151
|
Gillispie G, Prim P, Copus J, Fisher J, Mikos AG, Yoo JJ, Atala A, Lee SJ. Assessment methodologies for extrusion-based bioink printability. Biofabrication 2020; 12:022003. [PMID: 31972558 PMCID: PMC7039534 DOI: 10.1088/1758-5090/ab6f0d] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extrusion-based bioprinting is one of the leading manufacturing techniques for tissue engineering and regenerative medicine. Its primary limitation is the lack of materials, known as bioinks, which are suitable for the bioprinting process. The degree to which a bioink is suitable for bioprinting has been described as its 'printability.' However, a lack of clarity surrounding the methodologies used to evaluate a bioink's printability, as well as the usage of the term itself, have hindered the field. This article presents a review of measures used to assess the printability of extrusion-based bioinks in an attempt to assist researchers during the bioink development process. Many different aspects of printability exist and many different measurements have been proposed as a consequence. Researchers often do not evaluate a new bioink's printability at all, while others simply do so qualitatively. Several quantitative measures have been presented for the extrudability, shape fidelity, and printing accuracy of bioinks. Different measures have been developed even within these aspects, each testing the bioink in a slightly different way. Additionally, other relevant measures which had little or no examples of quantifiable methods are also to be considered. Looking forward, further work is needed to improve upon current assessment methodologies, to move towards a more comprehensive view of printability, and to standardize these printability measurements between researchers. Better assessment techniques will naturally lead to a better understanding of the underlying mechanisms which affect printability and better comparisons between bioinks. This in turn will help improve upon the bioink development process and the bioinks available for use in bioprinting.
Collapse
Affiliation(s)
- Gregory Gillispie
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| | - Peter Prim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Joshua Copus
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| | - John Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Antonios G. Mikos
- Departments of Bioengineering and Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| |
Collapse
|
152
|
Compaan AM, Song K, Chai W, Huang Y. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7855-7868. [PMID: 31948226 DOI: 10.1021/acsami.9b15451] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tissue engineering is a rapidly growing field, which requires advanced fabrication technologies to generate cell-laden tissue analogues with a wide range of internal and external physical features including perfusable channels, cavities, custom shapes, and spatially varying material and/or cell compositions. A versatile embedded printing methodology is proposed in this work for creating custom biomedical acellular and cell-laden hydrogel constructs by utilizing a biocompatible microgel composite matrix bath. A sacrificial material is patterned within a biocompatible hydrogel precursor matrix bath using extrusion printing to create three-dimensional features; after printing, the matrix bath is cross-linked, and the sacrificial material is flushed away to create perfusable channels within the bulk composite hydrogel matrix. The composite matrix bath material consists of jammed cross-linked hydrogel microparticles (microgels) to control rheology during fabrication along with a fluid hydrogel precursor, which is cross-linked after fabrication to form the continuous phase of the composite hydrogel. For demonstration, gellan or enzymatically cross-linked gelatin microgels are utilized with a continuous gelatin hydrogel precursor solution to make the composite matrix bath herein; the composite hydrogel matrix is formed by cross-linking the continuous gelatin phase enzymatically after printing. A variety of features including discrete channels, junctions, networks, and external contours are fabricated in the proposed composite matrix bath using embedded printing. Cell-laden constructs with printed features are also evaluated; the microgel composite hydrogel matrices support cell activity, and printed channels enhance proliferation compared to solid constructs even in static culture. The proposed method can be expanded as a solid object sculpting method to sculpt external contours by printing a shell of sacrificial ink and further discarding excess composite hydrogel matrix after printing and cross-linking. While aqueous alginate solution is used as a sacrificial ink, more advanced sacrificial materials can be utilized for better printing resolution.
Collapse
Affiliation(s)
- Ashley M Compaan
- Department of Materials Science and Engineering , University of Florida , Gainesville , Florida 32611 , United States
- Novabone Products, LLC , 13510 NW US Highway 441 , Alachua , Florida 32615 , United States
| | - Kaidong Song
- Department of Mechanical and Aerospace Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Wenxuan Chai
- Department of Mechanical and Aerospace Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Yong Huang
- Department of Materials Science and Engineering , University of Florida , Gainesville , Florida 32611 , United States
- Department of Mechanical and Aerospace Engineering , University of Florida , Gainesville , Florida 32611 , United States
- Department of Biomedical Engineering , University of Florida , Gainesville , Florida 32611 , United States
| |
Collapse
|
153
|
Kajave NS, Schmitt T, Nguyen TU, Kishore V. Dual crosslinking strategy to generate mechanically viable cell-laden printable constructs using methacrylated collagen bioinks. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110290. [PMID: 31761199 PMCID: PMC6880877 DOI: 10.1016/j.msec.2019.110290] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/11/2019] [Accepted: 10/07/2019] [Indexed: 12/22/2022]
Abstract
Photopolymerization of methacrylated collagen (CMA) allows for 3D bioprinting of tissue scaffolds with high resolution and print fidelity. However, photochemically crosslinked CMA constructs are mechanically weak and susceptible to expedited enzymatic degradation in vivo. The goal of the current study was to develop a dual crosslinking scheme for the generation of mechanically viable cell-laden printable constructs for tissue engineering applications. Dual crosslinking was performed by first photochemical crosslinking of CMA hydrogels using VA-086 photoinitiator and UV exposure followed by chemical crosslinking with two different concentrations of genipin (i.e., 0.5 mM (low dual) or 1 mM (high dual)). The effect of dual crosslinking conditions on gel morphology, compressive modulus, stability and print fidelity was evaluated. Additionally, human MSCs were encapsulated within CMA hydrogels and the effect of dual crosslinking conditions on viability and metabolic activity was assessed. Uncrosslinked, photochemically crosslinked, and genipin crosslinked CMA hydrogels were used as controls. SEM results showed that gel morphology was maintained upon dual crosslinking. Further, dual crosslinking significantly improved the compressive modulus and degradation time of cell-laden and acellular CMA hydrogels. Cell viability results showed that high cell viability (i.e., >80%) and metabolic activity in low dual crosslinked CMA hydrogels. On the other hand, cell viability and metabolic activity decreased significantly (p < 0.05) in high dual crosslinked CMA hydrogels. Quantitative fidelity measurements showed the measured parameters (i.e., line widths, pore size) were comparable between photochemically crosslinked and dual crosslinked constructs, suggesting that print fidelity is maintained upon dual crosslinking. In conclusion, application of low dual crosslinking is a viable strategy to yield mechanically superior, cell compatible and printable CMA hydrogels.
Collapse
Affiliation(s)
- Nilabh S Kajave
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Trevor Schmitt
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Thuy-Uyen Nguyen
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| |
Collapse
|
154
|
Combining Innovative Bioink and Low Cell Density for the Production of 3D-Bioprinted Cartilage Substitutes: A Pilot Study. Stem Cells Int 2020; 2020:2487072. [PMID: 32399041 PMCID: PMC7201838 DOI: 10.1155/2020/2487072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
3D bioprinting offers interesting opportunities for 3D tissue printing by providing living cells with appropriate scaffolds with a dedicated structure. Biological advances in bioinks are currently promising for cell encapsulation, particularly that of mesenchymal stem cells (MSCs). We present herein the development of cartilage implants by 3D bioprinting that deliver MSCs encapsulated in an original bioink at low concentration. 3D-bioprinted constructs (10 × 10 × 4 mm) were printed using alginate/gelatin/fibrinogen bioink mixed with human bone marrow MSCs. The influence of the bioprinting process and chondrogenic differentiation on MSC metabolism, gene profiles, and extracellular matrix (ECM) production at two different MSC concentrations (1 million or 2 million cells/mL) was assessed on day 28 (D28) by using MTT tests, real-time RT-PCR, and histology and immunohistochemistry, respectively. Then, the effect of the environment (growth factors such as TGF-β1/3 and/or BMP2 and oxygen tension) on chondrogenicity was evaluated at a 1 M cell/mL concentration on D28 and D56 by measuring mitochondrial activity, chondrogenic gene expression, and the quality of cartilaginous matrix synthesis. We confirmed the safety of bioextrusion and gelation at concentrations of 1 million and 2 million MSC/mL in terms of cellular metabolism. The chondrogenic effect of TGF-β1 was verified within the substitute on D28 by measuring chondrogenic gene expression and ECM synthesis (glycosaminoglycans and type II collagen) on D28. The 1 M concentration represented the best compromise. We then evaluated the influence of various environmental factors on the substitutes on D28 (differentiation) and D56 (synthesis). Chondrogenic gene expression was maximal on D28 under the influence of TGF-β1 or TGF-β3 either alone or in combination with BMP-2. Hypoxia suppressed the expression of hypertrophic and osteogenic genes. ECM synthesis was maximal on D56 for both glycosaminoglycans and type II collagen, particularly in the presence of a combination of TGF-β1 and BMP-2. Continuous hypoxia did not influence matrix synthesis but significantly reduced the appearance of microcalcifications within the extracellular matrix. The described strategy is very promising for 3D bioprinting by the bioextrusion of an original bioink containing a low concentration of MSCs followed by the culture of the substitutes in hypoxic conditions under the combined influence of TGF-β1 and BMP-2.
