151
|
Seffernick JT, Lindert S. Hybrid methods for combined experimental and computational determination of protein structure. J Chem Phys 2020; 153:240901. [PMID: 33380110 PMCID: PMC7773420 DOI: 10.1063/5.0026025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023] Open
Abstract
Knowledge of protein structure is paramount to the understanding of biological function, developing new therapeutics, and making detailed mechanistic hypotheses. Therefore, methods to accurately elucidate three-dimensional structures of proteins are in high demand. While there are a few experimental techniques that can routinely provide high-resolution structures, such as x-ray crystallography, nuclear magnetic resonance (NMR), and cryo-EM, which have been developed to determine the structures of proteins, these techniques each have shortcomings and thus cannot be used in all cases. However, additionally, a large number of experimental techniques that provide some structural information, but not enough to assign atomic positions with high certainty have been developed. These methods offer sparse experimental data, which can also be noisy and inaccurate in some instances. In cases where it is not possible to determine the structure of a protein experimentally, computational structure prediction methods can be used as an alternative. Although computational methods can be performed without any experimental data in a large number of studies, inclusion of sparse experimental data into these prediction methods has yielded significant improvement. In this Perspective, we cover many of the successes of integrative modeling, computational modeling with experimental data, specifically for protein folding, protein-protein docking, and molecular dynamics simulations. We describe methods that incorporate sparse data from cryo-EM, NMR, mass spectrometry, electron paramagnetic resonance, small-angle x-ray scattering, Förster resonance energy transfer, and genetic sequence covariation. Finally, we highlight some of the major challenges in the field as well as possible future directions.
Collapse
Affiliation(s)
- Justin T. Seffernick
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
152
|
Salmanian S, Pezeshk H, Sadeghi M. Inter-protein residue covariation information unravels physically interacting protein dimers. BMC Bioinformatics 2020; 21:584. [PMID: 33334319 PMCID: PMC7745481 DOI: 10.1186/s12859-020-03930-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/09/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Predicting physical interaction between proteins is one of the greatest challenges in computational biology. There are considerable various protein interactions and a huge number of protein sequences and synthetic peptides with unknown interacting counterparts. Most of co-evolutionary methods discover a combination of physical interplays and functional associations. However, there are only a handful of approaches which specifically infer physical interactions. Hybrid co-evolutionary methods exploit inter-protein residue coevolution to unravel specific physical interacting proteins. In this study, we introduce a hybrid co-evolutionary-based approach to predict physical interplays between pairs of protein families, starting from protein sequences only. RESULTS In the present analysis, pairs of multiple sequence alignments are constructed for each dimer and the covariation between residues in those pairs are calculated by CCMpred (Contacts from Correlated Mutations predicted) and three mutual information based approaches for ten accessible surface area threshold groups. Then, whole residue couplings between proteins of each dimer are unified into a single Frobenius norm value. Norms of residue contact matrices of all dimers in different accessible surface area thresholds are fed into support vector machine as single or multiple feature models. The results of training the classifiers by single features show no apparent different accuracies in distinct methods for different accessible surface area thresholds. Nevertheless, mutual information product and context likelihood of relatedness procedures may roughly have an overall higher and lower performances than other two methods for different accessible surface area cut-offs, respectively. The results also demonstrate that training support vector machine with multiple norm features for several accessible surface area thresholds leads to a considerable improvement of prediction performance. In this context, CCMpred roughly achieves an overall better performance than mutual information based approaches. The best accuracy, sensitivity, specificity, precision and negative predictive value for that method are 0.98, 1, 0.962, 0.96, and 0.962, respectively. CONCLUSIONS In this paper, by feeding norm values of protein dimers into support vector machines in different accessible surface area thresholds, we demonstrate that even small number of proteins in pairs of multiple alignments could allow one to accurately discriminate between positive and negative dimers.
Collapse
Affiliation(s)
- Sara Salmanian
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hamid Pezeshk
- School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
- Present Address: Department of Mathematics and Statistics, Concordia University, Montreal, Canada
- School of Biological Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Mehdi Sadeghi
- National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
153
|
Gao W, Mahajan SP, Sulam J, Gray JJ. Deep Learning in Protein Structural Modeling and Design. PATTERNS (NEW YORK, N.Y.) 2020; 1:100142. [PMID: 33336200 PMCID: PMC7733882 DOI: 10.1016/j.patter.2020.100142] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Deep learning is catalyzing a scientific revolution fueled by big data, accessible toolkits, and powerful computational resources, impacting many fields, including protein structural modeling. Protein structural modeling, such as predicting structure from amino acid sequence and evolutionary information, designing proteins toward desirable functionality, or predicting properties or behavior of a protein, is critical to understand and engineer biological systems at the molecular level. In this review, we summarize the recent advances in applying deep learning techniques to tackle problems in protein structural modeling and design. We dissect the emerging approaches using deep learning techniques for protein structural modeling and discuss advances and challenges that must be addressed. We argue for the central importance of structure, following the "sequence → structure → function" paradigm. This review is directed to help both computational biologists to gain familiarity with the deep learning methods applied in protein modeling, and computer scientists to gain perspective on the biologically meaningful problems that may benefit from deep learning techniques.
Collapse
Affiliation(s)
- Wenhao Gao
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sai Pooja Mahajan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeremias Sulam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
154
|
McGehee AJ, Bhattacharya S, Roche R, Bhattacharya D. PolyFold: An interactive visual simulator for distance-based protein folding. PLoS One 2020; 15:e0243331. [PMID: 33270805 PMCID: PMC7714222 DOI: 10.1371/journal.pone.0243331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
Recent advances in distance-based protein folding have led to a paradigm shift in protein structure prediction. Through sufficiently precise estimation of the inter-residue distance matrix for a protein sequence, it is now feasible to predict the correct folds for new proteins much more accurately than ever before. Despite the exciting progress, a dedicated visualization system that can dynamically capture the distance-based folding process is still lacking. Most molecular visualizers typically provide only a static view of a folded protein conformation, but do not capture the folding process. Even among the selected few graphical interfaces that do adopt a dynamic perspective, none of them are distance-based. Here we present PolyFold, an interactive visual simulator for dynamically capturing the distance-based protein folding process through real-time rendering of a distance matrix and its compatible spatial conformation as it folds in an intuitive and easy-to-use interface. PolyFold integrates highly convergent stochastic optimization algorithms with on-demand customizations and interactive manipulations to maximally satisfy the geometric constraints imposed by a distance matrix. PolyFold is capable of simulating the complex process of protein folding even on modest personal computers, thus making it accessible to the general public for fostering citizen science. Open source code of PolyFold is freely available for download at https://github.com/Bhattacharya-Lab/PolyFold. It is implemented in cross-platform Java and binary executables are available for macOS, Linux, and Windows.
Collapse
Affiliation(s)
- Andrew J. McGehee
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States of America
| | - Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States of America
| | - Rahmatullah Roche
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States of America
| | - Debswapna Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States of America
- Department of Biological Sciences, Auburn University, Auburn, AL, United States of America
- * E-mail:
| |
Collapse
|
155
|
Shao D, Mao W, Xing Y, Gong H. RDb2C2: an improved method to identify the residue-residue pairing in β strands. BMC Bioinformatics 2020; 21:133. [PMID: 32245403 PMCID: PMC7126467 DOI: 10.1186/s12859-020-3476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
Background Despite the great advance of protein structure prediction, accurate prediction of the structures of mainly β proteins is still highly challenging, but could be assisted by the knowledge of residue-residue pairing in β strands. Previously, we proposed a ridge-detection-based algorithm RDb2C that adopted a multi-stage random forest framework to predict the β-β pairing given the amino acid sequence of a protein. Results In this work, we developed a second version of this algorithm, RDb2C2, by employing the residual neural network to further enhance the prediction accuracy. In the benchmark test, this new algorithm improves the F1-score by > 10 percentage points, reaching impressively high values of ~ 72% and ~ 73% in the BetaSheet916 and BetaSheet1452 sets, respectively. Conclusion Our new method promotes the prediction accuracy of β-β pairing to a new level and the prediction results could better assist the structure modeling of mainly β proteins. We prepared an online server of RDb2C2 at http://structpred.life.tsinghua.edu.cn/rdb2c2.html.
