151
|
Young ND, Udvardi M. Translating Medicago truncatula genomics to crop legumes. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:193-201. [PMID: 19162532 DOI: 10.1016/j.pbi.2008.11.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 11/18/2008] [Accepted: 11/20/2008] [Indexed: 05/20/2023]
Abstract
Genomic resources developed in the model legume, Medicago truncatula, have the potential to accelerate practical advances in crop legumes. M. truncatula is closely related to many economically important legumes, frequently displaying genome-scale synteny. Translating genome data from M. truncatula should be highly effective in marker development, gene discovery, and positional cloning in crop legumes. The M. truncatula genome sequence also provides valuable insights about gene families of practical importance, especially those that are legume-specific. The M. truncatula genome sequence should also simplify the assembly of next-generation sequence data in closely related taxa, especially alfalfa. Genomic resources, such as whole-genome arrays, make it possible to pursue detailed questions about gene expression in both M. truncatula and related crop species, while tagged mutant populations simplify the process of determining gene function.
Collapse
Affiliation(s)
- Nevin Dale Young
- Department of Plant Pathology, 495 Borlaug Hall, University of Minnesota, St. Paul, MN 55108, USA.
| | | |
Collapse
|
152
|
Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I. Plant proteomics update (2007–2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 2009; 72:285-314. [DOI: 10.1016/j.jprot.2009.01.026] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
153
|
Dam S, Laursen BS, Ornfelt JH, Jochimsen B, Staerfeldt HH, Friis C, Nielsen K, Goffard N, Besenbacher S, Krusell L, Sato S, Tabata S, Thøgersen IB, Enghild JJ, Stougaard J. The proteome of seed development in the model legume Lotus japonicus. PLANT PHYSIOLOGY 2009; 149:1325-40. [PMID: 19129418 PMCID: PMC2649391 DOI: 10.1104/pp.108.133405] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 01/03/2009] [Indexed: 05/18/2023]
Abstract
We have characterized the development of seeds in the model legume Lotus japonicus. Like soybean (Glycine max) and pea (Pisum sativum), Lotus develops straight seed pods and each pod contains approximately 20 seeds that reach maturity within 40 days. Histological sections show the characteristic three developmental phases of legume seeds and the presence of embryo, endosperm, and seed coat in desiccated seeds. Furthermore, protein, oil, starch, phytic acid, and ash contents were determined, and this indicates that the composition of mature Lotus seed is more similar to soybean than to pea. In a first attempt to determine the seed proteome, both a two-dimensional polyacrylamide gel electrophoresis approach and a gel-based liquid chromatography-mass spectrometry approach were used. Globulins were analyzed by two-dimensional polyacrylamide gel electrophoresis, and five legumins, LLP1 to LLP5, and two convicilins, LCP1 and LCP2, were identified by matrix-assisted laser desorption ionization quadrupole/time-of-flight mass spectrometry. For two distinct developmental phases, seed filling and desiccation, a gel-based liquid chromatography-mass spectrometry approach was used, and 665 and 181 unique proteins corresponding to gene accession numbers were identified for the two phases, respectively. All of the proteome data, including the experimental data and mass spectrometry spectra peaks, were collected in a database that is available to the scientific community via a Web interface (http://www.cbs.dtu.dk/cgi-bin/lotus/db.cgi). This database establishes the basis for relating physiology, biochemistry, and regulation of seed development in Lotus. Together with a new Web interface (http://bioinfoserver.rsbs.anu.edu.au/utils/PathExpress4legumes/) collecting all protein identifications for Lotus, Medicago, and soybean seed proteomes, this database is a valuable resource for comparative seed proteomics and pathway analysis within and beyond the legume family.
