151
|
Wang C, Zhou Y, Yang X, Chen Y, Shen Y, Luo M. Conformation and dynamics of a tethered active polymer chain. Phys Rev E 2022; 106:054501. [PMID: 36559343 DOI: 10.1103/physreve.106.054501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
The conformational and dynamical properties of a tethered semiflexible polymer chain under tangential active force (f_{a}) are studied by using the Langevin dynamics simulation method. The head of the polymer is fixed near an infinite flat surface at z=0. The polymer is equilibrated first at f_{a}=0 and then subjected to the active force. Under the influence of the active force, the polymer is gradually compressed. Specially, for large f_{a} and large bending rigidity (k_{b}), the polymer is buckled into a quasihelical structure rotating around the z axis at the steady state. It is found that both the radius of the quasihelical structure (R) and the angular velocity of the rotation (ω) are nearly independent of the polymer length (N), but show scaling relations with f_{a} and k_{b}, i.e., R∝f_{a}^{-1/3}k_{b}^{1/3} and ω∝f_{a}^{4/3}k_{b}^{-1/3}, which are explained by simple dynamical models. Before reaching the steady state, it is further found that the buckling velocity of the polymer is proportional to f_{a} but roughly independent of k_{b} and N, then the buckling time (t_{b}) can be described by a scaling relation t_{b}∝Nf_{a}^{-1}. The underlying mechanism of the buckling process is revealed.
Collapse
Affiliation(s)
- Chao Wang
- Department of Physics, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Yanli Zhou
- Department of Physics, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Xiao Yang
- Department of Physics, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Yingcai Chen
- Department of Physics, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Yifan Shen
- Department of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Mengbo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
152
|
Gomez-Solano JR, Rodríguez RF, Salinas-Rodríguez E. Nonequilibrium dynamical structure factor of a dilute suspension of active particles in a viscoelastic fluid. Phys Rev E 2022; 106:054602. [PMID: 36559383 DOI: 10.1103/physreve.106.054602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
In this work we investigate the dynamics of the number-density fluctuations of a dilute suspension of active particles in a linear viscoelastic fluid. We propose a model for the frequency-dependent diffusion coefficient of the active particles which captures the effect of rotational diffusion on the persistence of their self-propelled motion and the viscoelasticity of the medium. Using fluctuating hydrodynamics, the linearized equations for the active suspension are derived, from which we calculate its dynamic structure factor and the corresponding intermediate scattering function. For a Maxwell-type rheological model, we find an intricate dependence of these functions on the parameters that characterize the viscoelasticity of the solvent and the activity of the particles, which can significantly deviate from those of an inert suspension of passive particles and of an active suspension in a Newtonian solvent. In particular, in some regions of the parameter space we uncover the emergence of oscillations in the intermediate scattering function at certain wave numbers which represent the hallmark of the nonequilibrium particle activity in the dynamical structure of the suspension and also encode the viscoelastic properties of the medium.
Collapse
Affiliation(s)
- Juan Ruben Gomez-Solano
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Código Postal 04510, Mexico
| | - Rosalío F Rodríguez
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Código Postal 04510, Mexico.,FENOMEC, Universidad Nacional Autónoma de México, Apdo. Postal 20-726, 01000 Ciudad de México, Mexico
| | - Elizabeth Salinas-Rodríguez
- Departamento I. P. H., Universidad Autónoma Metropolitana, Iztapalapa, Apdo. Postal 55-534, 09340 Ciudad de México, Mexico
| |
Collapse
|
153
|
Hecht L, Mandal S, Löwen H, Liebchen B. Active Refrigerators Powered by Inertia. PHYSICAL REVIEW LETTERS 2022; 129:178001. [PMID: 36332249 DOI: 10.1103/physrevlett.129.178001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/09/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We present the operational principle for a refrigerator that uses inertial effects in active Brownian particles to locally reduce their (kinetic) temperature by 2 orders of magnitude below the environmental temperature. This principle exploits the peculiar but so-far unknown shape of the phase diagram of inertial active Brownian particles to initiate motility-induced phase separation in the targeted cooling regime only. Remarkably, active refrigerators operate without requiring isolating walls opening the route toward using them to systematically absorb and trap, e.g., toxic substances from the environment.
Collapse
Affiliation(s)
- Lukas Hecht
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Suvendu Mandal
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II-Soft Matter, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Benno Liebchen
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| |
Collapse
|
154
|
Roca-Bonet S, Wagner M, Ripoll M. Clustering of self-thermophilic asymmetric dimers: the relevance of hydrodynamics. SOFT MATTER 2022; 18:7741-7751. [PMID: 35916336 DOI: 10.1039/d2sm00523a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-thermophilic dimers are characterized by a net phoretic attraction which, in combination with hydrodynamic interactions, results in the formation of crystalline-like aggregates. To distinguish the effect of the different contributions is frequently an important challenge. We present a simulation investigation done in parallel in the presence and the absence of hydrodynamic interactions for the case of asymmetric self-thermophoretic dimers. In the absence of hydrodynamics, the clusters have the standard heads-in configurations. In contrast, in the presence of hydrodynamics, clusters with heads-in conformation are being formed, in which dimers with their propulsion velocity pointing out of the cluster are assembled and stabilized by strong hydrodynamic osmotic flows. Significant variation in the material properties is to be expected from such differences in the collective behavior, whose understanding and control is of great relevance for the development of new synthetic active materials.
Collapse
Affiliation(s)
- Sergi Roca-Bonet
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Martin Wagner
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Marisol Ripoll
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
155
|
Breoni D, Schwarzendahl FJ, Blossey R, Löwen H. A one-dimensional three-state run-and-tumble model with a 'cell cycle'. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:83. [PMID: 36258055 PMCID: PMC9579107 DOI: 10.1140/epje/s10189-022-00238-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
We study a one-dimensional three-state run-and-tumble model motivated by the bacterium Caulobacter crescentus which displays a cell cycle between two non-proliferating mobile phases and a proliferating sedentary phase. Our model implements kinetic transitions between the two mobile and one sedentary states described in terms of their number densities, where mobility is allowed with different running speeds in forward and backward direction. We start by analyzing the stationary states of the system and compute the mean and squared-displacements for the distribution of all cells, as well as for the number density of settled cells. The latter displays a surprising super-ballistic scaling [Formula: see text] at early times. Including repulsive and attractive interactions between the mobile cell populations and the settled cells, we explore the stability of the system and employ numerical methods to study structure formation in the fully nonlinear system. We find traveling waves of bacteria, whose occurrence is quantified in a non-equilibrium state diagram.
Collapse
Affiliation(s)
- Davide Breoni
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| | - Fabian Jan Schwarzendahl
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ralf Blossey
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), CNRS UMR8576, University of Lille, 59000, Lille, France
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
156
|
Abstract
Broken time-reversal and parity symmetries in active spinner fluids imply a nondissipative "odd viscosity," engendering phenomena unattainable in traditional passive or active fluids. Here we show that the odd viscosity itself can lead to a Hall-like transport when the active chiral fluid flows through a quenched matrix of obstacles, reminiscent of the anomalous Hall effect. The Hall-like velocity depends significantly on the spinner activity and longitudinal flow due to the interplay between odd viscosity and spinner-obstacle collisions. Our findings underscore the importance of odd viscosity in active chiral matter and elucidate its essential role in the anomalous Hall-like effect.
Collapse
|
157
|
Sharp turns and gyrotaxis modulate surface accumulation of microorganisms. Proc Natl Acad Sci U S A 2022; 119:e2206738119. [PMID: 36219692 PMCID: PMC9586295 DOI: 10.1073/pnas.2206738119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Populations of swimming microorganisms are ubiquitous in aqueous environments from blood vessels to oceans and from biofilms to biotechnological industries, where they routinely encounter solid boundaries. This paper explores experimentally how the presence of boundaries influences the behavior of a marine alga (Heterosigma akashiwo), whose normal trajectories exhibit both random sharp turns and gravitational reorientation (gyrotaxis). Proximity to a plane boundary strongly increases the probability of sharp turns and thereby influences the distributions of swimming speed, angular velocity and, unexpectedly, rotational diffusivity as functions of distance from the boundary and of swimming orientation. These variations all contribute to enhancing accumulation beneath an upper boundary much more than gyrotaxis alone. The accumulation of swimming microorganisms at surfaces is an essential feature of various physical, chemical, and biological processes in confined spaces. To date, this accumulation is mainly assumed to depend on the change of swimming speed and angular velocity caused by cell-wall contact and hydrodynamic interaction. Here, we measured the swimming trajectories of Heterosigma akashiwo (a biflagellate marine alga) near vertical and horizontal rigid boundaries. We observed that the probability of sharp turns is greatly increased near a vertical wall, resulting in significant changes in the distributions of average swimming speed, angular velocity, and rotational diffusivity near the wall (a quantity that has not previously been investigated) as functions of both distance from the wall and swimming orientation. These cannot be satisfactorily explained by standard hydrodynamic models. Detailed examination of an individual cell trajectory shows that wall contact by the leading flagellum triggers complex changes in the behavior of both flagella that cannot be incorporated in a mechanistic model. Our individual-based model for predicting cell concentration using the measured distributions of swimming speed, angular velocity, and rotational diffusivity agrees well with the experiment. The experiments and model are repeated for a cell suspension in a vertical plane, bounded above by a horizontal wall. The cell accumulation beneath the wall, expected from gyrotaxis, is considerably amplified by cell-wall interaction. These findings may shed light on the prediction and control of cell distribution mediated by gyrotaxis and cell-wall contact.