Collapse
|
155
|
Scheiner KC, Coulter F, Maas-Bakker RF, Ghersi G, Nguyen TT, Steendam R, Duffy GP, Hennink WE, O’Cearbhaill ED, Kok RJ. Vascular Endothelial Growth Factor–Releasing Microspheres Based on Poly(ε-Caprolactone-PEG-ε-Caprolactone)-b-Poly(L-Lactide) Multiblock Copolymers Incorporated in a Three-Dimensional Printed Poly(Dimethylsiloxane) Cell Macroencapsulation Device. J Pharm Sci 2020; 109:863-870. [DOI: 10.1016/j.xphs.2019.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
|
156
|
Chimene D, Kaunas R, Gaharwar AK. Hydrogel Bioink Reinforcement for Additive Manufacturing: A Focused Review of Emerging Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902026. [PMID: 31599073 DOI: 10.1002/adma.201902026] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/05/2019] [Indexed: 05/24/2023]
Abstract
Bioprinting is an emerging approach for fabricating cell-laden 3D scaffolds via robotic deposition of cells and biomaterials into custom shapes and patterns to replicate complex tissue architectures. Bioprinting uses hydrogel solutions called bioinks as both cell carriers and structural components, requiring bioinks to be highly printable while providing a robust and cell-friendly microenvironment. Unfortunately, conventional hydrogel bioinks have not been able to meet these requirements and are mechanically weak due to their heterogeneously crosslinked networks and lack of energy dissipation mechanisms. Advanced bioink designs using various methods of dissipating mechanical energy are aimed at developing next-generation cellularized 3D scaffolds to mimic anatomical size, tissue architecture, and tissue-specific functions. These next-generation bioinks need to have high print fidelity and should provide a biocompatible microenvironment along with improved mechanical properties. To design these advanced bioink formulations, it is important to understand the structure-property-function relationships of hydrogel networks. By specifically leveraging biophysical and biochemical characteristics of hydrogel networks, high performance bioinks can be designed to control and direct cell functions. In this review article, current and emerging approaches in hydrogel design and bioink reinforcement techniques are critically evaluated. This bottom-up perspective provides a materials-centric approach to bioink design for 3D bioprinting.
Collapse
Affiliation(s)
- David Chimene
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Roland Kaunas
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Akhilesh K Gaharwar
- Biomedical Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Material Science and Engineering, Dwight Look College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
157
|
Chen Y, Xiong X, Liu X, Cui R, Wang C, Zhao G, Zhi W, Lu M, Duan K, Weng J, Qu S, Ge J. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels. J Mater Chem B 2020; 8:5500-5514. [DOI: 10.1039/d0tb00060d] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel shear-thinning hybrid bioink with good printability, mechanical support, biocompatibility, and bioactivity was developed by combining gellan gum, sodium alginate, and thixotropic magnesium phosphate-based gel (GG–SA/TMP-BG).
Collapse
|
158
|
Jiang T, Munguia-Lopez JG, Gu K, Bavoux MM, Flores-Torres S, Kort-Mascort J, Grant J, Vijayakumar S, De Leon-Rodriguez A, Ehrlicher AJ, Kinsella JM. Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics. Biofabrication 2019; 12:015024. [DOI: 10.1088/1758-5090/ab3a5c] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
159
|
Ruiz-Cantu L, Gleadall A, Faris C, Segal J, Shakesheff K, Yang J. Multi-material 3D bioprinting of porous constructs for cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110578. [PMID: 32228894 DOI: 10.1016/j.msec.2019.110578] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 11/21/2019] [Accepted: 12/19/2019] [Indexed: 12/25/2022]
Abstract
The current gold standard for nasal reconstruction after rhinectomy or severe trauma includes transposition of autologous cartilage grafts in conjunction with coverage using an autologous skin flap. Harvesting autologous cartilage requires a major additional procedure that may create donor site morbidity. Major nasal reconstruction also requires sculpting autologous cartilages to form a cartilage framework, which is complex, highly skill-demanding and very time consuming. These limitations have prompted facial reconstructive surgeons to explore different techniques such as tissue engineered cartilage. This work explores the use of multi-material 3D bioprinting with chondrocyte-laden gelatin methacrylate (GelMA) and polycaprolactone (PCL) to fabricate constructs that can potentially be used for nasal reconstruction. In this study, we have investigated the effect of 3D manufacturing parameters including temperature, needle gauge, UV exposure time, and cell carrier formulation (GelMA) on the viability and functionality of chondrocytes in bioprinted constructs. Furthermore, we printed chondrocyte-laden GelMA and PCL into composite constructs to combine biological and mechanical properties. It was found that 20% w/v GelMA was the best concentration for the 3D bioprinting of the chondrocytes without comprising the scaffold's porous structure and cell functionality. In addition, the 3D bioprinted constructs showed neocartilage formation and similar mechanical properties to nasal alar cartilage after a 50-day culture period. Neocartilage formation was also observed in the composite constructs evidenced by the presence of glycosaminoglycans and collagen type II. This study shows the feasibility of manufacturing neocartilage using chondrocytes/GelMA/PCL 3D bioprinted porous constructs which could be applied as a method for fabricating implants for nose reconstruction.
Collapse
Affiliation(s)
- Laura Ruiz-Cantu
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Regenerative Medicine and Cellular Therapies Division, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Andrew Gleadall
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, University of Loughborough, Loughborough LE113TU, UK
| | - Callum Faris
- Department of Otorhinolaryngology and Facial Plastic Reconstructive Surgery, Poole Hospital, Poole BH15 2JB, UK
| | - Joel Segal
- Advanced Manufacturing Technology Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Kevin Shakesheff
- Regenerative Medicine and Cellular Therapies Division, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jing Yang
- Regenerative Medicine and Cellular Therapies Division, Faculty of Science, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
160
|
Cipollaro L, Ciardulli MC, Della Porta G, Peretti GM, Maffulli N. Biomechanical issues of tissue-engineered constructs for articular cartilage regeneration: in vitro and in vivo approaches. Br Med Bull 2019; 132:53-80. [PMID: 31854445 DOI: 10.1093/bmb/ldz034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Given the limited regenerative capacity of injured articular cartilage, the absence of suitable therapeutic options has encouraged tissue-engineering approaches for its regeneration or replacement. SOURCES OF DATA Published articles in any language identified in PubMed and Scopus electronic databases up to August 2019 about the in vitro and in vivo properties of cartilage engineered constructs. A total of 64 articles were included following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. AREAS OF AGREEMENT Regenerated cartilage lacks the biomechanical and biological properties of native articular cartilage. AREAS OF CONTROVERSY There are many different approaches about the development of the architecture and the composition of the scaffolds. GROWING POINTS Novel tissue engineering strategies focus on the development of cartilaginous biomimetic materials able to repair cartilage lesions in association to cell, trophic factors and gene therapies. AREAS TIMELY FOR DEVELOPING RESEARCH A multi-layer design and a zonal organization of the constructs may lead to achieve cartilage regeneration.
Collapse
Affiliation(s)
- Lucio Cipollaro
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Giuseppe M Peretti
- IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, via Mangiagalli 31, 20133, Milan, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, 275 Bancroft Road, London E1 4DG, Queen Mary University of London, London, UK
- Institute of Science and Technology in Medicine, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent, UK
| |
Collapse
|
161
|
Muthukumar T, Song JE, Khang G. Biological Role of Gellan Gum in Improving Scaffold Drug Delivery, Cell Adhesion Properties for Tissue Engineering Applications. Molecules 2019; 24:E4514. [PMID: 31835526 PMCID: PMC6943741 DOI: 10.3390/molecules24244514] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, gellan gum (GG) has attracted substantial research interest in several fields including biomedical and clinical applications. The GG has highly versatile properties like easy bio-fabrication, tunable mechanical, cell adhesion, biocompatibility, biodegradability, drug delivery, and is easy to functionalize. These properties have put forth GG as a promising material in tissue engineering and regenerative medicine fields. Nevertheless, GG alone has poor mechanical strength, stability, and a high gelling temperature in physiological conditions. However, GG physiochemical properties can be enhanced by blending them with other polymers like chitosan, agar, sodium alginate, starch, cellulose, pullulan, polyvinyl chloride, xanthan gum, and other nanomaterials, like gold, silver, or composites. In this review article, we discuss the comprehensive overview and different strategies for the preparation of GG based biomaterial, hydrogels, and scaffolds for drug delivery, wound healing, antimicrobial activity, and cell adhesion. In addition, we have given special attention to tissue engineering applications of GG, which can be combined with another natural, synthetic polymers and nanoparticles, and other composites materials. Overall, this review article clearly presents a summary of the recent advances in research studies on GG for different biomedical applications.
Collapse
Affiliation(s)
| | | | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer Nano Science & Technology and Polymer BIN Research Center, Chonbuk National University, Deokjin-gu, Jeonju 561-756, Korea; (T.M.); (J.E.S.)
