151
|
Gambacorta V, Gnani D, Vago L, Di Micco R. Epigenetic Therapies for Acute Myeloid Leukemia and Their Immune-Related Effects. Front Cell Dev Biol 2019; 7:207. [PMID: 31681756 PMCID: PMC6797914 DOI: 10.3389/fcell.2019.00207] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
Over the past decades, our molecular understanding of acute myeloid leukemia (AML) pathogenesis dramatically increased, thanks also to the advent of next-generation sequencing (NGS) technologies. Many of these findings, however, have not yet translated into new prognostic markers or rationales for treatments. We now know that AML is a highly heterogeneous disease characterized by a very low mutational burden. Interestingly, the few mutations identified mainly reside in epigenetic regulators, which shape and define leukemic cell identity. In the light of these discoveries and given the increasing number of drugs targeting epigenetic regulators in clinical development and testing, great interest is emerging for the use of small molecules targeting leukemia epigenome. Together with their effects on leukemia cell-intrinsic properties, such as proliferation and survival, epigenetic drugs may affect the way leukemic cells communicate with the surrounding components of the tumor and immune microenvironment. Here, we review current knowledge on alterations in the AML epigenetic landscape and discuss the promises of epigenetic therapies for AML treatment. Finally, we summarize emerging molecular studies elucidating how epigenetic rewiring in cancer cells may as well exert immune-modulatory functions, boost the immune system, and potentially contribute to better patient outcomes.
Collapse
Affiliation(s)
- Valentina Gambacorta
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Milano-Bicocca University, Milan, Italy
| | - Daniela Gnani
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Di Micco
- Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
152
|
Murakami S, Li R, Nagari A, Chae M, Camacho CV, Kraus WL. Distinct Roles for BET Family Members in Estrogen Receptor α Enhancer Function and Gene Regulation in Breast Cancer Cells. Mol Cancer Res 2019; 17:2356-2368. [PMID: 31551256 DOI: 10.1158/1541-7786.mcr-19-0393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
Abstract
The bromodomain family member proteins (BRD; BET proteins) are key coregulators for estrogen receptor alpha (ERα)-mediated transcriptional enhancers. The use of BRD-selective inhibitors has gained much attention as a potential treatment for various solid tumors, including ER-positive breast cancers. However, the roles of individual BET family members have largely remained unexplored. Here, we describe the role of BRDs in estrogen (E2)-dependent gene expression in ERα-positive breast cancer cells. We observed that chemical inhibition of BET family proteins with JQ1 impairs E2-regulated gene expression and growth in breast cancer cells. In addition, RNAi-mediated depletion of each BET family member (BRDs 2, 3, and 4) revealed partially redundant roles at ERα enhancers and for target gene transcription. Furthermore, we found a unique role of BRD3 as a molecular sensor of total BET family protein levels and activity through compensatory control of its own protein levels. Finally, we observed that BRD3 is recruited to a subset of ERα-binding sites (ERBS) that are enriched for active enhancer features, located in clusters of ERBSs likely functioning as "super enhancers," and associated with highly E2-responsive genes. Collectively, our results illustrate a critical and specific role for BET family members in ERα-dependent gene transcription. IMPLICATIONS: BRD3 is recruited to and controls the activity of a subset ERα transcriptional enhancers, providing a therapeutic opportunity to target BRD3 with BET inhibitors in ERα-positive breast cancers.
Collapse
Affiliation(s)
- Shino Murakami
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas.,Program in Genetics, Development and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rui Li
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas.,Program in Genetics, Development and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Anusha Nagari
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Minho Chae
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Cristel V Camacho
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - W Lee Kraus
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas. .,The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas.,Program in Genetics, Development and Disease, Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
153
|
The emerging role of epigenetic therapeutics in immuno-oncology. Nat Rev Clin Oncol 2019; 17:75-90. [PMID: 31548600 DOI: 10.1038/s41571-019-0266-5] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
The past decade has seen the emergence of immunotherapy as a prime approach to cancer treatment, revolutionizing the management of many types of cancer. Despite the promise of immunotherapy, most patients do not have a response or become resistant to treatment. Thus, identifying combinations that potentiate current immunotherapeutic approaches will be crucial. The combination of immune-checkpoint inhibition with epigenetic therapy is one such strategy that is being tested in clinical trials, encompassing a variety of cancer types. Studies have revealed key roles of epigenetic processes in regulating immune cell function and mediating antitumour immunity. These interactions make combined epigenetic therapy and immunotherapy an attractive approach to circumvent the limitations of immunotherapy alone. In this Review, we highlight the basic dynamic mechanisms underlying the synergy between immunotherapy and epigenetic therapies and detail current efforts to translate this knowledge into clinical benefit for patients.
Collapse
|
154
|
Eran Z, Zingariello M, Bochicchio MT, Bardelli C, Migliaccio AR. Novel strategies for the treatment of myelofibrosis driven by recent advances in understanding the role of the microenvironment in its etiology. F1000Res 2019; 8:F1000 Faculty Rev-1662. [PMID: 31583083 PMCID: PMC6758840 DOI: 10.12688/f1000research.18581.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
Myelofibrosis is the advanced stage of the Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), characterized by systemic inflammation, hematopoietic failure in the bone marrow, and development of extramedullary hematopoiesis, mainly in the spleen. The only potentially curative therapy for this disease is hematopoietic stem cell transplantation, an option that may be offered only to those patients with a compatible donor and with an age and functional status that may face its toxicity. By contrast, with the Philadelphia-positive MPNs that can be dramatically modified by inhibitors of the novel BCR-ABL fusion-protein generated by its genetic lesion, the identification of the molecular lesions that lead to the development of myelofibrosis has not yet translated into a treatment that can modify the natural history of the disease. Therefore, the cure of myelofibrosis remains an unmet clinical need. However, the excitement raised by the discovery of the genetic lesions has inspired additional studies aimed at elucidating the mechanisms driving these neoplasms towards their final stage. These studies have generated the feeling that the cure of myelofibrosis will require targeting both the malignant stem cell clone and its supportive microenvironment. We will summarize here some of the biochemical alterations recently identified in MPNs and the novel therapeutic approaches currently under investigation inspired by these discoveries.
Collapse
Affiliation(s)
- Zimran Eran
- Department of Hematology, Hadassah University Center, Jerusalem, Israel
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Maria Teresa Bochicchio
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (I.R.S.T.), IRCCS, Meldola (FC), Italy
| | - Claudio Bardelli
- Dipartimento di Scienze Biomediche e NeuroMotorie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Anna Rita Migliaccio
- Dipartimento di Scienze Biomediche e NeuroMotorie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| |
Collapse
|
155
|
[Chemical targeting of DNA and histone methylation in cancer: Novelties, hopes and promises]. Bull Cancer 2019; 106:823-833. [PMID: 31522746 DOI: 10.1016/j.bulcan.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023]
|
156
|
Hu J, Tian CQ, Damaneh MS, Li Y, Cao D, Lv K, Yu T, Meng T, Chen D, Wang X, Chen L, Li J, Song SS, Huan XJ, Qin L, Shen J, Wang YQ, Miao ZH, Xiong B. Structure-Based Discovery and Development of a Series of Potent and Selective Bromodomain and Extra-Terminal Protein Inhibitors. J Med Chem 2019; 62:8642-8663. [PMID: 31490070 DOI: 10.1021/acs.jmedchem.9b01094] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BRD4 has recently emerged as a promising drug target. Therefore, identifying novel inhibitors with distinct properties could enrich their use in anticancer treatment. Guided by the cocrystal structure of hit compound 4 harboring a five-membered-ring linker motif, we quickly identified lead compound 7, which exhibited good antitumor effects in an MM.1S xenograft model by oral administration. Encouraged by its high potency and interesting scaffold, we performed further lead optimization to generate a novel potent series of bromodomain and extra-terminal (BET) inhibitors with a (1,2,4-triazol-5-yl)-3,4-dihydroquinoxalin-2(1H)-one structure. Among them, compound 19 was found to have the best balance of activity, stability, and antitumor efficacy. After confirming its low brain penetration, we conducted comprehensive preclinical studies, including a multiple-species pharmacokinetics profile, extensive cellular mechanism studies, hERG assay, and in vivo antitumor growth effect testing, and we found that compound 19 is a potential BET protein drug candidate for the treatment of cancer.