Collapse
|
156
|
Hameduh T, Haddad Y, Adam V, Heger Z. Homology modeling in the time of collective and artificial intelligence. Comput Struct Biotechnol J 2020; 18:3494-3506. [PMID: 33304450 PMCID: PMC7695898 DOI: 10.1016/j.csbj.2020.11.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Homology modeling is a method for building protein 3D structures using protein primary sequence and utilizing prior knowledge gained from structural similarities with other proteins. The homology modeling process is done in sequential steps where sequence/structure alignment is optimized, then a backbone is built and later, side-chains are added. Once the low-homology loops are modeled, the whole 3D structure is optimized and validated. In the past three decades, a few collective and collaborative initiatives allowed for continuous progress in both homology and ab initio modeling. Critical Assessment of protein Structure Prediction (CASP) is a worldwide community experiment that has historically recorded the progress in this field. Folding@Home and Rosetta@Home are examples of crowd-sourcing initiatives where the community is sharing computational resources, whereas RosettaCommons is an example of an initiative where a community is sharing a codebase for the development of computational algorithms. Foldit is another initiative where participants compete with each other in a protein folding video game to predict 3D structure. In the past few years, contact maps deep machine learning was introduced to the 3D structure prediction process, adding more information and increasing the accuracy of models significantly. In this review, we will take the reader in a journey of exploration from the beginnings to the most recent turnabouts, which have revolutionized the field of homology modeling. Moreover, we discuss the new trends emerging in this rapidly growing field.
Collapse
Affiliation(s)
- Tareq Hameduh
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
157
|
Zhang Q, Zhu J, Ju F, Kong L, Sun S, Zheng WM, Bu D. ISSEC: inferring contacts among protein secondary structure elements using deep object detection. BMC Bioinformatics 2020; 21:503. [PMID: 33153432 PMCID: PMC7643357 DOI: 10.1186/s12859-020-03793-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/30/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The formation of contacts among protein secondary structure elements (SSEs) is an important step in protein folding as it determines topology of protein tertiary structure; hence, inferring inter-SSE contacts is crucial to protein structure prediction. One of the existing strategies infers inter-SSE contacts directly from the predicted possibilities of inter-residue contacts without any preprocessing, and thus suffers from the excessive noises existing in the predicted inter-residue contacts. Another strategy defines SSEs based on protein secondary structure prediction first, and then judges whether each candidate SSE pair could form contact or not. However, it is difficult to accurately determine boundary of SSEs due to the errors in secondary structure prediction. The incorrectly-deduced SSEs definitely hinder subsequent prediction of the contacts among them. RESULTS We here report an accurate approach to infer the inter-SSE contacts (thus called as ISSEC) using the deep object detection technique. The design of ISSEC is based on the observation that, in the inter-residue contact map, the contacting SSEs usually form rectangle regions with characteristic patterns. Therefore, ISSEC infers inter-SSE contacts through detecting such rectangle regions. Unlike the existing approach directly using the predicted probabilities of inter-residue contact, ISSEC applies the deep convolution technique to extract high-level features from the inter-residue contacts. More importantly, ISSEC does not rely on the pre-defined SSEs. Instead, ISSEC enumerates multiple candidate rectangle regions in the predicted inter-residue contact map, and for each region, ISSEC calculates a confidence score to measure whether it has characteristic patterns or not. ISSEC employs greedy strategy to select non-overlapping regions with high confidence score, and finally infers inter-SSE contacts according to these regions. CONCLUSIONS Comprehensive experimental results suggested that ISSEC outperformed the state-of-the-art approaches in predicting inter-SSE contacts. We further demonstrated the successful applications of ISSEC to improve prediction of both inter-residue contacts and tertiary structure as well.
Collapse
Affiliation(s)
- Qi Zhang
- Key Lab of Intelligent Information Processing, Big Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
- School of Computer Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jianwei Zhu
- Key Lab of Intelligent Information Processing, Big Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
- School of Computer Science, University of Chinese Academy of Sciences, Beijing, China
| | - Fusong Ju
- Key Lab of Intelligent Information Processing, Big Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
- School of Computer Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lupeng Kong
- Key Lab of Intelligent Information Processing, Big Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
- School of Computer Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shiwei Sun
- Key Lab of Intelligent Information Processing, Big Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
- School of Computer Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei-Mou Zheng
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongbo Bu
- Key Lab of Intelligent Information Processing, Big Data Academy, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Computer Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
158
|
Wen B, Zeng W, Liao Y, Shi Z, Savage SR, Jiang W, Zhang B. Deep Learning in Proteomics. Proteomics 2020; 20:e1900335. [PMID: 32939979 PMCID: PMC7757195 DOI: 10.1002/pmic.201900335] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/14/2020] [Indexed: 12/17/2022]
Abstract
Proteomics, the study of all the proteins in biological systems, is becoming a data-rich science. Protein sequences and structures are comprehensively catalogued in online databases. With recent advancements in tandem mass spectrometry (MS) technology, protein expression and post-translational modifications (PTMs) can be studied in a variety of biological systems at the global scale. Sophisticated computational algorithms are needed to translate the vast amount of data into novel biological insights. Deep learning automatically extracts data representations at high levels of abstraction from data, and it thrives in data-rich scientific research domains. Here, a comprehensive overview of deep learning applications in proteomics, including retention time prediction, MS/MS spectrum prediction, de novo peptide sequencing, PTM prediction, major histocompatibility complex-peptide binding prediction, and protein structure prediction, is provided. Limitations and the future directions of deep learning in proteomics are also discussed. This review will provide readers an overview of deep learning and how it can be used to analyze proteomics data.
Collapse
Affiliation(s)
- Bo Wen
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTX77030USA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Wen‐Feng Zeng
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS)Chinese Academy of SciencesInstitute of Computing TechnologyBeijing100190China
| | - Yuxing Liao
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTX77030USA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Zhiao Shi
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTX77030USA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Sara R. Savage
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTX77030USA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Wen Jiang
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTX77030USA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| | - Bing Zhang
- Lester and Sue Smith Breast CenterBaylor College of MedicineHoustonTX77030USA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTX77030USA
| |
Collapse
|
159
|
Zhang GJ, Wang XQ, Ma LF, Wang LJ, Hu J, Zhou XG. Two-Stage Distance Feature-based Optimization Algorithm for De novo Protein Structure Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:2119-2130. [PMID: 31107659 DOI: 10.1109/tcbb.2019.2917452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
De novo protein structure prediction can be treated as a conformational space optimization problem under the guidance of an energy function. However, it is a challenge of how to design an accurate energy function which ensures low-energy conformations close to native structures. Fortunately, recent studies have shown that the accuracy of de novo protein structure prediction can be significantly improved by integrating the residue-residue distance information. In this paper, a two-stage distance feature-based optimization algorithm (TDFO) for de novo protein structure prediction is proposed within the framework of evolutionary algorithm. In TDFO, a similarity model is first designed by using feature information which is extracted from distance profiles by bisecting K-means algorithm. The similarity model-based selection strategy is then developed to guide conformation search, and thus improve the quality of the predicted models. Moreover, global and local mutation strategies are designed, and a state estimation strategy is also proposed to strike a trade-off between the exploration and exploitation of the search space. Experimental results of 35 benchmark proteins show that the proposed TDFO can improve prediction accuracy for a large portion of test proteins.
Collapse
|
160
|
Skolnick J, Gao M. The role of local versus nonlocal physicochemical restraints in determining protein native structure. Curr Opin Struct Biol 2020; 68:1-8. [PMID: 33129066 DOI: 10.1016/j.sbi.2020.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
The tertiary structure of a native protein is dictated by the interplay of local secondary structure propensities, hydrogen bonding, and tertiary interactions. It is argued that the space of known protein topologies covers all single domain folds and results from the compactness of the native structure and excluded volume. Protein compactness combined with the chirality of the protein's side chains also yields native-like Ramachandran plots. It is the many-body, tertiary interactions among residues that collectively select for the global structure that a particular protein sequence adopts. This explains why the recent advances in deep-learning approaches that predict protein side-chain contacts, the distance matrix between residues, and sequence alignments are successful. They succeed because they implicitly learned the many-body interactions among protein residues.