| |
Collapse
|
162
|
Tigner TJ, Rajput S, Gaharwar AK, Alge DL. Comparison of Photo Cross Linkable Gelatin Derivatives and Initiators for Three-Dimensional Extrusion Bioprinting. Biomacromolecules 2019; 21:454-463. [DOI: 10.1021/acs.biomac.9b01204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
163
|
Figueiredo T, Jing J, Jeacomine I, Olsson J, Gerfaud T, Boiteau JG, Rome C, Harris C, Auzély-Velty R. Injectable Self-Healing Hydrogels Based on Boronate Ester Formation between Hyaluronic Acid Partners Modified with Benzoxaborin Derivatives and Saccharides. Biomacromolecules 2019; 21:230-239. [DOI: 10.1021/acs.biomac.9b01128] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tamiris Figueiredo
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France
| | - Jing Jing
- Galderma/Nestlé Skin Health R&D, 2400 Route de Colles, 06410 Biot, France
| | - Isabelle Jeacomine
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France
| | - Johan Olsson
- Galderma/Nestlé Skin Health R&D, Seminariegatan 21, SE-752 28 Uppsala, Sweden
| | - Thibaud Gerfaud
- Galderma/Nestlé Skin Health R&D, 2400 Route de Colles, 06410 Biot, France
| | - Jean-Guy Boiteau
- Galderma/Nestlé Skin Health R&D, 2400 Route de Colles, 06410 Biot, France
| | - Claire Rome
- Université Grenoble Alpes, Institut des Neurosciences (GIN), Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38706 La Tronche Cedex, France
| | - Craig Harris
- Galderma/Nestlé Skin Health R&D, 2400 Route de Colles, 06410 Biot, France
| | - Rachel Auzély-Velty
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France
| |
Collapse
|
164
|
Van Hoorick J, Tytgat L, Dobos A, Ottevaere H, Van Erps J, Thienpont H, Ovsianikov A, Dubruel P, Van Vlierberghe S. (Photo-)crosslinkable gelatin derivatives for biofabrication applications. Acta Biomater 2019; 97:46-73. [PMID: 31344513 DOI: 10.1016/j.actbio.2019.07.035] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/20/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022]
Abstract
Over the recent decades gelatin has proven to be very suitable as an extracellular matrix mimic for biofabrication and tissue engineering applications. However, gelatin is prone to dissolution at typical cell culture conditions and is therefore often chemically modified to introduce (photo-)crosslinkable functionalities. These modifications allow to tune the material properties of gelatin, making it suitable for a wide range of biofabrication techniques both as a bioink and as a biomaterial ink (component). The present review provides a non-exhaustive overview of the different reported gelatin modification strategies to yield crosslinkable materials that can be used to form hydrogels suitable for biofabrication applications. The different crosslinking chemistries are discussed and classified according to their mechanism including chain-growth and step-growth polymerization. The step-growth polymerization mechanisms are further classified based on the specific chemistry including different (photo-)click chemistries and reversible systems. The benefits and drawbacks of each chemistry are also briefly discussed. Furthermore, focus is placed on different biofabrication strategies using either inkjet, deposition or light-based additive manufacturing techniques, and the applications of the obtained 3D constructs. STATEMENT OF SIGNIFICANCE: Gelatin and more specifically gelatin-methacryloyl has emerged to become one of the gold standard materials as an extracellular matrix mimic in the field of biofabrication. However, also other modification strategies have been elaborated to take advantage of a plethora of crosslinking chemistries. Therefore, a review paper focusing on the different modification strategies and processing of gelatin is presented. Particular attention is paid to the underlying chemistry along with the benefits and drawbacks of each type of crosslinking chemistry. The different strategies were classified based on their basic crosslinking mechanism including chain- or step-growth polymerization. Within the step-growth classification, a further distinction is made between click chemistries as well as other strategies. The influence of these modifications on the physical gelation and processing conditions including mechanical properties is presented. Additionally, substantial attention is put to the applied photoinitiators and the different biofabrication technologies including inkjet, deposition or light-based technologies.
Collapse
Affiliation(s)
- Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Liesbeth Tytgat
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Agnes Dobos
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Heidi Ottevaere
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jürgen Van Erps
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Hugo Thienpont
- Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium
| | - Aleksandr Ovsianikov
- Research Group 3D Printing and Biofabrication, Institute of Materials Science and Technology, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium; Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
165
|
Cidonio G, Cooke M, Glinka M, Dawson J, Grover L, Oreffo R. Printing bone in a gel: using nanocomposite bioink to print functionalised bone scaffolds. Mater Today Bio 2019; 4:100028. [PMID: 31853520 PMCID: PMC6894340 DOI: 10.1016/j.mtbio.2019.100028] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Free-form printing offers a novel biofabrication approach to generate complex shapes by depositing hydrogel materials within a temporary supportive environment. However, printed hydrogels typically lack the requisite mechanical properties and functionality of the desired tissue, limiting application and, more importantly, safety and efficacy of the implant. The study authors have developed an innovative nanoclay-based bioink to print high shape fidelity functional constructs for potential skeletal application. Laponite® (LAP) nanoclay was combined with gellan gum (GG) to generate a printable hydrogel that was highly stable in vitro, displayed limited swelling ability compared with the silicate-free control and remained stable over time. An agarose fluid gel was found to provide the requisite support for the deposition of the material ink and preservation of the printed structure before crosslinking. Printed C2C12 myoblasts remained viable and displayed extensive proliferation over 21 days in culture. Cell-laden scaffolds demonstrated functionality within 1 day of culture in vitro and that was preserved over 3 weeks. Analysis of absorption and release mechanisms from LAP-GG using model proteins (lysozyme and bovine serum albumin) demonstrated the retention capability of the clay-based materials for compound localisation and absence of burst release. Vascular endothelial growth factor was loaded within the agarose fluid gel and absorbed by the material ink via absorption during deposition. The 3D-printed constructs were implanted on the chorioallantoic membrane of a 10-day-old developing chick. Extensive and preferential vasculature infiltration was observed in LAP-GG-loaded vascular endothelial growth factor constructs compared with controls (p<0.01 and p<0.0001) after only 7 days of incubation. The current studies demonstrate, for the first time, the application of innovative LAP-GG 3D constructs in the generation of growth factor-loaded 3D constructs for potential application in skeletal tissue repair.
Collapse
Affiliation(s)
- G. Cidonio
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - M. Cooke
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, UK
- Institute of Inflammation and Ageing, MRC Musculoskeletal Ageing Centre, Queen Elizabeth Hospital Birmingham, Edgbaston, B15 2WB, UK
| | - M. Glinka
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - J.I. Dawson
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - L. Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, B15 2TT, UK
| | - R.O.C. Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
166
|
Kiyotake EA, Douglas AW, Thomas EE, Nimmo SL, Detamore MS. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting. Acta Biomater 2019; 95:176-187. [PMID: 30669003 DOI: 10.1016/j.actbio.2019.01.041] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/18/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
Bioprinting technologies have tremendous potential for advancing regenerative medicine due to the precise spatial control over depositing a printable biomaterial, or bioink. Despite the growing interest in bioprinting, the field is challenged with developing biomaterials for extrusion-based bioprinting. The paradigm of contemporary bioink studies relies on trial-and-error methods for discovering printable biomaterials, which has little practical use for others who endeavor to develop bioinks. There is pressing need to follow the precedent set by a few pioneering studies that have attempted to standardize bioink characterizations for determining the properties that define printability. Here, we developed a pentenoate-functionalized hyaluronic acid hydrogel (PHA) into a printable bioink and used three recommended, quantitative rheological assessments to characterize the printability: 1) yield stress, 2) viscosity, and 3) storage modulus recovery. The most important characteristic is the yield stress; we found a yield stress upper limit of ∼1000 Pa for PHA. Measuring the viscosity was advantageous for determining shear-thinning behavior, which aided in extruding highly viscous PHA through a nozzle. Post-printing recovery is required to maintain shape fidelity and we found storage modulus recoveries above ∼85% were sufficient for PHA. Two formulations had superior printability (i.e., 1.5 MDa PHA - 4 wt%, and 1 MDa PHA - 8 wt%), and increasing cell concentrations in PHA up to 9 × 106 cells/mL had minimal effects on the printability. Even so, other factors such as sterilization and peptide modifications to enhance bioactivity may influence printability, highlighting the need for investigators to consider such factors when developing new bioinks. STATEMENT OF SIGNIFICANCE: Bioprinting has potential for regenerating damaged tissues; however, there are a limited number of printable biomaterials, and developing new bioinks is challenging because the required material physical properties for extrusion-based printing are not yet known. Most new bioinks are developed by trial-and-error, which is neither efficient nor comparable across materials. There is a need for the field to begin utilizing standard methods proposed by a few pioneering studies to characterize new bioinks. Therefore, we have developed the printability of a hyaluronic acid based-hydrogel and characterized the material with three quantitative rheological tests. The current work impacts the bioprinting field by demonstrating and encouraging the use of universal bioink characterizations and by providing printability windows to advance new bioink development.
Collapse
Affiliation(s)
- Emi A Kiyotake
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA.
| | - Alexander W Douglas
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA.
| | - Emily E Thomas
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA.
| | - Susan L Nimmo
- Chemistry and biochemistry University of Oklahoma, Norman, OK 73019, USA.
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
167
|
Choi JH, Choi OK, Lee J, Noh J, Lee S, Park A, Rim MA, Reis RL, Khang G. Evaluation of double network hydrogel of poloxamer-heparin/gellan gum for bone marrow stem cells delivery carrier. Colloids Surf B Biointerfaces 2019; 181:879-889. [DOI: 10.1016/j.colsurfb.2019.06.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/04/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
|
168
|
Nguyen TU, Watkins KE, Kishore V. Photochemically crosslinked cell-laden methacrylated collagen hydrogels with high cell viability and functionality. J Biomed Mater Res A 2019; 107:1541-1550. [PMID: 30882990 PMCID: PMC6527486 DOI: 10.1002/jbm.a.36668] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022]
Abstract
Irgacure 2959 (I2959) is widely used as a photoinitiator for photochemical crosslinking of hydrogels. However, the free radicals generated from I2959 have been reported to be highly cytotoxic. In this study, methacrylated collagen (CMA) hydrogels were photochemically crosslinked using two different photoinitiators (i.e., I2959 and VA086) and the effect of photoinitiator type, photoinitiator concentration (i.e., 0.02 and 0.1%) and crosslinking time (1 and 10 min) on gel morphology, compressive modulus, and stability were investigated. In addition, Saos-2 cells were encapsulated within the hydrogels and the effect of photochemical crosslinking conditions on cell viability, metabolic activity, and osteoblast functionality was assessed. Scanning electron microscopy imaging showed that photochemical crosslinking decreased the porosity of the hydrogels resulting in decrease in water retention ability compared to uncrosslinked hydrogels. On the other hand, photochemical crosslinking improved the stability of CMA hydrogels (p < 0.05). Uniaxial compression tests showed that increasing the photoinitiator concentration significantly improved the compressive modulus of CMA hydrogels (p < 0.05). Results from the live-dead assay showed that VA086 crosslinked hydrogels exhibited higher cell viability compared to I2959 (p < 0.05) crosslinked hydrogels indicating that VA086 is more cytocompatible compared to I2959. Furthermore, Alizarin Red S staining revealed a significantly more pronounced cell-mediated mineralization on VA086 crosslinked hydrogels (p < 0.05) indicating that Saos-2 cells retain their normal functionality in the presence of VA086. In summary, these results indicate that VA086 is a more biocompatible photoinitiator compared to I2959 for the generation of photochemically crosslinked CMA hydrogels for tissue engineering applications. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2019.
