151
|
Investigation of protein-protein interactions in living cells by chemical crosslinking and mass spectrometry. Anal Bioanal Chem 2010; 397:3433-40. [PMID: 20076950 DOI: 10.1007/s00216-009-3405-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/12/2009] [Accepted: 12/14/2009] [Indexed: 01/26/2023]
Abstract
The identification of protein-protein interactions within their physiological environment is the key to understanding biological processes at the molecular level. However, the artificial nature of in vitro experiments, with their lack of other cellular components, may obstruct observations of specific cellular processes. In vivo analyses can provide information on the processes within a cell that might not be observed in vitro. Chemical crosslinking combined with mass spectrometric analysis of the covalently connected binding partners allows us to identify interacting proteins and to map their interface regions directly in the cell. In this paper, different in vivo crosslinking strategies for deriving information on protein-protein interactions in their physiological environment are described.
Collapse
|
152
|
Dengjel J, Kratchmarova I, Blagoev B. Mapping protein-protein interactions by quantitative proteomics. Methods Mol Biol 2010; 658:267-278. [PMID: 20839110 DOI: 10.1007/978-1-60761-780-8_16] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Proteins exert their function inside a cell generally in multiprotein complexes. These complexes are highly dynamic structures changing their composition over time and cell state. The same protein may thereby fulfill different functions depending on its binding partners. Quantitative mass spectrometry (MS)-based proteomics in combination with affinity purification protocols has become the method of choice to map and track the dynamic changes in protein-protein interactions, including the ones occurring during cellular signaling events. Different quantitative MS strategies have been used to characterize protein interaction networks. In this chapter we describe in detail the use of stable isotope labeling by amino acids in cell culture (SILAC) for the quantitative analysis of stimulus-dependent dynamic protein interactions.
Collapse
Affiliation(s)
- Joern Dengjel
- Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
153
|
Timms JF, Cutillas PR. Overview of quantitative LC-MS techniques for proteomics and activitomics. Methods Mol Biol 2010; 658:19-45. [PMID: 20839096 DOI: 10.1007/978-1-60761-780-8_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
LC-MS is a useful technique for protein and peptide quantification. In addition, as a powerful tool for systems biology research, LC-MS can also be used to quantify post-translational modifications and metabolites that reflect biochemical pathway activity. This review discusses the different analytical techniques that use LC-MS for the quantification of proteins, their modifications and activities in a multiplex manner.
Collapse
Affiliation(s)
- John F Timms
- Cancer Proteomics Laboratory, EGA Institute for Women's Health, University College London, London, UK
| | | |
Collapse
|
154
|
Puts CF, Lenoir G, Krijgsveld J, Williamson P, Holthuis JCM. A P4-ATPase Protein Interaction Network Reveals a Link between Aminophospholipid Transport and Phosphoinositide Metabolism. J Proteome Res 2009; 9:833-42. [DOI: 10.1021/pr900743b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Catheleyne F. Puts
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, and Biomolecular Mass Spectometry and Proteomics Group, Bijvoet Center and Netherlands Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands and Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Guillaume Lenoir
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, and Biomolecular Mass Spectometry and Proteomics Group, Bijvoet Center and Netherlands Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands and Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Jeroen Krijgsveld
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, and Biomolecular Mass Spectometry and Proteomics Group, Bijvoet Center and Netherlands Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands and Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Patrick Williamson
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, and Biomolecular Mass Spectometry and Proteomics Group, Bijvoet Center and Netherlands Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands and Department of Biology, Amherst College, Amherst, Massachusetts 01002
| | - Joost C. M. Holthuis
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, and Biomolecular Mass Spectometry and Proteomics Group, Bijvoet Center and Netherlands Proteomics Center, Utrecht University, 3584 CH Utrecht, The Netherlands and Department of Biology, Amherst College, Amherst, Massachusetts 01002
| |
Collapse
|
155
|
Smart SK, Mackintosh SG, Edmondson RD, Taverna SD, Tackett AJ. Mapping the local protein interactome of the NuA3 histone acetyltransferase. Protein Sci 2009; 18:1987-97. [PMID: 19621382 DOI: 10.1002/pro.212] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein-protein interactions modulate cellular functions ranging from the activity of enzymes to signal transduction cascades. A technology termed transient isotopic differentiation of interactions as random or targeted (transient I-DIRT) is described for the identification of stable and transient protein-protein interactions in vivo. The procedure combines mild in vivo chemical cross-linking and non-stringent affinity purification to isolate low abundance chromatin-associated protein complexes. Using isotopic labeling and mass spectrometric readout, purified proteins are categorized with respect to the protein 'bait' as stable, transient, or contaminant. Here we characterize the local interactome of the chromatin-associated NuA3 histone lysine-acetyltransferase protein complex. We describe transient associations with the yFACT nucleosome assembly complex, RSC chromatin remodeling complex and a nucleosome assembly protein. These novel, physical associations with yFACT, RSC, and Nap1 provide insight into the mechanism of NuA3-associated transcription and chromatin regulation.
Collapse
Affiliation(s)
- Sherri K Smart
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
156
|
Cheng PC, Chang HK, Chen SH. Quantitative nanoproteomics for protein complexes (QNanoPX) related to estrogen transcriptional action. Mol Cell Proteomics 2009; 9:209-24. [PMID: 19805454 DOI: 10.1074/mcp.m900183-mcp200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We developed an integrated proteomics approach using a chemically functionalized gold nanoparticle (AuNP) as a novel probe for affinity purification to analyze a large protein complex in vivo. We then applied this approach to globally map the transcriptional activation complex of the estrogen response element (ERE). This approach was designated as quantitative nanoproteomics for protein complexes (QNanoPX). In this approach, the positive AuNP-ERE probes were functionalized with polyethylene glycol (PEG), and the consensus sequence of ERE and negative AuNP-PEG probes were functionalized with PEG without the ERE via a thiolated self-assembly monolayer technique. The AuNP-ERE probe had substantially low nonspecific binding and high solubility, which resulted in a 20-fold enrichment of the factor compared with gel beads. In addition, the surface-only binding allows the probe to capture a large protein complex without any restrictions due to pore size. The affinity purification method was combined with MS-based quantitative proteomics and statistical methods to reveal the components of the ERE complex in MCF-7 cells and to identify those components within the complex that were altered by the presence of 17beta-estradiol (E2). Results indicated that a majority of proteins pulled down by the positive probe exhibited significant binding, and approximately one-half of the proteins, including estrogen receptor alpha (ERalpha), were slightly but significantly affected by a 24-h treatment with E2. Based on a combination of bioinformatics and pathway analysis, most of the affected proteins, however, appeared to be related to the transcriptional regulation of not only ERalpha but also c-Myc. Further confirmation indicated that E2 enhanced the ERE binding of c-Myc by 14-fold, indicating that c-Myc may play a major role, along with ERalpha, in E2-mediated transcription. Taken together, our results demonstrated a successful QNanoPX approach toward new pathway discovery and further revealed the importance of cross-interactions among transcription factors.
