > SLIARL-NH2 > SLIGKV-NH2 > TLIGRL-NH2 > SLAGRL-NH2. In HEK cells, none of the PAR2APs activated the thrombin receptor (PAR1). However, in the HEK cell assay, the TRAP, SFLLR-NH2, activated or desensitized both PAR1 and PAR2 receptors, whereas the xenopus TRAP, TFRIFD-NH2, activated or desensitized selectively PAR1 but not PAR2. By constructing human-xenopus hybrid peptides, we found that the TRAPs, TFLLR-NH2, and SFLLFD-NH2 selectively activated the thrombin receptor in HEK cells without activating or desensitizing PAR2. In contrast, the TRAPs SFLLRD-NH2 and AFLLR-NH2 activated or desensitized both PAR1 and PAR2. The order of potency for the TRAPs in all bioassay systems was SFLLR-NH2 approximately equal to SFLLRD-NH2 approximately equal to TFLLR-NH2 > SFLLFD-NH2 > TFRIFD-NH2. We conclude that the N-terminal domain of the PAR2AP as well as positon 3 plays important roles for PAR2 activation. In contrast, the first and fifth amino acids in the TRAP motif, SFLLR-NH2, do not play a unique role in activating the thrombin receptor, but if appropriately modified can abrogate the ability of this peptide to cross-desensitize or activate PAR2, so as to be selective for PAR1. The PAR1- and PAR2-selective peptides that we have synthesized will be of use for the evaluation of the roles of the PAR1 and PAR2 receptor systems in vivo.
Collapse
Affiliation(s)
- M D Hollenberg
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Calgary, AB, Canada
| | | | | | | |
Collapse
|
164
|
Corvera CU, Déry O, McConalogue K, Böhm SK, Khitin LM, Caughey GH, Payan DG, Bunnett NW. Mast cell tryptase regulates rat colonic myocytes through proteinase-activated receptor 2. J Clin Invest 1997; 100:1383-93. [PMID: 9294103 PMCID: PMC508316 DOI: 10.1172/jci119658] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Proteinase-activated receptor-2 (PAR-2) is a G protein-coupled receptor that is cleaved and activated by trypsin-like enzymes. PAR-2 is highly expressed by small intestinal enterocytes where it is activated by luminal trypsin. The location, mechanism of activation, and biological functions of PAR-2 in the colon, however, are unknown. We localized PAR-2 to the muscularis externa of the rat colon by immunofluorescence. Myocytes in primary culture also expressed PAR-2, assessed by immunofluorescence and RT-PCR. Trypsin, SLIGRL-NH2 (corresponding to the PAR-2 tethered ligand), mast cell tryptase, and a filtrate of degranulated mast cells stimulated a prompt increase in [Ca2+]i in myocytes. The response to tryptase and the mast cell filtrate was inhibited by the tryptase inhibitor BABIM, and abolished by desensitization of PAR-2 with trypsin. PAR-2 activation inhibited the amplitude of rhythmic contractions of strips of rat colon. This response was unaffected by indomethacin, l-NG-nitroarginine methyl ester, a bradykinin B2 receptor antagonist and tetrodotoxin. Thus, PAR-2 is highly expressed by colonic myocytes where it may be cleaved and activated by mast cell tryptase. This may contribute to motility disturbances of the colon during conditions associated with mast cell degranulation.
Collapse
Affiliation(s)
- C U Corvera
- Department of Surgery, University of California, San Francisco, San Francisco, California 94143-0660, USA
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Functional Interactions Between the Thrombin Receptor and the T-Cell Antigen Receptor in Human T-Cell Lines. Blood 1997. [DOI: 10.1182/blood.v90.5.1893] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe proteolytically activated thrombin receptor (TR) is expressed by T lymphocytes, which suggests that thrombin may modulate T-cell activation at sites of hemostatic stress. We examined the relationship between TR function and T-cell activation in the Jurkat human T-cell line and in T-cell lines with defined defects in T-cell antigen receptor (TCR) function. Stimulation with thrombin or the synthetic TR peptide SFLLRN produced intracellular Ca2+ transients in Jurkat cells. As the concentration of TR agonist was increased, peak Ca2+ mobilization increased, but influx of extracellular Ca2+ decreased. TR signaling was enhanced in a TCR-negative Jurkat line and in T-cell lines deficient in the tyrosine kinase lck or the tyrosine phosphatase CD45, both of which are essential for normal TCR function. TCR cross-linking with anti-CD3 IgM desensitized TR signaling in Jurkat cells, but not in CD45-deficient cells. A proteinase-activated receptor (PAR-2)–specific agonist peptide, SLIGKV, produced small Ca2+ transients in both MEG-01 human megakaryocytic cells and Jurkat cells, but was less potent than the TR-specific agonist TFRIFD in both cell types. Like TR signaling, PAR-2 signaling was enhanced in TCR-negative or lck-deficient Jurkat clones. These findings provide evidence for functional cross-talk between proteolytically activated receptors and the TCR.