Collapse
|
158
|
Callan-Jones A. Self-organization in amoeboid motility. Front Cell Dev Biol 2022; 10:1000071. [PMID: 36313569 PMCID: PMC9614430 DOI: 10.3389/fcell.2022.1000071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Amoeboid motility has come to refer to a spectrum of cell migration modes enabling a cell to move in the absence of strong, specific adhesion. To do so, cells have evolved a range of motile surface movements whose physical principles are now coming into view. In response to external cues, many cells—and some single-celled-organisms—have the capacity to turn off their default migration mode. and switch to an amoeboid mode. This implies a restructuring of the migration machinery at the cell scale and suggests a close link between cell polarization and migration mediated by self-organizing mechanisms. Here, I review recent theoretical models with the aim of providing an integrative, physical picture of amoeboid migration.
Collapse
|
159
|
Caraglio M, Franosch T. Analytic Solution of an Active Brownian Particle in a Harmonic Well. PHYSICAL REVIEW LETTERS 2022; 129:158001. [PMID: 36269953 DOI: 10.1103/physrevlett.129.158001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We provide an analytical solution for the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle trapped in an isotropic harmonic potential. Using the passive Brownian particle as basis states we show that the Fokker-Planck operator becomes lower diagonal, implying that the eigenvalues are unaffected by the activity. The propagator is then expressed as a combination of the equilibrium eigenstates with weights obeying exact iterative relations. We show that for the low-order correlation functions, such as the positional autocorrelation function, the recursion terminates at finite order in the Péclet number, allowing us to generate exact compact expressions and derive the velocity autocorrelation function and the time-dependent diffusion coefficient. The nonmonotonic behavior of latter quantities serves as a fingerprint of the nonequilibrium dynamics.
Collapse
Affiliation(s)
- Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
160
|
De Karmakar S, Ganesh R. Motility-induced phase separation of self-propelled soft inertial disks. SOFT MATTER 2022; 18:7301-7308. [PMID: 36106916 DOI: 10.1039/d2sm00772j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The phase diagram of the phenomenon of motility-induced phase separation (MIPS) for a collection of self-propelled interacting disks over a large inertial range is explored using active Langevin dynamics simulation with particular emphasis on disk softness and effective size. It is shown that the parabola-like phase boundary between the homogeneous and MIPS states in the semi-log space of disk softness and effective size moves towards the hard disk limit with increase in inertia, before complete disappearance in the limit of large inertia. With increase in effective size of the disks, re-entrant phase separation, that is the system phase-separating from a homogeneous phase and eventually re-entering the homogeneous phase, is reported. The structural and the dynamical properties of the different phases are investigated in the considered inertial range. The particular shape of the phase boundary and the re-entrant behavior is explained based on several qualitative and quantitative results. Unlike most of the earlier studies on MIPS, which consider hard particle limits, our findings may be directly applicable to soft active matter for a range of physical and biological systems.
Collapse
Affiliation(s)
- Soumen De Karmakar
- Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| | - Rajaraman Ganesh
- Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
161
|
De Karmakar S, Ganesh R. Reentrant phase separation of a sparse collection of nonreciprocally aligning self-propelled disks. Phys Rev E 2022; 106:044607. [PMID: 36397508 DOI: 10.1103/physreve.106.044607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
We study a model of aligning self-propelled disks that nonreciprocally reorient the self-propulsion directions along the interparticle separation and towards the other disks. In the limit of small inertia and large softness, where conventional motility-induced phase separation is absent, we demonstrate that the homogeneous system at a small area fraction phase-separates into clusters and a low-density phase that, eventually, reenters the homogeneous phase with a monotonic increase in alignment strength. The disks inside the clusters move with a finite space-dependent speed, constantly shuttling between clusters through the surrounding low-density homogeneous phase while maintaining the hexatic structure properties within the clusters. The area fraction gradually increases from the periphery towards the center of the clusters with a negligible correlation of the velocity and propulsion direction inside the clusters. The novel collective behavior of reentrant phase separation is found to follow from both the limits of hard disks and extremely small inertia, tending towards the overdamped limit. However, important differences in the structural and dynamical properties are shown in the limit of hard disks and extremely small inertia, as compared to that for soft disks at finite inertia. We show that the cluster phase is associated with an effective temperature for a wide range of values of alignment strength, whereas an effective temperature is associated with the specific range of alignment in the low-density phase. We believe that the reentrant phase behavior in the limit of small area fraction and the remarkable properties of the clusters should be useful in understanding a wide range of physics issues, ranging from clogging and unclogging to information exchange and transport, in biological and synthetic self-propelled systems.
Collapse
Affiliation(s)
- Soumen De Karmakar
- Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat, India and Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Rajaraman Ganesh
- Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat, India and Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
162
|
Behrens MR, Ruder WC. Smart Magnetic Microrobots Learn to Swim with Deep Reinforcement Learning. ADVANCED INTELLIGENT SYSTEMS (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 4:2200023. [PMID: 38463142 PMCID: PMC10923539 DOI: 10.1002/aisy.202200023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 03/12/2024]
Abstract
Swimming microrobots are increasingly developed with complex materials and dynamic shapes and are expected to operate in complex environments in which the system dynamics are difficult to model and positional control of the microrobot is not straightforward to achieve. Deep reinforcement learning is a promising method of autonomously developing robust controllers for creating smart microrobots, which can adapt their behavior to operate in uncharacterized environments without the need to model the system dynamics. This article reports the development of a smart helical magnetic hydrogel microrobot that uses the soft actor critic reinforcement learning algorithm to autonomously derive a control policy which allows the microrobot to swim through an uncharacterized biomimetic fluidic environment under control of a time varying magnetic field generated from a three-axis array of electromagnets. The reinforcement learning agent learned successful control policies from both state vector input and raw images, and the control policies learned by the agent recapitulated the behavior of rationally designed controllers based on physical models of helical swimming microrobots. Deep reinforcement learning applied to microrobot control is likely to significantly expand the capabilities of the next generation of microrobots.
Collapse
Affiliation(s)
- Michael R. Behrens
- Department of Bioengineering, University of Pittsburgh; 300 Technology Drive, Pittsburgh, PA 15213, USA
| | - Warren C. Ruder
- Department of Bioengineering, University of Pittsburgh; 300 Technology Drive, Pittsburgh, PA 15213, USA
- Department of Mechanical Engineering, Carnegie Mellon University; 5000 Forbes Ave. Pittsburgh, PA 15213, USA
| |
Collapse
|
163
|
Junot G, Leyva SG, Pauer C, Calero C, Pagonabarraga I, Liedl T, Tavacoli J, Tierno P. Friction Induces Anisotropic Propulsion in Sliding Magnetic Microtriangles. NANO LETTERS 2022; 22:7408-7414. [PMID: 36062566 PMCID: PMC9523709 DOI: 10.1021/acs.nanolett.2c02295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/22/2022] [Indexed: 06/15/2023]
Abstract
In viscous fluids, motile microentities such as bacteria or artificial swimmers often display different transport modes than macroscopic ones. A current challenge in the field aims at using friction asymmetry to steer the motion of microscopic particles. Here we show that lithographically shaped magnetic microtriangles undergo a series of complex transport modes when driven by a precessing magnetic field, including a surfing-like drift close to the bottom plane. In this regime, we exploit the triangle asymmetric shape to obtain a transversal drift which is later used to transport the microtriangle in any direction along the plane. We explain this friction-induced anisotropic sliding with a minimal numerical model capable to reproduce the experimental results. Due to the flexibility offered by soft-lithographic sculpturing, our method to guide anisotropic-shaped magnetic microcomposites can be potentially extended to many other field responsive structures operating in fluid media.