Collapse
Affiliation(s)
- Pai-Chiao Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|
157
|
Kautto L, Grinyer J, Birch D, Kapur A, Baker M, Traini M, Bergquist P, Nevalainen H. Rapid purification method for the 26S proteasome from the filamentous fungus Trichoderma reesei. Protein Expr Purif 2009; 67:156-63. [DOI: 10.1016/j.pep.2009.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/22/2009] [Accepted: 05/09/2009] [Indexed: 11/26/2022]
|
158
|
OLA1, an Obg-like ATPase, suppresses antioxidant response via nontranscriptional mechanisms. Proc Natl Acad Sci U S A 2009; 106:15356-61. [PMID: 19706404 DOI: 10.1073/pnas.0907213106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress has been implicated in diverse disease states and aging. To date, induction of cellular responses to combat oxidative stress has been characterized largely at the transcriptional level, with emphasis on Nrf2-mediated activation of antioxidant response elements. In this study, we demonstrate that OLA1, a novel Obg-like ATPase, functions as a negative regulator of the cellular antioxidant response independent of transcriptional processes. Knockdown of OLA1 in human cells elicited an increased resistance to oxidizing agents including tert-butyl hydroperoxide (tBH) and diamide without affecting cell proliferation, baseline apoptosis, or sensitivity to other cytotoxic agents that target the mitochondria, cytoskeleton, or DNA. Conversely, overexpression of OLA1 increased cellular sensitivity to tBH and diamide. When challenged with oxidants, OLA1-knockdown cells had decreased production of intracellular reactive oxygen species and exhibited less depletion of reduced glutathione. Surprisingly, knockdown of OLA1 caused only minimal genomic response; no changes were found in the mRNA levels of genes encoding antioxidant enzymes, enzymes that produce antioxidants (including glutathione), or other genes known to respond to Nrf2. Moreover, when de novo protein synthesis was blocked by cycloheximide in OLA1-knockdown cells, they continued to demonstrate increased resistance to both tBH and diamide. These data demonstrate that OLA1 suppresses the antioxidant response through nontranscriptional mechanisms. The beneficial effects observed upon OLA1-knockdown suggest that this regulatory ATPase is a potential novel target for antioxidative therapy.
Collapse
|
159
|
Abstract
The proteasome is an intricate molecular machine, which serves to degrade proteins following their conjugation to ubiquitin. Substrates dock onto the proteasome at its 19-subunit regulatory particle via a diverse set of ubiquitin receptors and are then translocated into an internal chamber within the 28-subunit proteolytic core particle (CP), where they are hydrolyzed. Substrate is threaded into the CP through a narrow gated channel, and thus translocation requires unfolding of the substrate. Six distinct ATPases in the regulatory particle appear to form a ring complex and to drive unfolding as well as translocation. ATP-dependent, degradation-coupled deubiquitination of the substrate is required both for efficient substrate degradation and for preventing the degradation of the ubiquitin tag. However, the proteasome also contains deubiquitinating enzymes (DUBs) that can remove ubiquitin before substrate degradation initiates, thus allowing some substrates to dissociate from the proteasome and escape degradation. Here we examine the key elements of this molecular machine and how they cooperate in the processing of proteolytic substrates.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
160
|
Application of the SILAC (stable isotope labelling with amino acids in cell culture) technique in quantitative comparisons for tissue proteome expression. Biotechnol Appl Biochem 2009; 54:11-20. [DOI: 10.1042/ba20090007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
161
|
Bousquet-Dubouch MP, Nguen S, Bouyssié D, Burlet-Schiltz O, French SW, Monsarrat B, Bardag-Gorce F. Chronic ethanol feeding affects proteasome-interacting proteins. Proteomics 2009; 9:3609-22. [PMID: 19609968 PMCID: PMC2766596 DOI: 10.1002/pmic.200800959] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 04/05/2009] [Indexed: 12/20/2022]
Abstract
Studies on alcoholic liver injury mechanisms show a significant inhibition of the proteasome activity. To investigate this phenomenon, we isolated proteasome complexes from the liver of rats fed ethanol chronically, and from the liver of their pair-fed controls, using a non-denaturing multiple centrifugations procedure to preserve proteasome-interacting proteins (PIPs). ICAT and MS/MS spectral counting, further confirmed by Western blot, showed that the levels of several PIPs were significantly decreased in the isolated ethanol proteasome fractions. This was the case of PA28alpha/beta proteasome activator subunits, and of three proteasome-associated deubiquitinases, Rpn11, ubiquitin C-terminal hydrolase 14, and ubiquitin carboxyl-terminal hydrolase L5. Interestingly, Rpn13 C-terminal end was missing in the ethanol proteasome fraction, which probably altered the linking of ubiquitin carboxyl-terminal hydrolase L5 to the proteasome. 20S proteasome and most 19S subunits were however not changed but Ecm29, a protein known to stabilize the interactions between the 20S and its activators, was decreased in the isolated ethanol proteasome fractions. It is proposed that ethanol metabolism causes proteasome inhibition by several mechanisms, including by altering PIPs and proteasome regulatory complexes binding to the proteasome.
Collapse
Affiliation(s)
- Marie-Pierre Bousquet-Dubouch
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | | | - David Bouyssié
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | - Odile Burlet-Schiltz
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | | | - Bernard Monsarrat
- CNRS; IPBS (Institut de Pharmacologie et de Biologie Structurale); 205 route de Narbonne, F-31077 Toulouse, France
- Université de Toulouse; UPS; IPBS; F-31077 Toulouse, France
| | | |
Collapse
|
162
|
|
163
|
Oeljeklaus S, Meyer HE, Warscheid B. New dimensions in the study of protein complexes using quantitative mass spectrometry. FEBS Lett 2009; 583:1674-83. [DOI: 10.1016/j.febslet.2009.04.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/03/2009] [Accepted: 04/12/2009] [Indexed: 11/25/2022]
|
164
|
Abu-Farha M, Elisma F, Zhou H, Tian R, Zhou H, Asmer MS, Figeys D. Proteomics: From Technology Developments to Biological Applications. Anal Chem 2009; 81:4585-99. [PMID: 19371061 DOI: 10.1021/ac900735j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mohamed Abu-Farha
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Fred Elisma
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Houjiang Zhou
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruijun Tian
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hu Zhou
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Mehmet Selim Asmer
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada, and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
165
|
Mao X, Gluck N, Li D, Maine GN, Li H, Zaidi IW, Repaka A, Mayo MW, Burstein E. GCN5 is a required cofactor for a ubiquitin ligase that targets NF-kappaB/RelA. Genes Dev 2009; 23:849-61. [PMID: 19339690 DOI: 10.1101/gad.1748409] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The transcription factor NF-kappaB is a critical regulator of inflammatory and cell survival signals. Proteasomal degradation of NF-kappaB subunits plays an important role in the termination of NF-kappaB activity, and at least one of the identified ubiquitin ligases is a multimeric complex containing Copper Metabolism Murr1 Domain 1 (COMMD1) and Cul2. We report here that GCN5, a histone acetyltransferase, associates with COMMD1 and other components of the ligase, promotes RelA ubiquitination, and represses kappaB-dependent transcription. In this role, the acetyltransferase activity of GCN5 is not required. Interestingly, GCN5 binds more avidly to RelA after phosphorylation on Ser 468, an event that is dependent on IKK activity. Consistent with this, we find that both GCN5 and the IkappaB Kinase (IKK) complex promote RelA degradation. Collectively, the data indicate that GCN5 participates in the ubiquitination process as an accessory factor for a ubiquitin ligase, where it provides a novel link between phosphorylation and ubiquitination.