Collapse
Affiliation(s)
- Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, GA 30332, United States.
| | - Mu Gao
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, GA 30332, United States.
| |
Collapse
|
161
|
Vihinen M. Functional effects of protein variants. Biochimie 2020; 180:104-120. [PMID: 33164889 DOI: 10.1016/j.biochi.2020.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Genetic and other variations frequently affect protein functions. Scientific articles can contain confusing descriptions about which function or property is affected, and in many cases the statements are pure speculation without any experimental evidence. To clarify functional effects of protein variations of genetic or non-genetic origin, a systematic conceptualisation and framework are introduced. This framework describes protein functional effects on abundance, activity, specificity and affinity, along with countermeasures, which allow cells, tissues and organisms to tolerate, avoid, repair, attenuate or resist (TARAR) the effects. Effects on abundance discussed include gene dosage, restricted expression, mis-localisation and degradation. Enzymopathies, effects on kinetics, allostery and regulation of protein activity are subtopics for the effects of variants on activity. Variation outcomes on specificity and affinity comprise promiscuity, specificity, affinity and moonlighting. TARAR mechanisms redress variations with active and passive processes including chaperones, redundancy, robustness, canalisation and metabolic and signalling rewiring. A framework for pragmatic protein function analysis and presentation is introduced. All of the mechanisms and effects are described along with representative examples, most often in relation to diseases. In addition, protein function is discussed from evolutionary point of view. Application of the presented framework facilitates unambiguous, detailed and specific description of functional effects and their systematic study.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22 184, Lund, Sweden.
| |
Collapse
|
162
|
Chasing coevolutionary signals in intrinsically disordered proteins complexes. Sci Rep 2020; 10:17962. [PMID: 33087759 PMCID: PMC7578644 DOI: 10.1038/s41598-020-74791-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/27/2020] [Indexed: 11/30/2022] Open
Abstract
Intrinsically disordered proteins/regions (IDPs/IDRs) are crucial components of the cell, they are highly abundant and participate ubiquitously in a wide range of biological functions, such as regulatory processes and cell signaling. Many of their important functions rely on protein interactions, by which they trigger or modulate different pathways. Sequence covariation, a powerful tool for protein contact prediction, has been applied successfully to predict protein structure and to identify protein–protein interactions mostly of globular proteins. IDPs/IDRs also mediate a plethora of protein–protein interactions, highlighting the importance of addressing sequence covariation-based inter-protein contact prediction of this class of proteins. Despite their importance, a systematic approach to analyze the covariation phenomena of intrinsically disordered proteins and their complexes is still missing. Here we carry out a comprehensive critical assessment of coevolution-based contact prediction in IDP/IDR complexes and detail the challenges and possible limitations that emerge from their analysis. We found that the coevolutionary signal is faint in most of the complexes of disordered proteins but positively correlates with the interface size and binding affinity between partners. In addition, we discuss the state-of-art methodology by biological interpretation of the results, formulate evaluation guidelines and suggest future directions of development to the field.
Collapse
|
163
|
Muscat M, Croce G, Sarti E, Weigt M. FilterDCA: Interpretable supervised contact prediction using inter-domain coevolution. PLoS Comput Biol 2020; 16:e1007621. [PMID: 33035205 PMCID: PMC7577475 DOI: 10.1371/journal.pcbi.1007621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/21/2020] [Accepted: 08/20/2020] [Indexed: 12/03/2022] Open
Abstract
Predicting three-dimensional protein structure and assembling protein complexes using sequence information belongs to the most prominent tasks in computational biology. Recently substantial progress has been obtained in the case of single proteins using a combination of unsupervised coevolutionary sequence analysis with structurally supervised deep learning. While reaching impressive accuracies in predicting residue-residue contacts, deep learning has a number of disadvantages. The need for large structural training sets limits the applicability to multi-protein complexes; and their deep architecture makes the interpretability of the convolutional neural networks intrinsically hard. Here we introduce FilterDCA, a simpler supervised predictor for inter-domain and inter-protein contacts. It is based on the fact that contact maps of proteins show typical contact patterns, which results from secondary structure and are reflected by patterns in coevolutionary analysis. We explicitly integrate averaged contacts patterns with coevolutionary scores derived by Direct Coupling Analysis, improving performance over standard coevolutionary analysis, while remaining fully transparent and interpretable. The FilterDCA code is available at http://gitlab.lcqb.upmc.fr/muscat/FilterDCA. The de novo prediction of tertiary and quaternary protein structures has recently seen important advances, by combining unsupervised, purely sequence-based coevolutionary analyses with structure-based supervision using deep learning for contact-map prediction. While showing impressive performance, deep-learning methods require large training sets and pose severe obstacles for their interpretability. Here we construct a simple, transparent and therefore fully interpretable inter-domain contact predictor, which uses the results of coevolutionary Direct Coupling Analysis in combination with explicitly constructed filters reflecting typical contact patterns in a training set of known protein structures, and which improves the accuracy of predicted contacts significantly. Our approach thereby sheds light on the question how contact information is encoded in coevolutionary signals.
Collapse
Affiliation(s)
- Maureen Muscat
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biologie Computationnelle et Quantitative – LCQB, 75005 Paris, France
| | - Giancarlo Croce
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biologie Computationnelle et Quantitative – LCQB, 75005 Paris, France
| | - Edoardo Sarti
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biologie Computationnelle et Quantitative – LCQB, 75005 Paris, France
| | - Martin Weigt
- Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biologie Computationnelle et Quantitative – LCQB, 75005 Paris, France
- * E-mail:
| |
Collapse
|
164
|
Sun D, Gong X. Tetramer protein complex interface residue pairs prediction with LSTM combined with graph representations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140504. [PMID: 32717382 DOI: 10.1016/j.bbapap.2020.140504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
MOTIVATION Protein-protein interactions are important for many biological processes. Theoretical understanding of the structurally determining factors of interaction sites will help to understand the underlying mechanism of protein-protein interactions. Taking advantage of advanced mathematical methods to correctly predict interaction sites will be useful. Although some previous studies have been devoted to the interaction interface of protein monomer and the interface residues between chains of protein dimers, very few studies about the interface residues prediction of protein multimers, including trimers, tetramer and even more monomers in a large protein complex. As we all know, a large number of proteins function with the form of multibody protein complexes. And the complexity of the protein multimers structure causes the difficulty of interface residues prediction on them. So, we hope to build a method for the prediction of protein tetramer interface residue pairs. RESULTS Here, we developed a new deep network based on LSTM network combining with graph to predict protein tetramers interaction interface residue pairs. On account of the protein structure data is not the same as the image or video data which is well-arranged matrices, namely the Euclidean Structure mentioned in many researches. Because the Non-Euclidean Structure data can't keep the translation invariance, and we hope to extract some spatial features from this kind of data applying on deep learning, an algorithm combining with graph was developed to predict the interface residue pairs of protein interactions based on a topological graph building a relationship between vertexes and edges in graph theory combining multilayer Long Short-Term Memory network. First, selecting the training and test samples from the Protein Data Bank, and then extracting the physicochemical property features and the geometric features of surface residue associated with interfacial properties. Subsequently, we transform the protein multimers data to topological graphs and predict protein interaction interface residue pairs using the model. In addition, different types of evaluation indicators verified its validity.
Collapse
Affiliation(s)
- Daiwen Sun
- Mathematics Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, PR China
| | - Xinqi Gong
- Mathematics Intelligence Application LAB, Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, PR China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua Univeristy, Beijing 100091, PR China.
| |
Collapse
|
165
|
Abriata LA, Dal Peraro M. State-of-the-art web services for de novo protein structure prediction. Brief Bioinform 2020; 22:5870389. [PMID: 34020540 DOI: 10.1093/bib/bbaa139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Residue coevolution estimations coupled to machine learning methods are revolutionizing the ability of protein structure prediction approaches to model proteins that lack clear homologous templates in the Protein Data Bank (PDB). This has been patent in the last round of the Critical Assessment of Structure Prediction (CASP), which presented several very good models for the hardest targets. Unfortunately, literature reporting on these advances often lacks digests tailored to lay end users; moreover, some of the top-ranking predictors do not provide webservers that can be used by nonexperts. How can then end users benefit from these advances and correctly interpret the predicted models? Here we review the web resources that biologists can use today to take advantage of these state-of-the-art methods in their research, including not only the best de novo modeling servers but also datasets of models precomputed by experts for structurally uncharacterized protein families. We highlight their features, advantages and pitfalls for predicting structures of proteins without clear templates. We present a broad number of applications that span from driving forward biochemical investigations that lack experimental structures to actually assisting experimental structure determination in X-ray diffraction, cryo-EM and other forms of integrative modeling. We also discuss issues that must be considered by users yet still require further developments, such as global and residue-wise model quality estimates and sources of residue coevolution other than monomeric tertiary structure.