Collapse
Affiliation(s)
- Gaspard Junot
- Departament
de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sergi G. Leyva
- Departament
de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat
de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028, Barcelona, Spain
| | - Christoph Pauer
- Faculty
of Physics and Center for Nano Science, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, München 80539, Germany
| | - Carles Calero
- Departament
de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut
de Nanociéncia i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Ignacio Pagonabarraga
- Departament
de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain
- Universitat
de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028, Barcelona, Spain
- CECAM,
Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale
de Lausanne (EPFL), Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
| | - Tim Liedl
- Faculty
of Physics and Center for Nano Science, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, München 80539, Germany
| | - Joe Tavacoli
- Faculty
of Physics and Center for Nano Science, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, München 80539, Germany
| | - Pietro Tierno
- Universitat
de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028, Barcelona, Spain
- Institut
de Nanociéncia i Nanotecnologia, Universitat de Barcelona, 08028, Barcelona, Spain
- Departament
de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
164
|
Schwarzendahl FJ, Löwen H. Anomalous Cooling and Overcooling of Active Colloids. PHYSICAL REVIEW LETTERS 2022; 129:138002. [PMID: 36206411 DOI: 10.1103/physrevlett.129.138002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The phenomenon that a system at a hot temperature cools faster than at a warm temperature, referred to as the Mpemba effect, has recently been realized for trapped colloids. Here, we investigate the cooling and heating process of a self-propelled active colloid using numerical simulations and theoretical calculations with a model that can be directly tested in experiments. Upon cooling, activity induces a Mpemba effect and the active particle transiently escapes an effective temperature description. At the end of the cooling process the notion of temperature is recovered and the system can exhibit even smaller temperatures than its final temperature, a surprising phenomenon which we refer to as activity-induced overcooling.
Collapse
Affiliation(s)
- Fabian Jan Schwarzendahl
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
165
|
Iyer P, Gompper G, Fedosov DA. Non-equilibrium shapes and dynamics of active vesicles. SOFT MATTER 2022; 18:6868-6881. [PMID: 36043635 DOI: 10.1039/d2sm00622g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Active vesicles, constructed through the confinement of self-propelled particles (SPPs) inside a lipid membrane shell, exhibit a large variety of non-equilibrium shapes, ranging from the formation of local tethers and dendritic conformations, to prolate and bola-like structures. To better understand the behavior of active vesicles, we perform simulations of membranes modelled as dynamically triangulated surfaces enclosing active Brownian particles. A systematic analysis of membrane deformations and SPP clustering, as a function of SPP activity and volume fraction inside the vesicle is carried out. Distributions of membrane local curvature, and the clustering and mobility of SPPs obtained from simulations of active vesicles are analysed. There exists a feedback mechanism between the enhancement of membrane curvature, the formation of clusters of active particles, and local or global changes in vesicle shape. The emergence of active tension due to the activity of SPPs can well be captured by the Young-Laplace equation. Furthermore, a simple numerical method for tether detection is presented and used to determine correlations between the number of tethers, their length, and local curvature. We also provide several geometrical arguments to explain different tether characteristics for various conditions. These results contribute to the future development of steerable active vesicles or soft micro-robots whose behaviour can be controlled and used for potential applications.
Collapse
Affiliation(s)
- Priyanka Iyer
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
166
|
Ghosh A, Spakowitz AJ. Active and thermal fluctuations in multi-scale polymer structure and dynamics. SOFT MATTER 2022; 18:6629-6637. [PMID: 36000419 DOI: 10.1039/d2sm00593j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The presence of athermal noise or biological fluctuations control and maintain crucial life-processes. In this work, we present an exact analytical treatment of the dynamic behavior of a flexible polymer chain that is subjected to both thermal and active forces. Our model for active forces incorporates temporal correlation associated with the characteristic time scale and processivity of enzymatic function (driven by ATP hydrolysis), leading to an active-force time scale that competes with relaxation processes within the polymer chain. We analyze the structure and dynamics of an active-Brownian polymer using our exact results for the dynamic structure factor and the looping time for the chain ends. The spectrum of relaxation times within a polymer chain implies two different behaviors at small and large length scales. Small length-scale relaxation is faster than the active-force time scale, and the dynamic and structural behavior at these scales are oblivious to active forces and, are thus governed by the true thermal temperature. Large length-scale behavior is governed by relaxation times that are much longer than the active-force time scale, resulting in an effective active-Brownian temperature that dramatically alters structural and dynamic behavior. These complex multi-scale effects imply a time-dependent temperature that governs living and non-equilibrium systems, serving as a unifying concept for interpreting and predicting their physical behavior.
Collapse
Affiliation(s)
- Ashesh Ghosh
- Department of Chemical Engineering, Stanford University, Stanford, California, USA.
| | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California, USA.
- Biophysics Program, Stanford University, Stanford, California, USA
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
167
|
Suda S, Suda T, Ohmura T, Ichikawa M. Motion of a swimming droplet under external perturbations: A model-based approach. Phys Rev E 2022; 106:034610. [PMID: 36266827 DOI: 10.1103/physreve.106.034610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Microdroplets driven by the Marangoni effect are known to continue to swim for hours despite their simple composition. This swimming microdroplet changes its motion from straight to curvilinear and further to chaotic as the Péclet number increases. In this study, we investigate the effect of external perturbations on the three-dimensional axis-asymmetric model of a droplet driven by the Marangoni effect. The aim here is to elucidate the contribution of external perturbation to the complex motion of the droplet and the change in its effect according to the droplet size. In this paper, first we provide a detailed explanation on the derivation of the model introduced in our previous work, which is next used to describe the motion of the droplet in the numerical study of the angular response to random perturbations. The numerical simulation of droplet motion with different types of noise indicates that the model does not converge them into a certain type of motion but rather helps to reflect the external perturbations. The obtained results suggest that the types and properties of external perturbation have a considerable effect on the droplet motion.
Collapse
Affiliation(s)
- Saori Suda
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoharu Suda
- Department of Mathematics, Keio University, Yokohama 223-8522, Japan
| | - Takuya Ohmura
- Biozentrum, University of Basel, Basel 4056, Switzerland
| | | |
Collapse
|
168
|
Collective motion: Influence of local behavioural interactions among individuals. J Biosci 2022. [DOI: 10.1007/s12038-022-00277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
169
|
Perepelitsa M, Timofeyev I, Murphy P, Igoshin OA. Mean-field model for nematic alignment of self-propelled rods. Phys Rev E 2022; 106:034613. [PMID: 36266908 DOI: 10.1103/physreve.106.034613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Self-propelled rods are a facet of the field of active matter relevant to many physical systems ranging in scale from shaken granular media and bacterial alignment to the flocking dynamics of animals. In this paper we develop a model for nematic alignment of self-propelled rods interacting through binary collisions. We avoid phenomenological descriptions of rod interaction in favor of rigorously using a set of microscopic-level rules. Under the assumption that each collision results in a small change to a rod's orientation, we derive the Fokker-Planck equation for the evolution of the kinetic density function. Using analytical and numerical methods, we study the emergence of the nematic order from a homogeneous, uniform steady state of the mean-field equation. We compare the level of orientational noise needed to destabilize this nematic order and compare our results to an existing phenomenological model that does not explicitly account for the physical collisions of rods. We show the presence of an additional geometric factor in our equations reflecting a reduced collision rate between nearly aligned rods that reduces the level of noise at which nematic order is destroyed, suggesting that alignment that depends on purely physical collisions is less robust.
Collapse
Affiliation(s)
| | - Ilya Timofeyev
- Department of Mathematics, University of Houston, Texas 77204, USA
| | - Patrick Murphy
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
170
|
Paul S, Majumder S, Janke W. Activity mediated globule to coil transition of a flexible polymer in a poor solvent. SOFT MATTER 2022; 18:6392-6403. [PMID: 35979819 DOI: 10.1039/d2sm00354f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the role of self-propulsion on the conformational properties of active filamentous objects has relevance in biology. In this work, we consider a flexible bead-spring model for active polymers with both attractive and repulsive interactions among the non-bonded monomers. The activity for each monomer works along its intrinsic direction of self-propulsion which changes diffusively with time. We study its kinetics in the overdamped limit, following quenching from good to poor solvent conditions. We observe that with low activities, though the kinetic pathways remain similar, the scaling exponent for the relaxation time of globule formation becomes smaller than that for the case with no activity. Interestingly, for higher activities when self-propulsion dominates over interaction energy, the polymer conformation becomes extended coil-like. There, in the steady state, the variation of the spatial extension of the polymer, measured via its gyration radius, shows two completely different scaling regimes: the corresponding Flory exponent ν changes from 1/3 to 3/5 similar to a transition of the polymer from a globular state to a self-avoiding walk. This can be explained by an interplay among the three energy scales present in the system, viz., the "ballistic", thermal, and interaction energy.