Collapse
Affiliation(s)
- Xicheng Mao
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Abstract
DNA-binding proteins are very important constituents of proteomes of all species and play crucial roles in transcription, DNA replication, recombination, repair, and other activities associated with DNA. Although a number of DNA-binding proteins have been identified, many proteins involved in gene regulation and DNA repair are likely still unknown because of their dynamic and/or weak interactions with DNA. In this report, we described an approach for the comprehensive identification of DNA-binding proteins with in vivo formaldehyde cross-linking and LC-MS/MS. DNA-binding proteins could be purified via the isolation of DNA-protein complexes and released from the complexes by reversing the cross-linking. By using this method, we were able to identify more than one hundred DNA-binding proteins, such as proteins involved in transcription, gene regulation, DNA replication and repair, and a large number of proteins that are potentially associated with DNA and DNA-binding proteins. This method should be generally applicable to the investigation of other nucleic acid-binding proteins, and hold great potential in the comprehensive study of gene regulation, DNA damage response and repair, as well as many other critical biological processes at proteomic level.
Collapse
Affiliation(s)
- Haibo Qiu
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
167
|
Shi Y, Porter K, Parameswaran N, Bae HK, Pestka JJ. Role of GRP78/BiP degradation and ER stress in deoxynivalenol-induced interleukin-6 upregulation in the macrophage. Toxicol Sci 2009; 109:247-55. [PMID: 19336499 DOI: 10.1093/toxsci/kfp060] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The trichothecene mycotoxin deoxynivalenol (DON) induces systemic expression of the interleukin-6 (IL-6) and other proinflammatory cytokines in the mouse. The purpose of this study was to test the hypothesis that DON triggers an endoplasmic reticulum (ER) stress response in murine macrophages capable of driving IL-6 gene expression. DON at concentrations up 5000 ng/ml. was not cytotoxic to peritoneal cells. However, DON markedly decreased protein levels but not the mRNA levels of glucose-regulated protein (GRP) 78 (BiP), a chaperone known to mediate ER stress. Inhibitor studies suggested that DON-induced GRP78 degradation was cathepsin and calpain dependent but was proteosome-independent. RNAi-mediated knockdown of GRP78 resulted in increased IL-6 gene expression indicating a potential downregulatory role for this chaperone. GRP78 is critical to the regulation of the two transcription factors, X-box binding protein 1 (XBP1) and activating transcription factor 6 (ATF6), which bind to cAMP-response element (CRE) and drive expression of CRE-dependent genes such as IL-6. DON exposure was found to increase IRE1alpha protein, its modified products spliced XBP1 mRNA and XBP1 protein as well as ATF6. Knockdown of ATF6 but not XBP1 partially inhibited DON-induced IL-6 expression in the macrophages. Three other trichothecenes (satratoxin G, roridin, T-2 toxin) and the ribosome inhibitory protein ricin were also found to induce GRP78 degradation suggesting that other translation inhibitors might evoke ER stress. Taken together, these data suggest that in the macrophage DON induces GRP78 degradation and evokes an ER stress response that could contribute, in part, to DON-induced IL-6 gene expression.
Collapse
Affiliation(s)
- Yuhui Shi
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
168
|
Chowdhury SM, Shi L, Yoon H, Ansong C, Rommereim LM, Norbeck AD, Auberry KJ, Moore RJ, Adkins JN, Heffron F, Smith RD. A method for investigating protein-protein interactions related to salmonella typhimurium pathogenesis. J Proteome Res 2009; 8:1504-14. [PMID: 19206470 PMCID: PMC2720628 DOI: 10.1021/pr800865d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We successfully modified an existing method to investigate protein-protein interactions in the pathogenic bacterium Salmonella enterica serovar Typhimurium (Salmonella Typhimurium). This method includes (i) addition of a histidine-biotin-histidine tag to the bait proteins via recombinant DNA techniques, (ii) in vivo cross-linking with formaldehyde, (iii) tandem affinity purification of bait proteins under fully denaturing conditions, and (iv) identification of the proteins cross-linked to the bait proteins by liquid-chromatography in conjunction with tandem mass-spectrometry. In vivo cross-linking stabilized protein interactions and permitted the subsequent two-step purification step conducted under denaturing conditions. The two-step purification greatly reduced nonspecific binding of noncross-linked proteins to bait proteins. Two different negative controls were employed to eliminate the possibility of identifying background and nonspecific proteins as interacting partners, especially those caused by nonspecific binding to the stationary phase used for protein purification. In an initial demonstration of this approach, we tagged three Salmonella proteinsHimD, PduB and PhoPwith known binding partners that ranged from stable (e.g., HimD) to transient (i.e., PhoP). Distinct sets of interacting proteins were identified for each bait protein, including the known binding partners such as HimA for HimD, as well as unexpected binding partners. Our results suggest that novel protein-protein interactions identified may be critical to pathogenesis by Salmonella.
Collapse
Affiliation(s)
| | - Liang Shi
- Pacific Northwest National Laboratory, Richland, WA-99352
| | - Hyunjin Yoon
- Oregon Health and Science University, Portland, OR-97239
| | - Charles Ansong
- Pacific Northwest National Laboratory, Richland, WA-99352
| | | | | | | | | | | | - Fred Heffron
- Oregon Health and Science University, Portland, OR-97239
| | | |
Collapse
|
169
|
Bousquet-Dubouch MP, Baudelet E, Guérin F, Matondo M, Uttenweiler-Joseph S, Burlet-Schiltz O, Monsarrat B. Affinity purification strategy to capture human endogenous proteasome complexes diversity and to identify proteasome-interacting proteins. Mol Cell Proteomics 2009; 8:1150-64. [PMID: 19193609 DOI: 10.1074/mcp.m800193-mcp200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An affinity purification strategy was developed to characterize human proteasome complexes diversity as well as endogenous proteasome-interacting proteins (PIPs). This single step procedure, initially used for 20 S proteasome purification, was adapted to purify all existing physiological proteasome complexes associated to their various regulatory complexes and to their interacting partners. The method was applied to the purification of proteasome complexes and their PIPs from human erythrocytes but can be used to purify proteasomes from any human sample as starting material. The benefit of in vivo formaldehyde cross-linking as a stabilizer of protein-protein interactions was studied by comparing the status of purified proteasomes and the identified proteins in both protocols (with or without formaldehyde cross-linking). Subsequent proteomics analyses identified all proteasomal subunits, known regulators, and recently assigned partners. Moreover other proteins implicated at different levels of the ubiquitin-proteasome system were also identified for the first time as PIPs. One of them, the ubiquitin-specific protease USP7, also known as HAUSP, is an important player in the p53-HDM2 pathway. The specificity of the interaction was further confirmed using a complementary approach that consisted of the reverse immunoprecipitation with HAUSP as a bait. Altogether we provide a valuable tool that should contribute, through the identification of partners likely to affect proteasomal function, to a better understanding of this complex proteolytic machinery in any living human cell and/or organ/tissue and in different cell physiological states.