Collapse
Affiliation(s)
- Jianping Hu
- University of Chinese Academy of Sciences , NO.19A Yuquan Road , Beijing 100049 , China
| | - Chang-Qing Tian
- University of Chinese Academy of Sciences , NO.19A Yuquan Road , Beijing 100049 , China
| | | | | | | | - Kaikai Lv
- University of Chinese Academy of Sciences , NO.19A Yuquan Road , Beijing 100049 , China
| | | | | | | | | | | | | | | | | | - Lihuai Qin
- Center for Chemical Biology and Drug Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | | | - Ying-Qing Wang
- University of Chinese Academy of Sciences , NO.19A Yuquan Road , Beijing 100049 , China
| | - Ze-Hong Miao
- University of Chinese Academy of Sciences , NO.19A Yuquan Road , Beijing 100049 , China
| | - Bing Xiong
- University of Chinese Academy of Sciences , NO.19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|
157
|
Bamborough P, Chung CW, Demont EH, Bridges AM, Craggs PD, Dixon DP, Francis P, Furze RC, Grandi P, Jones EJ, Karamshi B, Locke K, Lucas SCC, Michon AM, Mitchell DJ, Pogány P, Prinjha RK, Rau C, Roa AM, Roberts AD, Sheppard RJ, Watson RJ. A Qualified Success: Discovery of a New Series of ATAD2 Bromodomain Inhibitors with a Novel Binding Mode Using High-Throughput Screening and Hit Qualification. J Med Chem 2019; 62:7506-7525. [PMID: 31398032 DOI: 10.1021/acs.jmedchem.9b00673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bromodomain of ATAD2 has proved to be one of the least-tractable proteins within this target class. Here, we describe the discovery of a new class of inhibitors by high-throughput screening and show how the difficulties encountered in establishing a screening triage capable of finding progressible hits were overcome by data-driven optimization. Despite the prevalence of nonspecific hits and an exceptionally low progressible hit rate (0.001%), our optimized hit qualification strategy employing orthogonal biophysical methods enabled us to identify a single active series. The compounds have a novel ATAD2 binding mode with noncanonical features including the displacement of all conserved water molecules within the active site and a halogen-bonding interaction. In addition to reporting this new series and preliminary structure-activity relationship, we demonstrate the value of diversity screening to complement the knowledge-based approach used in our previous ATAD2 work. We also exemplify tactics that can increase the chance of success when seeking new chemical starting points for novel and less-tractable targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paola Grandi
- Cellzome , Meyerhofstrasse 1 , Heidelberg 69117 , Germany
| | | | | | | | | | | | | | | | | | - Christina Rau
- Cellzome , Meyerhofstrasse 1 , Heidelberg 69117 , Germany
| | - Ana Maria Roa
- GlaxoSmithKline Tres Cantos , 28760 Tres Cantos , Madrid , Spain
| | | | | | | |
Collapse
|
158
|
Chandhok NS, Prebet T. Insights into novel emerging epigenetic drugs in myeloid malignancies. Ther Adv Hematol 2019; 10:2040620719866081. [PMID: 31431820 PMCID: PMC6685116 DOI: 10.1177/2040620719866081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/10/2019] [Indexed: 12/15/2022] Open
Abstract
Epigenetics has been defined as ‘a stably heritable phenotype resulting from changes in a chromosome without alterations in the DNA sequence’ and several epigenetic regulators are recurrently mutated in hematological malignancies. Epigenetic modifications include changes such as DNA methylation, histone modifications and RNA associated gene silencing. Transcriptional regulation, chromosome stability, DNA replication and DNA repair are all controlled by these modifications. Mutations in genes encoding epigenetic modifiers are a frequent occurrence in hematologic malignancies and important in both the initiation and progression of cancer. Epigenetic modifications are also frequently reversible, allowing excellent opportunities for therapeutic intervention. The goal of epigenetic therapies is to reverse epigenetic dysregulation, restore the epigenetic balance, and revert malignant cells to a more normal condition. The role of epigenetic therapies thus far is most established in hematologic malignancies, with several agents already approved by the US Food and Drug Administration. In this review, we discuss pharmacological agents targeting epigenetic regulators.
Collapse
Affiliation(s)
- Namrata S Chandhok
- Division of Hematology/Oncology, Smilow Cancer Center at Yale New Haven Hospital, New Haven, CT, USA
| | - Thomas Prebet
- Division of Hematology/Oncology, Smilow Cancer Center at Yale New Haven Hospital, 35 Park Street, New Haven, CT 06511, USA
| |
Collapse
|
159
|
Varizhuk A, Isaakova E, Pozmogova G. DNA G-Quadruplexes (G4s) Modulate Epigenetic (Re)Programming and Chromatin Remodeling: Transient Genomic G4s Assist in the Establishment and Maintenance of Epigenetic Marks, While Persistent G4s May Erase Epigenetic Marks. Bioessays 2019; 41:e1900091. [PMID: 31379012 DOI: 10.1002/bies.201900091] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/09/2019] [Indexed: 01/07/2023]
Abstract
Here, the emerging data on DNA G-quadruplexes (G4s) as epigenetic modulators are reviewed and integrated. This concept has appeared and evolved substantially in recent years. First, persistent G4s (e.g., those stabilized by exogenous ligands) were linked to the loss of the histone code. More recently, transient G4s (i.e., those formed upon replication or transcription and unfolded rapidly by helicases) were implicated in CpG island methylation maintenance and de novo CpG methylation control. The most recent data indicate that there are direct interactions between G4s and chromatin remodeling factors. Finally, multiple findings support the indirect participation of G4s in chromatin reshaping via interactions with remodeling-related transcription factors (TFs) or damage responders. Here, the links between the above processes are analyzed; also, how further elucidation of these processes may stimulate the progress of epigenetic therapy is discussed, and the remaining open questions are highlighted.
Collapse
Affiliation(s)
- Anna Varizhuk
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Ekaterina Isaakova
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| | - Galina Pozmogova
- Biophysics Department, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, 119435, Russia
| |
Collapse
|
160
|
Wiggers CRM, Govers AMAP, Lelieveld D, Egan DA, Zwaan CM, Sonneveld E, Coffer PJ, Bartels M. Epigenetic drug screen identifies the histone deacetylase inhibitor NSC3852 as a potential novel drug for the treatment of pediatric acute myeloid leukemia. Pediatr Blood Cancer 2019; 66:e27785. [PMID: 31044544 DOI: 10.1002/pbc.27785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/15/2019] [Accepted: 04/12/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous disease regarding morphology, immunophenotyping, genetic abnormalities, and clinical behavior. The overall survival rate of pediatric AML is 60% to 70%, and has not significantly improved over the past two decades. Children with Down syndrome (DS) are at risk of developing acute megakaryoblastic leukemia (AMKL), which can be preceded by a transient myeloproliferative disorder during the neonatal period. Intensification of current treatment protocols is not feasible due to already high treatment-related morbidity and mortality. Instead, more targeted therapies with less severe side effects are highly needed. PROCEDURE To identify potential novel therapeutic targets for myeloid disorders in children, including DS-AMKL and non-DS-AML, we performed an unbiased compound screen of 80 small molecules targeting epigenetic regulators in three pediatric AML cell lines that are representative for different subtypes of pediatric AML. Three candidate compounds were validated and further evaluated in normal myeloid precursor cells during neutrophil differentiation and in (pre-)leukemic pediatric patient cells. RESULTS Candidate drugs LMK235, NSC3852, and bromosporine were effective in all tested pediatric AML cell lines with antiproliferative, proapoptotic, and differentiation effects. Out of these three compounds, the pan-histone deacetylase inhibitor NSC3852 specifically induced growth arrest and apoptosis in pediatric AML cells, without disrupting normal neutrophil differentiation. CONCLUSION NSC3852 is a potential candidate drug for further preclinical testing in pediatric AML and DS-AMKL.
Collapse
Affiliation(s)
- Caroline R M Wiggers
- Department of Pediatric Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anita M A P Govers
- Department of Pediatric Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.,Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Daphne Lelieveld
- Cell Screening Core, Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - David A Egan
- Cell Screening Core, Department of Cell Biology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - C Michel Zwaan
- Prinsess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Department of Pediatric Hematology and Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Edwin Sonneveld
- Prinsess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.,Dutch Childhood Oncology Group (DCOG), Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Paul J Coffer
- Center for Molecular Medicine and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marije Bartels
- Department of Pediatric Hematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
161
|
Abstract
Less than a decade ago, it was shown that bromodomains, acetyl lysine 'reader' modules found in proteins with varied functions, were highly tractable small-molecule targets. This is an unusual property for protein-protein or protein-peptide interaction domains, and it prompted a wave of chemical probe discovery to understand the biological potential of new agents that targeted bromodomains. The original examples, inhibitors of the bromodomain and extra-terminal (BET) class of bromodomains, showed enticing anti-inflammatory and anticancer activities, and several compounds have since advanced to human clinical trials. Here, we review the current state of BET inhibitor biology in relation to clinical development, and we discuss the next wave of bromodomain inhibitors with clinical potential in oncology and non-oncology indications. The lessons learned from BET inhibitor programmes should affect efforts to develop drugs that target non-BET bromodomains and other epigenetic readers.
Collapse
|
162
|
Wang C, Jiang S, Ke L, Zhang L, Li D, Liang J, Narita Y, Hou I, Chen CH, Wang L, Zhong Q, Ling Y, Lv X, Xiang Y, Guo X, Teng M, Tsao SW, Gewurz BE, Zeng MS, Zhao B. Genome-wide CRISPR-based gene knockout screens reveal cellular factors and pathways essential for nasopharyngeal carcinoma. J Biol Chem 2019; 294:9734-9745. [PMID: 31073033 PMCID: PMC6597810 DOI: 10.1074/jbc.ra119.008793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Early diagnosis of nasopharyngeal carcinoma (NPC) is difficult because of a lack of specific symptoms. Many patients have advanced disease at diagnosis, and these patients respond poorly to treatment. New treatments are therefore needed to improve the outcome of NPC. To better understand the molecular pathogenesis of NPC, here we used an NPC cell line in a genome-wide CRISPR-based knockout screen to identify the cellular factors and pathways essential for NPC (i.e. dependence factors). This screen identified the Moz, Ybf2/Sas3, Sas2, Tip60 histone acetyl transferase complex, NF-κB signaling, purine synthesis, and linear ubiquitination pathways; and MDM2 proto-oncogene as NPC dependence factors/pathways. Using gene knock out, complementary DNA rescue, and inhibitor assays, we found that perturbation of these pathways greatly reduces the growth of NPC cell lines but does not affect growth of SV40-immortalized normal nasopharyngeal epithelial cells. These results suggest that targeting these pathways/proteins may hold promise for achieving better treatment of patients with NPC.