Collapse
Affiliation(s)
- Thuy-Uyen Nguyen
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901
| | - Kori E. Watkins
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901
| | - Vipuil Kishore
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901
| |
Collapse
|
169
|
Expanding the Range of Available Isoelectric Points of Highly Methacryloylated Gelatin. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
170
|
Zhuang P, Ng WL, An J, Chua CK, Tan LP. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. PLoS One 2019; 14:e0216776. [PMID: 31188827 PMCID: PMC6561629 DOI: 10.1371/journal.pone.0216776] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/29/2019] [Indexed: 12/29/2022] Open
Abstract
One of the major challenges in the field of soft tissue engineering using bioprinting is fabricating complex tissue constructs with desired structure integrity and mechanical property. To accomplish such requirements, most of the reported works incorporated reinforcement materials such as poly(ϵ-caprolactone) (PCL) polymer within the 3D bioprinted constructs. Although this approach has made some progress in constructing soft tissue-engineered scaffolds, the mechanical compliance mismatch and long degradation period are not ideal for soft tissue engineering. Herein, we present a facile bioprinting strategy that combines the rapid extrusion-based bioprinting technique with an in-built ultraviolet (UV) curing system to facilitate the layer-by-layer UV curing of bioprinted photo-curable GelMA-based hydrogels to achieve soft yet stable cell-laden constructs with high aspect ratio for soft tissue engineering. GelMA is supplemented with a viscosity enhancer (gellan gum) to improve the bio-ink printability and shape fidelity while maintaining the biocompatibility before crosslinking via a layer-by-layer UV curing process. This approach could eventually fabricate soft tissue constructs with high aspect ratio (length to diameter) of ≥ 5. The effects of UV source on printing resolution and cell viability were also studied. As a proof-of-concept, small building units (3D lattice and tubular constructs) with high aspect ratio are fabricated. Furthermore, we have also demonstrated the ability to perform multi-material printing of tissue constructs with high aspect ratio along both the longitudinal and transverse directions for potential applications in tissue engineering of soft tissues. This layer-by-layer ultraviolet assisted extrusion-based (UAE) Bioprinting may provide a novel strategy to develop soft tissue constructs with desirable structure integrity.
Collapse
Affiliation(s)
- Pei Zhuang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Wei Long Ng
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jia An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chee Kai Chua
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
- Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore, Singapore
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
171
|
Shafranek RT, Millik SC, Smith PT, Lee CU, Boydston AJ, Nelson A. Stimuli-responsive materials in additive manufacturing. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.03.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
172
|
Heinrich MA, Liu W, Jimenez A, Yang J, Akpek A, Liu X, Pi Q, Mu X, Hu N, Schiffelers RM, Prakash J, Xie J, Zhang YS. 3D Bioprinting: from Benches to Translational Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805510. [PMID: 31033203 PMCID: PMC6752725 DOI: 10.1002/smll.201805510] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Indexed: 05/07/2023]
Abstract
Over the last decades, the fabrication of 3D tissues has become commonplace in tissue engineering and regenerative medicine. However, conventional 3D biofabrication techniques such as scaffolding, microengineering, and fiber and cell sheet engineering are limited in their capacity to fabricate complex tissue constructs with the required precision and controllability that is needed to replicate biologically relevant tissues. To this end, 3D bioprinting offers great versatility to fabricate biomimetic, volumetric tissues that are structurally and functionally relevant. It enables precise control of the composition, spatial distribution, and architecture of resulting constructs facilitating the recapitulation of the delicate shapes and structures of targeted organs and tissues. This Review systematically covers the history of bioprinting and the most recent advances in instrumentation and methods. It then focuses on the requirements for bioinks and cells to achieve optimal fabrication of biomimetic constructs. Next, emerging evolutions and future directions of bioprinting are discussed, such as freeform, high-resolution, multimaterial, and 4D bioprinting. Finally, the translational potential of bioprinting and bioprinted tissues of various categories are presented and the Review is concluded by exemplifying commercially available bioprinting platforms.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, Enschede 7500AE, The Netherlands
| | - Wanjun Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, P.R. China
| | - Andrea Jimenez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Biomedical Engineering Laboratory, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Jingzhou Yang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Center of Biomedical Materials 3D Printing, National Engineering Laboratory for Polymer Complex Structure Additive Manufacturing, Baoding 071000, P.R. China
| | - Ali Akpek
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Istanbul Yeni Yuzyil University, Istanbul 34010, Turkey
| | - Xiao Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Qingmeng Pi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200129, P.R. China
| | - Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Ning Hu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, P.R. China
| | - Raymond Michel Schiffelers
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, Enschede 7500AE, The Netherlands
| | - Jingwei Xie
- Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
173
|
Soltan N, Ning L, Mohabatpour F, Papagerakis P, Chen X. Printability and Cell Viability in Bioprinting Alginate Dialdehyde-Gelatin Scaffolds. ACS Biomater Sci Eng 2019; 5:2976-2987. [PMID: 33405600 DOI: 10.1021/acsbiomaterials.9b00167] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three-dimensional (3D) bioprinting is a promising technique used to fabricate scaffolds from hydrogels with living cells. However, the printability of hydrogels in bioprinting has not been adequately studied. The aim of this study was to quantitatively characterize the printability and cell viability of alginate dialdehyde (ADA)-gelatin (Gel) hydrogels for bioprinting. ADA-Gel hydrogels of various concentrations were synthesized and characterized using Fourier transform infrared spectroscopy, along with rheological tests for measuring storage and loss moduli. Scaffolds (with an area of 11 × 11 mm) of 1, 2, and 13 layers were fabricated from ADA-Gel hydrogels using a 3D-bioplotter under printing conditions with and without the use of cross-linker, respectively, at room temperature and at 4 °C. Scaffolds were then quantitatively assessed in terms of the minimum printing pressure, quality of strands and pores, and structural integrity, which were combined together for the characterization of ADA-Gel printability. For the assessment of cell viability, scaffolds were bioprinted from ADA-Gel hydrogels with human umbilical vein endothelial cells (HUVECs) and rat Schwann cells and were then examined at day 7 with live/dead assay. HUVECs and Schwann cells were used as models to demonstrate biocompatibility for potential angiogenesis and nerve repair applications, respectively. Our results illustrated that ADA-Gel hydrogels with a loss tangent (ratio of loss modulus over storage modulus) between 0.24 and 0.28 could be printed in cross-linker with the best printability featured by uniform strands, square pores, and good structural integrity. Additionally, our results revealed that ADA-Gel hydrogels with an appropriate printability could maintain cell viability over 7 days. Combined together, this study presents a novel method to characterize the printability of hydrogels in bioprinting and illustrates that ADA-Gel hydrogels can be synthesized and bioprinted with good printability and cell viability, thus demonstrating their suitability for bioprinting scaffolds in tissue engineering applications.
Collapse
Affiliation(s)
| | | | | | - Petros Papagerakis
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, Saskatchewan S7N5E4, Canada
| | | |
Collapse
|
174
|
Caballero Aguilar LM, Kapsa RM, O'Connell CD, McArthur SL, Stoddart PR, Moulton SE. Controlled release from PCL-alginate microspheres via secondary encapsulation using GelMA/HAMA hydrogel scaffolds. SOFT MATTER 2019; 15:3779-3787. [PMID: 30989161 DOI: 10.1039/c8sm02575d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Controlling the release of bioactive agents has important potential applications in tissue engineering. While microspheres have been investigated to manipulate release rates, the majority of these investigations have been based on delivery into aqueous media, whereas the cellular environment in tissue engineering is more typically a hydrogel scaffold. If drug-loaded microspheres are introduced within scaffolds to deliver biologically active substances in situ, it is crucial to understand how the release rate is influenced by interactions between the microspheres and the scaffold. Here, we report the fabrication and characterization of a biodegradable scaffold that contains composite microspheres and is suitable for biological applications. Our approach evaluates the influence on the release profile of a model drug (FITC-dextran sulfate) from alginate and PCL-alginate microspheres within a hydrogel construct forming a secondary encapsulation. Increasing the degree of crosslinking in the secondary encapsulation matrix led to a slower cumulative release from 36% to 15%, from the alginate microspheres, whereas a decrease from 26% to 6% was observed for the PCL-alginate microspheres. These results suggest that the release of bioactive molecules can be fine tuned by independently engineering the properties of the scaffold and microspheres.
Collapse
Affiliation(s)
- Lilith M Caballero Aguilar
- ARC Centre of Excellence for Electromaterials Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, 3122, Australia.
| | | | | | | | | | | |
Collapse
|
175
|
Townsend JM, Beck EC, Gehrke SH, Berkland CJ, Detamore MS. Flow Behavior Prior to Crosslinking: The Need for Precursor Rheology for Placement of Hydrogels in Medical Applications and for 3D Bioprinting. Prog Polym Sci 2019; 91:126-140. [PMID: 31571701 PMCID: PMC6768569 DOI: 10.1016/j.progpolymsci.2019.01.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hydrogels - water swollen cross-linked networks - have demonstrated considerable promise in tissue engineering and regenerative medicine applications. However, ambiguity over which rheological properties are needed to characterize these gels before crosslinking still exists. Most hydrogel research focuses on the performance of the hydrogel construct after implantation, but for clinical practice, and for related applications such as bioinks for 3D bioprinting, the behavior of the pre-gelled state is also critical. Therefore, the goal of this review is to emphasize the need for better rheological characterization of hydrogel precursor formulations, and standardized testing for surgical placement or 3D bioprinting. In particular, we consider engineering paste or putty precursor solutions (i.e., suspensions with a yield stress), and distinguish between these differences to ease the path to clinical translation. The connection between rheology and surgical application as well as how the use of paste and putty nomenclature can help to qualitatively identify material properties are explained. Quantitative rheological properties for defining materials as either pastes or putties are proposed to enable easier adoption to current methods. Specifically, the three-parameter Herschel-Bulkley model is proposed as a suitable model to correlate experimental data and provide a basis for meaningful comparison between different materials. This model combines a yield stress, the critical parameter distinguishing solutions from pastes (100-2000 Pa) and from putties (>2000 Pa), with power law fluid behavior once the yield stress is exceeded. Overall, successful implementation of paste or putty handling properties to the hydrogel precursor may minimize the surgeon-technology learning time and ultimately ease incorporation into current practice. Furthermore, improved understanding and reporting of rheological properties will lead to better theoretical explanations of how materials affect rheological performances, to better predict and design the next generation of biomaterials.