Collapse
|
170
|
Doolittle MH, Ben-Zeev O, Bassilian S, Whitelegge JP, Péterfy M, Wong H. Hepatic lipase maturation: a partial proteome of interacting factors. J Lipid Res 2009; 50:1173-84. [PMID: 19136429 DOI: 10.1194/jlr.m800603-jlr200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tandem affinity purification (TAP) has been used to isolate proteins that interact with human hepatic lipase (HL) during its maturation in Chinese hamster ovary cells. Using mass spectrometry and Western blotting, we identified 28 proteins in HL-TAP isolated complexes, 16 of which localized to the endoplasmic reticulum (ER), the site of HL folding and assembly. Of the 12 remaining proteins located outside the ER, five function in protein translation or ER-associated degradation (ERAD). Components of the two major ER chaperone systems were identified, the BiP/Grp94 and the calnexin (CNX)/calreticulin (CRT) systems. All factors involved in CNX/CRT chaperone cycling were identified, including UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT), glucosidase II, and the 57 kDa oxidoreductase (ERp57). We also show that CNX, and not CRT, is the lectin chaperone of choice during HL maturation. Along with the 78 kDa glucose-regulated protein (Grp78; BiP) and the 94 kDa glucose-regulated protein (Grp94), an associated peptidyl-prolyl cis-trans isomerase and protein disulfide isomerase were also detected. Finally, several factors in ERAD were identified, and we provide evidence that terminally misfolded HL is degraded by the ubiquitin-mediated proteasomal pathway. We propose that newly synthesized HL emerging from the translocon first associates with CNX, ERp57, and glucosidase II, followed by repeated posttranslational cycles of CNX binding that is mediated by UGGT. BiP/Grp94 may stabilize misfolded HL during its transition between cycles of CNX binding and may help direct its eventual degradation.
Collapse
Affiliation(s)
- Mark H Doolittle
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
171
|
Tanaka K. The proteasome: overview of structure and functions. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2009; 85:12-36. [PMID: 19145068 PMCID: PMC3524306 DOI: 10.2183/pjab.85.12] [Citation(s) in RCA: 583] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The proteasome is a highly sophisticated protease complex designed to carry out selective, efficient and processive hydrolysis of client proteins. It is known to collaborate with ubiquitin, which polymerizes to form a marker for regulated proteolysis in eukaryotic cells. The highly organized proteasome plays a prominent role in the control of a diverse array of basic cellular activities by rapidly and unidirectionally catalyzing biological reactions. Studies of the proteasome during the past quarter of a century have provided profound insights into its structure and functions, which has appreciably contributed to our understanding of cellular life. Many questions, however, remain to be elucidated.
Collapse
Affiliation(s)
- Keiji Tanaka
- Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Science, Japan.
| |
Collapse
|
172
|
Abstract
Systems biology is the comprehensive and quantitative analysis of the interactions between all of the components of biological systems over time. Systems biology involves an iterative cycle, in which emerging biological problems drive the development of new technologies and computational tools. These technologies and tools then open new frontiers that revolutionize biology. Innate immunity is well suited for systems analysis, because the relevant cells can be isolated in various functional states and their interactions can be reconstituted in a biologically meaningful manner. Application of the tools of systems biology to the innate immune system will enable comprehensive analysis of the complex interactions that maintain the difficult balance between host defense and inflammatory disease. In this review, we discuss innate immunity in the context of the systems biology concepts, emergence, robustness, and modularity, and we describe emerging technologies we are applying in our systems-level analyses. These technologies include genomics, proteomics, computational analysis, forward genetics screens, and analyses that link human genetic polymorphisms to disease resistance.
Collapse
Affiliation(s)
- Daniel E Zak
- Institute for Systems Biology, Seattle, WA 98103, USA
| | | |
Collapse
|
173
|
Daulat AM, Maurice P, Jockers R. Recent methodological advances in the discovery of GPCR-associated protein complexes. Trends Pharmacol Sci 2008; 30:72-8. [PMID: 19100631 DOI: 10.1016/j.tips.2008.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/26/2008] [Accepted: 10/27/2008] [Indexed: 12/30/2022]
Abstract
Protein-interaction networks have important roles in cellular homeostasis and the generation of complexity in biological systems. G-protein-coupled receptors (GPCRs), the largest family of membrane receptors and important drug targets, are integral parts of these networks. Ligand stimulation and the dynamic interaction with GPCR-associated protein complexes (GAPCs) constitute two important regulatory mechanisms of GPCR function. Several genomic and proteomic approaches have been developed to identify GAPCs in the past. However, this task turned out to be particularly demanding owing to difficulties in preserving the complex three-dimensional GPCR structure during receptor solubilization and to inherent limitations in the use of isolated receptor domains as bait. Newly emerging methods have the potential to overcome these limitations and will certainly boost the identification of functionally relevant GAPCs to finally increase our knowledge of the regulation of GPCRs and provide novel drug targets. Here, we focus on the comparison of two complementary GAPC purification strategies, which are based on soluble GPCR subdomains and entire GPCRs.
Collapse
Affiliation(s)
- Avais M Daulat
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (UMR 8104), Department of Cell Biology, F-75014 Paris, France
| | | | | |
Collapse
|
174
|
Sakai M, Furuya M, Endo H, Yamaoka K, Kondo S, Koike T. An Efficient Identification Method of a Specific Binding Protein for a Bioactive Compound Using On-Bead Digestion and Mass Spectrometry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2008. [DOI: 10.1246/bcsj.81.1599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
175
|
Rodland KD, Adkins JN, Ansong C, Chowdhury S, Manes NP, Shi L, Yoon H, Smith RD, Heffron F. Use of high-throughput mass spectrometry to elucidate host-pathogen interactions in Salmonella. Future Microbiol 2008; 3:625-34. [PMID: 19072180 PMCID: PMC2734448 DOI: 10.2217/17460913.3.6.625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis and, most important from the standpoint of this review, much higher throughput, allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach has enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions and new insights into virulence and expression of Salmonella proteins within host cells. One of the most significant findings is that a relatively high percentage of all the annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high-throughput mass spectrometry provides a new view of host-pathogen interactions, emphasizing the protein products and defining how protein interactions determine the outcome of infection.
Collapse
Affiliation(s)
- Karin D Rodland
- Pacific Northwest National Laboratory, Richland, WA 99354, USA, Tel.:+1 509 376 7608
| | - Joshua N Adkins
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Charles Ansong
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Nathan P Manes
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Liang Shi
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Hyunjin Yoon
- Oregon Health & Science University, Portland, OR 97239, USA
| | - Richard D Smith
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Fred Heffron
- Oregon Health & Science University, Portland, OR 97239, USA Tel.:+1 503 494 6738
| |
Collapse
|
176
|
Harsha HC, Molina H, Pandey A. Quantitative proteomics using stable isotope labeling with amino acids in cell culture. Nat Protoc 2008; 3:505-16. [PMID: 18323819 DOI: 10.1038/nprot.2008.2] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stable isotope labeling with amino acids in cell culture (SILAC) is a simple in vivo labeling strategy for mass spectrometry-based quantitative proteomics. It relies on the metabolic incorporation of nonradioactive heavy isotopic forms of amino acids into cellular proteins, which can be readily distinguished in a mass spectrometer. As the samples are mixed before processing in the SILAC methodology, the sample handling errors are also minimized. Here we present protocols for using SILAC in the following types of experiments: (i) studying inducible protein complexes, (ii) identification of Tyr kinase substrates, (iii) differential membrane proteomics and (iv) studying temporal dynamics using SILAC 5-plexing. Although the overall time is largely dependent on the rate of cell growth and various sample processing steps employed, a typical SILAC experiment from start to finish, including data analysis, should take anywhere between 20 and 25 d.