Collapse
Affiliation(s)
- Luciano A Abriata
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
166
|
Pucci F, Zerihun MB, Peter EK, Schug A. Evaluating DCA-based method performances for RNA contact prediction by a well-curated data set. RNA (NEW YORK, N.Y.) 2020; 26:794-802. [PMID: 32276988 PMCID: PMC7297115 DOI: 10.1261/rna.073809.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
RNA molecules play many pivotal roles in a cell that are still not fully understood. Any detailed understanding of RNA function requires knowledge of its three-dimensional structure, yet experimental RNA structure resolution remains demanding. Recent advances in sequencing provide unprecedented amounts of sequence data that can be statistically analyzed by methods such as direct coupling analysis (DCA) to determine spatial proximity or contacts of specific nucleic acid pairs, which improve the quality of structure prediction. To quantify this structure prediction improvement, we here present a well curated data set of about 70 RNA structures of high resolution and compare different nucleotide-nucleotide contact prediction methods available in the literature. We observe only minor differences between the performances of the different methods. Moreover, we discuss how robust these predictions are for different contact definitions and how strongly they depend on procedures used to curate and align the families of homologous RNA sequences.
Collapse
Affiliation(s)
- Fabrizio Pucci
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Mehari B Zerihun
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Physics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Emanuel K Peter
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Alexander Schug
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
167
|
Li Y, Hu J, Zhang C, Yu DJ, Zhang Y. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks. Bioinformatics 2020; 35:4647-4655. [PMID: 31070716 DOI: 10.1093/bioinformatics/btz291] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/18/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
MOTIVATION Contact-map of a protein sequence dictates the global topology of structural fold. Accurate prediction of the contact-map is thus essential to protein 3D structure prediction, which is particularly useful for the protein sequences that do not have close homology templates in the Protein Data Bank. RESULTS We developed a new method, ResPRE, to predict residue-level protein contacts using inverse covariance matrix (or precision matrix) of multiple sequence alignments (MSAs) through deep residual convolutional neural network training. The approach was tested on a set of 158 non-homologous proteins collected from the CASP experiments and achieved an average accuracy of 50.6% in the top-L long-range contact prediction with L being the sequence length, which is 11.7% higher than the best of other state-of-the-art approaches ranging from coevolution coupling analysis to deep neural network training. Detailed data analyses show that the major advantage of ResPRE lies at the utilization of precision matrix that helps rule out transitional noises of contact-maps compared with the previously used covariance matrix. Meanwhile, the residual network with parallel shortcut layer connections increases the learning ability of deep neural network training. It was also found that appropriate collection of MSAs can further improve the accuracy of final contact-map predictions. The standalone package and online server of ResPRE are made freely available, which should bring important impact on protein structure and function modeling studies in particular for the distant- and non-homology protein targets. AVAILABILITY AND IMPLEMENTATION https://zhanglab.ccmb.med.umich.edu/ResPRE and https://github.com/leeyang/ResPRE. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yang Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109-2218, USA
| | - Jun Hu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109-2218, USA
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109-2218, USA
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109-2218, USA
| |
Collapse
|
168
|
Chen MC, Li Y, Zhu YH, Ge F, Yu DJ. SSCpred: Single-Sequence-Based Protein Contact Prediction Using Deep Fully Convolutional Network. J Chem Inf Model 2020; 60:3295-3303. [PMID: 32338512 DOI: 10.1021/acs.jcim.9b01207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There has been a significant improvement in protein residue contact prediction in recent years. Nevertheless, state-of-the-art methods still show deficiencies in the contact prediction of proteins with low-homology information. These top methods depend largely on statistical features that derived from homologous sequences, but previous studies, along with our analyses, show that they are insufficient for inferencing an accurate contact map for nonhomology protein targets. To compensate, we proposed a brand new single-sequence-based contact predictor (SSCpred) that performs prediction through the deep fully convolutional network (Deep FCN) with only the target sequence itself, i.e., without additional homology information. The proposed pipeline makes good use of the target sequence by utilizing the pair-wise encoding technique and Deep FCN. Experimental results demonstrated that SSCpred can produce accurate predictions based on the efficient pipeline. Compared with several most recent methods, SSCpred achieves completive performance on nonhomology targets. Overall, we explored the possibilities of single-sequence-based contact prediction and designed a novel pipeline without using a complex and redundant feature set. The proposed SSCpred can compensate for current methods' disadvantages and achieves better performance on the nonhomology targets. The web server of SSCpred is freely available at http://csbio.njust.edu.cn/bioinf/sscpred/.
Collapse
Affiliation(s)
- Ming-Cai Chen
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| | - Yang Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
- Department of Computational Medicine and Bioinformatics, University of Michigan, Washtenaw 100, Ann Arbor, Michigan 48109-2218, United States
| | - Yi-Heng Zhu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| | - Fang Ge
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, P. R. China
| |
Collapse
|
169
|
Hong SH, Joo K, Lee J. ConDo: protein domain boundary prediction using coevolutionary information. Bioinformatics 2020; 35:2411-2417. [PMID: 30500873 DOI: 10.1093/bioinformatics/bty973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Domain boundary prediction is one of the most important problems in the study of protein structure and function. Many sequence-based domain boundary prediction methods are either template-based or machine learning (ML) based. ML-based methods often perform poorly due to their use of only local (i.e. short-range) features. These conventional features such as sequence profiles, secondary structures and solvent accessibilities are typically restricted to be within 20 residues of the domain boundary candidate. RESULTS To address the performance of ML-based methods, we developed a new protein domain boundary prediction method (ConDo) that utilizes novel long-range features such as coevolutionary information in addition to the aforementioned local window features as inputs for ML. Toward this purpose, two types of coevolutionary information were extracted from multiple sequence alignment using direct coupling analysis: (i) partially aligned sequences, and (ii) correlated mutation information. Both the partially aligned sequence information and the modularity of residue-residue couplings possess long-range correlation information. AVAILABILITY AND IMPLEMENTATION https://github.com/gicsaw/ConDo.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Keehyoung Joo
- Center for Advanced Computation, Korea Institute for Advanced Study, Korea
| | - Jooyoung Lee
- School of Computational Sciences.,Center for Advanced Computation, Korea Institute for Advanced Study, Korea
| |
Collapse
|
170
|
Correa Marrero M, Immink RGH, de Ridder D, van Dijk ADJ. Improved inference of intermolecular contacts through protein-protein interaction prediction using coevolutionary analysis. Bioinformatics 2020; 35:2036-2042. [PMID: 30398547 DOI: 10.1093/bioinformatics/bty924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/11/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
MOTIVATION Predicting residue-residue contacts between interacting proteins is an important problem in bioinformatics. The growing wealth of sequence data can be used to infer these contacts through correlated mutation analysis on multiple sequence alignments of interacting homologs of the proteins of interest. This requires correct identification of pairs of interacting proteins for many species, in order to avoid introducing noise (i.e. non-interacting sequences) in the analysis that will decrease predictive performance. RESULTS We have designed Ouroboros, a novel algorithm to reduce such noise in intermolecular contact prediction. Our method iterates between weighting proteins according to how likely they are to interact based on the correlated mutations signal, and predicting correlated mutations based on the weighted sequence alignment. We show that this approach accurately discriminates between protein interaction versus non-interaction and simultaneously improves the prediction of intermolecular contact residues compared to a naive application of correlated mutation analysis. This requires no training labels concerning interactions or contacts. Furthermore, the method relaxes the assumption of one-to-one interaction of previous approaches, allowing for the study of many-to-many interactions. AVAILABILITY AND IMPLEMENTATION Source code and test data are available at www.bif.wur.nl/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Richard G H Immink
- Laboratory of Molecular Biology, Department of Plant Sciences.,Bioscience, Wageningen Plant Research
| | | | - Aalt D J van Dijk
- Bioinformatics Group, Department of Plant Sciences.,Bioscience, Wageningen Plant Research.,Biometris, Department of Plant Sciences, Wageningen University & Research, Wageningen PB, The Netherlands
| |
Collapse
|
171
|
Altenbuchinger M, Weihs A, Quackenbush J, Grabe HJ, Zacharias HU. Gaussian and Mixed Graphical Models as (multi-)omics data analysis tools. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194418. [PMID: 31639475 PMCID: PMC7166149 DOI: 10.1016/j.bbagrm.2019.194418] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 11/30/2022]
Abstract
Gaussian Graphical Models (GGMs) are tools to infer dependencies between biological variables. Popular applications are the reconstruction of gene, protein, and metabolite association networks. GGMs are an exploratory research tool that can be useful to discover interesting relations between genes (functional clusters) or to identify therapeutically interesting genes, but do not necessarily infer a network in the mechanistic sense. Although GGMs are well investigated from a theoretical and applied perspective, important extensions are not well known within the biological community. GGMs assume, for instance, multivariate normal distributed data. If this assumption is violated Mixed Graphical Models (MGMs) can be the better choice. In this review, we provide the theoretical foundations of GGMs, present extensions such as MGMs or multi-class GGMs, and illustrate how those methods can provide insight in biological mechanisms. We summarize several applications and present user-friendly estimation software. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.