Collapse
Affiliation(s)
- Jakob M. Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Emily C. Beck
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Denver, CO 80045, USA
| | - Stevin H. Gehrke
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Cory J. Berkland
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
176
|
Choi JR, Yong KW, Choi JY, Cowie AC. Recent advances in photo-crosslinkable hydrogels for biomedical applications. Biotechniques 2019; 66:40-53. [PMID: 30730212 DOI: 10.2144/btn-2018-0083] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/05/2018] [Indexed: 11/23/2022] Open
Abstract
Photo-crosslinkable hydrogels have recently attracted significant scientific interest. Their properties can be manipulated in a spatiotemporal manner through exposure to light to achieve the desirable functionality for various biomedical applications. This review article discusses the recent advances of the most common photo-crosslinkable hydrogels, including poly(ethylene glycol) diacrylate, gelatin methacryloyl and methacrylated hyaluronic acid, for various biomedical applications. We first highlight the advantages of photopolymerization and discuss diverse photosensitive systems used for the synthesis of photo-crosslinkable hydrogels. We then introduce their synthesis methods and review their latest state of development in biomedical applications, including tissue engineering and regenerative medicine, drug delivery, cancer therapies and biosensing. Lastly, the existing challenges and future perspectives of engineering photo-crosslinkable hydrogels for biomedical applications are briefly discussed.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kar Wey Yong
- Department of Chemical & Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jean Yu Choi
- Faculty of Medicine, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Alistair C Cowie
- Faculty of Medicine, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
177
|
Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng Transl Med 2019; 4:96-115. [PMID: 30680322 PMCID: PMC6336672 DOI: 10.1002/btm2.10124] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Gelatin is a promising material as scaffold with therapeutic and regenerative characteristics due to its chemical similarities to the extracellular matrix (ECM) in the native tissues, biocompatibility, biodegradability, low antigenicity, cost-effectiveness, abundance, and accessible functional groups that allow facile chemical modifications with other biomaterials or biomolecules. Despite the advantages of gelatin, poor mechanical properties, sensitivity to enzymatic degradation, high viscosity, and reduced solubility in concentrated aqueous media have limited its applications and encouraged the development of gelatin-based composite hydrogels. The drawbacks of gelatin may be surmounted by synergistically combining it with a wide range of polysaccharides. The addition of polysaccharides to gelatin is advantageous in mimicking the ECM, which largely contains proteoglycans or glycoproteins. Moreover, gelatin-polysaccharide biomaterials benefit from mechanical resilience, high stability, low thermal expansion, improved hydrophilicity, biocompatibility, antimicrobial and anti-inflammatory properties, and wound healing potential. Here, we discuss how combining gelatin and polysaccharides provides a promising approach for developing superior therapeutic biomaterials. We review gelatin-polysaccharides scaffolds and their applications in cell culture and tissue engineering, providing an outlook for the future of this family of biomaterials as advanced natural therapeutics.
Collapse
Affiliation(s)
- Samson Afewerki
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
| | - Amir Sheikhi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Soundarapandian Kannan
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Nanomedicine Division, Dept. of ZoologyPeriyar UniversitySalemTamil NaduIndia
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Radiological Sciences, David Geffen School of MedicineUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Chemical and Biomolecular EngineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Bioindustrial Technologies, College of Animal Bioscience and TechnologyKonkuk UniversitySeoulRepublic of Korea
| |
Collapse
|
178
|
Datta S, Das A, Sasmal P, Bhutoria S, Roy Chowdhury A, Datta P. Alginate-poly(amino acid) extrusion printed scaffolds for tissue engineering applications. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1539988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sudipto Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Ankita Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Pranabesh Sasmal
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | | | - Amit Roy Chowdhury
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
- Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| |
Collapse
|
179
|
Gu Y, Zhang L, Du X, Fan Z, Wang L, Sun W, Cheng Y, Zhu Y, Chen C. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. J Biomater Appl 2018; 33:609-618. [PMID: 30360677 DOI: 10.1177/0885328218805864] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gelatin methacryloyl is a promising material in tissue engineering and has been widely studied in three-dimensional bioprinting. Although gelatin methacryloyl possesses excellent biocompatibility and tunable mechanical properties, its poor printability/processability has hindered its further applications. In this study, we report a reversible physical crosslinking strategy for precise deposition of human chondrocyte-laden gelatin methacryloyl bioink at low concentration without any sacrificial material by using extrusive three-dimensional bioprinting. The precise printing temperature was determined by the rheological properties of gelatin methacryloyl with temperature. Ten percent (w/v) gelatin methacryloyl was chosen as the printing formula due to highest biocompatibility in three-dimensional cell cultures in gelatin methacryloyl hydrogel disks. Primary human chondrocyte-laden 10% (w/v) gelatin methacryloyl was successfully printed without any construct deformation or collapse and was permanently crosslinked by ultraviolet light. The printed gelatin methacryloyl hydrogel constructs remained stable in long-term culture. Chondrocyte viability and proliferation that were printed under this optimal temperature were better than that of chondrocytes printed under lower temperatures and were similar to that of chondrocytes in the non-printed gelatin methacryloyl hydrogels. The results indicate that with this strategy, 10% (w/v) gelatin methacryloyl bioink presented excellent printability and printing resolution with high cell viability, which appears to be suitable for printing primary human chondrocytes in cartilage biofabrication and can be extensively applied in tissue engineering of other organs or in other biomedical fields.
Collapse
Affiliation(s)
- Yawei Gu
- Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Lei Zhang
- Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Xiaoyu Du
- University of Shanghai for Science and Technology, Shanghai, Shanghai China
| | - Ziwen Fan
- Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Long Wang
- Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Weiyan Sun
- Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| | - Yu Cheng
- The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, Shanghai China
| | - Yufang Zhu
- University of Shanghai for Science and Technology, Shanghai, Shanghai China
| | - Chang Chen
- Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China
| |
Collapse
|
180
|
Sewald L, Claaßen C, Götz T, Claaßen MH, Truffault V, Tovar GEM, Southan A, Borchers K. Beyond the Modification Degree: Impact of Raw Material on Physicochemical Properties of Gelatin Type A and Type B Methacryloyls. Macromol Biosci 2018; 18:e1800168. [DOI: 10.1002/mabi.201800168] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Lisa Sewald
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
| | - Christiane Claaßen
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
| | - Tobias Götz
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
| | - Marc H. Claaßen
- Max Planck Institute for Developmental Biology Max‐Planck‐Ring 5 72076 Tübingen Germany
| | - Vincent Truffault
- Max Planck Institute for Developmental Biology Max‐Planck‐Ring 5 72076 Tübingen Germany
| | - Günter E. M. Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstraße 12 70569 Stuttgart Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
| | - Kirsten Borchers
- Institute of Interfacial Process Engineering and Plasma Technology IGVPUniversity of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstraße 12 70569 Stuttgart Germany
| |
Collapse
|
181
|
Bonifacio MA, Cometa S, Cochis A, Gentile P, Ferreira AM, Azzimonti B, Procino G, Ceci E, Rimondini L, De Giglio E. Antibacterial effectiveness meets improved mechanical properties: Manuka honey/gellan gum composite hydrogels for cartilage repair. Carbohydr Polym 2018; 198:462-472. [DOI: 10.1016/j.carbpol.2018.06.115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 12/21/2022]
|
182
|
López-Marcial GR, Zeng AY, Osuna C, Dennis J, García JM, O'Connell GD. Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering. ACS Biomater Sci Eng 2018; 4:3610-3616. [PMID: 33450800 DOI: 10.1021/acsbiomaterials.8b00903] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hydrogels are useful materials as scaffolds for tissue engineering applications. Using hydrogels with additive manufacturing techniques has typically required the addition of techniques such as cross-linking or printing in sacrificial materials that negatively impact tissue growth to remedy inconsistencies in print fidelity. Thus, there is a need for bioinks that can directly print cell-laden constructs. In this study, agarose-based hydrogels commonly used for cartilage tissue engineering were compared to Pluronic, a hydrogel with established printing capabilities. Moreover, new material mixtures were developed for bioprinting by combining alginate and agarose. We compared mechanical and rheological properties, including yield stress, storage modulus, and shear thinning, as well as construct shape fidelity to assess their potential as a bioink for cell-based tissue engineering. The rheological properties and printability of agarose-alginate gels were statistically similar to those of Pluronic for all tests (p > 0.05). Alginate-agarose composites prepared with 5% w/v (3:2 agarose to alginate ratio) demonstrated excellent cell viability over a 28-day culture period (>∼70% cell survival at day 28) as well matrix production over the same period. Therefore, agarose-alginate mixtures showed the greatest potential as an effective bioink for additive manufacturing of biological materials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Gabriel R López-Marcial
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Anne Y Zeng
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Carlos Osuna
- Department of Mechanical Engineering, University of California, San Diego, California 92093, United States
| | - Joseph Dennis
- Department of Chemistry and Materials, IBM Almaden Research Center, San Jose, California 95120, United States
| | - Jeannette M García
- Department of Chemistry and Materials, IBM Almaden Research Center, San Jose, California 95120, United States
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.,Department of Orthopaedic Surgery, University of California, San Francisco, California 94143, United States
| |
Collapse
|
183
|
Joas S, Tovar GEM, Celik O, Bonten C, Southan A. Extrusion-Based 3D Printing of Poly(ethylene glycol) Diacrylate Hydrogels Containing Positively and Negatively Charged Groups. Gels 2018; 4:E69. [PMID: 30674845 PMCID: PMC6209279 DOI: 10.3390/gels4030069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/30/2018] [Accepted: 08/08/2018] [Indexed: 12/27/2022] Open
Abstract
Hydrogels are an interesting class of materials used in extrusion-based 3D printing, e.g., for drug delivery or tissue engineering. However, new hydrogel formulations for 3D printing as well as a detailed understanding of crucial formulation properties for 3D printing are needed. In this contribution, hydrogels based on poly(ethylene glycol) diacrylate (PEG-DA) and the charged monomers 3-sulfopropyl acrylate and [2-(acryloyloxy)ethyl]trimethylammonium chloride are formulated for 3D printing, together with Poloxamer 407 (P407). Chemical curing of formulations with PEG-DA and up to 5% (w/w) of the charged monomers was possible without difficulty. Through careful examination of the rheological properties of the non-cured formulations, it was found that flow properties of formulations with a high P407 concentration of 22.5% (w/w) possessed yield stresses well above 100 Pa together with pronounced shear thinning behavior. Thus, those formulations could be processed by 3D printing, as demonstrated by the generation of pyramidal objects. Modelling of the flow profile during 3D printing suggests that a plug-like laminar flow is prevalent inside the printer capillary. Under such circumstances, fast recovery of a high vicosity after material deposition might not be necessary to guarantee shape fidelity because the majority of the 3D printed volume does not face any relevant shear stress during printing.