Collapse
Affiliation(s)
- H C Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| | | | | |
Collapse
|
177
|
Singh P, Shaffer SA, Scherl A, Holman C, Pfuetzner RA, Larson Freeman TJ, Miller SI, Hernandez P, Appel RD, Goodlett DR. Characterization of protein cross-links via mass spectrometry and an open-modification search strategy. Anal Chem 2008; 80:8799-806. [PMID: 18947195 PMCID: PMC3228852 DOI: 10.1021/ac801646f] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein-protein interactions are key to function and regulation of many biological pathways. To facilitate characterization of protein-protein interactions using mass spectrometry, a new data acquisition/analysis pipeline was designed. The goal for this pipeline was to provide a generic strategy for identifying cross-linked peptides from single LC/MS/MS data sets, without using specialized cross-linkers or custom-written software. To achieve this, each peptide in the pair of cross-linked peptides was considered to be "post-translationally" modified with an unknown mass at an unknown amino acid. This allowed use of an open-modification search engine, Popitam, to interpret the tandem mass spectra of cross-linked peptides. False positives were reduced and database selectivity increased by acquiring precursors and fragments at high mass accuracy. Additionally, a high-charge-state-driven data acquisition scheme was utilized to enrich data sets for cross-linked peptides. This open-modification search based pipeline was shown to be useful for characterizing both chemical as well as native cross-links in proteins. The pipeline was validated by characterizing the known interactions in the chemically cross-linked CYP2E1-b5 complex. Utility of this method in identifying native cross-links was demonstrated by mapping disulfide bridges in RcsF, an outer membrane lipoprotein involved in Rcs phosphorelay.
Collapse
Affiliation(s)
- Pragya Singh
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Scott A. Shaffer
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Alexander Scherl
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Carol Holman
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA
| | | | | | - Samuel I. Miller
- Department of Genome Sciences, University of Washington, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | | | - Ron D. Appel
- Swiss Institute of Bioinformatics, Geneva, Switzerland
- Department of Computer Science, University of Geneva, Geneva, Switzerland
| | - David R. Goodlett
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| |
Collapse
|
178
|
Matiuhin Y, Kirkpatrick DS, Ziv I, Kim W, Dakshinamurthy A, Kleifeld O, Gygi SP, Reis N, Glickman MH. Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. Mol Cell 2008; 32:415-25. [PMID: 18995839 PMCID: PMC2643056 DOI: 10.1016/j.molcel.2008.10.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 06/01/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
Polyubiquitin is a diverse signal both in terms of chain length and linkage type. Lysine 48-linked ubiquitin is essential for marking targets for proteasomal degradation, but the significance and relative abundance of different linkages remain ambiguous. Here we dissect the relationship of two proteasome-associated polyubiquitin-binding proteins, Rpn10 and Dsk2, and demonstrate how Rpn10 filters Dsk2 interactions, maintaining proper function of the ubiquitin-proteasome system. Using quantitative mass spectrometry of ubiquitin, we found that in S. cerevisiae under normal growth conditions the majority of conjugated ubiquitin was linked via lysine 48 and lysine 63. In contrast, upon DSK2 induction, conjugates accumulated primarily in the form of lysine 48 linkages correlating with impaired proteolysis and cytotoxicity. By restricting Dsk2 access to the proteasome, extraproteasomal Rpn10 was essential for alleviating the cellular stress associated with Dsk2. This work highlights the importance of polyubiquitin shuttles such as Rpn10 and Dsk2 in controlling the ubiquitin landscape.
Collapse
Affiliation(s)
- Yulia Matiuhin
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Fang L, Wang X, Yamoah K, Chen PL, Pan ZQ, Huang L. Characterization of the human COP9 signalosome complex using affinity purification and mass spectrometry. J Proteome Res 2008; 7:4914-25. [PMID: 18850735 PMCID: PMC2676908 DOI: 10.1021/pr800574c] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The COP9 signalosome (CSN) is a multiprotein complex that plays a critical role in diverse cellular and developmental processes in various eukaryotic organisms. Despite of its significance, current understanding of the biological functions and regulatory mechanisms of the CSN complex is still very limited. To unravel these molecular mechanisms, we have performed a comprehensive proteomic analysis of the human CSN complex using a new purification method and quantitative mass spectrometry. Purification of the human CSN complex from a stable 293 cell line expressing N-terminal HBTH-tagged CSN5 subunit was achieved by high-affinity streptavidin binding with TEV cleavage elution. Mass spectrometric analysis of the purified CSN complex has revealed the identity of its composition as well as N-terminal modification and phosphorylation of the CSN subunits. N-terminal modifications were determined for seven subunits, six of which have not been reported previously, and six novel phosphorylation sites were also identified. Additionally, we have applied the newly developed MAP-SILAC and PAM-SILAC methods to decipher the dynamics of the human CSN interacting proteins. A total of 52 putative human CSN interacting proteins were identified, most of which are reported for the first time. In comparison to PAM-SILAC results, 20 proteins were classified as stable interactors, whereas 20 proteins were identified as dynamic ones. This work presents the first comprehensive characterization of the human CSN complex by mass spectrometry-based proteomic approach, providing valuable information for further understanding of CSN complex structure and biological functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Lan Huang
- Correspondence should be addressed to Dr. Lan Huang (e-mail: ) Medical Science I, D233, Department of Physiology & Biophysics, Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697-4560. Phone: 949-824-8548. Fax: 949-824-8540
| |
Collapse
|
180
|
Zhang H, Tang X, Munske GR, Tolic N, Anderson GA, Bruce JE. Identification of protein-protein interactions and topologies in living cells with chemical cross-linking and mass spectrometry. Mol Cell Proteomics 2008; 8:409-20. [PMID: 18936057 DOI: 10.1074/mcp.m800232-mcp200] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We present results from a novel strategy that enables concurrent identification of protein-protein interactions and topologies in living cells without specific antibodies or genetic manipulations for immuno-/affinity purifications. The strategy consists of (i) a chemical cross-linking reaction: intact cell labeling with a novel class of chemical cross-linkers, protein interaction reporters (PIRs); (ii) two-stage mass spectrometric analysis: stage 1 identification of PIR-labeled proteins and construction of a restricted database by two-dimensional LC/MSMS and stage 2 analysis of PIR-labeled peptides by multiplexed LC/FTICR-MS; and (iii) data analysis: identification of cross-linked peptides and proteins of origin using accurate mass and other constraints. The primary advantage of the PIR approach and distinction from current technology is that protein interactions together with topologies are detected in native biological systems by stabilizing protein complexes with new covalent bonds while the proteins are present in the original cellular environment. Thus, weak or transient interactions or interactions that require properly folded, localized, or membrane-bound proteins can be labeled and identified through the PIR approach. This strategy was applied to Shewanella oneidensis bacterial cells, and initial studies resulted in identification of a set of protein-protein interactions and their contact/binding regions. Furthermore most identified interactions involved membrane proteins, suggesting that the PIR approach is particularly suited for studies of membrane protein-protein interactions, an area under-represented with current widely used approaches.