Collapse
Affiliation(s)
- Svend Dam
- Centre for Carbohydrate Recognition and Signalling , University of Aarhus, DK-8000 Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Bourgeois M, Jacquin F, Savois V, Sommerer N, Labas V, Henry C, Burstin J. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition. Proteomics 2009; 9:254-71. [PMID: 19086096 DOI: 10.1002/pmic.200700903] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pea (Pisum sativum L.) is the most cultivated European pulse crop and the pea seeds mainly serve as a protein source for monogastric animals. Because the seed protein composition impacts on seed nutritional value, we aimed at identifying the determinants of its variability. This paper presents the first pea mature seed proteome reference map, which includes 156 identified proteins (http://www.inra.fr/legumbase/peaseedmap/). This map provides a fine dissection of the pea seed storage protein composition revealing a large diversity of storage proteins resulting both from gene diversity and post-translational processing. It gives new insights into the pea storage protein processing (especially 7S globulins) as a possible adaptation towards progressive mobilization of the proteins during germination. The nonstorage seed proteome revealed the presence of proteins involved in seed defense together with proteins preparing germination. The plasticity of the seed proteome was revealed for seeds produced in three successive years of cultivation, and 30% of the spots were affected by environmental variations. This work pinpoints seed proteins most affected by environment, highlighting new targets to stabilize storage protein composition that should be further analyzed.
Collapse
Affiliation(s)
- Michael Bourgeois
- Unité Mixte de Recherche en Génétique et Ecophysiologie des Légumineuses à Graines, Institut National de la Recherche Agronomique, Bretenières, France.
| | | | | | | | | | | | | |
Collapse
|
155
|
Joët T, Laffargue A, Salmona J, Doulbeau S, Descroix F, Bertrand B, de Kochko A, Dussert S. Metabolic pathways in tropical dicotyledonous albuminous seeds: Coffea arabica as a case study. THE NEW PHYTOLOGIST 2009; 182:146-162. [PMID: 19207685 PMCID: PMC2713855 DOI: 10.1111/j.1469-8137.2008.02742.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 11/28/2008] [Indexed: 05/18/2023]
Abstract
* The genomic era facilitates the understanding of how transcriptional networks are interconnected to program seed development and filling. However, to date, little information is available regarding dicot seeds with a transient perisperm and a persistent, copious endosperm. Coffea arabica is the subject of increasing genomic research and is a model for nonorthodox albuminous dicot seeds of tropical origin. * The aim of this study was to reconstruct the metabolic pathways involved in the biosynthesis of the main coffee seed storage compounds, namely cell wall polysaccharides, triacylglycerols, sucrose, and chlorogenic acids. For this purpose, we integrated transcriptomic and metabolite analyses, combining real-time RT-PCR performed on 137 selected genes (of which 79 were uncharacterized in Coffea) and metabolite profiling. * Our map-drawing approach derived from model plants enabled us to propose a rationale for the peculiar traits of the coffee endosperm, such as its unusual fatty acid composition, remarkable accumulation of chlorogenic acid and cell wall polysaccharides. * Comparison with the developmental features of exalbuminous seeds described in the literature revealed that the two seed types share important regulatory mechanisms for reserve biosynthesis, independent of the origin and ploidy level of the storage tissue.
Collapse
Affiliation(s)
- Thierry Joët
- IRD, UMR DIA-PC, Pôle de Protection des Plantes97410, Saint Pierre, La Réunion, France
| | | | - Jordi Salmona
- IRD, UMR DIA-PC, Pôle de Protection des Plantes97410, Saint Pierre, La Réunion, France
| | | | | | | | | | | |
Collapse
|
156
|
Pestsova E, Meinhard J, Menze A, Fischer U, Windhövel A, Westhoff P. Transcript profiles uncover temporal and stress-induced changes of metabolic pathways in germinating sugar beet seeds. BMC PLANT BIOLOGY 2008; 8:122. [PMID: 19046420 PMCID: PMC2632670 DOI: 10.1186/1471-2229-8-122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 12/01/2008] [Indexed: 05/07/2023]
Abstract
BACKGROUND With a cultivation area of 1.75 Mio ha and sugar yield of 16.7 Mio tons in 2006, sugar beet is a crop of great economic importance in Europe. The productivity of sugar beet is determined significantly by seed vigour and field emergence potential; however, little is known about the molecular mechanisms underlying these traits. Both traits exhibit large variations within sugar beet germplasm that have been difficult to ascribe to either environmental or genetic causes. Among potential targets for trait improvement, an enhancement of stress tolerance is considered because of the high negative influence of environmental stresses on trait parameters. Extending our knowledge of genetic and molecular determinants of sugar beet germination, stress response and adaptation mechanisms would facilitate the detection of new