Collapse
Affiliation(s)
- Sebastian Joas
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569 Stuttgart, Germany.
- Institut für Kunststofftechnik IKT, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany.
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569 Stuttgart, Germany.
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569 Stuttgart, Germany.
| | - Oguz Celik
- Institut für Kunststofftechnik IKT, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany.
| | - Christian Bonten
- Institut für Kunststofftechnik IKT, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart, Germany.
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569 Stuttgart, Germany.
| |
Collapse
|
184
|
Tan M, Lambert AL, Swann BM, Song H, Dhagat P, Jander A, Walker TW. Utilizing yield‐stress fluids to suppress chaining during magnetic alignment of microdisks via rotating fields. AIChE J 2018. [DOI: 10.1002/aic.16215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mingyang Tan
- School of Chemical, Biological, and Environmental EngineeringOregon State UniversityCorvallis OR
| | - Adam L. Lambert
- School of Chemical, Biological, and Environmental EngineeringOregon State UniversityCorvallis OR
| | - Britany M. Swann
- School of Chemical, Biological, and Environmental EngineeringOregon State UniversityCorvallis OR
| | - Han Song
- School of Electrical Engineering and Computer ScienceOregon State UniversityCorvallis OR
| | - Pallavi Dhagat
- School of Electrical Engineering and Computer ScienceOregon State UniversityCorvallis OR
| | - Albrecht Jander
- School of Electrical Engineering and Computer ScienceOregon State UniversityCorvallis OR
| | - Travis W. Walker
- Department of Chemical and Biological EngineeringSouth Dakota School of Mines and TechnologyRapid City SD
| |
Collapse
|
185
|
Jiang T, Munguia-Lopez J, Flores-Torres S, Grant J, Vijayakumar S, De Leon-Rodriguez A, Kinsella JM. Bioprintable Alginate/Gelatin Hydrogel 3D In Vitro Model Systems Induce Cell Spheroid Formation. J Vis Exp 2018. [PMID: 30010644 DOI: 10.3791/57826] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cellular, biochemical, and biophysical heterogeneity of the native tumor microenvironment is not recapitulated by growing immortalized cancer cell lines using conventional two-dimensional (2D) cell culture. These challenges can be overcome by using bioprinting techniques to build heterogeneous three-dimensional (3D) tumor models whereby different types of cells are embedded. Alginate and gelatin are two of the most common biomaterials employed in bioprinting due to their biocompatibility, biomimicry, and mechanical properties. By combining the two polymers, we achieved a bioprintable composite hydrogel with similarities to the microscopic architecture of a native tumor stroma. We studied the printability of the composite hydrogel via rheology and obtained the optimal printing window. Breast cancer cells and fibroblasts were embedded in the hydrogels and printed to form a 3D model mimicking the in vivo microenvironment. The bioprinted heterogeneous model achieves a high viability for long-term cell culture (> 30 days) and promotes the self-assembly of breast cancer cells into multicellular tumor spheroids (MCTS). We observed the migration and interaction of the cancer-associated fibroblast cells (CAFs) with the MCTS in this model. By using bioprinted cell culture platforms as co-culture systems, it offers a unique tool to study the dependence of tumorigenesis on the stroma composition. This technique features a high-throughput, low cost, and high reproducibility, and it can also provide an alternative model to conventional cell monolayer cultures and animal tumor models to study cancer biology.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Mechanical Engineering, McGill University Montreal
| | - Jose Munguia-Lopez
- Department of Bioengineering, McGill University Montreal; Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICyT)
| | | | - Joel Grant
- Department of Mining and Materials Engineering, McGill University Montreal
| | | | - Antonio De Leon-Rodriguez
- Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICyT)
| | - Joseph M Kinsella
- Department of Bioengineering, McGill University Montreal; Department of Biomedical Engineering, McGill University Montreal;
| |
Collapse
|
186
|
Lim KS, Levato R, Costa PF, Castilho MD, Alcala-Orozco CR, van Dorenmalen KMA, Melchels FPW, Gawlitta D, Hooper GJ, Malda J, Woodfield TBF. Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs. Biofabrication 2018; 10:034101. [DOI: 10.1088/1758-5090/aac00c] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
187
|
Abstract
Background The worldwide demand for the organ replacement or tissue regeneration is increasing steadily. The advancements in tissue engineering and regenerative medicine have made it possible to regenerate such damaged organs or tissues into functional organ or tissue with the help of 3D bioprinting. The main component of the 3D bioprinting is the bioink, which is crucial for the development of functional organs or tissue structures. The bioinks used in 3D printing technology require so many properties which are vital and need to be considered during the selection. Combination of different methods and enhancements in properties are required to develop more successful bioinks for the 3D printing of organs or tissue structures. Main body This review consists of the recent state-of-art of polymer-based bioinks used in 3D printing for applications in tissue engineering and regenerative medicine. The subsection projects the basic requirements for the selection of successful bioinks for 3D printing and developing 3D tissues or organ structures using combinations of bioinks such as cells, biomedical polymers and biosignals. Different bioink materials and their properties related to the biocompatibility, printability, mechanical properties, which are recently reported for 3D printing are discussed in detail. Conclusion Many bioinks formulations have been reported from cell-biomaterials based bioinks to cell-based bioinks such as cell aggregates and tissue spheroids for tissue engineering and regenerative medicine applications. Interestingly, more tunable bioinks, which are biocompatible for live cells, printable and mechanically stable after printing are emerging with the help of functional polymeric biomaterials, their modifications and blending of cells and hydrogels. These approaches show the immense potential of these bioinks to produce more complex tissue/organ structures using 3D bioprinting in the future.
Collapse
Affiliation(s)
- Janarthanan Gopinathan
- 1Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-Gu, Seoul, 01811 Republic of Korea.,2Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-Gu Seoul, 01811 Republic of Korea
| | - Insup Noh
- 1Department of Chemical & Biomolecular Engineering, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-Gu, Seoul, 01811 Republic of Korea.,2Convergence Institute of Biomedical Engineering & Biomaterials, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-Gu Seoul, 01811 Republic of Korea
| |
Collapse
|
188
|
Krouwels A, Melchels FPW, van Rijen MHP, Öner FC, Dhert WJA, Tryfonidou MA, Creemers LB. Comparing Hydrogels for Human Nucleus Pulposus Regeneration: Role of Osmolarity During Expansion. Tissue Eng Part C Methods 2018; 24:222-232. [PMID: 29457534 DOI: 10.1089/ten.tec.2017.0226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hydrogels can facilitate nucleus pulposus (NP) regeneration, either for clinical application or research into mechanisms of regeneration. However, many different hydrogels and culture conditions for human degenerated NP have been employed, making literature data difficult to compare. Therefore, we compared six different hydrogels of natural polymers and investigated the role of serum in the medium and of osmolarity during expansion or redifferentiation in an attempt to provide comparators for future studies. Human NP cells of Thompson grade III discs were cultured in alginate, agarose, fibrin, type II collagen, gelatin methacryloyl (gelMA), and hyaluronic acid-poly(ethylene glycol) hydrogels. Medium containing fetal bovine serum and a serum-free (SF) medium were compared in agarose, gelMA, and type II collagen hydrogels. Isolation and expansion of NP cells in low compared to high osmolarity medium were performed before culture in agarose and type II collagen hydrogels in media of varying osmolarity. NP cells in agarose produced the highest amounts of proteoglycans, followed by cells in type II collagen hydrogels. The absence of serum reduced the total amount of proteoglycans produced by the cells, although incorporation efficiency was higher in type II collagen hydrogels in the absence than in the presence of serum. Isolation and expansion of NP cells in high osmolarity medium improved proteoglycan production during culture in hydrogels, but variation in osmolarity during redifferentiation did not have any effect. Agarose hydrogels seem to be the best option for in vitro culture of human NP cells, but for clinical application, type II collagen hydrogels may be better because, as opposed to agarose, it degrades in time. Although culture in SF medium reduces the amount of proteoglycans produced during redifferentiation culture, isolating and expanding the cells in high osmolarity medium can largely compensate for this loss.