Collapse
Affiliation(s)
- Haizhen Zhang
- Department of Chemistry, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | | | |
Collapse
|
181
|
Dormeyer W, van Hoof D, Mummery CL, Krijgsveld J, Heck AJR. A practical guide for the identification of membrane and plasma membrane proteins in human embryonic stem cells and human embryonal carcinoma cells. Proteomics 2008; 8:4036-53. [DOI: 10.1002/pmic.200800143] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
182
|
Doucet A, Butler GS, Rodriáguez D, Prudova A, Overall CM. Metadegradomics. Mol Cell Proteomics 2008; 7:1925-51. [DOI: 10.1074/mcp.r800012-mcp200] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
183
|
Meierhofer D, Wang X, Huang L, Kaiser P. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res 2008; 7:4566-76. [PMID: 18781797 PMCID: PMC2758155 DOI: 10.1021/pr800468j] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ubiquitination regulates a host of cellular processes by labeling proteins for degradation, but also by functioning as a regulatory, nonproteolytic posttranslational modification. Proteome-wide strategies to monitor changes in ubiquitination profiles are important to obtain insight into the various cellular functions of ubiquitination. Here we describe generation of stable cell lines expressing a tandem hexahistidine-biotin tag (HB-tag) fused to ubiquitin for two-step purification of the ubiquitinated proteome under fully denaturing conditions. Using this approach we identified 669 ubiquitinated proteins from HeLa cells, including 44 precise ubiquitin attachment sites on substrates and all seven possible ubiquitin chain-linkage types. To probe the dynamics of ubiquitination in response to perturbation of the ubiquitin/proteasome pathway, we combined ubiquitin profiling with quantitative mass spectrometry using the stable isotope labeling with amino acids in cell culture (SILAC) strategy. We compared untreated cells and cells treated with the proteasome inhibitor MG132 to identify ubiquitinated proteins that are targeted to the proteasome for degradation. A number of proteasome substrates were identified. In addition, the quantitative approach allowed us to compare proteasome targeting by different ubiquitin chain topologies in vivo. The tools and strategies described here can be applied to detect changes in ubiquitination dynamics in response to various changes in growth conditions and cellular stress and will contribute to our understanding of the ubiquitin/proteasome system.
Collapse
Affiliation(s)
- David Meierhofer
- Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Xiaorong Wang
- Department of Physiology and Biophysics and of Developmental and Cell Biology, University of California, Irvine, California 92697
| | - Lan Huang
- Department of Physiology and Biophysics and of Developmental and Cell Biology, University of California, Irvine, California 92697
| | - Peter Kaiser
- Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
184
|
Electrospray ionization mass spectroscopic analysis of peptides modified with N-ethylmaleimide or iodoacetanilide. Bioorg Med Chem Lett 2008; 18:4891-5. [DOI: 10.1016/j.bmcl.2008.07.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 12/14/2022]
|
185
|
Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci U S A 2008; 105:13333-8. [PMID: 18757749 DOI: 10.1073/pnas.0801870105] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quantitative analysis of tandem-affinity purified cross-linked (x) protein complexes (QTAX) is a powerful technique for the identification of protein interactions, including weak and/or transient components. Here, we apply a QTAX-based tag-team mass spectrometry strategy coupled with protein network analysis to acquire a comprehensive and detailed assessment of the protein interaction network of the yeast 26S proteasome. We have determined that the proteasome network is composed of at least 471 proteins, significantly more than the total number of proteins identified by previous reports using proteasome subunits as baits. Validation of the selected proteasome-interacting proteins by reverse copurification and immunoblotting experiments with and without cross-linking, further demonstrates the power of the QTAX strategy for capturing protein interactions of all natures. In addition, >80% of the identified interactions have been confirmed by existing data using protein network analysis. Moreover, evidence obtained through network analysis links the proteasome to protein complexes associated with diverse cellular functions. This work presents the most complete analysis of the proteasome interaction network to date, providing an inclusive set of physical interaction data consistent with physiological roles for the proteasome that have been suggested primarily through genetic analyses. Moreover, the methodology described here is a general proteomic tool for the comprehensive study of protein interaction networks.
Collapse
|
186
|
Li J, Ge J, Yin Y, Zhong W. Multiplexed affinity-based protein complex purification. Anal Chem 2008; 80:7068-74. [PMID: 18715017 DOI: 10.1021/ac801251y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Here we proved the principle of a multiplexed affinity-based protein complex purification (MAPcP) technique that targets simultaneous extraction of multiple protein complexes with superior purity. Microspheres of various sizes and coupled with different affinity probes extract several protein complexes concurrently and specifically. After the coextraction, flow-field flow fractionation (Fl-FFF) rapidly washes the microspheres as well as separates them based on their sizes to recover the clean individual complex for downstream analysis. Demonstration of the parallel extraction of two immuno-complexes from the yeast whole cell lysate showed that MAPcP can enhance the sample purity significantly compared to the traditional centrifugation and magnetic pull-down methods used for small scale protein purification. Simultaneous isolation of multiple protein complexes can facilitate the elucidation of the functional relationship among protein complexes and improve our understanding of the biological network.
Collapse
Affiliation(s)
- Jishan Li
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
187
|
Kast J. Making connections for life: an in vivo map of the yeast interactome. HFSP JOURNAL 2008; 2:244-50. [PMID: 19404434 DOI: 10.2976/1.2969243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Indexed: 11/19/2022]
Abstract
Proteins are the true workhorses of any cell. To carry out specific tasks, they frequently bind other molecules in their surroundings. Due to their structural complexity and flexibility, the most diverse array of interactions is seen with other proteins. The different geometries and affinities available for such interactions typically bestow specific functions on proteins. Having available a map of protein-protein interactions is therefore of enormous importance for any researcher interested in gaining insight into biological systems at the level of cells and organisms. In a recent report, a novel approach has been employed that relies on the spontaneous folding of complementary enzyme fragments fused to two different proteins to test whether these interact in their actual cellular context [Tarassov et al., Science 320, 1465-1470 (2008)]. Genome-wide application of this protein-fragment complementation assay has resulted in the first map of the in vivo interactome of Saccharomyces cerevisiae. The current data show striking similarities but also significant differences to those obtained using other large-scale approaches for the same task. This warrants a general discussion of the current state of affairs of protein-protein interaction studies and foreseeable future trends, highlighting their significance for a variety of applications and their potential to revolutionize our understanding of the architecture and dynamics of biological systems.
Collapse
Affiliation(s)
- Juergen Kast
- Department of Chemistry and The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
188
|
Gradia DF, Rau K, Umaki ACS, de Souza FSP, Probst CM, Correa A, Holetz FB, Avila AR, Krieger MA, Goldenberg S, Fragoso SP. Characterization of a novel Obg-like ATPase in the protozoan Trypanosoma cruzi. Int J Parasitol 2008; 39:49-58. [PMID: 18713637 DOI: 10.1016/j.ijpara.2008.05.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/12/2008] [Accepted: 05/29/2008] [Indexed: 11/26/2022]
Abstract
We characterized a gene encoding an YchF-related protein, TcYchF, potentially associated with the protein translation machinery of Trypanosoma cruzi. YchF belongs to the translation factor-related (TRAFAC) class of P-loop NTPases. The coding region of the gene is 1185bp long and encodes a 44.3kDa protein. BlastX searches showed TcYchF to be very similar (45-86%) to putative GTP-binding proteins from eukaryotes, including some species of trypanosomatids (Leishmania major and Trypanosoma brucei). A lower but significant level of similarity (38-43%) was also found between the predicted sequences of TcYchF and bacterial YyaF/YchF GTPases of the Spo0B-associated GTP-binding protein (Obg) family. Some of the most important features of the G domain of this family of GTPases are conserved in TcYchF. However, we found that TcYchF preferentially hydrolyzed ATP rather than GTP. The function of YyaF/YchF is unknown, but other members of the Obg family are known to be associated with ribosomal subunits. Immunoblots of the polysome fraction from sucrose gradients showed that TcYchF was associated with ribosomal subunits and polysomes. Immunoprecipitation assays showed that TcYchF was also associated with the proteasome of T. cruzi. Furthermore, inactivation of the T. brucei homolog of TcYchF by RNA interference inhibited the growth of procyclic forms of the parasite. These data suggest that this protein plays an important role in the translation machinery of trypanosomes.