targets for breeding crop with an enhanced field emergence potential. RESULTS To gain insight into the sugar beet germination we initiated an analysis of gene expression in a well emerging sugar beet hybrid showing high germination potential under various environmental conditions. A total of 2,784 ESTs representing 2,251 'unigenes' was generated from dry mature and germinating seeds. Analysis of the temporal expression of these genes during germination under non-stress conditions uncovered drastic transcriptional changes accompanying a shift from quiescent to metabolically active stages of the plant life cycle. Assay of germination under stressful conditions revealed 157 genes showing significantly different expression patterns in response to stress. As deduced from transcriptome data, stress adaptation mechanisms included an alteration in reserve mobilization pathways, an accumulation of the osmoprotectant glycine betaine, late embryogenesis abundant proteins and detoxification enzymes. The observed transcriptional changes are supposed to be regulated by ABA-dependent signal transduction pathway. CONCLUSION This study provides an important step toward the understanding of main events and metabolic pathways during germination in sugar beet. The reported alterations of gene expression in response to stress shed light on sugar beet stress adaptation mechanisms. Some of the identified stress-responsive genes provide a new potential source for improvement of sugar beet stress tolerance during germination and field emergence.
Collapse
Affiliation(s)
- Elena Pestsova
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | - Andreas Menze
- KWS SAAT AG, Grimsehlstr. 31, 37555 Einbeck, Germany
| | - Uwe Fischer
- KWS SAAT AG, Grimsehlstr. 31, 37555 Einbeck, Germany
| | - Andrea Windhövel
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Peter Westhoff
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
157
|
Repetto O, Rogniaux H, Firnhaber C, Zuber H, Küster H, Larré C, Thompson R, Gallardo K. Exploring the nuclear proteome of Medicago truncatula at the switch towards seed filling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:398-410. [PMID: 18643982 DOI: 10.1111/j.1365-313x.2008.03610.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Despite its importance in determining seed composition, and hence quality, regulation of the development of legume seeds is incompletely understood. Because of the cardinal role played by the nucleus in gene expression and regulation, we have characterized the nuclear proteome of Medicago truncatula at the 12 days after pollination (dap) stage that marks the switch towards seed filling. Nano-liquid chromatography-tandem mass spectrometry analysis of nuclear protein bands excised from one-dimensional SDS-PAGE identified 179 polypeptides (143 different proteins), providing an insight into the complexity and distinctive feature of the seed nuclear proteome and highlighting new plant nuclear proteins with possible roles in the biogenesis of ribosomal subunits (PESCADILLO-like) or nucleocytoplasmic trafficking (dynamin-like GTPase). The results revealed that nuclei of 12-dap seeds store a pool of ribosomal proteins in preparation for intense protein synthesis activity, occurring subsequently during seed filling. Diverse proteins of the molecular machinery leading to the synthesis of ribosomal subunits were identified along with proteins involved in transcriptional regulation, RNA processing or transport. Some had already been shown to play a role during the early stages of seed formation whereas for others the findings are novel (e.g. the DIP2 and ES43 transcriptional regulators or the RNA silencing-related ARGONAUTE proteins). This study also revealed the presence of chromatin-modifying enzymes and RNA interference proteins that have roles in RNA-directed DNA methylation and may be involved in modifying genome architecture and accessibility during seed filling and maturation.
Collapse
Affiliation(s)
- Ombretta Repetto
- INRA, UMR102 Genetics and Ecophysiology of Grain Legumes, 21000 Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
Using post-genomic technologies, it is now possible to understand the molecular basis of complex developmental processes. In the case of seed germination, recent transcriptome- and proteome-wide studies led to new insights concerning the building up of the germination potential during seed maturation on the mother plant, the reversible character of the first phases of the germination process enabling the imbibed embryo to recapitulate the late maturation program for mounting defense response when confronted to environmental fluctuations, the timing of expression of genes playing a role in controlling radicle emergence, the role of plant hormones as abscisic acid and gibberellins in seed germination, and finally the global changes in proteome activity induced by redox regulation occurring in seed development and germination. In this way, post-genomic technologies help facilitating the advent of a systems approach to uncover novel features of seed quality, which can lead to potential applications, for example in selection programs.