Collapse
Affiliation(s)
- Michael Altenbuchinger
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, MA Boston, 02115, USA.
| | - Antoine Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - John Quackenbush
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, MA Boston, 02115, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; German Center for Neurodegenerative Diseases DZNE, Site Rostock/Greifswald, 17475 Greifswald, Germany
| | - Helena U Zacharias
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany.
| |
Collapse
|
172
|
Jiang M, Li Z, Zhang S, Wang S, Wang X, Yuan Q, Wei Z. Drug-target affinity prediction using graph neural network and contact maps. RSC Adv 2020; 10:20701-20712. [PMID: 35517730 PMCID: PMC9054320 DOI: 10.1039/d0ra02297g] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/07/2020] [Indexed: 02/01/2023] Open
Abstract
Computer-aided drug design uses high-performance computers to simulate the tasks in drug design, which is a promising research area. Drug-target affinity (DTA) prediction is the most important step of computer-aided drug design, which could speed up drug development and reduce resource consumption. With the development of deep learning, the introduction of deep learning to DTA prediction and improving the accuracy have become a focus of research. In this paper, utilizing the structural information of molecules and proteins, two graphs of drug molecules and proteins are built up respectively. Graph neural networks are introduced to obtain their representations, and a method called DGraphDTA is proposed for DTA prediction. Specifically, the protein graph is constructed based on the contact map output from the prediction method, which could predict the structural characteristics of the protein according to its sequence. It can be seen from the test of various metrics on benchmark datasets that the method proposed in this paper has strong robustness and generalizability.
Collapse
Affiliation(s)
- Mingjian Jiang
- Department of Computer Science and Technology, Ocean University of China China
| | - Zhen Li
- Department of Computer Science and Technology, Ocean University of China China
| | - Shugang Zhang
- Department of Computer Science and Technology, Ocean University of China China
| | - Shuang Wang
- Department of Computer Science and Technology, Ocean University of China China
| | - Xiaofeng Wang
- Department of Computer Science and Technology, Ocean University of China China
| | - Qing Yuan
- Department of Computer Science and Technology, Ocean University of China China
| | - Zhiqiang Wei
- Department of Computer Science and Technology, Ocean University of China China
| |
Collapse
|
173
|
Baldessari F, Capelli R, Carloni P, Giorgetti A. Coevolutionary data-based interaction networks approach highlighting key residues across protein families: The case of the G-protein coupled receptors. Comput Struct Biotechnol J 2020; 18:1153-1159. [PMID: 32489528 PMCID: PMC7260681 DOI: 10.1016/j.csbj.2020.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/26/2022] Open
Abstract
We present an approach that, by integrating structural data with Direct Coupling Analysis, is able to pinpoint most of the interaction hotspots (i.e. key residues for the biological activity) across very sparse protein families in a single run. An application to the Class A G-protein coupled receptors (GPCRs), both in their active and inactive states, demonstrates the predictive power of our approach. The latter can be easily extended to any other kind of protein family, where it is expected to highlight most key sites involved in their functional activity.
Collapse
Affiliation(s)
- Filippo Baldessari
- Department of Biotechnology, Università di Verona, Ca Vignal 1, strada Le Grazie 15, I-37134 Verona, Italy
| | - Riccardo Capelli
- Computational Biomedicine Section, IAS-5/INM-9, Forschungzentrum Jülich, Wilhelm-Johnen-straße, D-52425 Jülich, Germany
| | - Paolo Carloni
- Computational Biomedicine Section, IAS-5/INM-9, Forschungzentrum Jülich, Wilhelm-Johnen-straße, D-52425 Jülich, Germany
| | - Alejandro Giorgetti
- Department of Biotechnology, Università di Verona, Ca Vignal 1, strada Le Grazie 15, I-37134 Verona, Italy
- Computational Biomedicine Section, IAS-5/INM-9, Forschungzentrum Jülich, Wilhelm-Johnen-straße, D-52425 Jülich, Germany
| |
Collapse
|
174
|
Buchan DWA, Jones DT. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res 2020; 47:W402-W407. [PMID: 31251384 PMCID: PMC6602445 DOI: 10.1093/nar/gkz297] [Citation(s) in RCA: 923] [Impact Index Per Article: 184.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/02/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023] Open
Abstract
The PSIPRED Workbench is a web server offering a range of predictive methods to the bioscience community for 20 years. Here, we present the work we have completed to update the PSIPRED Protein Analysis Workbench and make it ready for the next 20 years. The main focus of our recent website upgrade work has been the acceleration of analyses in the face of increasing protein sequence database size. We additionally discuss any new software, the new hardware infrastructure, our webservices and web site. Lastly we survey updates to some of the key predictive algorithms available through our website.
Collapse
Affiliation(s)
- Daniel W A Buchan
- UCL Bioinformatics Group, Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
| | - David T Jones
- UCL Bioinformatics Group, Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
175
|
Meyer X, Dib L, Salamin N. CoevDB: a database of intramolecular coevolution among protein-coding genes of the bony vertebrates. Nucleic Acids Res 2020; 47:D50-D54. [PMID: 30357342 PMCID: PMC6324051 DOI: 10.1093/nar/gky986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/10/2018] [Indexed: 01/15/2023] Open
Abstract
The study of molecular coevolution, due to its potential to identify gene regions under functional or structural constraints, has recently been subject to numerous scientific inquiries. Particular efforts have been conducted to develop methods predicting the presence of coevolution in molecular sequences. Among these methods, a few aim to model the underlying evolutionary process of coevolution, which enable to differentiate the shared history of genes to coevolution and thus improve their accuracy. However, the usage of such methods remains sparse due to their expensive computational cost and the lack of resources alleviating this issue. Here we present CoevDB (http://phylodb.unil.ch/CoevDB), a database containing the result of a large-scale analysis of intramolecular coevolution of 8201 protein-coding genes of bony vertebrates. The web interface of CoevDB gives access to the results to 800 millions of statistical tests corresponding to all the pairs of sites analyzed. Several type of queries enable users to explore the database by either targeting specific genes or by discovering genes having promising estimations of coevolution.