Collapse
|
166
|
Kong W, McConalogue K, Khitin LM, Hollenberg MD, Payan DG, Böhm SK, Bunnett NW. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc Natl Acad Sci U S A 1997; 94:8884-9. [PMID: 9238072 PMCID: PMC23180 DOI: 10.1073/pnas.94.16.8884] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Proteinase-activated receptor 2 (PAR-2) is a recently characterized G-protein coupled receptor that is cleaved and activated by pancreatic trypsin. Trypsin is usually considered a digestive enzyme in the intestinal lumen. We examined the hypothesis that trypsin, at concentrations normally present in the lumen of the small intestine, is also a signaling molecule that specifically regulates enterocytes by activating PAR-2. PAR-2 mRNA was highly expressed in the mucosa of the small intestine and in an enterocyte cell line. Immunoreactive PAR-2 was detected at the apical membrane of enterocytes, where it could be cleaved by luminal trypsin. Physiological concentrations of pancreatic trypsin and a peptide corresponding to the tethered ligand of PAR-2, which is exposed by trypsin cleavage, stimulated generation of inositol 1,4,5-trisphosphate, arachidonic acid release, and secretion of prostaglandin E2 and F1alpha from enterocytes and a transfected cell line. Application of trypsin to the apical membrane of enterocytes and to the mucosal surface of everted sacs of jejunum also stimulated prostaglandin E2 secretion. Thus, luminal trypsin activates PAR-2 at the apical membrane of enterocytes to stimulate secretion of eicosanoids, which regulate multiple cell types in a paracrine and autocrine manner. We conclude that trypsin is a signaling molecule that specifically regulates enterocytes by triggering PAR-2.
Collapse
Affiliation(s)
- W Kong
- Department of Surgery, University of California, San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143-0660, USA
| | | | | | | | | | | | | |
Collapse
|
167
|
Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci 1997. [PMID: 9204916 DOI: 10.1523/jneurosci.17-14-05316.1997] [Citation(s) in RCA: 248] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thrombin activity is a factor in acute CNS trauma and may contribute to such chronic neurodegenerative diseases as Alzheimer's disease. Thrombin is a multifunctional serine protease that catalyses the final steps in blood coagulation. However, increasing evidence indicates that thrombin also elicits a variety of cellular and inflammatory responses, including responses from neural cells. Most recently, high concentrations of thrombin were shown to cause cell death in both astrocyte and hippocampal neuron cultures. The purpose of this study was to determine the mechanisms underlying thrombin-induced cell death. Our data show that thrombin appears to cause apoptosis as evidenced by cleavage of DNA into oligonucleosomal-sized fragments, fragmentation of nuclei, and prevention of death by inhibition of protein synthesis. Synthetic peptides that directly activate the thrombin receptor also induced apoptosis, indicating that thrombin-induced cell death occurred via activation of the thrombin receptor. The signal transduction cascade involves tyrosine and serine/threonine kinases and an intact actin cytoskeleton. Additional study revealed the involvement of the small GTP-binding protein RhoA. Thrombin induced RhoA activity in both astrocytes and hippocampal neurons, and inhibition of RhoA activity with exoenzyme C3 attenuated cell death, indicating that thrombin activation of RhoA was necessary for thrombin-induced cell death. Tyrosine kinase inhibitors blocked thrombin induction of RhoA, indicating that tyrosine kinase activity was required upstream of RhoA. These data suggest a sequential linkage of cellular events from which we propose a model for the second messenger cascade induced by thrombin in neural cells that can lead to apoptosis.