Collapse
Affiliation(s)
- Julie Catusse
- CNRS-Université Claude-Bernard Lyon 1-INSA-Bayer CropScience Joint Laboratory, UMR 5240, Bayer CropScience, 14-20, rue Pierre-Baizet, 69263 Lyon cedex 9, France
| | | | | |
Collapse
|
159
|
|
160
|
Abstract
The accumulation of seed reserves is the result of distinct processes occurring in parallel in the main seed compartments of either maternal (seed coats) or zygotic (embryo, endosperm) origin. With the development of legume genomic resources, recent advances have been made toward understanding the metabolic control of seed filling and the regulatory network underlying reserve accumulation. Genetic variability for seed composition has been studied along with the environmental factors influencing reserve accumulation. Nutrient availability and sink strength were both found to be limiting for reserve accumulation. Genes and/or QTL controlling seed protein content and sulfur-amino acid levels have been identified. These new findings will support our attempts to engineer legume seed composition for added end user value.
Collapse
Affiliation(s)
- Karine Gallardo
- INRA, UMR102 Genetics and Ecophysiology of Grain Legumes, 21000 Dijon, France.
| | | | | |
Collapse
|
161
|
Verdier J, Thompson RD. Transcriptional regulation of storage protein synthesis during dicotyledon seed filling. PLANT & CELL PHYSIOLOGY 2008; 49:1263-71. [PMID: 18701524 DOI: 10.1093/pcp/pcn116] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Seeds represent a major source of nutrients for human and animal livestock diets. The nutritive value of seeds is largely due to storage products which accumulate during a key phase of seed development, seed filling. In recent years, our understanding of the mechanisms regulating seed filling has advanced significantly due to the diversity of experimental approaches used. This review summarizes recent findings related to transcription factors that regulate seed storage protein accumulation. A framework for the regulation of storage protein synthesis is established which incorporates the events before, during and after seed storage protein synthesis. The transcriptional control of storage protein synthesis is accompanied by physiological and environmental controls, notably through the action of plant hormones and other intermediary metabolites. Finally, recent post-genomics analyses on different model plants have established the existence of a conserved seed filling process involving the master regulators (LEC1, LEC2, ABI3 and FUS3) but also revealed certain differences in fine regulation between plant families.
Collapse
Affiliation(s)
- Jérôme Verdier
- Unité Mixte de Recherche en Génétique et Ecophysiologie des Légumineuses à Graines (UMR-LEG), Institut National de la Recherche Agronomique (INRA), BP 86510, F-21065 Dijon, France
| | | |
Collapse
|
162
|
Agrawal GK, Hajduch M, Graham K, Thelen JJ. In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed. PLANT PHYSIOLOGY 2008; 148:504-18. [PMID: 18599654 PMCID: PMC2528123 DOI: 10.1104/pp.108.119222] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 06/12/2008] [Indexed: 05/19/2023]
Abstract
To better understand the metabolic processes of seed filling in soybean (Glycine max), two complementary proteomic approaches, two-dimensional gel electrophoresis (2-DGE) and semicontinuous multidimensional protein identification technology (Sec-MudPIT) coupled with liquid chromatography-mass spectrometry, were employed to analyze whole seed proteins at five developmental stages. 2-DGE and Sec-MudPIT analyses collectively identified 478 nonredundant proteins with only 70 proteins common to both datasets. 2-DGE data revealed that 38% of identified proteins were represented by multiple 2-DGE species. Identified proteins belonged to 13 (2-DGE) and 15 (Sec-MudPIT) functional classes. Proteins involved in metabolism, protein destination and storage, and energy were highly represented, collectively accounting for 61.1% (2-DGE) and 42.2% (Sec-MudPIT) of total identified proteins. Membrane proteins, based upon transmembrane predictions, were 3-fold more prominent in Sec-MudPIT than 2-DGE. Data were integrated into an existing soybean proteome database (www.oilseedproteomics.missouri.edu). The integrated quantitative soybean database was compared to a parallel study of rapeseed (Brassica napus) to further understand the regulation of intermediary metabolism in protein-rich versus oil-rich seeds. Comparative analyses revealed (1) up to 3-fold higher expression of fatty acid biosynthetic proteins during seed filling in rapeseed compared to soybean; and (2) approximately a 48% higher number of protein species and a net 80% higher protein abundance for carbon assimilatory and glycolytic pathways leading to fatty acid synthesis in rapeseed versus soybean. Increased expression of glycolytic and fatty acid biosynthetic proteins in rapeseed compared to soybean suggests that a possible mechanistic basis for higher oil in rapeseed involves the concerted commitment of hexoses to glycolysis and eventual de novo fatty acid synthesis pathways.