Collapse
Affiliation(s)
- Anita Krouwels
- 1 Department of Orthopedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Ferry P W Melchels
- 2 Institute of Biological Chemistry, Department of Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University , Edinburgh, United Kingdom
| | - Mattie H P van Rijen
- 1 Department of Orthopedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - F Cumhur Öner
- 1 Department of Orthopedics, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Wouter J A Dhert
- 3 Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- 4 Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands
| | - Laura B Creemers
- 1 Department of Orthopedics, University Medical Center Utrecht , Utrecht, The Netherlands
| |
Collapse
|
189
|
Potjewyd G, Moxon S, Wang T, Domingos M, Hooper NM. Tissue Engineering 3D Neurovascular Units: A Biomaterials and Bioprinting Perspective. Trends Biotechnol 2018; 36:457-472. [DOI: 10.1016/j.tibtech.2018.01.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
|
190
|
Chimene D, Peak CW, Gentry JL, Carrow JK, Cross LM, Mondragon E, Cardoso GB, Kaunas R, Gaharwar AK. Nanoengineered Ionic-Covalent Entanglement (NICE) Bioinks for 3D Bioprinting. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9957-9968. [PMID: 29461795 DOI: 10.1021/acsami.7b19808] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We introduce an enhanced nanoengineered ionic-covalent entanglement (NICE) bioink for the fabrication of mechanically stiff and elastomeric 3D biostructures. NICE bioink formulations combine nanocomposite and ionic-covalent entanglement (ICE) strengthening mechanisms to print customizable cell-laden constructs for tissue engineering with high structural fidelity and mechanical stiffness. Nanocomposite and ICE strengthening mechanisms complement each other through synergistic interactions, improving mechanical strength, elasticity, toughness, and flow properties beyond the sum of the effects of either reinforcement technique alone. Herschel-Bulkley flow behavior shields encapsulated cells from excessive shear stresses during extrusion. The encapsulated cells readily proliferate and maintain high cell viability over 120 days within the 3D-printed structure, which is vital for long-term tissue regeneration. A unique aspect of the NICE bioink is its ability to print much taller structures, with higher aspect ratios, than can be achieved with conventional bioinks without requiring secondary supports. We envision that NICE bioinks can be used to bioprint complex, large-scale, cell-laden constructs for tissue engineering with high structural fidelity and mechanical stiffness for applications in custom bioprinted scaffolds and tissue engineered implants.
Collapse
|
191
|
Focal adhesion signaling affects regeneration by human nucleus pulposus cells in collagen- but not carbohydrate-based hydrogels. Acta Biomater 2018; 66:238-247. [PMID: 29174589 DOI: 10.1016/j.actbio.2017.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/26/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023]
Abstract
Hydrogel-based 3D cell cultures are an emerging strategy for the regeneration of cartilage. In an attempt to regenerate dysfunctional intervertebral discs, nucleus pulposus (NP) cells can be cultured in hydrogels of various kinds and physical properties. Stiffness sensing through focal adhesions is believed to direct chondrogenesis, but the mechanisms by which this works are largely unknown. In this study we compared focal adhesion formation and glycosaminoglycan (GAG) deposition by NP cells in a range of hydrogels. Using a focal adhesion kinase (FAK) inhibitor, we demonstrated that focal adhesion signaling is involved in the response of NP cells in hydrogels that contain integrin binding sites (i.e. methacrylated gelatin (gelMA) and type II collagen), but not in hydrogels deplete from integrin binding sites such as alginate and agarose, or CD44-binding hydrogels based on hyaluronic acid. As a result of FAK inhibition we observedenhanced proteoglycan production in gelMA, but decreased production in type II collagen hydrogels, which could be explained by alteration in cell fate as supported by the increase in the adipogenic marker peroxisome proliferator-activated receptor gamma (PPARy). Furthermore, GAG deposition was inversely proportional to polymer concentration in integrin-binding gelMA, while no direct relationship was found for the non-integrin binding gels alginate and agarose. This corroborates our finding that focal adhesion formation plays an important role in NP cell response to its surrounding matrix. STATEMENT OF SIGNIFICANCE Biomaterials are increasingly being investigated for regenerative medicine applications, including regeneration of the nucleus pulposus. Cells interact with their environment and are influenced by extracellular matrix or polymer properties. Insight in these interactions can improve regeneration and helps to understand degeneration processes. The role of focal adhesion formation in the regenerative response of nucleus pulposus cells is largely unknown. Therefore, the relation between materials, stiffness and focal adhesion formation is studied here.
Collapse
|
192
|
Gellan Gum-Based Hydrogels for Osteochondral Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:281-304. [DOI: 10.1007/978-3-319-76711-6_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
193
|
Ribeiro A, Blokzijl MM, Levato R, Visser CW, Castilho M, Hennink WE, Vermonden T, Malda J. Assessing bioink shape fidelity to aid material development in 3D bioprinting. Biofabrication 2017; 10:014102. [PMID: 28976364 DOI: 10.1088/1758-5090/aa90e2] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During extrusion-based bioprinting, the deposited bioink filaments are subjected to deformations, such as collapse of overhanging filaments, which compromises the ability to stack several layers of bioink, and fusion between adjacent filaments, which compromises the resolution and maintenance of a desired pore structure. When developing new bioinks, approaches to assess their shape fidelity after printing would be beneficial to evaluate the degree of deformation of the deposited filament and to estimate how similar the final printed construct would be to the design. However, shape fidelity has been prevalently assessed qualitatively through visual inspection after printing, hampering the direct comparison of the printability of different bioinks. In this technical note, we propose a quantitative evaluation for shape fidelity of bioinks based on testing the filament collapse on overhanging structures and the filament fusion of parallel printed strands. Both tests were applied on a hydrogel platform based on poloxamer 407 and poly(ethylene glycol) blends, providing a library of hydrogels with different yield stresses. The presented approach is an easy way to assess bioink shape fidelity, applicable to any filament-based bioprinting system and able to quantitatively evaluate this aspect of printability, based on the degree of deformation of the printed filament. In addition, we built a simple theoretical model that relates filament collapse with bioink yield stress. The results of both shape fidelity tests underline the role of yield stress as one of the parameters influencing the printability of a bioink. The presented quantitative evaluation will allow for reproducible comparisons between different bioink platforms.
Collapse
Affiliation(s)
- A Ribeiro
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication 2017; 9:044107. [PMID: 28930091 DOI: 10.1088/1758-5090/aa8dd8] [Citation(s) in RCA: 452] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development and formulation of printable inks for extrusion-based 3D bioprinting has been a major challenge in the field of biofabrication. Inks, often polymer solutions with the addition of crosslinking to form hydrogels, must not only display adequate mechanical properties for the chosen application but also show high biocompatibility as well as printability. Here we describe a reproducible two-step method for the assessment of the printability of inks for bioprinting, focussing firstly on screening ink formulations to assess fibre formation and the ability to form 3D constructs before presenting a method for the rheological evaluation of inks to characterise the yield point, shear thinning and recovery behaviour. In conjunction, a mathematical model was formulated to provide a theoretical understanding of the pressure-driven, shear thinning extrusion of inks through needles in a bioprinter. The assessment methods were trialled with a commercially available crème, poloxamer 407, alginate-based inks and an alginate-gelatine composite material. Yield stress was investigated by applying a stress ramp to a number of inks, which demonstrated the necessity of high yield for printable materials. The shear thinning behaviour of the inks was then characterised by quantifying the degree of shear thinning and using the mathematical model to predict the window of printer operating parameters in which the materials could be printed. Furthermore, the model predicted high shear conditions and high residence times for cells at the walls of the needle and effects on cytocompatibility at different printing conditions. Finally, the ability of the materials to recover to their original viscosity after extrusion was examined using rotational recovery rheological measurements. Taken together, these assessment techniques revealed significant insights into the requirements for printable inks and shear conditions present during the extrusion process and allow the rapid and reproducible characterisation of a wide variety of inks for bioprinting.
Collapse
Affiliation(s)
- Naomi Paxton
- Department for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, Julius-Maximilians-Universität Würzburg, Germany. Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
| | | | | | | | | | | |
Collapse
|
195
|
Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley SE, Nulty J, Kelly DJ. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering. Adv Healthc Mater 2017; 6. [PMID: 28804984 DOI: 10.1002/adhm.201700298] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/15/2017] [Indexed: 12/16/2022]
Abstract
Significant progress has been made in the field of cartilage and bone tissue engineering over the last two decades. As a result, there is real promise that strategies to regenerate rather than replace damaged or diseased bones and joints will one day reach the clinic however, a number of major challenges must still be addressed before this becomes a reality. These include vascularization in the context of large bone defect repair, engineering complex gradients for bone-soft tissue interface regeneration and recapitulating the stratified zonal architecture present in many adult tissues such as articular cartilage. Tissue engineered constructs typically lack such spatial complexity in cell types and tissue organization, which may explain their relatively limited success to date. This has led to increased interest in bioprinting technologies in the field of musculoskeletal tissue engineering. The additive, layer by layer nature of such biofabrication strategies makes it possible to generate zonal distributions of cells, matrix and bioactive cues in 3D. The adoption of biofabrication technology in musculoskeletal tissue engineering may therefore make it possible to produce the next generation of biological implants capable of treating a range of conditions. Here, advances in bioprinting for cartilage and osteochondral tissue engineering are reviewed.