Collapse
|
168
|
Molino M, Woolkalis MJ, Reavey-Cantwell J, Praticó D, Andrade-Gordon P, Barnathan ES, Brass LF. Endothelial cell thrombin receptors and PAR-2. Two protease-activated receptors located in a single cellular environment. J Biol Chem 1997; 272:11133-41. [PMID: 9111010 DOI: 10.1074/jbc.272.17.11133] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human endothelial cells express thrombin receptors and PAR-2, the two known members of the family of protease-activated G protein-coupled receptors. Because previous studies have shown that the biology of the human thrombin receptor varies according to the cell in which it is expressed, we have taken advantage of the presence of both receptors in endothelial cells to examine the enabling and disabling interactions with candidate proteases likely to be encountered in and around the vascular space to compare the responses elicited by the two receptors when they are present in the same cell and to compare the mechanisms of thrombin receptor and PAR-2 clearance and replacement in a common cellular environment. Of the proteases that were tested, only trypsin activated both receptors. Cathepsin G, which disables thrombin receptors, had no effect on PAR-2, while urokinase, kallikrein, and coagulation factors IXa, Xa, XIa, and XIIa neither substantially activated nor noticeably disabled either receptor. Like thrombin receptors, activation of PAR-2 caused pertussis toxin-sensitive phospholipase C activation as well as activation of phospholipase A2, leading to the release of PGI2. Concurrent activation of both receptors caused a greater response than activation of either alone. It also abolished a subsequent response to the PAR-2 agonist peptide, SLIGRL, while only partially inhibiting the response to the agonist peptide, SFLLRN, which activates both receptors. After proteolytic or nonproteolytic activation, PAR-2, like thrombin receptors, was cleared from the endothelial cell surface and then rapidly replaced with new receptors by a process that does not require protein synthesis. Selective activation of either receptor had no effect on the clearance of the other. These results suggest that the expression of both thrombin receptors and PAR-2 on endothelial cells serves more to extend the range of proteases to which the cells can respond than it does to extend the range of potential responses. The results also show that proteases that can disable these receptors can distinguish between them, just as do most of the proteases that activate them. Finally, the residual response to SFLLRN after activation of thrombin receptors and PAR-2 raises the possibility that a third, as yet unidentified member of this family is expressed on endothelial cells, one that is activated by neither thrombin nor trypsin.
Collapse
Affiliation(s)
- M Molino
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Derian CK, Eckardt AJ. Thrombin receptor-dependent prostaglandin E2 synthesis in hamster fibroblasts: synergistic interactions with interleukin-1beta. Exp Cell Res 1997; 232:1-7. [PMID: 9141614 DOI: 10.1006/excr.1997.3483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cellular responses to alpha-thrombin are mediated through a G-protein-coupled receptor that undergoes proteolytic cleavage, unveiling a tethered peptide ligand with the amino-terminal sequence SFLLRN. The synthetic peptide SFLLRN can mimic many of thrombin's actions via directly stimulating the thrombin receptor. Thrombin has been implicated in several cellular events associated with tissue injury, including fibroblast growth, matrix deposition, and inflammatory responses. The role of the thrombin receptor in fibroblast-dependent release of the inflammatory mediator prostaglandin E2 was evaluated and compared to its well-characterized effect on cell proliferation. Both thrombin and SFLLRN stimulated [3H]thymidine incorporation into DNA but failed to induce prostaglandin E2 release from CCL39 cells. The inflammatory cytokine interleukin-1beta synergized with thrombin and SFLLRN to induce the release of prostaglandin E2, whereas it had no effect on thrombin receptor-mediated DNA synthesis. Interleukin-1beta had no direct effects on thrombin receptor-mediated phosphoinositide hydrolysis, suggesting that its effects were downstream from early signal transduction events. Thrombin and interleukin-1beta together significantly increased the expression of prostaglandin H synthase-2 in accordance with the prostaglandin E2 results. These studies indicate that the fibroblast thrombin receptor differentially couples to intracellular signaling pathways leading to distinct functional responses and that thrombin receptor-effector interactions could be modulated by interleukin-1beta.
Collapse
Affiliation(s)
- C K Derian
- Drug Discovery, The R. W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania 19477, USA
| | | |
Collapse
|
170
|
Howells GL, Macey MG, Chinni C, Hou L, Fox MT, Harriott P, Stone SR. Proteinase-activated receptor-2: expression by human neutrophils. J Cell Sci 1997; 110 ( Pt 7):881-7. [PMID: 9133675 DOI: 10.1242/jcs.110.7.881] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutrophils were shown to express the proteinase-activated receptor-2 (PAR-2), a seven transmembrane domain receptor, which is activated by cleavage by trypsin. Granulocytes from 14 donors stained positively for PAR-2 with affinity-purified rabbit antibodies raised against a peptide corresponding to the trypsin cleavage site of human PAR-2. Neutrophil activation in response to a receptor activating peptide (RAP) varied between donors. RAP (Ser-Leu-Ile-Gly-Lys-Val-NH2) alone induced an increase in the forward and side light scatter after 5–10 minutes and a small increase in the expression of the activation molecule CD11b. The increased expression of CD11b induced by RAP was markedly enhanced by priming the neutrophils with a low concentration (1 nM) of formyl-Leu-Met-Phe. Trypsin and RAP also induced an increase in intracellular calcium, but there were large variations in the magnitude of responses between donors also in this assay. The effects of RAP in the different assays were specific; acetylated RAP was completely without activity.