Collapse
Affiliation(s)
- Subhajit Paul
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
- International Center for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore-560089, India
| | - Suman Majumder
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201313, India
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
| |
Collapse
|
171
|
Kozhukhov T, Shendruk TN. Mesoscopic simulations of active nematics. SCIENCE ADVANCES 2022; 8:eabo5788. [PMID: 36001669 PMCID: PMC9401632 DOI: 10.1126/sciadv.abo5788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Coarse-grained, mesoscale simulations are invaluable for studying soft condensed matter because of their ability to model systems in which a background solvent plays a substantial role but is not the primary interest. Such methods generally model passive solvents; however, far-from-equilibrium systems may also be composed of complex solutes suspended in an active fluid. Yet, few coarse-grained simulation methods exist to model an active medium. We introduce an algorithm to simulate active nematics, which builds on multiparticle collision dynamics (MPCD) for passive fluctuating nematohydrodynamics by introducing dipolar activity in the local collision operator. Active nematic MPCD (AN-MPCD) simulations not only exhibit the key characteristics of active nematic turbulence but, as a particle-based algorithm, also reproduce crucial attributes of active particle models. Thus, mesoscopic AN-MPCD is an approach that bridges microscopic and continuum descriptions, allowing simulations of composite active-passive systems.
Collapse
|
172
|
Narinder N, Bos MF, Abaurrea-Velasco C, de Graaf J, Bechinger C. Understanding enhanced rotational dynamics of active probes in rod suspensions. SOFT MATTER 2022; 18:6246-6253. [PMID: 35946318 PMCID: PMC9400583 DOI: 10.1039/d2sm00583b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/20/2022] [Indexed: 06/01/2023]
Abstract
Active Brownian particles (APs) have recently been shown to exhibit enhanced rotational diffusion (ERD) in complex fluids. Here, we experimentally observe ERD and numerically corroborate its microscopic origin for a quasi-two-dimensional suspension of colloidal rods. At high density, the rods form small rafts, wherein they perform small-amplitude, high-frequency longitudinal displacements. Activity couples AP-rod contacts to reorientation, with the variance therein leading to ERD. This is captured by a local, rather than a global relaxation time, as used in previous phenomenological modeling. Our result should prove relevant to the microrheological characterization of complex fluids and furthering our understanding of the dynamics of microorganisms in such media.
Collapse
Affiliation(s)
- N Narinder
- Fachbereich Physik, Universität Konstanz, 78464, Konstanz, Germany.
| | - M F Bos
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, Utrecht, 3584 CC, The Netherlands
| | - C Abaurrea-Velasco
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, Utrecht, 3584 CC, The Netherlands
| | - J de Graaf
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, Utrecht, 3584 CC, The Netherlands
| | - C Bechinger
- Fachbereich Physik, Universität Konstanz, 78464, Konstanz, Germany.
| |
Collapse
|
173
|
Zantop AW, Stark H. Emergent collective dynamics of pusher and puller squirmer rods: swarming, clustering, and turbulence. SOFT MATTER 2022; 18:6179-6191. [PMID: 35822601 DOI: 10.1039/d2sm00449f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We study the interplay of steric and hydrodynamic interactions in suspensions of elongated microswimmers by simulating the full hydrodynamics of squirmer rods in the quasi two-dimensional geometry of a Hele-Shaw cell. To create pusher or puller-type squirmer rods, we concentrate the surface slip-velocity field more to the back or to the front of the rod and thereby are able to tune the rod's force-dipole strength. We study a wide range of aspect ratios and area fractions and provide corresponding state diagrams. The flow field of pusher-type squirmer rods destabilizes ordered structures and favors the disordered state at small area fractions and aspect ratios. Only when steric interactions become relevant, we observe a turbulent and dynamic cluster state, while for large aspect ratios a single swarm and jammed cluster occurs. The power spectrum of the turbulent state shows two distinct energy cascades at small and large wave numbers with power-law scaling and non-universal exponents. Pullers show a strong tendency to form swarms instead of the disordered state found for neutral and pusher rods. At large area fractions a dynamic cluster is observed and at larger aspect ratio a single swarm or jammed cluster occurs.
Collapse
Affiliation(s)
- Arne W Zantop
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.
| |
Collapse
|
174
|
Negi RS, Winkler RG, Gompper G. Emergent collective behavior of active Brownian particles with visual perception. SOFT MATTER 2022; 18:6167-6178. [PMID: 35916064 DOI: 10.1039/d2sm00736c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Systems comprised of self-steering active Brownian particles are studied via simulations for a minimal cognitive flocking model. The dynamics of the active Brownian particles is extended by an orientational response with limited maneuverability to an instantaneous visual input of the positions of neighbors within a vision cone and a cut-off radius. The system exhibits large-scale self-organized structures, which depend on selected parameter values, and, in particular, the presence of excluded-volume interactions. The emergent structures in two dimensions, such as worms, worm-aggregate coexistence, and hexagonally close-packed structures, are analysed and phase diagrams are constructed. The analysis of the particle's mean-square displacement shows ABP-like dynamics for dilute systems and the worm phase. In the limit of densely packed structures, the active diffusion coefficient is significantly smaller and depends on the number of particles in the cluster. Our analysis of the cluster-growth dynamics shows distinct differences to processes in systems of short-range attractive colloids in equilibrium. Specifically, the characteristic time for the growth and decay of clusters of a particular size is longer than that of isotropically attractive colloids, which we attribute to the non-reciprocal nature of the directed visual perception. Our simulations reveal a strong interplay between ABP-characteristic interactions, such as volume exclusion and rotational diffusion, and cognitive-based interactions and navigation.
Collapse
Affiliation(s)
- Rajendra Singh Negi
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany.
| | - Roland G Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany.
| |
Collapse
|
175
|
Middelhoek K, Magdanz V, Abelmann L, Khalil I. Drug-loaded IRONSperm clusters: modeling, wireless actuation, and ultrasound imaging. Biomed Mater 2022; 17. [PMID: 35985314 DOI: 10.1088/1748-605x/ac8b4b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/19/2022] [Indexed: 11/12/2022]
Abstract
Individual biohybrid microrobots have the potential to perform biomedical in vivo tasks such as remote-controlled drug and cell delivery and minimally invasive surgery. This work demonstrates the formation of biohybrid sperm-templated clusters under the influence of an external magnetic field and essential functionalities for wireless actuation and drug delivery. Ferromagnetic nanoparticles are electrostatically assembled around dead sperm cells, and the resulting nanoparticle-coated cells are magnetically assembled into threedimensional biohybrid clusters. The aim of this clustering is threefold: First, to enable rolling locomotion on a nearby solid boundary using a rotating magnetic field; second, to allow for noninvasive localization; third, to load the cells inside the cluster with drugs for targeted delivery. A magneto-hydrodynamic model captures the rotational response of the clusters in a viscous fluid, and predicts an upper bound for their step-out frequency, which is independent of their volume or aspect ratio. Below the step-out frequency, the rolling velocity of the clusters increases nonlinearly with their perimeter and actuation frequency. During rolling locomotion, the clusters are localized using ultrasound at a relatively large distance, which makes these biohybrid clusters promising for deep-tissue applications. Finally, we show that the estimated drug load scales with the number of cells in the cluster and can be retained for more than 10 hours. The aggregation of microrobots enables them to collectively roll in a predictable way in response to an external rotating magnetic field, and enhances ultrasound detectability and drug loading capacity compared to the individual microrobots. The favorable features of biohybrid microrobot clusters place emphasis on the importance of the investigation and development of collective microrobots and their potential for in vivo applications.