Collapse
Affiliation(s)
- Chong Wang
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Sizun Jiang
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Liangru Ke
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Luyao Zhang
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Difei Li
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Jun Liang
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Yohei Narita
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Isabella Hou
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Chen-Hao Chen
- the Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- the Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts 02115
| | - Liangwei Wang
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Qian Zhong
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yihong Ling
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xing Lv
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yanqun Xiang
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiang Guo
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Mingxiang Teng
- the Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, and
| | - Sai-Wah Tsao
- the School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Benjamin E Gewurz
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Mu-Sheng Zeng
- the State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China,
| | - Bo Zhao
- From the Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
163
|
Abstract
Epigenetic reprogramming plays a crucial role in the tumorigenicity and maintenance of tumor-specific gene expression that especially occurs through DNA methylation and/or histone modifications. It has well-defined mechanisms. It is known that alterations in the DNA methylation pattern and/or the loss of specific histone acetylation/methylation markers are related to several hallmarks of cancer, such as drug resistance, stemness, epithelial-mesenchymal transition, and metastasis. It has also recently been highlighted that epigenetic alterations are critical for the regulation of the stemlike properties of cancer cells (tumor-initiating cells; cancer stem cells). Cancer stem cells are thought to be responsible for the recurrence of cancer which makes the patient return to the clinic with metastatic tumor tissue. Hence, the dysregulation of epigenetic machinery represents potential new therapeutic targets. Therefore, compounds with epigenetic activities have become crucial for developing new therapy regimens (e.g., antimetastatic agents) in the fight against cancer. Here, we review the epigenetic modifiers that have already been used in the clinic and/or in clinical trials, related preclinical studies in cancer therapy, and the smart combination strategies that target cancer stem cells along with the other cancer cells. The emerging role of epitranscriptome (RNA epigenetic) in cancer therapy has also been included in this review as a new avenue and potential target for the better management of cancer-beneficial epigenetic machinery.
Collapse
Affiliation(s)
- Remzi Okan Akar
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Selin Selvi
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Engin Ulukaya
- Department of Medical Biochemistry, Faculty of Medicine, İstinye University, İstanbul, Turkey
| | - Nazlıhan Aztopal
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, İstinye University, İstanbul, Turkey
| |
Collapse
|
164
|
Xu J, Wang Q, Leung ELH, Li Y, Fan X, Wu Q, Yao X, Liu L. Compound C620-0696, a new potent inhibitor targeting BPTF, the chromatin-remodeling factor in non-small-cell lung cancer. Front Med 2019; 14:60-67. [PMID: 31104301 DOI: 10.1007/s11684-019-0694-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
Bromodomain PHD-finger transcription factor (BPTF) is the largest subunit of the nucleosome remodeling factor and plays an important role in chromatin remodeling for gene activation through its association with histone acetylation or methylation. BPTF is also involved in oncogene transcription in diverse progressions of cancers. Despite clinical trials for inhibitors of bromodomain and extra-terminal family proteins in human cancers, no potent and selective inhibitor targeting the BPTF bromodomain has been discovered. In this study, we identified a potential inhibitor, namely, C620-0696, by computational docking modeling to target bromodomain. Results of biolayer interferometry revealed that compound C620-0696 exhibited high binding affinity to the BPTF bromodomain. Moreover, C620-0696 was cytotoxic in BPTF with a high expression of non-small-cell lung cancer (NSCLC) cells. It suppressed the expression of the BPTF target gene c-MYC, which is known as an oncogenic transcriptional regulator in various cancers. C620-0696 also partially inhibited the migration and colony formation of NSCLC cells owing to apoptosis induction and cell cycle blockage. Thus, our study presents an effective strategy to target a bromodomain factor-mediated tumorigenesis in cancers with small molecules, supporting further exploration of the use of these inhibitors in oncology.
Collapse
Affiliation(s)
- Jiahui Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China
| | - Qianqian Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China
| | - Elaine Lai Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China
- Respiratory Medicine Department, Taihe Hospital, Hubei University of Medicine, Shiyan, 236600, China
- Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health and State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China.
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), 519020, China.
| |
Collapse
|
165
|
Taylor R, Long J, Yoon JW, Childs R, Sylvestersen KB, Nielsen ML, Leong KF, Iannaccone S, Walterhouse DO, Robbins DJ, Iannaccone P. Regulation of GLI1 by cis DNA elements and epigenetic marks. DNA Repair (Amst) 2019; 79:10-21. [PMID: 31085420 PMCID: PMC6570425 DOI: 10.1016/j.dnarep.2019.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022]
Abstract
GLI1 is one of three transcription factors (GLI1, GLI2 and GLI3) that mediate the Hedgehog signal transduction pathway and play important roles in normal development. GLI1 and GLI2 form a positive-feedback loop and function as human oncogenes. The mouse and human GLI1 genes have untranslated 5′ exons and large introns 5′ of the translational start. Here we show that Sonic Hedgehog (SHH) stimulates occupancy in the introns by H3K27ac, H3K4me3 and the histone reader protein BRD4. H3K27ac and H3K4me3 occupancy is not significantly changed by removing BRD4 from the human intron and transcription start site (TSS) region. We identified six GLI binding sites (GBS) in the first intron of the human GLI1 gene that are in regions of high sequence conservation among mammals. GLI1 and GLI2 bind all of the GBS in vitro. Elimination of GBS1 and 4 attenuates transcriptional activation by GLI1. Elimination of GBS1, 2, and 4 attenuates transcriptional activation by GLI2. Eliminating all sites essentially eliminates reporter gene activation. Further, GLI1 binds the histone variant H2A.Z. These results suggest that GLI1 and GLI2 can regulate GLI1 expression through protein-protein interactions involving complexes of transcription factors, histone variants, and reader proteins in the regulatory intron of the GLI1 gene. GLI1 acting in trans on the GLI1 intron provides a mechanism for GLI1 positive feedback and auto-regulation. Understanding the combinatorial protein landscape in this locus will be important to interrupting the GLI positive feedback loop and providing new therapeutic approaches to cancers associated with GLI1 overexpression.
Collapse
Affiliation(s)
- Robert Taylor
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - Jun Long
- The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, USA
| | - Joon Won Yoon
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - Ronnie Childs
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | | | | | - King-Fu Leong
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - Stephen Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - David O Walterhouse
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA
| | - David J Robbins
- The DeWitt Daughtry Family Department of Surgery, Miller School of Medicine, University of Miami, USA.
| | - Philip Iannaccone
- Developmental Biology Program, Stanley Manne Children's Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, USA.
| |
Collapse
|
166
|
Liu Y, Barta SK. Diffuse large B-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment. Am J Hematol 2019; 94:604-616. [PMID: 30859597 DOI: 10.1002/ajh.25460] [Citation(s) in RCA: 297] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
DISEASE OVERVIEW Diffuse large B-cell lymphoma (DLBCL) is the most common type of aggressive non-Hodgkin lymphoma originating from the germinal center, and it represents a heterogeneous group of diseases with variable outcomes that are differentially characterized by clinical features, cell of origin (COO), molecular features, and most recently, frequently recurring mutations. DIAGNOSIS DLBCL is ideally diagnosed from an excisional biopsy of a suspicious lymph node, which shows sheets of large cells that disrupt the underlying structural integrity of the follicle center and stain positive for pan-B-cell antigens, such as CD20 and CD79a. COO is determined by immunohistochemical stains, while molecular features such as double-hit or triple-hit disease are determined by fluorescent in situ hybridization analysis. Commercial tests for frequently recurring mutations are currently not routinely used to inform treatment. RISK STRATIFICATION Clinical prognostic systems for DLBCL, including the rituximab International Prognostic Index, age-adjusted IPI, and NCCN-IPI, use clinical factors for the risk stratification of patients, although this does not affect the treatment approach. Furthermore, DLBCL patients with non-germinal center B-cell (GCB)-like DLBCL (activated B-cell like and unclassifiable) have a poorer response to up-front chemoimmunotherapy (CI) compared to patients with GCB-like DLBCL. Those with c-MYC-altered disease alone and in combination with translocations in BCL2 and/or BCL6 (particularly when the MYC translocation partner is immunoglobulin) respond poorly to up-front CI and salvage autologous stem cell transplant at relapse. RISK-ADAPTED THERAPY This review will focus on differential treatment of DLBCL up-front and at the time of relapse by COO and molecular features.
Collapse
Affiliation(s)
- Yang Liu
- Fox Chase Cancer Center, Department of Hematology and Oncology Philadelphia Pennsylvania
| | - Stefan Klaus Barta
- Perelman Center for Advanced Medicine, University of Pennsylvania, Division Philadelphia Pennsylvania
| |
Collapse
|
167
|
Elshan NGRD, Rettig MB, Jung ME. Molecules targeting the androgen receptor (AR) signaling axis beyond the AR-Ligand binding domain. Med Res Rev 2019; 39:910-960. [PMID: 30565725 PMCID: PMC6608750 DOI: 10.1002/med.21548] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer-related mortality in men in the United States. The androgen receptor (AR) and the physiological pathways it regulates are central to the initiation and progression of PCa. As a member of the nuclear steroid receptor family, it is a transcription factor with three distinct functional domains (ligand-binding domain [LBD], DNA-binding domain [DBD], and transactivation domain [TAD]) in its structure. All clinically approved drugs for PCa ultimately target the AR-LBD. Clinically active drugs that target the DBD and TAD have not yet been developed due to multiple factors. Despite these limitations, the last several years have seen a rise in the discovery of molecules that could successfully target these domains. This review aims to present and comprehensively discuss such molecules that affect AR signaling through direct or indirect interactions with the AR-TAD or the DBD. The compounds discussed here include hairpin polyamides, niclosamide, marine sponge-derived small molecules (eg, EPI compounds), mahanine, VPC compounds, JN compounds, and bromodomain and extraterminal domain inhibitors. We highlight the significant in vitro and in vivo data found for each compound and the apparent limitations and/or potential for further development of these agents as PCa therapies.
Collapse
Affiliation(s)
| | - Matthew B. Rettig
- . Division of Hematology/Oncology, VA Greater Los Angeles Healthcare System West LA, Los Angeles, CA, United States
- . Departments of Medicine and Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Michael E. Jung
- . Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, United States
| |
Collapse
|
168
|
Ostertag MS, Hutwelker W, Plettenburg O, Sattler M, Popowicz GM. Structural Insights into BET Client Recognition of Endometrial and Prostate Cancer-Associated SPOP Mutants. J Mol Biol 2019; 431:2213-2221. [PMID: 31026449 DOI: 10.1016/j.jmb.2019.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 11/25/2022]
Abstract
BET proteins such as BRD3 are oncogenic transcriptional coactivators. SPOP binding triggers their proteasomal degradation. In both endometrial and prostate cancers, SPOP mutations occur in the MATH domain, but with opposed influence on drug susceptibility. In prostate cancer, SPOP mutations presumably cause increased BET levels, decreasing BET inhibitor drug susceptibility. As opposed, in endometrial cancer, decreased BET levels concomitant with higher BET inhibitor drug susceptibility were observed. Here, we present the to our knowledge first co-crystal structure of SPOP and a bromodomain containing protein (BRD3). Our structural and biophysical data confirm the suggested loss-of-function in prostate cancer-associated SPOP mutants and provide mechanistic explanation. As opposed to previous literature, our data on endometrial cancer-associated SPOP mutants do not show altered binding behavior compared to wild-type SPOP, indicating a more complex regulatory mechanism. SPOP mutation screening may thus be considered a valuable personalized medicine tool for effective antitumor therapy.