Collapse
Affiliation(s)
- G L Howells
- Department of Oral Pathology, St Bartholomew's and the Royal London School of Medicine and Dentistry, UK
| | | | | | | | | | | | | |
Collapse
|
171
|
Specific Inhibition of Thrombin-Induced Cell Activation by the Neutrophil Proteinases Elastase, Cathepsin G, and Proteinase 3: Evidence for Distinct Cleavage Sites Within the Aminoterminal Domain of the Thrombin Receptor. Blood 1997. [DOI: 10.1182/blood.v89.6.1944] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe aim of this study was to investigate the inhibitory effects of human leukocyte elastase (HLE), cathepsin G (Cat G), and proteinase 3 (PR3) on the activation of endothelial cells (ECs) and platelets by thrombin and to elucidate the underlying mechanisms. Although preincubation of ECs with HLE or Cat G prevented cytosolic calcium mobilization and prostacyclin synthesis induced by thrombin, these cell responses were not affected when triggered by TRAP42-55, a synthetic peptide corresponding to the sequence of the tethered ligand (Ser42-Phe55) unmasked by thrombin on cleavage of its receptor. Using IIaR-A, a monoclonal antibody directed against the sequence encompassing this cleavage site, flow cytometry analysis showed that the surface expression of this epitope was abolished after incubation of ECs with HLE or Cat G. Further experiments conducted with platelets indicated that not only HLE and Cat G but also PR3 inhibited cell activation induced by thrombin, although they were again ineffective when TRAP42-55 was the agonist. Similar to that for ECs, the epitope for IIaR-A disappeared on treatment of platelets with either proteinase. These results suggested that the neutrophil enzymes proteolyzed the thrombin receptor dowstream of the thrombin cleavage site (Arg41-Ser42) but left intact the TRAP42-55 binding site (Gln83-Ser93) within the extracellular aminoterminal domain. The capacity of these proteinases to cleave five overlapping synthetic peptides mapping the portion of the receptor from Asn35 to Pro85 was then investigated. Mass spectrometry studies showed several distinct cleavage sites, ie, two for HLE (Val72-Ser73 and Ile74-Asn75), three for Cat G (Arg41-Ser42, Phe55-Trp56 and Tyr69-Arg70), and one for PR3 (Val72-Ser73). We conclude that this singular susceptibility of the thrombin receptor to proteolysis accounts for the ability of neutrophil proteinases to inhibit cell responses to thrombin.
Collapse
|
172
|
Molino M, Barnathan ES, Numerof R, Clark J, Dreyer M, Cumashi A, Hoxie JA, Schechter N, Woolkalis M, Brass LF. Interactions of mast cell tryptase with thrombin receptors and PAR-2. J Biol Chem 1997; 272:4043-9. [PMID: 9020112 DOI: 10.1074/jbc.272.7.4043] [Citation(s) in RCA: 456] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tryptase is a serine protease secreted by mast cells that is able to activate other cells. In the present studies we have tested whether these responses could be mediated by thrombin receptors or PAR-2, two G-protein-coupled receptors that are activated by proteolysis. When added to a peptide corresponding to the N terminus of PAR-2, tryptase cleaved the peptide at the activating site, but at higher concentrations it also cleaved downstream, as did trypsin, a known activator of PAR-2. Thrombin, factor Xa, plasmin, urokinase, plasma kallikrein, and tissue kallikrein had no effect. Tryptase also cleaved the analogous thrombin receptor peptide at the activating site but less efficiently. When added to COS-1 cells expressing either receptor, tryptase stimulated phosphoinositide hydrolysis. With PAR-2, this response was half-maximal at 1 nM tryptase and could be inhibited by the tryptase inhibitor, APC366, or by antibodies to tryptase and PAR-2. When added to human endothelial cells, which normally express PAR-2 and thrombin receptors, or keratinocytes, which express only PAR-2, tryptase caused an increase in cytosolic Ca2+. However, when added to platelets or CHRF-288 cells, which express thrombin receptors but not PAR-2, tryptase caused neither aggregation nor increased Ca2+. These results show that 1) tryptase has the potential to activate both PAR-2 and thrombin receptors; 2) for PAR-2, this potential is realized, although cleavage at secondary sites may limit activation, particularly at higher tryptase concentrations; and 3) in contrast, although tryptase clearly activates thrombin receptors in COS-1 cells, it does not appear to cleave endogenous thrombin receptors in platelets or CHRF-288 cells. These distinctions correlate with the observed differences in the rate of cleavage of the PAR-2 and thrombin receptor peptides by tryptase. Tryptase is the first protease other than trypsin that has been shown to activate human PAR-2. Its presence within mast cell granules places it in tissues where PAR-2 is expressed but trypsin is unlikely to reach.
Collapse
Affiliation(s)
- M Molino
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|