Collapse
Affiliation(s)
- Andrew C. Daly
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Fiona E. Freeman
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Tomas Gonzalez-Fernandez
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Susan E. Critchley
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Jessica Nulty
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Daniel J. Kelly
- Trinity Center for Bioengineering; Trinity Biomedical Sciences Institute; Trinity College Dublin; Dublin Ireland
- Department of Mechanical and Manufacturing Engineering; School of Engineering; Trinity College Dublin; Dublin Ireland
- Department of Anatomy; Royal College of Surgeons in Ireland; Dublin Ireland
- Advanced Materials and Bioengineering Research Center (AMBER); Royal College of Surgeons in Ireland and Trinity College Dublin; Dublin Ireland
| |
Collapse
|
196
|
Brown GCJ, Lim KS, Farrugia BL, Hooper GJ, Woodfield TBF. Covalent Incorporation of Heparin Improves Chondrogenesis in Photocurable Gelatin-Methacryloyl Hydrogels. Macromol Biosci 2017; 17. [PMID: 29068543 DOI: 10.1002/mabi.201700158] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/02/2017] [Indexed: 01/08/2023]
Abstract
Multicomponent gelatin-methacryloyl (GelMA) hydrogels are regularly adopted for cartilage tissue engineering (TE) applications, where optimizing chemical modifications for preserving biofunctionality is often overlooked. This study investigates the biological effect of two different modification methods, methacrylation and thiolation, to copolymerize GelMA and heparin. The native bioactivity of methacrylated heparin (HepMA) and thiolated heparin (HepSH) is evaluated via thromboplastin time and heparan sulfate-deficient myeloid cell-line proliferation assay, demonstrating that thiolation is superior for preserving anticoagulation and growth factor signaling capacity. Furthermore, incorporating either HepMA or HepSH in chondrocyte-laden GelMA hydrogels, cultured for 5 weeks under chondrogenic conditions, promotes cell viability and chondrocyte phenotype. However, only GelMA-HepSH hydrogels yield significantly greater differentiation and matrix deposition in vitro compared to GelMA. This study demonstrates that thiol-ene chemistry offers a favorable strategy for incorporating bioactives into gelatin hydrogels as compared to methacrylation while furthermore highlighting GelMA-HepSH hydrogels as candidates for cartilage TE applications.
Collapse
Affiliation(s)
- Gabriella C J Brown
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago Christchurch, Christchurch8011, New Zealand
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago Christchurch, Christchurch8011, New Zealand
| | - Brooke L Farrugia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gary J Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago Christchurch, Christchurch8011, New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago Christchurch, Christchurch8011, New Zealand
| |
Collapse
|
197
|
Critchley SE, Kelly DJ. Bioinks for bioprinting functional meniscus and articular cartilage. ACTA ACUST UNITED AC 2017. [DOI: 10.2217/3dp-2017-0012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
3D bioprinting can potentially enable the engineering of biological constructs mimicking the complex geometry, composition, architecture and mechanical properties of different tissues and organs. Integral to the successful bioprinting of functional articular cartilage and meniscus is the identification of suitable bioinks and cell sources to support chondrogenesis or fibrochondrogenesis, respectively. Such bioinks must also possess the appropriate rheological properties to be printable and support the generation of complex geometries. This review will outline the parameters required to develop bioinks for such applications and the current recent advances in 3D bioprinting of functional meniscus and articular cartilage. The paper will conclude by discussing key scientific and technical hurdles in this field and by defining future research directions for cartilage and meniscus bioprinting.
Collapse
Affiliation(s)
- Susan E Critchley
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical & Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland
- Advanced Materials & Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland & Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
198
|
Levato R, Webb WR, Otto IA, Mensinga A, Zhang Y, van Rijen M, van Weeren R, Khan IM, Malda J. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomater 2017; 61:41-53. [PMID: 28782725 PMCID: PMC7116023 DOI: 10.1016/j.actbio.2017.08.005] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/24/2017] [Accepted: 08/03/2017] [Indexed: 01/28/2023]
Abstract
Cell-laden hydrogels are the primary building blocks for bioprinting, and, also termed bioinks, are the foundations for creating structures that can potentially recapitulate the architecture of articular cartilage. To be functional, hydrogel constructs need to unlock the regenerative capacity of encapsulated cells. The recent identification of multipotent articular cartilage-resident chondroprogenitor cells (ACPCs), which share important traits with adult stem cells, represents a new opportunity for cartilage regeneration. However, little is known about the suitability of ACPCs for tissue engineering, especially in combination with biomaterials. This study aimed to investigate the potential of ACPCs in hydrogels for cartilage regeneration and biofabrication, and to evaluate their ability for zone-specific matrix production. Gelatin methacryloyl (gelMA)-based hydrogels were used to culture ACPCs, bone marrow mesenchymal stromal cells (MSCs) and chondrocytes, and as bioinks for printing. Our data shows ACPCs outperformed chondrocytes in terms of neo-cartilage production and unlike MSCs, ACPCs had the lowest gene expression levels of hypertrophy marker collagen type X, and the highest expression of PRG4, a key factor in joint lubrication. Co-cultures of the cell types in multi-compartment hydrogels allowed generating constructs with a layered distribution of collagens and glycosaminoglycans. By combining ACPC- and MSC-laden bioinks, a bioprinted model of articular cartilage was generated, consisting of defined superficial and deep regions, each with distinct cellular and extracellular matrix composition. Taken together, these results provide important information for the use of ACPC-laden hydrogels in regenerative medicine, and pave the way to the biofabrication of 3D constructs with multiple cell types for cartilage regeneration or in vitro tissue models. STATEMENT OF SIGNIFICANCE Despite its limited ability to repair, articular cartilage harbors an endogenous population of progenitor cells (ACPCs), that to date, received limited attention in biomaterials and tissue engineering applications. Harnessing the potential of these cells in 3D hydrogels can open new avenues for biomaterial-based regenerative therapies, especially with advanced biofabrication technologies (e.g. bioprinting). This study highlights the potential of ACPCs to generate neo-cartilage in a gelatin-based hydrogel and bioink. The ACPC-laden hydrogel is a suitable substrate for chondrogenesis and data shows it has a bias in directing cells towards a superficial zone phenotype. For the first time, ACPC-hydrogels are evaluated both as alternative for and in combination with chondrocytes and MSCs, using co-cultures and bioprinting for cartilage regeneration in vitro. This study provides important cues on ACPCs, indicating they represent a promising cell source for the next generation of cartilage constructs with increased biomimicry.
Collapse
Affiliation(s)
- Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - William R Webb
- Center for Nanohealth, Swansea University Medical School, Wales, United Kingdom
| | - Iris A Otto
- Department of Orthopaedics, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands; Department of Plastic and Reconstructive Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anneloes Mensinga
- Department of Orthopaedics, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Yadan Zhang
- Center for Nanohealth, Swansea University Medical School, Wales, United Kingdom
| | - Mattie van Rijen
- Department of Orthopaedics, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ilyas M Khan
- Center for Nanohealth, Swansea University Medical School, Wales, United Kingdom
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
199
|
Mouser VHM, Levato R, Bonassar LJ, D’Lima DD, Grande DA, Klein TJ, Saris DBF, Zenobi-Wong M, Gawlitta D, Malda J. Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regeneration. Cartilage 2017; 8:327-340. [PMID: 28934880 PMCID: PMC5613889 DOI: 10.1177/1947603516665445] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) bioprinting techniques can be used for the fabrication of personalized, regenerative constructs for tissue repair. The current article provides insight into the potential and opportunities of 3D bioprinting for the fabrication of cartilage regenerative constructs. Although 3D printing is already used in the orthopedic clinic, the shift toward 3D bioprinting has not yet occurred. We believe that this shift will provide an important step forward in the field of cartilage regeneration. Three-dimensional bioprinting techniques allow incorporation of cells and biological cues during the manufacturing process, to generate biologically active implants. The outer shape of the construct can be personalized based on clinical images of the patient's defect. Additionally, by printing with multiple bio-inks, osteochondral or zonally organized constructs can be generated. Relevant mechanical properties can be obtained by hybrid printing with thermoplastic polymers and hydrogels, as well as by the incorporation of electrospun meshes in hydrogels. Finally, bioprinting techniques contribute to the automation of the implant production process, reducing the infection risk. To prompt the shift from nonliving implants toward living 3D bioprinted cartilage constructs in the clinic, some challenges need to be addressed. The bio-inks and required cartilage construct architecture need to be further optimized. The bio-ink and printing process need to meet the sterility requirements for implantation. Finally, standards are essential to ensure a reproducible quality of the 3D printed constructs. Once these challenges are addressed, 3D bioprinted living articular cartilage implants may find their way into daily clinical practice.
Collapse
Affiliation(s)
- Vivian H. M. Mouser
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Darryl D. D’Lima
- Shiley Center for Orthopaedic Research, Scripps Health, La Jolla, CA, USA
| | - Daniel A. Grande
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Northwell Health System, Manhasset, NY, USA
| | - Travis J. Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Daniel B. F. Saris
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
200
|
Mouser VHM, Dautzenberg NMM, Levato R, van Rijen MHP, Dhert WJA, Malda J, Gawlitta D. Ex vivo model unravelling cell distribution effect in hydrogels for cartilage repair. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2017; 35:65-76. [PMID: 28884783 PMCID: PMC7116182 DOI: 10.14573/altex.1704171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/04/2017] [Indexed: 12/21/2022]
Abstract
The implantation of chondrocyte-laden hydrogels is a promising cartilage repair strategy. Chondrocytes can be spatially positioned in hydrogels and thus in defects, while current clinical cell therapies introduce chondrocytes in the defect depth. The main aim of this study was to evaluate the effect of spatial chondrocyte distribution on the reparative process. To reduce animal experiments, an ex vivo osteochondral plug model was used and evaluated. The role of the delivered and endogenous cells in the repair process was investigated. Full thickness cartilage defects were created in equine osteochondral plugs. Defects were filled with (A) chondrocytes at the bottom of the defect, covered with a cell-free hydrogel, (B) chondrocytes homogeneously encapsulated in a hydrogel, and (C, D) combinations of A and B with different cell densities. Plugs were cultured for up to 57 days, after which the cartilage and repair tissues were characterized and compared to baseline samples. Additionally, at day 21, the origin of cells in the repair tissue was evaluated. Best outcomes were obtained with conditions C and D, which resulted in well-integrated cartilage-like tissue that completely filled the defect, regardless of the initial cell density. A critical role of the spatial chondrocyte distribution in the repair process was observed. Moreover, the osteochondral plugs stimulated cartilage formation in the hydrogels when cultured in the defects. The resulting repair tissue originated from the delivered cells. These findings confirm the potential of the osteochondral plug model for the optimization of the composition of cartilage implants and for studying repair mechanisms.
Collapse
Affiliation(s)
- Vivian H M Mouser
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Noël M M Dautzenberg
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mattie H P van Rijen
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wouter J A Dhert
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|