Collapse
Affiliation(s)
- Michael Sebastian Ostertag
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Wiebke Hutwelker
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| | - Grzegorz Maria Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair of Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
169
|
Del Gaudio N, Di Costanzo A, Liu NQ, Conte L, Migliaccio A, Vermeulen M, Martens JHA, Stunnenberg HG, Nebbioso A, Altucci L. BRD9 binds cell type-specific chromatin regions regulating leukemic cell survival via STAT5 inhibition. Cell Death Dis 2019; 10:338. [PMID: 31000698 PMCID: PMC6472371 DOI: 10.1038/s41419-019-1570-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023]
Abstract
Leukemia is characterized by genetic and epigenetic mutations resulting in selection of cancer cells, which are unable to differentiate. Although genetic alterations are difficult to target, the epigenome is intrinsically dynamic and readily offers new therapeutic strategies. Thus, identifying cancer-specific context-dependent targets and unraveling their biological function may open up new therapeutic perspectives. Here we identify bromodomain-containing protein 9 (BRD9) as a critical target required in acute myeloid leukemia (AML). We show that BRD9 is overexpressed in AML cells including ex vivo primary blasts compared with CD34+ cells. By targeting BRD9 expression in AML, we observed an alteration in proliferation and survival, ultimately resulting in the induction of apoptosis. Intriguingly, genome-wide profiling revealed that BRD9 binds enhancer regions in a cell type-specific manner, regulating cell type-related processes. We unveil a novel BRD9-sustained STAT5 pathway activation via regulation of SOCS3 expression levels. Our findings identify a previously undescribed BRD9-STAT5 axis as critical for leukemia maintenance, suggesting BRD9 as a potential therapeutic target.
Collapse
Affiliation(s)
- Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy.
| | - Antonella Di Costanzo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Ning Qing Liu
- Division Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Lidio Conte
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Napoli, Italy.
| |
Collapse
|
170
|
Ganesan A. Epigenetic drug discovery: a success story for cofactor interference. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0069. [PMID: 29685973 DOI: 10.1098/rstb.2017.0069] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Within the past two decades, seven epigenetic drugs have received regulatory approval and numerous other candidates are currently in clinical trials. Among the epigenetic targets are the writer and eraser enzymes that are, respectively, responsible for the reversible introduction and removal of structural modifications in the nucleosome. This review discusses the progress achieved in the design and development of inhibitors against the key writer and eraser pairs: DNA methyltransferases and Tet demethylases; lysine/arginine methyltransferases and lysine demethylases; and histone acetyltransferases and histone deacetylases. A common theme for the successful inhibition of these enzymes in a potent and selective manner is the targeting of the cofactors present in the active site, namely zinc and iron cations, S-adenosylmethione, nicotinamide adenine dinucleotide, flavin adenine dinucleotide and acetyl Coenzyme A.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- A Ganesan
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK .,Freiburg Institute of Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
171
|
Chen Y, Xu L, Mayakonda A, Huang ML, Kanojia D, Tan TZ, Dakle P, Lin RYT, Ke XY, Said JW, Chen J, Gery S, Ding LW, Jiang YY, Pang A, Puhaindran ME, Goh BC, Koeffler HP. Bromodomain and extraterminal proteins foster the core transcriptional regulatory programs and confer vulnerability in liposarcoma. Nat Commun 2019; 10:1353. [PMID: 30903020 PMCID: PMC6430783 DOI: 10.1038/s41467-019-09257-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/28/2019] [Indexed: 01/09/2023] Open
Abstract
Liposarcomas (LPSs) are a group of malignant mesenchymal tumors showing adipocytic differentiation. Here, to gain insight into the enhancer dysregulation and transcriptional addiction in this disease, we chart super-enhancer structures in both LPS tissues and cell lines. We identify a bromodomain and extraterminal (BET) protein-cooperated FUS-DDIT3 function in myxoid LPS and a BET protein-dependent core transcriptional regulatory circuitry consisting of FOSL2, MYC, and RUNX1 in de-differentiated LPS. Additionally, SNAI2 is identified as a crucial downstream target that enforces both proliferative and metastatic potentials to de-differentiated LPS cells. Genetic depletion of BET genes, core transcriptional factors, or SNAI2 mitigates consistently LPS malignancy. We also reveal a compelling susceptibility of LPS cells to BET protein degrader ARV-825. BET protein depletion confers additional advantages to circumvent acquired resistance to Trabectedin, a chemotherapy drug for LPS. Moreover, this study provides a framework for discovering and targeting of core oncogenic transcriptional programs in human cancers.
Collapse
Affiliation(s)
- Ye Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Mo-Li Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- School of Biology and Basic Medical Sciences, Soochow University, 215123, Suzhou, China
| | - Deepika Kanojia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Pushkar Dakle
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Ruby Yu-Tong Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Xin-Yu Ke
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Jonathan W Said
- Department of Pathology, UCLA Medical Center, University of California, Los Angeles, CA, 90095, USA
| | - Jianxiang Chen
- Holistic Integrative Pharmacy Institutes, School of Medicine, Hangzhou Normal University, 311121, Hangzhou, China
| | - Sigal Gery
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Yan-Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Angela Pang
- National University Cancer Institute, National University Hospital, Singapore, 119074, Singapore
| | - Mark Edward Puhaindran
- National University Cancer Institute, National University Hospital, Singapore, 119074, Singapore
- Division of Musculoskeletal Oncology, University Orthopaedics, Hand and Reconstructive Microsurgery Cluster, National University Hospital, Singapore, 119074, Singapore
- Department of Hand and Reconstructive Microsurgery, National University Hospital, Singapore, 119074, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- National University Cancer Institute, National University Hospital, Singapore, 119074, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- National University Cancer Institute, National University Hospital, Singapore, 119074, Singapore
| |
Collapse
|
172
|
Maggisano V, Celano M, Lepore SM, Sponziello M, Rosignolo F, Pecce V, Verrienti A, Baldan F, Mio C, Allegri L, Maranghi M, Falcone R, Damante G, Russo D, Bulotta S. Human telomerase reverse transcriptase in papillary thyroid cancer: gene expression, effects of silencing and regulation by BET inhibitors in thyroid cancer cells. Endocrine 2019; 63:545-553. [PMID: 30661164 DOI: 10.1007/s12020-018-01836-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/29/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE Mutations in TERT promoter have been detected in the more aggressive papillary thyroid cancers (PTCs). To elucidate the role of TERT as an eligible molecular target in these tumors, the expression of hTERT was analyzed in a series of PTCs and the effects of both pharmacological and RNA-interference-induced hTERT silencing were investigated in two human PTC cell lines (K1 and BCPAP). METHODS The expression levels of hTERT mRNA and protein were evaluated by real-time PCR and western blot assays, respectively. Effects of hTERT silencing on PTC cell lines were analyzed by MTT, migration and western blot assays. Pharmacological inhibition of hTERT was performed using two bromodomain and extra-terminal (BET) inhibitors, JQ1 and I-BET762. RESULTS hTERT expression results increased in 20 out of 48 PTCs, including tumors either positive or negative for the presence of hTERT promoter and/or BRAF mutations. In K1 and BCPAP cells, hTERT silencing determined a reduction in cell viability (~50% for K1 and ~70%, for BCPAP, vs control) and migration properties that were associated with a decrease of AKT phosphorylation and β-Catenin expression. Moreover, hTERT mRNA levels were down-regulated by two BET inhibitors, JQ1 and I-BET762, which at the same dosage (0.5 and 5 µM) reduced the growth of these thyroid cancer cells. CONCLUSIONS These findings demonstrate that hTERT may represent an excellent therapeutic target in subgroups of aggressive PTCs.
Collapse
Affiliation(s)
- Valentina Maggisano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy
| | - Marilena Celano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy
| | - Saverio Massimo Lepore
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy
| | - Marialuisa Sponziello
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Francesca Rosignolo
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Valeria Pecce
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Federica Baldan
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Catia Mio
- Department of Medical Area, University of Udine, 33100, Udine, Italy
| | - Lorenzo Allegri
- Department of Medical Area, University of Udine, 33100, Udine, Italy
| | - Marianna Maranghi
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Rosa Falcone
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Giuseppe Damante
- Department of Medical Area, University of Udine, 33100, Udine, Italy
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy.
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100, Catanzaro, Italy
| |
Collapse
|
173
|
Goldman SL, Hassan C, Khunte M, Soldatenko A, Jong Y, Afshinnekoo E, Mason CE. Epigenetic Modifications in Acute Myeloid Leukemia: Prognosis, Treatment, and Heterogeneity. Front Genet 2019; 10:133. [PMID: 30881380 PMCID: PMC6405641 DOI: 10.3389/fgene.2019.00133] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/08/2019] [Indexed: 01/09/2023] Open
Abstract
Leukemia, specifically acute myeloid leukemia (AML), is a common malignancy that can be differentiated into multiple subtypes based on leukemogenic history and etiology. Although genetic aberrations, particularly cytogenetic abnormalities and mutations in known oncogenes, play an integral role in AML development, epigenetic processes have been shown as a significant and sometimes independent dynamic in AML pathophysiology. Here, we summarize how tumors evolve and describe AML through an epigenetic lens, including discussions on recent discoveries that include prognostics from epialleles, changes in RNA function for hematopoietic stem cells and the epitranscriptome, and novel epigenetic treatment options. We further describe the limitations of treatment in the context of the high degree of heterogeneity that characterizes acute myeloid leukemia.