Collapse
Affiliation(s)
- Kaz Middelhoek
- Biomechanical Engineering , University of Twente, University of Twente, Enschede, Enschede, 7500 AE, NETHERLANDS
| | - Veronika Magdanz
- Barcelona Institute of Science and Technology, Institute for Bioengineering in Catalonia, Barcelona, Barcelona, Catalunya, 08028, SPAIN
| | - Leon Abelmann
- MESA Research Institute, University of Twente, SMI, PO Box 217, 7500 AE Enschede, THE NETHERLANDS, Enschede, Overijssel, 7500 AE, NETHERLANDS
| | - Islam Khalil
- Biomechanical Engineering , University of Twente, University of Twente, Enschede, Enschede, 7500 AE, NETHERLANDS
| |
Collapse
|
176
|
Wang H, Zou B, Su J, Wang D, Xu X. Variational methods and deep Ritz method for active elastic solids. SOFT MATTER 2022; 18:6015-6031. [PMID: 35920447 DOI: 10.1039/d2sm00404f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Variational methods have been widely used in soft matter physics for both static and dynamic problems. These methods are mostly based on two variational principles: the variational principle of minimum free energy (MFEVP) and Onsager's variational principle (OVP). Our interests lie in the applications of these variational methods to active matter physics. In our former work [H. Wang, T. Qian and X. Xu, Soft Matter, 2021, 17, 3634-3653], we have explored the applications of OVP-based variational methods for the modeling of active matter dynamics. In the present work, we explore variational (or energy) methods that are based on MFEVP for static problems in active elastic solids. We show that MFEVP can be used not only to derive equilibrium equations, but also to develop approximate solution methods, such as the Ritz method, for active solid statics. Moreover, the power of the Ritz-type method can be further enhanced using deep learning methods if we use deep neural networks to construct the trial functions of the variational problems. We then apply these variational methods and the deep Ritz method to study the spontaneous bending and contraction of a thin active circular plate that is induced by internal asymmetric active contraction. The circular plate is found to be bent towards its contracting side. The study of such a simple toy system gives implications for understanding the morphogenesis of solid-like confluent cell monolayers. In addition, we introduce a so-called activogravity length to characterize the importance of gravitational forces relative to internal active contraction in driving the bending of the active plate. When the lateral plate dimension is larger than the activogravity length (about 100 micron), gravitational forces become important. Such gravitaxis behaviors at multicellular scales may play significant roles in the morphogenesis and in the up-down symmetry broken during tissue development.
Collapse
Affiliation(s)
- Haiqin Wang
- Physics Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China.
- Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Boyi Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Jian Su
- Physics Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China.
| | - Dong Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
- Shenzhen International Center for Industrial and Applied Mathematics, Shenzhen Research Institute of Big Data, Shenzhen, Guangdong, 518172, China
| | - Xinpeng Xu
- Physics Program, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China.
- Technion - Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
177
|
Mercier F, Delhaye G, Teboul V. Activation induced fluidization of a confined viscous liquid. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
178
|
Godeau AL, Leoni M, Comelles J, Guyomar T, Lieb M, Delanoë-Ayari H, Ott A, Harlepp S, Sens P, Riveline D. 3D single cell migration driven by temporal correlation between oscillating force dipoles. eLife 2022; 11:71032. [PMID: 35899947 PMCID: PMC9395190 DOI: 10.7554/elife.71032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Directional cell locomotion requires symmetry breaking between the front and rear of the cell. In some cells, symmetry breaking manifests itself in a directional flow of actin from the front to the rear of the cell. Many cells, especially in physiological 3D matrices do not show such coherent actin dynamics and present seemingly competing protrusion/retraction dynamics at their front and back. How symmetry breaking manifests itself for such cells is therefore elusive. We take inspiration from the scallop theorem proposed by Purcell for micro-swimmers in Newtonian fluids: self-propelled objects undergoing persistent motion at low Reynolds number must follow a cycle of shape changes that breaks temporal symmetry. We report similar observations for cells crawling in 3D. We quantified cell motion using a combination of 3D live cell imaging, visualization of the matrix displacement and a minimal model with multipolar expansion. We show that our cells embedded in a 3D matrix form myosin-driven force dipoles at both sides of the nucleus, that locally and periodically pinch the matrix. The existence of a phase shift between the two dipoles is required for directed cell motion which manifests itself as cycles with finite area in the dipole-quadrupole diagram, a formal equivalence to the Purcell cycle. We confirm this mechanism by triggering local dipolar contractions with a laser. This leads to directed motion. Our study reveals that these cells control their motility by synchronizing dipolar forces distributed at front and back. This result opens new strategies to externally control cell motion as well as for the design of micro-crawlers.
Collapse
Affiliation(s)
- Amélie Luise Godeau
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | | | - Jordi Comelles
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | - Tristan Guyomar
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | - Michele Lieb
- Laboratory of Cell Physics, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| | - Hélène Delanoë-Ayari
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5306, LyonVilleurbanne Cedex, France
| | - Albrecht Ott
- Universität des Saarlandes, Saarbrücken, Germany
| | - Sebastien Harlepp
- INSERM UMR S1109, Institut d'Hématologie et d'Immunologie, Strasbourg, France
| | - Pierre Sens
- Laboratoire Physico Chimie Curie, Institut Curie, CNRS UMR168, Paris, France
| | - Daniel Riveline
- Development and stem cells, University of Strasbourg, CNRS, IGBMC, Illkirch, France
| |
Collapse
|
179
|
Li W, Li L, Shi Q, Yang M, Zheng N. Spontaneous population oscillation of confined active granular particles. SOFT MATTER 2022; 18:5459-5464. [PMID: 35822840 DOI: 10.1039/d2sm00134a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spontaneous collective oscillation may emerge from seemingly irregular active matter systems. Here, we experimentally demonstrate a spontaneous population oscillation of active granular particles confined in two chambers connected by a narrow channel, and verify the intriguing behavior predicted in simulation [M. Paoluzzi, R. Di Leonardo and L. Angelani, Self-sustained density oscillations of swimming bacteria confined in microchambers, Phys. Rev. Lett., 2015, 115(18), 188303]. During the oscillation, the two chambers are alternately (nearly) filled up and emptied by the self-propelled particles in a periodic manner. We show that the stable unidirectional flow induced due to the confined channel and its periodic reversal triggered by the particle concentration difference between two chambers jointly give rise to the oscillatory collective behavior. Furthermore, we propose a minimal theoretical model that properly reproduces the experimental results without free parameters. This self-sustained collective oscillation could serve as a robust active granular clock, capable of providing rhythmic signals.
Collapse
Affiliation(s)
- Wenjian Li
- School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Longfei Li
- School of Physics, Beijing Institute of Technology, Beijing 100081, China.
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingfan Shi
- School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| | - Ning Zheng
- School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
180
|
Codina J, Massana-Cid H, Tierno P, Pagonabarraga I. Breaking action-reaction with active apolar colloids: emergent transport and velocity inversion. SOFT MATTER 2022; 18:5371-5379. [PMID: 35762424 DOI: 10.1039/d2sm00550f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial active particles are autonomous agents able to convert energy from the environment into net propulsion, breaking detailed balance and the action-reaction law, clear signatures of their out-of-equilibrium nature. Here we investigate the emergence of directed motion in clusters composed of passive and catalytically active apolar colloids. We use a light-induced chemophoretic flow to rapidly assemble hybrid self-propelling clusters composed of hematite particles and passive silica spheres. By increasing the size of the passive cargo, we observe a reversal in the transport direction of the pair. We explain this complex yet rich phenomenon using a theoretical model which accounts for the generated chemical field and its coupling with the surrounding medium. We exploit further our technique to build up more complex, chemically driven, architectures capable of carrying several passive or active species, that quickly assemble and disassemble under light control.
Collapse
Affiliation(s)
- Joan Codina
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Helena Massana-Cid
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain.
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale A. Moro 5, I-00185 Roma, Italy
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain.
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona, Spain
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain.
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lasuanne (EPFL), Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
| |
Collapse
|
181
|
|
182
|
Li Y, Zhou Y, Marchesoni F, Ghosh PK. Colloidal clustering and diffusion in a convection cell array. SOFT MATTER 2022; 18:4778-4785. [PMID: 35703429 DOI: 10.1039/d2sm00500j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We numerically investigated the clustering of a uniform suspension of finite-size disks in a linear array of two-dimensional convection cells. We observed that, due to steric interactions, the disks tend to form coherently rotating spatial structures at the center of each cell, as a combined effect of advection and pair collisions. Micellar, ring-like and hexatic patterns emerge in the deterministic regime, depending on the suspension density, but dissolve in the presence of thermal fluctuations. Moreover, pair collisions suffice to activate cell crossings even by noiseless disks and, therefore, cause athermal diffusion. The robustness of such collision induced effects is studied against the opposing action of thermal noise, transverse biases, and particle self-propulsion.
Collapse
Affiliation(s)
- Yunyun Li
- Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuxin Zhou
- Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fabio Marchesoni
- Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Dipartimento di Fisica, Università di Camerino, I-62032 Camerino, Italy.
| | - Pulak K Ghosh
- Department of Chemistry, Presidency University, Kolkata 700073, India.
| |
Collapse
|
183
|
Rassolov G, Tociu L, Fodor E, Vaikuntanathan S. From predicting to learning dissipation from pair correlations of active liquids. J Chem Phys 2022; 157:054901. [DOI: 10.1063/5.0097863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Active systems, which are driven out of equilibrium by local non-conservative forces, can adopt unique behaviors and configurations. Towards designing such materials, an important challenge is to precisely connect the static structure of active systems to the dissipation of energy induced by the local driving. Here, we use tools from liquid-state theories and machine learning to take on these challenges. We first demonstrate analytically for an isotropic active matter system that dissipation and pair correlations are closely related when driving forces behave like an active temperature. We then extend a nonequilibrium mean-field framework for predicting these pair correlations which, unlike most existing approaches, is applicable even for strongly interacting particles and far from equilibrium, to predict dissipation in these systems. Based on this theory, we reveal analytically a robust relation between dissipation and structure which holds even as the system approaches a nonequilibrium phase transition. Finally, we construct a neural network which maps static configurations of particles to their dissipation rate without any prior knowledge of the underlying dynamics. Our results open novel perspectives on the interplay between dissipation and organization out-of-equilibrium.