Collapse
Affiliation(s)
- Daniela F Gradia
- Instituto de Biologia Molecular do Paraná, Rua Professor Algacyr Munhoz Mader 3775, Curitiba 81350-010, Paraná, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Collins MO, Choudhary JS. Mapping multiprotein complexes by affinity purification and mass spectrometry. Curr Opin Biotechnol 2008; 19:324-30. [PMID: 18598764 DOI: 10.1016/j.copbio.2008.06.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/04/2008] [Accepted: 06/06/2008] [Indexed: 12/01/2022]
Abstract
The combination of affinity purification and tandem mass spectrometry (MS) has emerged as a powerful approach to delineate biological processes. In particular, the use of epitope tags has allowed this approach to become scaleable and has bypassed difficulties associated with generation of antibodies. Single epitope tags and tandem affinity purification (TAP) tags have been used to systematically map protein complexes generating protein interaction data at a near proteome-wide scale. Recent developments in the design of tags, optimisation of purification conditions, experimental design and data analysis have greatly improved the sensitivity and specificity of this approach. Concomitant developments in MS, including high accuracy and high-throughput instrumentation together with quantitative MS methods, have facilitated large-scale and comprehensive analysis of multiprotein complexes.
Collapse
Affiliation(s)
- Mark O Collins
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | |
Collapse
|
190
|
Lu H, Zong C, Wang Y, Young GW, Deng N, Souda P, Li X, Whitelegge J, Drews O, Yang PY, Ping P. Revealing the dynamics of the 20 S proteasome phosphoproteome: a combined CID and electron transfer dissociation approach. Mol Cell Proteomics 2008; 7:2073-89. [PMID: 18579562 DOI: 10.1074/mcp.m800064-mcp200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The 20 S proteasomes play a critical role in intracellular homeostasis and stress response. Their function is tuned by covalent modifications, such as phosphorylation. In this study, we performed a comprehensive characterization of the phosphoproteome for the 20 S proteasome complexes in both the murine heart and liver. A platform combining parallel approaches in differential sample fractionation (SDS-PAGE, IEF, and two-dimensional electrophoresis), enzymatic digestion (trypsin and chymotrypsin), phosphopeptide enrichment (TiO(2)), and peptide fragmentation (CID and electron transfer dissociation (ETD)) has proven to be essential for identifying low abundance phosphopeptides. As a result, a total of 52 phosphorylation identifications were made in mammalian tissues; 44 of them were novel. These identifications include single (serine, threonine, and tyrosine) and dual phosphorylation peptides. 34 phosphopeptides were identified by CID; 10 phosphopeptides, including a key modification on the catalytically essential beta5 subunit, were identified only by ETD; eight phosphopeptides were shared identifications by both CID and ETD. Besides the commonly shared phosphorylation sites, unique sites were detected in the murine heart and liver, documenting variances in phosphorylation between tissues within the proteasome populations. Furthermore the biological significance of these 20 S phosphoproteomes was evaluated. The role of cAMP-dependent protein kinase A (PKA) to modulate these phosphoproteomes was examined. Using a proteomics approach, many of the cardiac and hepatic 20 S subunits were found to be substrate targets of PKA. Incubation of the intact 20 S proteasome complexes with active PKA enhanced phosphorylation in both existing PKA phosphorylation sites as well as novel sites in these 20 S subunits. Furthermore treatment with active PKA significantly elevated all three peptidase activities (beta1 caspase-like, beta2 trypsin-like, and beta5 chymotrypsin-like), demonstrating a functional role of PKA in governing these 20 S phosphoproteomes.
Collapse
Affiliation(s)
- Haojie Lu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, 200032 Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Sutherland BW, Toews J, Kast J. Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:699-715. [PMID: 18438963 DOI: 10.1002/jms.1415] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
For decades, formaldehyde has been routinely used to cross-link proteins in cells, tissue, and in some instances, even entire organisms. Due to its small size, formaldehyde can readily permeate cell walls and membranes, resulting in efficient cross-linking, i.e. the formation of covalent bonds between proteins, DNA, and other reactive molecules. Indeed, formaldehyde cross-linking is an instrumental component of many mainstream analytical/cell biology techniques including chromatin immunoprecipitation (ChIP) of protein-DNA complexes found in nuclei; immunohistological analysis of protein expression and localization within cells, tissues, and organs; and mass spectrometry (MS)-compatible silver-staining methodologies used to visualize low abundance proteins in polyacrylamide gels. However, despite its exquisite suitability for use in the analysis of protein environments within cells, formaldehyde has yet to be commonly employed in the directed analysis of protein-protein interactions and cellular networks. The general purpose of this article is to discuss recent advancements in the use of formaldehyde cross-linking in combination with MS-based methodologies. Key advantages and limitations to the use of formaldehyde over other cross-linkers and technologies currently used to study protein-protein interactions are highlighted, and formaldehyde-based experimental approaches that are proving very promising in their ability to accurately and efficiently identify novel protein-protein and multiprotein interaction complexes are presented.
Collapse
Affiliation(s)
- Brent W Sutherland
- Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T-1Z3, Canada
| | | | | |
Collapse
|
192
|
Toews J, Rogalski JC, Clark TJ, Kast J. Mass spectrometric identification of formaldehyde-induced peptide modifications under in vivo protein cross-linking conditions. Anal Chim Acta 2008; 618:168-83. [DOI: 10.1016/j.aca.2008.04.049] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 04/20/2008] [Accepted: 04/23/2008] [Indexed: 11/27/2022]
|
193
|
Ducoux-Petit M, Uttenweiler-Joseph S, Brichory F, Bousquet-Dubouch MP, Burlet-Schiltz O, Haeuw JF, Monsarrat B. Scaled-down purification protocol to access proteomic analysis of 20S proteasome from human tissue samples: comparison of normal and tumor colorectal cells. J Proteome Res 2008; 7:2852-9. [PMID: 18510353 DOI: 10.1021/pr8000749] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The proteasome is a proteolytic complex that constitutes the main pathway for degradation of intracellular proteins in eukaryotic cells. It regulates many physiological processes and its dysfunction can lead to several pathologies like cancer. To study the 20S proteasome structure/activity relationship in cells that derive from human biopsy samples, we optimized an immuno-purification protocol for the analysis of samples containing a small number of cells using magnetic beads. This scaled-down protocol was used to purify the cytoplasmic 20S proteasome of adjacent normal and tumor colorectal cells arising from tissue samples of several patients. Proteomic analyses based on two-dimensional gel electrophoresis (2DE) and mass spectrometry showed that the subunit composition of 20S proteasomes from these normal and tumor cells were not significantly different. The proteasome activity was also assessed in the cytoplasmic extracts and was similar or higher in tumor colorectal than in the corresponding normal cells. The scaled-down 20S proteasome purification protocol developed here can be applied to any human clinical tissue samples and is compatible with further proteomic analyses.