Collapse
Affiliation(s)
- Samantha L Goldman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,University of Maryland, College Park, MD, United States
| | - Ciaran Hassan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Mihir Khunte
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Arielle Soldatenko
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Yunji Jong
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States.,The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
174
|
Abstract
Cancer can be identified as a chaotic cell state, which breaks the rules that govern growth and reproduction, with main characteristics such as uncontrolled division, invading other tissues, usurping resources, and eventually killing its host. It was once believed that cancer is caused by a progressive series of genetic aberrations, and certain mutations of genes, including oncogenes and tumor suppressor genes, have been identified as the cause of cancer. However, piling evidence suggests that epigenetic modifications working in concert with genetic mechanisms to regulate transcriptional activity are dysregulated in many diseases, including cancer. Cancer epigenetics explain a wide range of heritable changes in gene expression, which do not come from any alteration in DNA sequences. Aberrant DNA methylation, histone modifications, and expression of long non-coding RNAs (lncRNAs) are key epigenetic mechanisms associated with tumor initiation, cancer progression, and metastasis. Within the past decade, cancer epigenetics have enabled us to develop novel biomarkers and therapeutic target for many types of cancers. In this review, we will summarize the major epigenetic changes involved in cancer biology along with clinical and preclinical results developed as novel cancer therapeutics.
Collapse
Affiliation(s)
- Jong Woo Park
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeung-Whan Han
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
175
|
Emerging roles of and therapeutic strategies targeting BRD4 in cancer. Cell Immunol 2019; 337:48-53. [PMID: 30832981 DOI: 10.1016/j.cellimm.2019.02.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/27/2019] [Accepted: 02/02/2019] [Indexed: 12/12/2022]
Abstract
The Bromodomain and Extra-terminal (BET) family of proteins were first recognized as important epigenetic regulators in inflammatory processes; however, there is increasing evidence to support the notion that BET proteins also play a critical role in 'reading' chromatin and recruiting chromatin-regulating enzymes to control gene expression in a number of pathologic processes, including cancer. To this end, the mechanisms by which BET proteins regulate chromatin remodeling and promote tumor-associated inflammation have been heavily studied over the past decade. This article to review the biology of BET protein dysfunction in promoting tumor-associated inflammation and cancer progression and the application of small molecule inhibitors that target specific BET proteins, alone or in combination with immunomodulatory agents as a novel therapeutic strategy for cancer patients.
Collapse
|
176
|
Sammons S, Kornblum NS, Blackwell KL. Fulvestrant-Based Combination Therapy for Second-Line Treatment of Hormone Receptor-Positive Advanced Breast Cancer. Target Oncol 2019; 14:1-12. [PMID: 30136059 PMCID: PMC6407749 DOI: 10.1007/s11523-018-0587-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fulvestrant is recommended for patients with hormone receptor-positive (HR+) advanced breast cancer (ABC) who progress after aromatase inhibitor therapy. As most patients in this setting have already developed mechanisms of resistance to endocrine therapy, targeting biological pathways associated with endocrine resistance in combination with fulvestrant may improve outcomes. Therefore, evidence supporting a combinatorial treatment approach in the second-line setting was investigated based on a search of PubMed and ClinicalTrials.gov . Twenty-eight studies of targeted therapies plus fulvestrant as second-line treatment for HR+ ABC were identified, including three and six key randomized trials exploring cyclin-dependent kinase 4/6 (CDK4/6) inhibitors and phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitors plus fulvestrant respectively. Additional combinations with fulvestrant included inhibitors of epidermal growth factor receptors, androgen receptor, and the bromodomain and extra-terminal family of proteins. Across the studies reviewed with available data, the addition of targeted therapies to fulvestrant resulted in clinically meaningful improvements in progression-free survival compared with fulvestrant alone. While some challenging toxicities were observed, most adverse events could be effectively managed. Selection of second-line targeted therapy for use with fulvestrant should consider prior treatment as well as the mutation status of the tumor. In conclusion, available data indicate that fulvestrant combined with agents targeting mechanisms of endocrine resistance is a promising approach. The ongoing trials identified in this review will help further inform the selection of combination treatments with fulvestrant for HR+ ABC.
Collapse
Affiliation(s)
| | | | - Kimberly L. Blackwell
- Department of Medicine, Duke University Medical Center, Durham, NC 27710 USA
- Present Address: Eli Lilly and Company, Indianapolis, IN 46285 USA
| |
Collapse
|
177
|
miR-140-3p functions as a tumor suppressor in squamous cell lung cancer by regulating BRD9. Cancer Lett 2019; 446:81-89. [PMID: 30660651 DOI: 10.1016/j.canlet.2019.01.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/10/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022]
Abstract
Squamous cell lung cancer (SqCLC) is among the most malignant lung cancers worldwide, lacking biomarkers for diagnostic and targets for treatment. In this study, we observed that miR-140-3p was expressed at low levels both in SqCLC cell lines and patient samples, while overexpression of miR-140-3p dramatically reduced the cell proliferation and invasion in SqCLC cells and Patient derived xenograft (PDX) models. Our further investigation indicated miR-140-3p negatively affected the tumorigenesis of SqCLC by down-regulating the expression of BRD9, an oncogene in SqCLC. Inhibition of BRD9 repressed SqCLC tumorigenesis by regulating c-myc expression. Meanwhile, BRD9 expression is up-regulated and negatively correlated with miR-140-3p in clinical samples; a meta-analysis of survival data indicates that SqCLC patients with high levels of BRD9 in their tumors have a worse prognosis. Collectively, our study suggests the prognostic and therapeutic roles of miR-140-3p and BRD9 axis in squamous cell lung cancer.
Collapse
|
178
|
Han Y, Lindner S, Bei Y, Garcia HD, Timme N, Althoff K, Odersky A, Schramm A, Lissat A, Künkele A, Deubzer HE, Eggert A, Schulte JH, Henssen AG. Synergistic activity of BET inhibitor MK-8628 and PLK inhibitor Volasertib in preclinical models of medulloblastoma. Cancer Lett 2019; 445:24-33. [PMID: 30611741 DOI: 10.1016/j.canlet.2018.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022]
Abstract
Medulloblastoma is the most prevalent central nervous system tumor in children. Targeted treatment approaches for patients with high-risk medulloblastoma are needed as current treatment regimens are not curative in many cases and cause significant therapy-related morbidity. Medulloblastoma harboring MYC amplification have the most aggressive clinical course and worst outcome. Targeting the BET protein BRD4 has significant anti-tumor effects in preclinical models of MYC-amplified medulloblastoma, however, in most cases these are not curative. We here assessed the therapeutic efficacy of the orally bioavailable BRD4 inhibitor, MK-8628, in preclinical models of medulloblastoma. MK-8628 showed therapeutic efficacy against in vitro and in vivo models of MYC-amplified medulloblastoma by inducing apoptotic cell death and cell cycle arrest. Gene expression analysis of cells treated with MK-8628 showed that anti-tumor effects were accompanied by significant repression of MYC transcription as well as disruption of MYC-regulated transcriptional programs. Additionally, we found that targeting of MYC protein stability through pharmacological PLK1 inhibition showed synergistic anti-medulloblastoma effects when combined with MK-8628 treatment. Thus, MK-8628 is effective against preclinical high-risk medulloblastoma models and its effects can be enhanced through simultaneous targeting of PLK1.
Collapse
Affiliation(s)
- Youjia Han
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | - Sven Lindner
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany
| | - Yi Bei
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | | | - Natalie Timme
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | - Kristina Althoff
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany
| | - Andrea Odersky
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany
| | - Alexander Schramm
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Essen, Germany
| | - Andrej Lissat
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany; German Consortium for Translational Cancer Research (DKTK), Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Hedwig E Deubzer
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany; German Consortium for Translational Cancer Research (DKTK), Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; Experimental and Clinical Research Center (ECRC) of the Charité and the Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany; German Consortium for Translational Cancer Research (DKTK), Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany; German Consortium for Translational Cancer Research (DKTK), Berlin, Germany
| | - Anton G Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany; German Consortium for Translational Cancer Research (DKTK), Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
179
|
Traquete R, Henderson E, Picaud S, Cal PMSD, Sieglitz F, Rodrigues T, Oliveira R, Filippakopoulos P, Bernardes GJL. Evaluation of linker length effects on a BET bromodomain probe. Chem Commun (Camb) 2019; 55:10128-10131. [DOI: 10.1039/c9cc05054j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A systematic study of the biological effects of introducing linkers of different chemical nature and length into BET bromodomain benzodiazepine ligands.
Collapse
Affiliation(s)
- Rui Traquete
- Instituto de Medicina Molecular João Lobo Antunes
- Faculdade de Medicina
- Universidade de Lisboa
- Lisboa
- Portugal
| | - Elizabeth Henderson
- Structural Genomics Consortium
- Nuffield Department of Clinical Medicine
- Oxford University
- ORCRB
- Roosevelt Drive
| | - Sarah Picaud
- Structural Genomics Consortium
- Nuffield Department of Clinical Medicine
- Oxford University
- ORCRB
- Roosevelt Drive
| | - Pedro M. S. D. Cal
- Instituto de Medicina Molecular João Lobo Antunes
- Faculdade de Medicina
- Universidade de Lisboa
- Lisboa
- Portugal
| | - Florian Sieglitz
- Instituto de Medicina Molecular João Lobo Antunes
- Faculdade de Medicina
- Universidade de Lisboa
- Lisboa
- Portugal
| | - Tiago Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes
- Faculdade de Medicina
- Universidade de Lisboa
- Lisboa
- Portugal
| | | | - Panagis Filippakopoulos
- Structural Genomics Consortium
- Nuffield Department of Clinical Medicine
- Oxford University
- ORCRB
- Roosevelt Drive
| | - Gonçalo J. L. Bernardes
- Instituto de Medicina Molecular João Lobo Antunes
- Faculdade de Medicina
- Universidade de Lisboa
- Lisboa
- Portugal
| |
Collapse
|
180
|
Natesan R, Aras S, Effron SS, Asangani IA. Epigenetic Regulation of Chromatin in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:379-407. [PMID: 31900918 DOI: 10.1007/978-3-030-32656-2_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetics refers to mitotically/meiotically heritable mechanisms that regulate gene transcription without a need for changes in the DNA code. Covalent modifications of DNA, in the form of methylation, and histone post-translational modifications, in the form of acetylation and methylation, constitute the epigenetic code of a cell. Both DNA and histone modifications are highly dynamic and often work in unison to define the epigenetic state of a cell. Most epigenetic mechanisms regulate gene transcription by affecting localized/genome-wide transitions between heterochromatin and euchromatin states, thereby altering the accessibility of the transcriptional machinery and in turn, reduce/increase transcriptional output. Altered chromatin structure is associated with cancer progression, and epigenetic plasticity primarily governs the resistance of cancer cells to therapeutic agents. In this chapter, we specifically focus on regulators of histone methylation and acetylation, the two well-studied chromatin post-translational modifications, in the context of prostate cancer.