Collapse
Affiliation(s)
| | - Laura Tociu
- The University of Chicago, United States of America
| | | | | |
Collapse
|
184
|
Aranson IS. Bacterial active matter. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:076601. [PMID: 35605446 DOI: 10.1088/1361-6633/ac723d] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Bacteria are among the oldest and most abundant species on Earth. Bacteria successfully colonize diverse habitats and play a significant role in the oxygen, carbon, and nitrogen cycles. They also form human and animal microbiota and may become sources of pathogens and a cause of many infectious diseases. Suspensions of motile bacteria constitute one of the most studied examples of active matter: a broad class of non-equilibrium systems converting energy from the environment (e.g., chemical energy of the nutrient) into mechanical motion. Concentrated bacterial suspensions, often termed active fluids, exhibit complex collective behavior, such as large-scale turbulent-like motion (so-called bacterial turbulence) and swarming. The activity of bacteria also affects the effective viscosity and diffusivity of the suspension. This work reports on the progress in bacterial active matter from the physics viewpoint. It covers the key experimental results, provides a critical assessment of major theoretical approaches, and addresses the effects of visco-elasticity, liquid crystallinity, and external confinement on collective behavior in bacterial suspensions.
Collapse
Affiliation(s)
- Igor S Aranson
- Departments of Biomedical Engineering, Chemistry, and Mathematics, Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
185
|
Tociu L, Rassolov G, Fodor E, Vaikuntanathan S. Mean-field theory for the structure of strongly interacting active liquids. J Chem Phys 2022; 157:014902. [DOI: 10.1063/5.0096710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Active systems, which are driven out of equilibrium by local non-conservative forces, exhibit unique behaviors and structures with potential utility for the design of novel materials. An important and difficult challenge along the path towards such a goal is to precisely predict how the structure of active systems is modified as their driving forces push them out of equilibrium. Here, we use tools from liquid-state theories to approach this challenge for a classic minimal isotropic active matter model. First, we construct a nonequilibrium mean-field framework which can predict the structure of systems of weakly interacting particles. Second, motivated by equilibrium solvation theories, we modify this theory to extend it with surprisingly high accuracy to strongly interacting particles, distinguishing it from most existing similarly tractable approaches. Our results provide insight into spatial organization in strongly interacting out-of-equilibrium systems and strategies to control them.
Collapse
Affiliation(s)
- Laura Tociu
- The University of Chicago, United States of America
| | | | | | | |
Collapse
|
186
|
Gupta RK, Kant R, Soni H, Sood AK, Ramaswamy S. Active nonreciprocal attraction between motile particles in an elastic medium. Phys Rev E 2022; 105:064602. [PMID: 35854487 DOI: 10.1103/physreve.105.064602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
We show from experiments and simulations on vibration-activated granular matter that self-propelled polar rods in an elastic medium on a substrate turn and move towards each other. We account for this effective attraction through a coarse-grained theory of a motile particle as a moving point-force density that creates elastic strains in the medium that reorient other particles. Our measurements confirm qualitatively the predicted features of the distortions created by the rods, including the |x|^{-1/2} tail of the trailing displacement field and nonreciprocal sensing and pursuit. A discrepancy between the magnitudes of displacements along and transverse to the direction of motion remains. Our theory should be of relevance to the interaction of motile cells in the extracellular matrix or in a supported layer of gel or tissue.
Collapse
Affiliation(s)
- Rahul Kumar Gupta
- Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500 107, India
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India
- Institut für Theoretische Physik II - Soft Matter Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Raushan Kant
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| | - Harsh Soni
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| | - Sriram Ramaswamy
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
187
|
Jose A, Ariel G, Be'er A. Physical characteristics of mixed-species swarming colonies. Phys Rev E 2022; 105:064404. [PMID: 35854624 DOI: 10.1103/physreve.105.064404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
In nature, bacterial collectives typically consist of multiple species, which are interacting both biochemically and physically. Nonetheless, past studies on the physical properties of swarming bacteria were focused on axenic (single-species) populations. In bacterial swarming, intricate interactions between the individuals lead to clusters, rapid jets, and vortices that depend on cell characteristics such as speed and length. In this work, we show the first results of rapidly swarming mixed-species populations of Bacillus subtilis and Serratia marcescens, two model swarm species that are known to swarm well in axenic situations. In mixed liquid cultures, both species have higher reproduction rates. We show that the mixed population swarms together well and that the fraction between the species determines all dynamical scales-from the microscopic (e.g., speed distribution), mesoscopic (vortex size), and macroscopic (colony structure and size). Understanding mixed-species swarms is essential for a comprehensive understanding of the bacterial swarming phenomenon and its biological and evolutionary implications.
Collapse
Affiliation(s)
- Ajesh Jose
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52000 Ramat Gan, Israel
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel and Department of Physics, Ben-Gurion University of the Negev 84105, Beer-Sheva, Israel
| |
Collapse
|
188
|
Lisin EA, Vaulina OS, Lisina II, Petrov OF. Motion of a self-propelled particle with rotational inertia. Phys Chem Chem Phys 2022; 24:14150-14158. [PMID: 35648110 DOI: 10.1039/d2cp01313d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Overdamped active Brownian motion of self-propelled particles in a liquid has been fairly well studied. However, there are a variety of situations in which the overdamped approximation is not justified, for instance, when self-propelled particles move in a low-viscosity medium or when their rotational diffusivity is enhanced by internal active processes or external control. Examples of various origins include biofilaments driven by molecular motors, living and artificial microflyers and interfacial surfers, field-controlled and superfluid microswimmers, vibration-driven granular particles and autonomous mini-robots with sensorial delays, etc. All of them extend active Brownian motion to the underdamped case, i.e., to active Langevin motion, which takes into account inertia. Despite a rich experimental background, there is a gap in the theory in the field where rotational inertia significantly affects the random walk of active particles on all time scales. In particular, although the well-known models of active Brownian and Ornstein-Uhlenbeck particles include a memory effect of the direction of motion, they are not applicable in the underdamped case, because the rotational inertia, which they do not account for, can partially prevent "memory loss" with increasing rotational diffusion. We describe the two-dimensional motion of a self-propelled particle with both translational and rotational inertia and velocity fluctuations. The proposed generalized analytical equations for the mean kinetic energy, mean-square displacement and noise-averaged trajectory of the self-propelled particle are confirmed by numerical simulations in a wide range of self-propulsion velocities, moments of inertia, rotational diffusivities, medium viscosities and observation times.
Collapse
Affiliation(s)
- E A Lisin
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia.
| | - O S Vaulina
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia.
| | - I I Lisina
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia.
| | - O F Petrov
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia.
| |
Collapse
|
189
|
Santore MM. Interplay of physico-chemical and mechanical bacteria-surface interactions with transport processes controls early biofilm growth: A review. Adv Colloid Interface Sci 2022; 304:102665. [PMID: 35468355 DOI: 10.1016/j.cis.2022.102665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/01/2022]
Abstract
Biofilms initiate when bacteria encounter and are retained on surfaces. The surface orchestrates biofilm growth through direct physico-chemical and mechanical interactions with different structures on bacterial cells and, in turn, through its influence on cell-cell interactions. Individual cells respond directly to a surface through mechanical or chemical means, initiating "surface sensing" pathways that regulate gene expression, for instance producing extra cellular matrix or altering phenotypes. The surface can also physically direct the evolving colony morphology as cells divide and grow. In either case, the physico-chemistry of the surface influences cells and cell communities through mechanisms that involve additional factors. For instance the numbers of cells arriving on a surface from solution relative to the generation of new cells by division depends on adhesion and transport kinetics, affecting early colony density and composition. Separately, the forces experienced by adhering cells depend on hydrodynamics, gravity, and the relative stiffnesses and viscoelasticity of the cells and substrate materials, affecting mechanosensing pathways. Physical chemistry and surface functionality, along with interfacial mechanics also influence cell-surface friction and control colony morphology, in particular 2D and 3D shape. This review focuses on the current understanding of the mechanisms in which physico-chemical interactions, deriving from surface functionality, impact individual cells and cell community behavior through their coupling with other interfacial processes.