Collapse
Affiliation(s)
- Manuelle Ducoux-Petit
- Universite de Toulouse, Institute of Pharmacology and Structural Biology, IPBS, UPS, 205 route de Narbonne, 31077, Toulouse, cedex 4, France
| | | | | | | | | | | | | |
Collapse
|
194
|
Hégarat N, François JC, Praseuth D. Modern tools for identification of nucleic acid-binding proteins. Biochimie 2008; 90:1265-72. [PMID: 18452716 DOI: 10.1016/j.biochi.2008.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 03/21/2008] [Indexed: 11/25/2022]
Abstract
Numerous biological mechanisms depend on nucleic acid--protein interactions. The first step to the understanding of these mechanisms is to identify interacting molecules. Knowing one partner, the identification of other associated molecular species can be carried out using affinity-based purification procedures. When the nucleic acid-binding protein is known, the nucleic acid can be isolated and identified by sensitive techniques such as polymerase chain reaction followed by DNA sequencing or hybridization on chips. The reverse identification procedure is less straightforward in part because interesting nucleic acid-binding proteins are generally of low abundance and there are no methods to amplify amino acid sequences. In this article, we will review the strategies that have been developed to identify nucleic acid-binding proteins. We will focus on methods permitting the identification of these proteins without a priori knowledge of protein candidates.
Collapse
Affiliation(s)
- Nadia Hégarat
- INSERM, U565 Case Postale 26, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
195
|
Zhang H, Tang X, Munske GR, Zakharova N, Yang L, Zheng C, Wolff MA, Tolic N, Anderson GA, Shi L, Marshall MJ, Fredrickson JK, Bruce JE. In vivo identification of the outer membrane protein OmcA-MtrC interaction network in Shewanella oneidensis MR-1 cells using novel hydrophobic chemical cross-linkers. J Proteome Res 2008; 7:1712-20. [PMID: 18303833 PMCID: PMC2585513 DOI: 10.1021/pr7007658] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Outer membrane (OM) cytochromes OmcA (SO1779) and MtrC (SO1778) are the integral components of electron transfer used by Shewanella oneidensis for anaerobic respiration of metal (hydr)oxides. Here the OmcA-MtrC interaction was identified in vivo using a novel hydrophobic chemical cross-linker (MRN) combined with immunoprecipitation techniques. In addition, identification of other OM proteins from the cross-linked complexes allows first visualization of the OmcA-MtrC interaction network. Further experiments on omcA and mtrC mutant cells showed OmcA plays a central role in the network interaction. For comparison, two commercial cross-linkers were also used in parallel, and both resulted in fewer OM protein identifications, indicating the superior properties of MRN for identification of membrane protein interactions. Finally, comparison experiments of in vivo cross-linking and cell lysate cross-linking resulted in significantly different protein interaction data, demonstrating the importance of in vivo cross-linking for study of protein-protein interactions in cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - James E. Bruce
- Corresponding author. E-mail: . Phone: 509−335−2116. Fax: 509−335−8867
| |
Collapse
|
196
|
Young GW, Wang Y, Ping P. Understanding proteasome assembly and regulation: importance to cardiovascular medicine. Trends Cardiovasc Med 2008; 18:93-8. [PMID: 18436147 PMCID: PMC2441911 DOI: 10.1016/j.tcm.2008.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/18/2008] [Accepted: 01/24/2008] [Indexed: 01/30/2023]
Abstract
The cardiac proteasome is increasingly recognized as a complex, heterogeneous, and dynamic organelle contributing to the modulation of cardiac function in health and diseases. The emerging picture of the proteasome system reveals a highly regulated and organized molecular machine integrated into multiple biologic processes of the cell. Full appreciation of its cardiovascular relevance requires an understanding of its proteolytic function as well as its underlying regulatory mechanisms, of which assembly, stoichiometry, posttranslational modification, and the role of the associating partners are increasingly poignant.
Collapse
Affiliation(s)
- Glen W Young
- Department of Physiology, Medicine/Division of Cardiology, David Geffen School of Medicine at UCLA, University of California-Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
197
|
Jones J, Wu K, Yang Y, Guerrero C, Nillegoda N, Pan ZQ, Huang L. A targeted proteomic analysis of the ubiquitin-like modifier nedd8 and associated proteins. J Proteome Res 2008; 7:1274-87. [PMID: 18247557 PMCID: PMC2676899 DOI: 10.1021/pr700749v] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nedd8 is a small ubiquitin-like protein that can be conjugated to substrate-proteins in a process known as neddylation. Although neddylation plays a critical regulatory role in cell proliferation and development, the spectrum of Nedd8 substrates and its interaction network remain poorly understood. To explore the neddylation pathway at the proteome level, we have affinity purified Nedd8 modified and associated proteins from HEK293 cells stably expressing GST-Nedd8 and employed LC-MS/MS for subsequent protein identification. A total of 496 GST-Nedd8 modified and associated proteins have been identified, including all of the eight cullin family members (i.e., Cul-1, -2, -3, -4A, -4B, -5, -7, and Parc) that are involved in the neddylation and ubiquitin-proteasome degradation pathway. In addition, a group of proteins involved in transcription, DNA repair and replication, cell cycle regulation and chromatin organization, and remodeling have been copurified and identified. Apart from protein identification, the neddylation sites of cullins were determined by MS/MS analysis, which agree well with previous mutagenesis studies. Furthermore, MS analyses revealed that Nedd8 K11, K22, K48, and K60 can form chains in vivo, whereas Nedd8 K22 and K48 can be neddylated in vitro. These results present the first molecular evidence for in vitro and in vivo polyneddylation, suggesting that chain formation of ubiquitin and ubiquitin-like proteins may be a general phenomenon for these modifications. Although much remains to be explored for the biological significance of the observations, this work provides critically important information regarding Nedd8 chain assembly and its interaction network. The vast amount of proteomic information obtained here can provide clues on the biological role of Nedd8 and lay the foundation for an in-depth analysis of the regulation of the Nedd8 pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lan Huang
- Correspondence should be addressed to Dr. Lan Huang, Medical Science I, D233, Department of Physiology & Biophysics, Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697-4560. Phone: 949-824-8548. Fax: 949-824-8540. E-mail:
| |
Collapse
|
198
|
Abstract
Early diagnosis and prevention is a key factor in reducing the mortality and morbidity of cancer. However, currently available screening tools lack enough sensitivity for early diagnosis. It is important to develop noninvasive techniques and methods that can screen and identify asymptomatic patients who have cancer. Biomarkers of cancer status can also serve as powerful tools in monitoring the course of cancer and in determining the efficacy and safety of novel therapies. Thus, discovery of novel specific biomarkers are needed that may provide informative clues for early diagnosis and treatment of cancer. Recently, remarkable progress has been made in the development of new proteomics technology. The progress that has been made in this field is helpful in identifying biomarkers that can be used for early diagnosis of cancer and improving the understanding of the molecular etiological mechanism of cancer. This article describes the current state of the art in this field.
Collapse
Affiliation(s)
- Gary Guishan Xiao
- Osteoporosis Research Center, Departments of Medicine and Biomedical Sciences, Creighton University, 601 N 30 ST, Suite 6730, Omaha, NE 68131
| | | | | |
Collapse
|
199
|
Chen C, Huang C, Chen S, Liang J, Lin W, Ke G, Zhang H, Wang B, Huang J, Han Z, Ma L, Huo K, Yang X, Yang P, He F, Tao T. Subunit–subunit interactions in the human 26S proteasome. Proteomics 2008; 8:508-20. [DOI: 10.1002/pmic.200700588] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
200
|
Wang X, Huang L. Identifying Dynamic Interactors of Protein Complexes by Quantitative Mass Spectrometry. Mol Cell Proteomics 2008; 7:46-57. [DOI: 10.1074/mcp.m700261-mcp200] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|