Collapse
Affiliation(s)
- Xavier Meyer
- Department of Computational Biology, University of Lausanne, Biophore, 1015 Lausanne, Switzerland.,Department of Integrative Biology, University of California, 3060 Valley Life Sciences Bldg, Berkeley, CA 94720-3140, USA
| | - Linda Dib
- Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Biophore, 1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| |
Collapse
|
176
|
Andreani J, Quignot C, Guerois R. Structural prediction of protein interactions and docking using conservation and coevolution. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jessica Andreani
- Université Paris‐Saclay CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Chloé Quignot
- Université Paris‐Saclay CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Raphael Guerois
- Université Paris‐Saclay CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| |
Collapse
|
177
|
Cuturello F, Tiana G, Bussi G. Assessing the accuracy of direct-coupling analysis for RNA contact prediction. RNA (NEW YORK, N.Y.) 2020; 26:637-647. [PMID: 32115426 PMCID: PMC7161351 DOI: 10.1261/rna.074179.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/26/2020] [Indexed: 05/31/2023]
Abstract
Many noncoding RNAs are known to play a role in the cell directly linked to their structure. Structure prediction based on the sole sequence is, however, a challenging task. On the other hand, thanks to the low cost of sequencing technologies, a very large number of homologous sequences are becoming available for many RNA families. In the protein community, the idea of exploiting the covariance of mutations within a family to predict the protein structure using the direct-coupling-analysis (DCA) method has emerged in the last decade. The application of DCA to RNA systems has been limited so far. We here perform an assessment of the DCA method on 17 riboswitch families, comparing it with the commonly used mutual information analysis and with state-of-the-art R-scape covariance method. We also compare different flavors of DCA, including mean-field, pseudolikelihood, and a proposed stochastic procedure (Boltzmann learning) for solving exactly the DCA inverse problem. Boltzmann learning outperforms the other methods in predicting contacts observed in high-resolution crystal structures.
Collapse
Affiliation(s)
- Francesca Cuturello
- Scuola Internazionale Superiore di Studi Avanzati, International School for Advanced Studies, 34136 Trieste, Italy
| | - Guido Tiana
- Center for Complexity and Biosystems and Department of Physics, Università degli Studi di Milano and INFN, 20133 Milano, Italy
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, International School for Advanced Studies, 34136 Trieste, Italy
| |
Collapse
|
178
|
Getting to Know Your Neighbor: Protein Structure Prediction Comes of Age with Contextual Machine Learning. J Comput Biol 2020; 27:796-814. [DOI: 10.1089/cmb.2019.0193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
179
|
Feng J, Shukla D. FingerprintContacts: Predicting Alternative Conformations of Proteins from Coevolution. J Phys Chem B 2020; 124:3605-3615. [PMID: 32283936 DOI: 10.1021/acs.jpcb.9b11869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins are dynamic molecules which perform diverse molecular functions by adopting different three-dimensional structures. Recent progress in residue-residue contacts prediction opens up new avenues for the de novo protein structure prediction from sequence information. However, it is still difficult to predict more than one conformation from residue-residue contacts alone. This is due to the inability to deconvolve the complex signals of residue-residue contacts, i.e., spatial contacts relevant for protein folding, conformational diversity, and ligand binding. Here, we introduce a machine learning based method, called FingerprintContacts, for extending the capabilities of residue-residue contacts. This algorithm leverages the features of residue-residue contacts, that is, (1) a single conformation outperforms the others in the structural prediction using all the top ranking residue-residue contacts as structural constraints and (2) conformation specific contacts rank lower and constitute a small fraction of residue-residue contacts. We demonstrate the capabilities of FingerprintContacts on eight ligand binding proteins with varying conformational motions. Furthermore, FingerprintContacts identifies small clusters of residue-residue contacts which are preferentially located in the dynamically fluctuating regions. With the rapid growth in protein sequence information, we expect FingerprintContacts to be a powerful first step in structural understanding of protein functional mechanisms.
Collapse
|
180
|
Gandarilla-Pérez CA, Mergny P, Weigt M, Bitbol AF. Statistical physics of interacting proteins: Impact of dataset size and quality assessed in synthetic sequences. Phys Rev E 2020; 101:032413. [PMID: 32290011 DOI: 10.1103/physreve.101.032413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/04/2020] [Indexed: 11/07/2022]
Abstract
Identifying protein-protein interactions is crucial for a systems-level understanding of the cell. Recently, algorithms based on inverse statistical physics, e.g., direct coupling analysis (DCA), have allowed to use evolutionarily related sequences to address two conceptually related inference tasks: finding pairs of interacting proteins and identifying pairs of residues which form contacts between interacting proteins. Here we address two underlying questions: How are the performances of both inference tasks related? How does performance depend on dataset size and the quality? To this end, we formalize both tasks using Ising models defined over stochastic block models, with individual blocks representing single proteins and interblock couplings protein-protein interactions; controlled synthetic sequence data are generated by Monte Carlo simulations. We show that DCA is able to address both inference tasks accurately when sufficiently large training sets of known interaction partners are available and that an iterative pairing algorithm allows to make predictions even without a training set. Noise in the training data deteriorates performance. In both tasks we find a quadratic scaling relating dataset quality and size that is consistent with noise adding in square-root fashion and signal adding linearly when increasing the dataset. This implies that it is generally good to incorporate more data even if their quality are imperfect, thereby shedding light on the empirically observed performance of DCA applied to natural protein sequences.
Collapse
Affiliation(s)
- Carlos A Gandarilla-Pérez
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie Computationnelle et Quantitative (LCQB, UMR 7238), F-75005 Paris, France.,Facultad de Física, Universidad de la Habana, San Lázaro y L, Vedado, Habana 4, CP-10400, Cuba
| | - Pierre Mergny
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie Computationnelle et Quantitative (LCQB, UMR 7238), F-75005 Paris, France.,Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin (LJP, UMR 8237), F-75005 Paris, France
| | - Martin Weigt
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie Computationnelle et Quantitative (LCQB, UMR 7238), F-75005 Paris, France
| | - Anne-Florence Bitbol
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin (LJP, UMR 8237), F-75005 Paris, France.,Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
181
|
Protein Contact Map Prediction Based on ResNet and DenseNet. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7584968. [PMID: 32337273 PMCID: PMC7165324 DOI: 10.1155/2020/7584968] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/05/2020] [Indexed: 11/18/2022]
Abstract
Residue-residue contact prediction has become an increasingly important tool for modeling the three-dimensional structure of a protein when no homologous structure is available. Ultradeep residual neural network (ResNet) has become the most popular method for making contact predictions because it captures the contextual information between residues. In this paper, we propose a novel deep neural network framework for contact prediction which combines ResNet and DenseNet. This framework uses 1D ResNet to process sequential features, and besides PSSM, SS3, and solvent accessibility, we have introduced a new feature, position-specific frequency matrix (PSFM), as an input. Using ResNet's residual module and identity mapping, it can effectively process sequential features after which the outer concatenation function is used for sequential and pairwise features. Prediction accuracy is improved following a final processing step using the dense connection of DenseNet. The prediction accuracy of the protein contact map shows that our method is more effective than other popular methods due to the new network architecture and the added feature input.
Collapse
|
182
|
Fang C, Jia Y, Hu L, Lu Y, Wang H. IMPContact: An Interhelical Residue Contact Prediction Method. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4569037. [PMID: 32309431 PMCID: PMC7140131 DOI: 10.1155/2020/4569037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022]
Abstract
As an important category of proteins, alpha-helix transmembrane proteins (αTMPs) play an important role in various biological activities. Because the solved αTMP structures are inadequate, predicting the residue contacts among the transmembrane segments of an αTMP exhibits the basis of protein fold, which can be used to further discover more protein functions. A few efforts have been devoted to predict the interhelical residue contact using machine learning methods based on the prior knowledge of transmembrane protein structure. However, it is still a challenge to improve the prediction accuracy, while the deep learning method provides an opportunity to utilize the structural knowledge in a different insight. For this purpose, we proposed a novel αTMP residue-residue contact prediction method IMPContact, in which a convolutional neural network (CNN) was applied to recognize those interhelical contacts in a TMP using its specific structural features. There were four sequence-based TMP-specific features selected to descript a pair of residues, namely, evolutionary covariation, predicted topology structure, residue relative position, and evolutionary conservation. An up-to-date dataset was used to train and test the IMPContact; our method achieved better performance compared to peer methods. In the case studies, IHRCs in the regular transmembrane helixes were better predicted than in the irregular ones.