Collapse
Affiliation(s)
- Ganesh Kumar Agrawal
- Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | |
Collapse
|
163
|
Verdier J, Kakar K, Gallardo K, Le Signor C, Aubert G, Schlereth A, Town CD, Udvardi MK, Thompson RD. Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling. PLANT MOLECULAR BIOLOGY 2008; 67:567-80. [PMID: 18528765 DOI: 10.1007/s11103-008-9320-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 03/13/2008] [Indexed: 05/23/2023]
Abstract
Legume seeds represent a major source of proteins for human and livestock diets. The model legume Medicago truncatula is characterized by a process of seed development very similar to that of other legumes, involving the interplay of sets of transcription factors (TFs). Here, we report the first expression profiling of over 700 M. truncatula genes encoding putative TFs throughout seven stages of seed development, obtained using real-time quantitative RT-PCR. A total of 169 TFs were selected which were expressed at late embryogenesis, seed filling or desiccation. The site of expression within the seed was examined for 41 highly expressed transcription factors out of the 169. To identify possible target genes for these TFs, the data were combined with a microarray-derived transcriptome dataset. This study identified 17 TFs preferentially expressed in individual seed tissues and 135 corresponding co-expressed genes, including possible targets. Certain of the TFs co-expressed with storage protein mRNAs correspond to those already known to regulate seed storage protein synthesis in Arabidopsis, whereas the timing of expression of others may be more specifically related to the delayed expression of the legumin-class storage proteins observed in legumes.
Collapse
Affiliation(s)
- Jérôme Verdier
- Unité Mixte de Recherche en Génétique et Ecophysiologie des Légumineuses à Graines (UMR-LEG), Institut National de la Recherche Agronomique (INRA), Domaine d'Epoisses, 21110, Bretenieres, France
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression. Proc Natl Acad Sci U S A 2008; 105:10262-7. [PMID: 18635686 DOI: 10.1073/pnas.0800585105] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Proteomic analysis of mature sugarbeet seeds led to the identification of 759 proteins and their specific tissue expression in root, cotyledons, and perisperm. In particular, the proteome of the perispermic storage tissue found in many seeds of the Caryophyllales is described here. The data allowed us to reconstruct in detail the metabolism of the seeds toward recapitulating facets of seed development and provided insights into complex behaviors such as germination. The seed appears to be well prepared to mobilize the major classes of reserves (the proteins, triglycerides, phytate, and starch) during germination, indicating that the preparation of the seed for germination is mainly achieved during its maturation on the mother plant. Furthermore, the data revealed several pathways that can contribute to seed vigor, an important agronomic trait defined as the potential to produce vigorous seedlings, such as glycine betaine accumulation in seeds. This study also identified several proteins that, to our knowledge, have not previously been described in seeds. For example, the data revealed that the sugarbeet seed can initiate translation either through the traditional cap-dependent mechanism or by a cap-independent process. The study of the tissue specificity of the seed proteome demonstrated a compartmentalization of metabolic activity between the roots, cotyledons, and perisperm, indicating a division of metabolic tasks between the various tissues. Furthermore, the perisperm, although it is known as a dead tissue, appears to be very active biochemically, playing multiple roles in distributing sugars and various metabolites to other tissues of the embryo.
Collapse
|
165
|
Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S. Genome-Scale Proteomics Reveals Arabidopsis thaliana Gene Models and Proteome Dynamics. Science 2008; 320:938-41. [DOI: 10.1126/science.1157956] [Citation(s) in RCA: 425] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|