Collapse
|
190
|
Zhang DQ, Li ZY, Li B. Self-rotation regulates interface evolution in biphasic active matter through taming defect dynamics. Phys Rev E 2022; 105:064607. [PMID: 35854599 DOI: 10.1103/physreve.105.064607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Chirality can endow nonequilibrium active matter with unique features and functions. Here, we explore the chiral dynamics in biphasic active nematics composed of self-rotating units that continuously inject energy and angular momentum at the microscale. We show that the self-rotation of units can regularize the boundaries between two phases, rendering sinusoidal-like interfaces, which allow lateral wave propagation and are characterized by chains of ordered antiferromagnetic cross-interface flow vortices. Through the spontaneous coordination of counter-rotating units across the interfaces, topological defects excited by activity are sorted spatiotemporally, where positive defects are locally trapped at the interfaces but, unexpectedly, are transported laterally in a unidirectional rather than wavy mode, whereas inertial negative defects remain spinning in the bulks. Our findings reveal that individual chirality could be harnessed to modulate interfacial morphodynamics in active systems and suggest a potential approach toward controlling topological defects for programmable microfluidics and logic operations.
Collapse
Affiliation(s)
- De-Qing Zhang
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zhong-Yi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
191
|
Zhang R, Toonder JD, Onck PR. Metachronal patterns by magnetically-programmable artificial cilia surfaces for low Reynolds number fluid transport and mixing. SOFT MATTER 2022; 18:3902-3909. [PMID: 35535750 DOI: 10.1039/d1sm01680f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Motile cilia can produce net fluid flows at low Reynolds number because of their asymmetric motion and metachrony of collective beating. Mimicking this with artificial cilia can find application in microfluidic devices for fluid transport and mixing. Here, we study the metachronal beating of nonidentical, magnetically-programmed artificial cilia whose individual non-reciprocal motion and collective metachronal beating pattern can be independently controlled. We use a finite element method that accounts for magnetic forces, cilia deformation and fluid flow in a fully coupled manner. Mimicking biological cilia, we study magnetic cilia subject to a full range of metachronal driving patterns, including antiplectic, symplectic, laeoplectic and diaplectic waves. We analyse the induced primary flow, secondary flow and mixing rate as a function of the phase lag between cilia and explore the underlying physical mechanism. Our results show that shielding effects between neighboring cilia lead to a primary flow that is larger for antiplectic than for symplectic metachronal waves. The secondary flow can be fully explained by the propagation direction of the metachronal wave. Finally, we show that the mixing rate can be strongly enhanced by laeoplectic and diaplectic metachrony resulting in large velocity gradients and vortex-like flow patterns.
Collapse
Affiliation(s)
- Rongjing Zhang
- Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, The Netherlands.
| | - Jaap den Toonder
- Department of Mechanical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, The Netherlands.
| |
Collapse
|
192
|
Hsu CP, Sciortino A, de la Trobe YA, Bausch AR. Activity-induced polar patterns of filaments gliding on a sphere. Nat Commun 2022; 13:2579. [PMID: 35546549 PMCID: PMC9095588 DOI: 10.1038/s41467-022-30128-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Active matter systems feature the ability to form collective patterns as observed in a plethora of living systems, from schools of fish to swimming bacteria. While many of these systems move in a wide, three-dimensional environment, several biological systems are confined by a curved topology. The role played by a non-Euclidean geometry on the self-organization of active systems is not yet fully understood, and few experimental systems are available to study it. Here, we introduce an experimental setup in which actin filaments glide on the inner surface of a spherical lipid vesicle, thus embedding them in a curved geometry. We show that filaments self-assemble into polar, elongated structures and that, when these match the size of the spherical geometry, both confinement and topological constraints become relevant for the emergent patterns, leading to the formation of polar vortices and jammed states. These results experimentally demonstrate that activity-induced complex patterns can be shaped by spherical confinement and topology.
Collapse
Affiliation(s)
- Chiao-Peng Hsu
- Center for Protein Assemblies and Lehrstuhl für Zellbiophysik (E27), Physics Department, Technische Universität München, Garching, Germany
| | - Alfredo Sciortino
- Center for Protein Assemblies and Lehrstuhl für Zellbiophysik (E27), Physics Department, Technische Universität München, Garching, Germany
| | - Yu Alice de la Trobe
- Center for Protein Assemblies and Lehrstuhl für Zellbiophysik (E27), Physics Department, Technische Universität München, Garching, Germany
| | - Andreas R Bausch
- Center for Protein Assemblies and Lehrstuhl für Zellbiophysik (E27), Physics Department, Technische Universität München, Garching, Germany.
| |
Collapse
|
193
|
Shee A, Chaudhuri D. Self-propulsion with speed and orientation fluctuation: Exact computation of moments and dynamical bistabilities in displacement. Phys Rev E 2022; 105:054148. [PMID: 35706212 DOI: 10.1103/physreve.105.054148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
We consider the influence of active speed fluctuations on the dynamics of a d-dimensional active Brownian particle performing a persistent stochastic motion. The speed fluctuation brings about a dynamical anisotropy even in the absence of shape anisotropy. We use the Laplace transform of the Fokker-Planck equation to obtain exact expressions for time-dependent dynamical moments. Our results agree with direct numerical simulations and show several dynamical crossovers determined by the activity, persistence, and speed fluctuation. The dynamical anisotropy leads to a subdiffusive scaling in the parallel component of displacement fluctuation at intermediate times. The kurtosis remains positive at short times determined by the speed fluctuation, crossing over to a negative minimum at intermediate times governed by the persistence before vanishing asymptotically. The probability distribution of particle displacement obtained from numerical simulations in two dimensions shows two crossovers between compact and extended trajectories via two bimodal distributions at intervening times. While the speed fluctuation dominates the first crossover, the second crossover is controlled by persistence like in the wormlike chain model of semiflexible polymers.
Collapse
Affiliation(s)
- Amir Shee
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India and Homi Bhaba National Institute, Anushaktinagar, Mumbai 400094, India
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India and Homi Bhaba National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
194
|
Zhou W, Peralta JD, Hao Z, Gravish N. Lateral contact yields longitudinal cohesion in active undulatory systems. Phys Rev E 2022; 105:054604. [PMID: 35706245 DOI: 10.1103/physreve.105.054604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Many animals and robots move using undulatory motion of their bodies. When the bodies are in close proximity undulatory motion can lead to novel collective behavior such as gait synchronization, spatial reconfiguration, and clustering. Here we study the role of contact interactions between model undulatory swimmers: three-link robots in experiment and multilink swimmers in simulation. The undulatory gait of each swimmer is generated through a time-dependent sinusoidal-like waveform which has a fixed phase offset, ϕ. By varying the phase relationship between neighboring swimmers we seek to study how contact forces and planar configurations are governed by the phase difference between neighboring swimmers. We find that undulatory actuation in close proximity drives neighboring swimmers into planar equilibrium configurations that depend on the actuation phase difference. We propose a model for stable planar configurations of nearest-neighbor undulatory swimmers which we call the gait compatibility condition, which is the set of planar and phase configurations in which no collisions occur. Robotic experiments with two, three, and four swimmers exhibit good agreement with the compatibility model. To study the contact forces and the time-averaged equilibrium between undulatory systems we perform simulations. To probe the interaction potential between undulatory swimmers we apply a small force to each swimmer longitudinally to separate them from the compatible configuration and we measure their steady-state displacement. These studies reveal that undulatory swimmers in close proximity exhibit attractive longitudinal interaction forces that drive the swimmers from incompatible to compatible configurations. This system of undulatory swimmers provides new insight into active-matter systems which move through body undulation. In addition to the importance of velocity and orientation coherence in active-matter swarms, we demonstrate that undulatory phase coherence is also important for generating stable, cohesive group configurations.
Collapse
Affiliation(s)
- Wei Zhou
- Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA
| | - Jaquelin Dezha Peralta
- Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA
| | - Zhuonan Hao
- Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA
| | - Nick Gravish
- Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA
| |
Collapse
|
195
|
Clopés J, Gompper G, Winkler RG. Alignment and propulsion of squirmer pusher-puller dumbbells. J Chem Phys 2022; 156:194901. [DOI: 10.1063/5.0091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The properties of microswimmer dumbbells composed of pusher-puller pairs are investigated by mesoscale hydrodynamic simulations employing the multiparticle collision dynamics approach for the fluid. An individual microswimmer is represented by a squirmer, and various active-stress combinations in a dumbbell are considered. The squirmers are connected by a bond, which does not impose any geometrical restriction on the individual rotational motion. Our simulations reveal a strong influence of the squirmers' flow fields on the orientation of their propulsion directions, their fluctuations, and the swimming behavior of a dumbbell. The properties of pusher-puller pairs with equal magnitude of the active stresses dependent only weakly on the stress magnitude. This is similar to dumbbells of microswimmers without hydrodynamic interactions. However, for non-equal stress magnitudes, the active stress implies strong orientational correlations of the swimmers' propulsion directions with respect to each other as well as the bond vector. The orientational coupling is most pronounced for pairs with large differences of the active stress magnitude. The alignment of the squirmer propulsion directions with respect to each other is preferentially orthogonal in dumbbells with a strong pusher and weak puller, and antiparallel in the opposite case when the puller dominates. These strong correlations affect the active motion of dumbbells which is faster for strong pushers and slower for strong pullers.