Collapse
Affiliation(s)
- Chao Fang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Yajie Jia
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
- Institute of Computational Biology, Northeast Normal University, Changchun 130117, China
| | - Lihong Hu
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Yinghua Lu
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
- Department of Computer Science, College of Humanities & Sciences of Northeast Normal University, Changchun 130117, China
| | - Han Wang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
- Institute of Computational Biology, Northeast Normal University, Changchun 130117, China
- Department of Computer Science, College of Humanities & Sciences of Northeast Normal University, Changchun 130117, China
| |
Collapse
|
183
|
Abriata LA, Dal Peraro M. Will Cryo-Electron Microscopy Shift the Current Paradigm in Protein Structure Prediction? J Chem Inf Model 2020; 60:2443-2447. [PMID: 32134661 DOI: 10.1021/acs.jcim.0c00177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protein dynamics is undoubtedly a pervasive ingredient in all biological functions. However, structural biology has been strongly driven by a static-centered view of protein architecture. We argue that the recent advances of cryo-electron microscopy (EM) have the potential to more broadly explore the conformational landscapes of protein complexes and therefore will enhance our ability to predict the diverse conformations of tertiary and quaternary protein structures that are functionally relevant in physiological conditions.
Collapse
Affiliation(s)
- Luciano A Abriata
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
| |
Collapse
|
184
|
|
185
|
Zhang Z, Xiong P, Zhang T, Wang J, Zhan J, Zhou Y. Accurate inference of the full base-pairing structure of RNA by deep mutational scanning and covariation-induced deviation of activity. Nucleic Acids Res 2020; 48:1451-1465. [PMID: 31872260 PMCID: PMC7026644 DOI: 10.1093/nar/gkz1192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/12/2022] Open
Abstract
Despite the large number of noncoding RNAs in human genome and their roles in many diseases include cancer, we know very little about them due to lack of structural clues. The centerpiece of the structural clues is the full RNA base-pairing structure of secondary and tertiary contacts that can be precisely obtained only from costly and time-consuming 3D structure determination. Here, we performed deep mutational scanning of self-cleaving CPEB3 ribozyme by error-prone PCR and showed that a library of <5 × 104 single-to-triple mutants is sufficient to infer 25 of 26 base pairs including non-nested, nonhelical, and noncanonical base pairs with both sensitivity and precision at 96%. Such accurate inference was further confirmed by a twister ribozyme at 100% precision with only noncanonical base pairs as false negatives. The performance was resulted from analyzing covariation-induced deviation of activity by utilizing both functional and nonfunctional variants for unsupervised classification, followed by Monte Carlo (MC) simulated annealing with mutation-derived scores. Highly accurate inference can also be obtained by combining MC with evolution/direct coupling analysis, R-scape or epistasis analysis. The results highlight the usefulness of deep mutational scanning for high-accuracy structural inference of self-cleaving ribozymes with implications for other structured RNAs that permit high-throughput functional selections.
Collapse
Affiliation(s)
- Zhe Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Chinese Academy of Sciences, Beijing 101408, P. R. China
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Peng Xiong
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Tongchuan Zhang
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230031, Anhui, P. R. China
| | - Jian Zhan
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| | - Yaoqi Zhou
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
- School of Information and Communication Technology, Griffith University, Parklands Drive, Southport, QLD 4222, Australia
| |
Collapse
|
186
|
Bhattacharya S, Bhattacharya D. Evaluating the significance of contact maps in low-homology protein modeling using contact-assisted threading. Sci Rep 2020; 10:2908. [PMID: 32076047 PMCID: PMC7031282 DOI: 10.1038/s41598-020-59834-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/04/2020] [Indexed: 12/02/2022] Open
Abstract
The development of improved threading algorithms for remote homology modeling is a critical step forward in template-based protein structure prediction. We have recently demonstrated the utility of contact information to boost protein threading by developing a new contact-assisted threading method. However, the nature and extent to which the quality of a predicted contact map impacts the performance of contact-assisted threading remains elusive. Here, we systematically analyze and explore this interdependence by employing our newly-developed contact-assisted threading method over a large-scale benchmark dataset using predicted contact maps from four complementary methods including direct coupling analysis (mfDCA), sparse inverse covariance estimation (PSICOV), classical neural network-based meta approach (MetaPSICOV), and state-of-the-art ultra-deep learning model (RaptorX). Experimental results demonstrate that contact-assisted threading using high-quality contacts having the Matthews Correlation Coefficient (MCC) ≥ 0.5 improves threading performance in nearly 30% cases, while low-quality contacts with MCC <0.35 degrades the performance for 50% cases. This holds true even in CASP13 dataset, where threading using high-quality contacts (MCC ≥ 0.5) significantly improves the performance of 22 instances out of 29. Collectively, our study uncovers the mutual association between the quality of predicted contacts and its possible utility in boosting threading performance for improving low-homology protein modeling.
Collapse
Affiliation(s)
- Sutanu Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Debswapna Bhattacharya
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, 36849, USA.
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
187
|
Biological vs. Crystallographic Protein Interfaces: An Overview of Computational Approaches for Their Classification. CRYSTALS 2020. [DOI: 10.3390/cryst10020114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Complexes between proteins are at the basis of almost every process in cells. Their study, from a structural perspective, has a pivotal role in understanding biological functions and, importantly, in drug development. X-ray crystallography represents the broadest source for the experimental structural characterization of protein-protein complexes. Correctly identifying the biologically relevant interface from the crystallographic ones is, however, not trivial and can be prone to errors. Over the past two decades, computational methodologies have been developed to study the differences of those interfaces and automatically classify them as biological or crystallographic. Overall, protein-protein interfaces show differences in terms of composition, energetics and evolutionary conservation between biological and crystallographic ones. Based on those observations, a number of computational methods have been developed for this classification problem, which can be grouped into three main categories: Energy-, empirical knowledge- and machine learning-based approaches. In this review, we give a comprehensive overview of the training datasets and methods so far implemented, providing useful links and a brief description of each method.
Collapse
|
188
|
Bahrami A, Najafi A, Hashemi M, Miraie-Ashtiani SR. PSSP: Protein splice site prediction algorithm using Bayesian approach. J Bioinform Comput Biol 2020; 17:1950034. [PMID: 32019415 DOI: 10.1142/s0219720019500343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study aimed to introduce an algorithm and identify intein motif and blocks involved in protein splicing, and explore the underlying methods in the development of detection of protein motifs. Inteins are mobile protein splicing elements capable of self-splicing post-translationally. They exist in viruses and bacteriophage, notwithstanding this broad phylogenetic distribution, all inteins apportion common structural features. A method was developed to predict intein in a raw sequence, using a ranking and scoring scheme based on amino acid θ value tables. This method aided in the identification and assessment of patterns characterizing the intein sequences. New intein conserved properties are revealed and the known ones are described and localized. We have computed the θ value of each amino acid at block A positions +1 to +13, block B positions l+13 to l+26 and block G positions -7 to +1 for the three categories. The consensus amino acids thus found are listed at the end of each row. We gave statistics for the distance between the blocks, block A to B, block B to F, and block F to G with the average being 66.1, 294, and 10.2 amino acids, respectively. The actual blocks A, B, and G of the one intein found in vacuolar membrane ATPase subunit, a precursor protein, are ranked 1. The results indicate all of the block sequences that are found in nine proteins are ranked at top of the list. The intein sequence is used to search the databases for intein-like proteins. Understanding the functional, structural, and dynamical aspects of inteins is important for intein engineering and the betterment of intein database.