Collapse
Affiliation(s)
- Ramakrishnan Natesan
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shweta Aras
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel Sander Effron
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Irfan A Asangani
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
181
|
Prevention of hepatic stellate cell activation using JQ1- and atorvastatin-loaded chitosan nanoparticles as a promising approach in therapy of liver fibrosis. Eur J Pharm Biopharm 2019; 134:96-106. [DOI: 10.1016/j.ejpb.2018.11.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/09/2018] [Accepted: 11/20/2018] [Indexed: 01/14/2023]
|
182
|
Loo Yau H, Ettayebi I, De Carvalho DD. The Cancer Epigenome: Exploiting Its Vulnerabilities for Immunotherapy. Trends Cell Biol 2019; 29:31-43. [DOI: 10.1016/j.tcb.2018.07.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/06/2023]
|
183
|
Cattaneo A, Chirichella M. Targeting the Post-translational Proteome with Intrabodies. Trends Biotechnol 2018; 37:578-591. [PMID: 30577991 DOI: 10.1016/j.tibtech.2018.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
The complexity of the proteome exceeds that of the genome. Post-translational modifications (PTMs) and conformational changes of proteins trigger new molecular interactions whose systematic elucidation is hampered by the lack of specific tools. PTMs are particularly relevant for epigenetic regulation of gene expression; a field of translational interest. However, state-of-the-art inhibitors used in epigenetic studies and therapies target modifier enzymes such as acetylases and deacetylases, rather than a single PTM protein per se. The systematic development of anti-PTM intrabodies, which allow targeting of intracellular proteins in the context of living cells, will help reaching a new level of precision and specificity in the description of epigenetics, paving the way to new therapeutic opportunities.
Collapse
Affiliation(s)
- Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy.
| | - Michele Chirichella
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, 7 - 56126 Pisa, Italy; Current address: Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| |
Collapse
|
184
|
Rahman A, O'Sullivan P, Rozas I. Recent developments in compounds acting in the DNA minor groove. MEDCHEMCOMM 2018; 10:26-40. [PMID: 30774852 DOI: 10.1039/c8md00425k] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
Abstract
The macromolecule that carries genetic information, DNA, is considered as an exceptional target for diseases depending on cellular division of malignant cells (i.e. cancer), microbes (i.e. bacteria) or parasites (i.e. protozoa). To aim for a comprehensive review to cover all aspects related to DNA targeting would be an impossible task and, hence, the objective of the present review is to present, from a medicinal chemistry point of view, recent developments of compounds targeting the minor groove of DNA. Accordingly, we discuss the medicinal chemistry aspects of heterocyclic small-molecules binding the DNA minor groove, as novel anticancer, antibacterial and antiparasitic agents.
Collapse
Affiliation(s)
- Adeyemi Rahman
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| | - Patrick O'Sullivan
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| | - Isabel Rozas
- School of Chemistry , Trinity Biomedical Sciences Institute , Trinity College Dublin , 152-160-Pearse Street , Dublin 2 , Ireland .
| |
Collapse
|
185
|
Interfering with bromodomain epigenome readers as therapeutic option in mucoepidermoid carcinoma. Cell Oncol (Dordr) 2018; 42:143-155. [PMID: 30539410 DOI: 10.1007/s13402-018-0416-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2018] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Emerging evidence indicates that bromodomains comprise a conserved class of epigenome readers involved in cancer development and inflammation. Bromodomains are associated with epigenetic modifications of gene transcription through interactions with lysine residues of histone tails. Particularly, the bromodomain and extra-terminal domain (BET) family member BRD4 has been found to be involved in the control over oncogenes, including c-MYC, and in the maintenance of downstream inflammatory processes. The objective of this study was to evaluate the effect of pharmacologically displacing BRD4 in mucoepidermoid carcinoma (MEC) cells. METHODS We assessed the presence of BRD4 levels in a panel of human MEC tissue samples in conjunction with histological grading and clinical information. In vitro studies were carried out using human MEC-derived cell lines. The BET inhibitor iBET762 was administered to MEC cells to assess the impact of disrupted BRD4 signaling on colony forming capacities and cell cycle status. The activation of cellular senescence induced by iBET762 was determined by immunohistochemical staining for p16ink4. Flow cytometry was used to identify populations of cancer stem cells in MEC-derived cell lines. RESULTS We found that primary human MECs and MEC-derived cell lines are endowed with high BRD4 expression levels compared to those in normal salivary glands. We also found that, by displacing BRD4 from chromatin using the BET inhibitor iBET762, MEC cells lose their colony forming capacities and undergo G1 cell cycle arrest and senescence. Finally, we found that targeted displacement of BRD4 from chromatin results in depletion of cancer stem cells from the overall MEC cell populations. CONCLUSIONS Our findings indicate that bromodomain-mediated gene regulation constitutes an epigenetic mechanism that is deregulated in MEC cells and that the use of BET inhibitors may serve as a feasible therapeutic strategy to manage MECs.
Collapse
|
186
|
DeVaux RS, Herschkowitz JI. Beyond DNA: the Role of Epigenetics in the Premalignant Progression of Breast Cancer. J Mammary Gland Biol Neoplasia 2018; 23:223-235. [PMID: 30306389 PMCID: PMC6244889 DOI: 10.1007/s10911-018-9414-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Ductal Carcinoma in Situ (DCIS) is an early breast cancer lesion that is considered a nonobligate precursor to development of invasive ductal carcinoma (IDC). Although only a small subset of DCIS lesions are predicted to progress into a breast cancer, distinguishing innocuous from minacious DCIS lesions remains a clinical challenge. Thus, patients diagnosed with DCIS will undergo surgery with the potential for radiation and hormone therapy. This has led to a current state of overdiagnosis and overtreatment. Interrogating the transcriptome alone has yet to define clear functional determinants of progression from DCIS to IDC. Epigenetic changes, critical for imprinting and tissue specific development, in the incorrect context can lead to global signaling rewiring driving pathological phenotypes. Epigenetic signaling pathways, and the molecular players that interpret and sustain their signals, are critical to understanding the underlying pathology of breast cancer progression. The types of epigenetic changes, as well as the molecular players, are expanding. In addition to DNA methylation, histone modifications, and chromatin remodeling, we must also consider enhancers as well as the growing field of noncoding RNAs. Herein we will review the epigenetic interactions that have been uncovered in early stage lesions that impact breast cancer progression, and how these players may be utilized as biomarkers to mitigate overdiagnosis and overtreatment.
Collapse
Affiliation(s)
- Rebecca S DeVaux
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Jason I Herschkowitz
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, USA.
| |
Collapse
|
187
|
Jensen SM, Potts GK, Ready DB, Patterson MJ. Specific MHC-I Peptides Are Induced Using PROTACs. Front Immunol 2018; 9:2697. [PMID: 30524438 PMCID: PMC6262898 DOI: 10.3389/fimmu.2018.02697] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/01/2018] [Indexed: 01/10/2023] Open
Abstract
Peptides presented by the class-I major histocompatibility complex (MHC-I) are important targets for immunotherapy. The identification of these peptide targets greatly facilitates the generation of T-cell-based therapeutics. Herein, we report the capability of proteolysis targeting chimera (PROTAC) compounds to induce the presentation of specific MHC class-I peptides derived from endogenous cellular proteins. Using LC-MS/MS, we identified several BET-derived MHC-I peptides induced by treatment with three BET-directed PROTAC compounds. To understand our ability to tune this process, we measured the relative rate of presentation of these peptides under varying treatment conditions using label-free mass spectrometry quantification. We found that the rate of peptide presentation reflected the rate of protein degradation, indicating a direct relationship between PROTAC treatment and peptide presentation. We additionally analyzed the effect of PROTAC treatment on the entire immunopeptidome and found many new peptides that were displayed in a PROTAC-specific fashion: we determined that these identifications map to the BET pathway, as well as, potential off-target or unique-to-PROTAC pathways. This work represents the first evidence of the use of PROTAC compounds to induce the presentation of MHC-I peptides from endogenous cellular proteins, highlighting the capability of PROTAC compounds for the discovery and generation of new targets for immunotherapy.
Collapse
Affiliation(s)
- Stephanie M Jensen
- Discovery Chemistry and Technology, AbbVie North Chicago, IL, United States
| | - Gregory K Potts
- Discovery Chemistry and Technology, AbbVie North Chicago, IL, United States
| | - Damien B Ready
- Discovery Chemistry and Technology, AbbVie North Chicago, IL, United States
| | | |
Collapse
|
188
|
Kaczmarek KA, Clifford RL, Knox AJ. Epigenetic Changes in Airway Smooth Muscle as a Driver of Airway Inflammation and Remodeling in Asthma. Chest 2018; 155:816-824. [PMID: 30414795 DOI: 10.1016/j.chest.2018.10.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/10/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Epigenetic changes are heritable changes in gene expression, without changing the DNA sequence. Epigenetic processes provide a critical link between environmental insults to the airway and functional changes that determine how airway cells respond to future stimuli. There are three primary epigenetic processes: histone modifications, DNA modification, and noncoding RNAs. Airway smooth muscle has several important roles in the development and maintenance of the pathologic processes occurring in asthma, including inflammation, remodeling, and contraction/hyperresponsiveness. In this review, we describe the evidence for the role of epigenetic changes in driving these processes in airway smooth muscle cells in asthma, with a particular focus on histone modifications. We also discuss how existing therapies may target some of these changes and how epigenetic processes provide targets for the development of novel asthma therapeutics. Epigenetic marks may also provide a biomarker to assess phenotype and treatment responses.