Collapse
Affiliation(s)
| | - Gerhard Gompper
- Institute of Biological Information Processing, Forschungszentrum Jülich GmbH, Germany
| | - Roland G. Winkler
- Institute for Advanced Simulation, Forschungszentrum Jülich, Germany
| |
Collapse
|
196
|
Ben Dor Y, Kafri Y, Mukamel D, Turner AM. Long-Range Influence of a Pump on a Critical Fluid. PHYSICAL REVIEW LETTERS 2022; 128:154501. [PMID: 35499874 DOI: 10.1103/physrevlett.128.154501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
A pump coupled to a conserved density generates long-range modulations, resulting from the non-equilibrium nature of the dynamics. We study how these modulations are modified at the critical point where the system exhibits intrinsic long-range correlations. To do so, we consider a pump in a diffusive fluid, which is known to generate a density profile in the form of an electric dipole potential and a current in the form of a dipolar field above the critical point. We demonstrate that while the current retains its form at the critical point, the density profile changes drastically. At criticality, in d<4 dimensions, the deviation of the density from the average is given by sgn[cos(θ)]|cos(θ)/r^{(d-1)}|^{1/δ} at large distance r from the pump and angle θ with respect to the pump's orientation. At short distances, there is a crossover to a cos(θ)/r^{d-3+η} profile. Here δ and η are Ising critical exponents. The effect of the local pump on the domain wall structure below the critical point is also considered.
Collapse
Affiliation(s)
- Ydan Ben Dor
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yariv Kafri
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - David Mukamel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ari M Turner
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
197
|
Activity-induced interactions and cooperation of artificial microswimmers in one-dimensional environments. Nat Commun 2022; 13:1772. [PMID: 35365633 PMCID: PMC8976030 DOI: 10.1038/s41467-022-29430-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Cooperative motion in biological microswimmers is crucial for their survival as it facilitates adhesion to surfaces, formation of hierarchical colonies, efficient motion, and enhanced access to nutrients. Here, we confine synthetic, catalytic microswimmers along one-dimensional paths and demonstrate that they too show a variety of cooperative behaviours. We find that their speed increases with the number of swimmers, and that the activity induces a preferred distance between swimmers. Using a minimal model, we ascribe this behavior to an effective activity-induced potential that stems from a competition between chemical and hydrodynamic coupling. These interactions further induce active self-assembly into trains where swimmers move at a well-separated, stable distance with respect to each other, as well as compact chains that can elongate, break-up, become immobilized and remobilized. We identify the crucial role that environment morphology and swimmer directionality play on these highly dynamic chain behaviors. These activity-induced interactions open the door toward exploiting cooperation for increasing the efficiency of microswimmer motion, with temporal and spatial control, thereby enabling them to perform intricate tasks inside complex environments. Biological microswimmers such as bacteria show collective motion that is made possible by an intricate interplay of sensing and signaling. Ketzetzi et al. reproduce this phenomenon in a catalytic system undergoing, for instance, cooperative speed-ups and dynamic reconfiguration of microswimmer chains.
Collapse
|
198
|
Bhattacharya K, Chakraborty A. Aggregation of self-propelled particles with sensitivity to local order. Phys Rev E 2022; 105:044124. [PMID: 35590585 DOI: 10.1103/physreve.105.044124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
We study a system of self-propelled particles (SPPs) in which individual particles are allowed to switch between a fast aligning and a slow nonaligning state depending upon the degree of the alignment in the neighborhood. The switching is modeled using a threshold for the local order parameter. This additional attribute gives rise to a mixed phase, in contrast to the ordered phases found in clean SPP systems. As the threshold is increased from zero, we find the sudden appearance of clusters of nonaligners. Clusters of nonaligners coexist with moving clusters of aligners with continual coalescence and fragmentation. The behavior of the system with respect to the clustering of nonaligners appears to be very different for values of low and high global densities. In the low density regime, for an optimal value of the threshold, the largest cluster of nonaligners grows in size up to a maximum that varies logarithmically with the total number of particles. However, on further increasing the threshold the size decreases. In contrast, for the high density regime, an initial abrupt rise is followed by the appearance of a giant cluster of nonaligners. The latter growth can be characterized as a continuous percolation transition. In addition, we find that the speed differences between aligners and nonaligners is necessary for the segregation of aligners and nonaligners.
Collapse
Affiliation(s)
- Kunal Bhattacharya
- Department of Industrial Engineering and Management, Aalto University School of Science, 00076 Aalto, Finland
- Department of Computer Science, Aalto University School of Science, 00076 Aalto, Finland
| | - Abhijit Chakraborty
- Complexity Science Hub Vienna, Josefstaedter Strasse 39, 1080 Vienna, Austria
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, 1 Nakaadachi-cho, Yoshida, Sakyo-ku, Kyoto 606-8306, Japan
| |
Collapse
|
199
|
Scagliarini A, Pagonabarraga I. Hydrodynamic and geometric effects in the sedimentation of model run-and-tumble microswimmers. SOFT MATTER 2022; 18:2407-2413. [PMID: 35266484 PMCID: PMC9904398 DOI: 10.1039/d1sm01594j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The sedimentation process in an active suspension is the result of the competition between gravity and the autonomous motion of particles. We carry out simulations of run-and-tumble squirmers that move in a fluid medium, focusing on the dependence of the non-equilibrium steady state on the swimming properties. We find that for large enough activity, the density profiles are no longer simple exponentials; we recover the numerical results through the introduction of a local effective temperature, suggesting that the breakdown of the Perrin-like exponential form is a collective effect due to fluid-mediated dynamic correlations among particles. We show that analogous concepts can also fit the case of active non-motile particles, for which we report the first study of this kind. Moreover, we provide evidence of scenarios where the solvent hydrodynamics induces non-local effects which require the full three-dimensional dynamics to be taken into account in order to understand sedimentation in active suspensions. Finally, analyzing the statistics of the orientations of microswimmers, the emergence of a height-dependent polar order in the system is discussed.
Collapse
Affiliation(s)
- Andrea Scagliarini
- IAC-CNR, Istituto per le Applicazioni del Calcolo "Mauro Picone", Via dei Taurini 19, 00185 Rome, Italy.
- INFN, Sezione Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Ignacio Pagonabarraga
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne, Batochimie, Avenue Forel 2, 1015 Lausanne, Switzerland
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Carrer de Martí i Franquès 1, 08028 Barcelona, Spain
- Universitat de Barcelona, Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
200
|
Xiao Y, Zhang J, Fang B, Zhao X, Hao N. Acoustics-Actuated Microrobots. MICROMACHINES 2022; 13:481. [PMID: 35334771 PMCID: PMC8949854 DOI: 10.3390/mi13030481] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
Microrobots can operate in tiny areas that traditional bulk robots cannot reach. The combination of acoustic actuation with microrobots extensively expands the application areas of microrobots due to their desirable miniaturization, flexibility, and biocompatibility features. Herein, an overview of the research and development of acoustics-actuated microrobots is provided. We first introduce the currently established manufacturing methods (3D printing and photolithography). Then, according to their different working principles, we divide acoustics-actuated microrobots into three categories including bubble propulsion, sharp-edge propulsion, and in-situ microrotor. Next, we summarize their established applications from targeted drug delivery to microfluidics operation to microsurgery. Finally, we illustrate current challenges and future perspectives to guide research in this field. This work not only gives a comprehensive overview of the latest technology of acoustics-actuated microrobots, but also provides an in-depth understanding of acoustic actuation for inspiring the next generation of advanced robotic devices.
Collapse
Affiliation(s)
- Yaxuan Xiao
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China; (Y.X.); (B.F.)
- Laboratory of Microscale Green Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China;
| | - Jinhua Zhang
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China; (Y.X.); (B.F.)
| | - Bin Fang
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China; (Y.X.); (B.F.)
| | - Xiong Zhao
- Laboratory of Microscale Green Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China;
| | - Nanjing Hao
- Laboratory of Microscale Green Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China;
| |
Collapse
|