Collapse
Affiliation(s)
- Klaudia A Kaczmarek
- Division of Respiratory Medicine, Nottingham University Hospitals NHS Trust (City Hospital Campus); and the Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node
| | - Rachel L Clifford
- Division of Respiratory Medicine, Nottingham University Hospitals NHS Trust (City Hospital Campus); and the Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node
| | - Alan J Knox
- Division of Respiratory Medicine, Nottingham University Hospitals NHS Trust (City Hospital Campus); and the Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node.
| |
Collapse
|
189
|
Shi L, Li S, Maurer K, Zhang Z, Petri M, Sullivan KE. Enhancer RNA and NFκB-dependent P300 regulation of ADAMDEC1. Mol Immunol 2018; 103:312-321. [PMID: 30352365 PMCID: PMC6260809 DOI: 10.1016/j.molimm.2018.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 01/27/2023]
Abstract
We observed increased expression of ADAMDEC1 RNA in monocytes from patients with systemic lupus erythematosus. The precise role of ADAMDEC1 is uncertain and uniquely among metalloproteinases it utilizes a zinc-coordinating aspartic acid residue which allows it to escape inhibition by tissue inhibitor of metalloprotease-3 (TIMP-3). A closely related gene encodes the protein ADAM28, which is not up-regulated in lupus. We leveraged the ability to look at both gene's promoters and enhancers simultaneously. ADAMDEC1 was up-regulated by LPS while ADAM28 was not upregulated in the short term. We identified MAP kinases and NFκB as critical cell pathways regulating the expression of ADAMDEC1. These same pathways were implicated in driving the expression of the ADAMDEC1 upstream enhancer RNAs. We demonstrated that binding of the enhancer RNAs produced from the upstream enhancer were critically important and that p300 bound to both the RNA from the enhancer and the DNA at the enhancer. P300 binding to the enhancer was dependent on NFκB. These data define the critical pathways regulating the expression of ADAMDEC1 and extend our knowledge of the roles of enhancer RNAs and mechanistically links p300 and enhancer RNAs.
Collapse
Affiliation(s)
- Lihua Shi
- The Division of Allergy Immunology at The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, United states.
| | - Song Li
- The Division of Allergy Immunology at The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, United states.
| | - Kelly Maurer
- The Division of Allergy Immunology at The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, United states.
| | - Zhe Zhang
- The Department of Biomedical and Health informatics at the Children's Hospital of Philadelphia, 3535 Market St, Philadelphia, PA, 19104, United states.
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD, 21205, United states.
| | - Kathleen E Sullivan
- The Division of Allergy Immunology at The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, United states.
| |
Collapse
|
190
|
Bradley TJ, Watts JM, Swords RT. Leveraging Hypomethylating Agents for Better MDS Therapy. Curr Hematol Malig Rep 2018; 13:507-515. [PMID: 30267380 DOI: 10.1007/s11899-018-0477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Myelodysplastic syndrome (MDS) is a clinically and molecularly heterogeneous disease, which primarily occurs in older adults. Although hypomethylating agents have survival benefit and are the current standard of care, many MDS patients will not garner a response from therapy. For those who do respond, most responses are not durable, and the only hope for a cure is allogeneic stem cell transplant. New therapies to improve outcomes are urgently needed. RECENT FINDINGS Clinical trials combining standard hypomethylating agents with novel experimental agents are underway in an effort to improve clinical outcomes in MDS patients. Several of these small molecules have demonstrated the ability to augment the response rates of hypomethylating agents alone, including complete remission rates, in both the front line and refractory settings. Combination approaches utilizing hypomethylating agents and novel-targeted therapies have demonstrated the ability to improve response rates in MDS patients in both the front line and salvage settings, and thus may change the standard of care.
Collapse
Affiliation(s)
- Terrence J Bradley
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 90 SW 3rd Street #2210, Miami, FL, 33130, USA.
| | - Justin M Watts
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 90 SW 3rd Street #2210, Miami, FL, 33130, USA
| | - Ronan T Swords
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 90 SW 3rd Street #2210, Miami, FL, 33130, USA
| |
Collapse
|
191
|
Mandal M, Maienschein-Cline M, Maffucci P, Veselits M, Kennedy DE, McLean KC, Okoreeh MK, Karki S, Cunningham-Rundles C, Clark MR. BRWD1 orchestrates epigenetic landscape of late B lymphopoiesis. Nat Commun 2018; 9:3888. [PMID: 30250168 PMCID: PMC6155124 DOI: 10.1038/s41467-018-06165-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/20/2018] [Indexed: 12/30/2022] Open
Abstract
Transcription factor (TF) networks determine cell fate in hematopoiesis. However, how TFs cooperate with other regulatory mechanisms to instruct transcription remains poorly understood. Here we show that in small pre-B cells, the lineage restricted epigenetic reader BRWD1 closes early development enhancers and opens the enhancers of late B lymphopoiesis to TF binding. BRWD1 regulates over 7000 genes to repress proliferative and induce differentiation programs. However, BRWD1 does not regulate the expression of TFs required for B lymphopoiesis. Hypogammaglobulinemia patients with BRWD1 mutations have B-cell transcriptional profiles and enhancer landscapes similar to those observed in Brwd1-/- mice. These data indicate that, in both mice and humans, BRWD1 is a master orchestrator of enhancer accessibility that cooperates with TF networks to drive late B-cell development. B-cell development is tightly regulated by transcription programs that are coordinated by transcription factors (TF) and locus accessibility. Here the authors show that, in mice and humans, the epigenetic reader BRWD1 inhibits and promotes the accessibility of enhancers for early and late B lymphopoiesis, respectively.
Collapse
Affiliation(s)
- Malay Mandal
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, Illinois, USA.
| | - Mark Maienschein-Cline
- Core for Research Informatics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Patrick Maffucci
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret Veselits
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, Illinois, USA
| | - Domenick E Kennedy
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, Illinois, USA
| | - Kaitlin C McLean
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, Illinois, USA
| | - Michael K Okoreeh
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, Illinois, USA
| | - Sophiya Karki
- Department of Research Biology, Genentech, South San Francisco, California, USA
| | - Charlotte Cunningham-Rundles
- Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
192
|
Bakshi S, McKee C, Walker K, Brown C, Chaudhry GR. Toxicity of JQ1 in neuronal derivatives of human umbilical cord mesenchymal stem cells. Oncotarget 2018; 9:33853-33864. [PMID: 30333915 PMCID: PMC6173460 DOI: 10.18632/oncotarget.26127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022] Open
Abstract
Bromodomain and extra-terminal domain (BET) proteins regulate the transcription of many genes including c-MYC, a proto-oncogene, which is upregulated in many types of cancers. The thienodiazepine class of BET inhibitors, such as JQ1, inhibits growth of cancer cells and triggers apoptosis. However, the effects of BET inhibitors on normal cells and mesenchymal stem cells (MSCs), which are important in routine maintenance or regeneration of damaged cells and tissues, are poorly investigated. Previously, we have shown that JQ1 causes human umbilical cord MSCs to undergo cell cycle arrest and neural differentiation. In this study, we determined that JQ1 is more deleterious to neuronal derivatives (NDs) than adipogenic, chondrogenic or osteogenic derivatives of MSCs. NDs treated with JQ1 showed a significant decrease in cell proliferation, viability, and neuronal markers. JQ1 caused cell death through the intrinsic apoptotic pathway in NDs as determined by activation of Caspase 9 and increased expression of Cytochrome C. A comparative analysis showed differential action of JQ1 on MSCs and NDs. The results showed selective neuronal toxicity of JQ1 in NDs but not in the undifferentiated MSCs. These findings suggest a more careful examination of the selection and use of BET inhibitors as therapeutic agents, as they may cause unwanted damage to non-target cells and tissues.
Collapse
Affiliation(s)
- Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
193
|
Wang Q, An X, Xu J, Wang Y, Liu L, Leung ELH, Yao X. Classical molecular dynamics and metadynamics simulations decipher the mechanism of CBP30 selectively inhibiting CBP/p300 bromodomains. Org Biomol Chem 2018; 16:6521-6530. [PMID: 30160288 DOI: 10.1039/c8ob01526k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The selective modulation of individual bromodomains (BDs) by small molecules represents an important strategy for the treatment of various cancers, considering that the BD-containing proteins share common BD structures and distinct pharmacological functions. Small molecule inhibitors targeting BDs outside of the bromodomain and extraterminal domain (BET, including BRD2-4 and BRDT) family are particularly lacking. CBP30 exhibited excellent selectivity for the transcriptional coactivators CBP (CREB binding protein) and p300 bromodomains, providing a new opportunity for designing selective non-BET inhibitors. Here, we performed classical molecular dynamics (cMD) and metadynamics simulations to reveal the selective mechanism of CBP30 binding with CBP/p300 and BRD4-BD1/BD2 bromodomains. The cMD simulations combined with binding free energy calculations were performed to compare the overall features of CBP30 binding with CBP/p300 and BRD4-BD1/BD2 bromodomains. Arg1173/1137, as the unique residue for CBP/p300, was responsible for the selective binding to CBP30 via cation-π and hydrogen bond interactions. Metadynamics simulation, together with unbinding free energy profiles, suggested that the dissociation pathways of CBP30 from CBP/p300 and BRD4-BD1/BD2 bromodomains were different, with the unbinding of the former being more difficult. These findings will be helpful for novel CBP/p300-inhibitor design and rational structural modification of existing inhibitors to increase their selectivity.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| | | | | | | | | | | | | |
Collapse
|
194
|
Lu T, Hu JC, Lu WC, Han J, Ding H, Jiang H, Zhang YY, Yue LY, Chen SJ, Jiang HL, Chen KX, Chai HF, Luo C. Identification of small molecule inhibitors targeting the SMARCA2 bromodomain from a high-throughput screening assay. Acta Pharmacol Sin 2018; 39:1544-1552. [PMID: 29795359 PMCID: PMC6289364 DOI: 10.1038/aps.2017.188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 01/13/2023]
Abstract
SMARCA2 is a critical catalytic subunit of the switch/sucrose non-fermenting (SWI/SNF) chromatin remodeling complexes. Dysregulation of SMARCA2 is associated with several diseases, including some cancers. SMARCA2 is multi-domain protein containing a bromodomain (BRD) that specifically recognizes acetylated lysine residues in histone tails, thus playing an important role in chromatin remodeling. Many potent and specific inhibitors targeting other BRDs have recently been discovered and have been widely used for cancer treatments and biological research. However, hit discovery targeting SMARCA2-BRD is particularly lacking. To date, there is a paucity of reported high-throughput screening (HTS) assays targeting the SMARCA2-BRD interface. In this study, we developed an AlphaScreen HTS system for the discovery of SMARCA2-BRD inhibitors and optimized the physicochemical conditions including pH, salt concentrations and detergent levels. Through an established AlphaScreen-based high-throughput screening assay against an in-house compound library, DCSM06 was identified as a novel SMARCA2-BRD inhibitor with an IC50 value of 39.9±3.0 μmol/L. Surface plasmon resonance demonstrated the binding between SMARCA2-BRD and DCSM06 (Kd=38.6 μmol/L). A similarity-based analog search led to identification of DCSM06-05 with an IC50 value of 9.0±1.4 μmol/L. Molecular docking was performed to predict the binding mode of DCSM06-05 and to decipher the structural basis of the infiuence of chemical modifications on inhibitor potency. DCSM06-05 may be used as a starting point for further medicinal chemistry optimization and could function as a chemical tool for SMARCA2-related functional studies.
Collapse
Affiliation(s)
- Tian Lu
- Department of Pharmacy, Guiyang University of Traditional Chinese Medicine, South Dong Qing Road, Huaxi District, Guizhou, 550025, China
| | - Jun-Chi Hu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Chao Lu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Han
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Ding
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan-Yuan Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li-Yan Yue
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Jie Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hua-Liang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai-Xian Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Hui-Fang Chai
- Department of Pharmacy, Guiyang University of Traditional Chinese Medicine, South Dong Qing Road, Huaxi District, Guizhou, 550025, China.
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
195
|
Agnarelli A, Chevassut T, Mancini EJ. IRF4 in multiple myeloma—Biology, disease and therapeutic target. Leuk Res 2018; 72:52-58. [DOI: 10.1016/j.leukres.2018.07.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/29/2023]
|
196
|
Biswas S, Rao CM. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol 2018; 837:8-24. [PMID: 30125562 DOI: 10.1016/j.ejphar.2018.08.021] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 02/08/2023]
Abstract
Addition of chemical tags on the DNA and modification of histone proteins impart a distinct feature on chromatin architecture. With the advancement in scientific research, the key players underlying these changes have been identified as epigenetic modifiers of the chromatin. Indeed, the plethora of enzymes catalyzing these modifications, portray the diversity of epigenetic space and the intricacy in regulating gene expression. These epigenetic players are categorized as writers: that introduce various chemical modifications on DNA and histones, readers: the specialized domain containing proteins that identify and interpret those modifications and erasers: the dedicated group of enzymes proficient in removing these chemical tags. Research over the past few decades has established that these epigenetic tools are associated with numerous disease conditions especially cancer. Besides, with the involvement of epigenetics in cancer, these enzymes and protein domains provide new targets for cancer drug development. This is certain from the volume of epigenetic research conducted in universities and R&D sector of pharmaceutical industry. Here we have highlighted the different types of epigenetic enzymes and protein domains with an emphasis on methylation and acetylation. This review also deals with the recent developments in small molecule inhibitors as potential anti-cancer drugs targeting the epigenetic space.
Collapse
Affiliation(s)
- Subhankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
197
|
Handoko L, Kaczkowski B, Hon CC, Lizio M, Wakamori M, Matsuda T, Ito T, Jeyamohan P, Sato Y, Sakamoto K, Yokoyama S, Kimura H, Minoda A, Umehara T. JQ1 affects BRD2-dependent and independent transcription regulation without disrupting H4-hyperacetylated chromatin states. Epigenetics 2018; 13:410-431. [PMID: 30080437 PMCID: PMC6140815 DOI: 10.1080/15592294.2018.1469891] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The bromodomain and extra-terminal domain (BET) proteins are promising drug targets for cancer and immune diseases. However, BET inhibition effects have been studied more in the context of bromodomain-containing protein 4 (BRD4) than BRD2, and the BET protein association to histone H4-hyperacetylated chromatin is not understood at the genome-wide level. Here, we report transcription start site (TSS)-resolution integrative analyses of ChIP-seq and transcriptome profiles in human non-small cell lung cancer (NSCLC) cell line H23. We show that di-acetylation at K5 and K8 of histone H4 (H4K5acK8ac) co-localizes with H3K27ac and BRD2 in the majority of active enhancers and promoters, where BRD2 has a stronger association with H4K5acK8ac than H3K27ac. Although BET inhibition by JQ1 led to complete reduction of BRD2 binding to chromatin, only local changes of H4K5acK8ac levels were observed, suggesting that recruitment of BRD2 does not influence global histone H4 hyperacetylation levels. This finding supports a model in which recruitment of BET proteins via histone H4 hyperacetylation is predominant over hyperacetylation of histone H4 by BET protein-associated acetyltransferases. In addition, we found that a remarkable number of BRD2-bound genes, including MYC and its downstream target genes, were transcriptionally upregulated upon JQ1 treatment. Using BRD2-enriched sites and transcriptional activity analysis, we identified candidate transcription factors potentially involved in the JQ1 response in BRD2-dependent and -independent manner.
Collapse
Affiliation(s)
- Lusy Handoko
- a Division of Genomic Technologies , RIKEN Center for Life Science Technologies, Yokohama , Kanagawa , Japan
| | - Bogumil Kaczkowski
- a Division of Genomic Technologies , RIKEN Center for Life Science Technologies, Yokohama , Kanagawa , Japan
| | - Chung-Chau Hon
- a Division of Genomic Technologies , RIKEN Center for Life Science Technologies, Yokohama , Kanagawa , Japan
| | - Marina Lizio
- a Division of Genomic Technologies , RIKEN Center for Life Science Technologies, Yokohama , Kanagawa , Japan
| | - Masatoshi Wakamori
- b Division of Structural and Synthetic Biology , RIKEN Center for Life Science Technologies, Yokohama , Kanagawa , Japan
| | - Takayoshi Matsuda
- b Division of Structural and Synthetic Biology , RIKEN Center for Life Science Technologies, Yokohama , Kanagawa , Japan
| | - Takuhiro Ito
- b Division of Structural and Synthetic Biology , RIKEN Center for Life Science Technologies, Yokohama , Kanagawa , Japan
| | - Prashanti Jeyamohan
- a Division of Genomic Technologies , RIKEN Center for Life Science Technologies, Yokohama , Kanagawa , Japan
| | - Yuko Sato
- c Cell Biology Center, Institute of Innovative Research , Tokyo Institute of Technology, Yokohama , Kanagawa , Japan
| | - Kensaku Sakamoto
- b Division of Structural and Synthetic Biology , RIKEN Center for Life Science Technologies, Yokohama , Kanagawa , Japan
| | | | - Hiroshi Kimura
- c Cell Biology Center, Institute of Innovative Research , Tokyo Institute of Technology, Yokohama , Kanagawa , Japan
| | - Aki Minoda
- a Division of Genomic Technologies , RIKEN Center for Life Science Technologies, Yokohama , Kanagawa , Japan
| | - Takashi Umehara
- b Division of Structural and Synthetic Biology , RIKEN Center for Life Science Technologies, Yokohama , Kanagawa , Japan.,e PRESTO , Japan Science and Technology Agency (JST) , Kawaguchi, Saitama , Japan
| |
Collapse
|
198
|
Chromatin dynamics at the core of kidney fibrosis. Matrix Biol 2018; 68-69:194-229. [DOI: 10.1016/j.matbio.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|
199
|
Affiliation(s)
- Manel Esteller
- a Cancer Epigenetics and Biology Program (PEBC) , Bellvitge Biomedical Research Institute (IDIBELL) , Barcelona , Catalonia , Spain.,b Physiological Sciences Department , School of Medicine and Health Sciences, University of Barcelona (UB) , Barcelona , Catalonia , Spain.,c Institucio Catalana de Recerca i Estudis Avançats (ICREA) , Barcelona , Catalonia , Spain
| |
Collapse
|
200
|
Breen ME, Mapp AK. Modulating the masters: chemical tools to dissect CBP and p300 function. Curr Opin Chem Biol 2018; 45:195-203. [PMID: 30025258 DOI: 10.1016/j.cbpa.2018.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/25/2018] [Accepted: 06/02/2018] [Indexed: 01/07/2023]
Abstract
Dysregulation of transcription is found in nearly every human disease, and as a result there has been intense interest in developing new therapeutics that target regulators of transcription. CREB binding protein (CBP) and its paralogue p300 are attractive targets due to their function as `master coactivators'. Although inhibitors of several CBP/p300 domains have been identified, the selectivity of many of these compounds has remained underexplored. Here, we review recent successes in the development of chemical tools targeting several CBP/p300 domains with selectivity acceptable for use as chemical probes. Additionally, we highlight recent studies which have used these probes to expand our understanding of interdomain interactions and differential coactivator usage.
Collapse
Affiliation(s)
- Meghan E Breen
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA.
| |
Collapse
|