Collapse
Affiliation(s)
- Abolfazl Bahrami
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hashemi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran
| | - Seyed Reza Miraie-Ashtiani
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Islamic Republic of Iran
| |
Collapse
|
189
|
Deep Analysis of Residue Constraints (DARC): identifying determinants of protein functional specificity. Sci Rep 2020; 10:1691. [PMID: 32015389 PMCID: PMC6997377 DOI: 10.1038/s41598-019-55118-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/23/2019] [Indexed: 01/03/2023] Open
Abstract
Protein functional constraints are manifest as superfamily and functional-subgroup conserved residues, and as pairwise correlations. Deep Analysis of Residue Constraints (DARC) aids the visualization of these constraints, characterizes how they correlate with each other and with structure, and estimates statistical significance. This can identify determinants of protein functional specificity, as we illustrate for bacterial DNA clamp loader ATPases. These load ring-shaped sliding clamps onto DNA to keep polymerase attached during replication and contain one δ, three γ, and one δ’ AAA+ subunits semi-circularly arranged in the order δ-γ1-γ2-γ3-δ’. Only γ is active, though both γ and δ’ functionally influence an adjacent γ subunit. DARC identifies, as functionally-congruent features linking allosterically the ATP, DNA, and clamp binding sites: residues distinctive of γ and of γ/δ’ that mutually interact in trans, centered on the catalytic base; several γ/δ’-residues and six γ/δ’-covariant residue pairs within the DNA binding N-termini of helices α2 and α3; and γ/δ’-residues associated with the α2 C-terminus and the clamp-binding loop. Most notable is a trans-acting γ/δ’ hydroxyl group that 99% of other AAA+ proteins lack. Mutation of this hydroxyl to a methyl group impedes clamp binding and opening, DNA binding, and ATP hydrolysis—implying a remarkably clamp-loader-specific function.
Collapse
|
190
|
Guzzi AF, Oliveira FSL, Amaro MMS, Tavares-Filho PF, Gabriel JE. In silico prediction of the functional and structural consequences of the non-synonymous single nucleotide polymorphism A122V in bovine CXC chemokine receptor type 1. BRAZ J BIOL 2020; 80:39-46. [DOI: 10.1590/1519-6984.188655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 07/17/2018] [Indexed: 02/04/2023] Open
Abstract
Abstract The current study aimed to assess whether the A122V causal polymorphism promotes alterations in the functional and structural proprieties of the CXC chemokine receptor type 1 protein (CXCR1) of cattle Bos taurus by in silico analyses. Two amino acid sequences of bovine CXCR1 was selected from database UniProtKB/Swiss-Prot: a) non-polymorphic sequence (A7KWG0) with alanine (A) at position 122, and b) polymorphic sequence harboring the A122V polymorphism, substituting alanine by valine (V) at same position. CXCR1 sequences were submitted as input to different Bioinformatics’ tools to examine the effects of this polymorphism on functional and structural stabilities, to predict eventual alterations in the 3-D structural modeling, and to estimate the quality and accuracy of the predictive models. The A122V polymorphism exerted tolerable and non-deleterious effects on the polymorphic CXCR1, and the predictive structural model for polymorphic CXCR1 revealed an alpha helix spatial structure typical of a receptor transmembrane polypeptide. Although higher variations in the distances between pairs of amino acid residues at target-positions are detected in the polymorphic CXCR1 protein, more than 97% of the amino acid residues in both models were located in favored and allowed conformational regions in Ramachandran plots. Evidences has supported that the A122V polymorphism in the CXCR1 protein is associated with increased clinical mastitis incidence in dairy cows. Thus, the findings described herein prove that the replacement of the alanine by valine amino acids provokes local conformational changes in the A122V-harboring CXCR1 protein, which could directly affect its post-translational folding mechanisms and biological functionality.
Collapse
Affiliation(s)
- A. F. Guzzi
- Universidade Federal do Vale do São Francisco, Brasil
| | | | | | | | - J. E. Gabriel
- Universidade Federal do Vale do São Francisco, Brasil
| |
Collapse
|
191
|
Malinverni D, Barducci A. Coevolutionary Analysis of Protein Subfamilies by Sequence Reweighting. ENTROPY (BASEL, SWITZERLAND) 2020; 21:1127. [PMID: 32002010 PMCID: PMC6992422 DOI: 10.3390/e21111127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023]
Abstract
Extracting structural information from sequence co-variation has become a common computational biology practice in the recent years, mainly due to the availability of large sequence alignments of protein families. However, identifying features that are specific to sub-classes and not shared by all members of the family using sequence-based approaches has remained an elusive problem. We here present a coevolutionary-based method to differentially analyze subfamily specific structural features by a continuous sequence reweighting (SR) approach. We introduce the underlying principles and test its predictive capabilities on the Response Regulator family, whose subfamilies have been previously shown to display distinct, specific homo-dimerization patterns. Our results show that this reweighting scheme is effective in assigning structural features known a priori to subfamilies, even when sequence data is relatively scarce. Furthermore, sequence reweighting allows assessing if individual structural contacts pertain to specific subfamilies and it thus paves the way for the identification specificity-determining contacts from sequence variation data.
Collapse
Affiliation(s)
- Duccio Malinverni
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge CB20QH, UK
| | - Alessandro Barducci
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
192
|
Torrisi M, Pollastri G, Le Q. Deep learning methods in protein structure prediction. Comput Struct Biotechnol J 2020; 18:1301-1310. [PMID: 32612753 PMCID: PMC7305407 DOI: 10.1016/j.csbj.2019.12.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Protein Structure Prediction is a central topic in Structural Bioinformatics. Since the '60s statistical methods, followed by increasingly complex Machine Learning and recently Deep Learning methods, have been employed to predict protein structural information at various levels of detail. In this review, we briefly introduce the problem of protein structure prediction and essential elements of Deep Learning (such as Convolutional Neural Networks, Recurrent Neural Networks and basic feed-forward Neural Networks they are founded on), after which we discuss the evolution of predictive methods for one-dimensional and two-dimensional Protein Structure Annotations, from the simple statistical methods of the early days, to the computationally intensive highly-sophisticated Deep Learning algorithms of the last decade. In the process, we review the growth of the databases these algorithms are based on, and how this has impacted our ability to leverage knowledge about evolution and co-evolution to achieve improved predictions. We conclude this review outlining the current role of Deep Learning techniques within the wider pipelines to predict protein structures and trying to anticipate what challenges and opportunities may arise next.
Collapse
Affiliation(s)
- Mirko Torrisi
- School of Computer Science, University College Dublin, Ireland
| | | | - Quan Le
- Centre for Applied Data Analytics Research, University College Dublin, Ireland
| |
Collapse
|
193
|
Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson AWR, Bridgland A, Penedones H, Petersen S, Simonyan K, Crossan S, Kohli P, Jones DT, Silver D, Kavukcuoglu K, Hassabis D. Improved protein structure prediction using potentials from deep learning. Nature 2020; 577:706-710. [PMID: 31942072 DOI: 10.1038/s41586-019-1923-7] [Citation(s) in RCA: 1572] [Impact Index Per Article: 314.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence1. This problem is of fundamental importance as the structure of a protein largely determines its function2; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures3. Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 (CASP13)-a blind assessment of the state of the field-AlphaFold created high-accuracy structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined7.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David T Jones
- The Francis Crick Institute, London, UK.,University College London, London, UK
| | | | | | | |
Collapse
|
194
|
Role of protein-protein interactions in allosteric drug design for DNA methyltransferases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:49-84. [PMID: 32312426 DOI: 10.1016/bs.apcsb.2019.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA methyltransferases (DNMTs) not only play key roles in epigenetic gene regulation, but also serve as emerging targets for several diseases, especially for cancers. Due to the multi-domains of DNMT structures, targeting allosteric sites of protein-protein interactions (PPIs) is becoming an attractive strategy in epigenetic drug discovery. This chapter aims to review the major contemporary approaches utilized for the drug discovery based on PPIs in different dimensions, from the enumeration of allosteric mechanism to the identification of allosteric pockets. These include the construction of protein structure networks (PSNs) based on molecular dynamics (MD) simulations, performing elastic network models (ENMs) and perturbation response scanning (PRS) calculation, the sequence-based conservation and coupling analysis, and the allosteric pockets identification. Furthermore, we complement this methodology by highlighting the role of computational approaches in promising practical applications for the computer-aided drug design, with special focus on two DNMTs, namely, DNMT1 and DNMT3A.
Collapse
|
195
|
Fukuda H, Tomii K. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment. BMC Bioinformatics 2020; 21:10. [PMID: 31918654 PMCID: PMC6953294 DOI: 10.1186/s12859-019-3190-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/04/2019] [Indexed: 12/30/2022] Open
Abstract
Background Recently developed methods of protein contact prediction, a crucially important step for protein structure prediction, depend heavily on deep neural networks (DNNs) and multiple sequence alignments (MSAs) of target proteins. Protein sequences are accumulating to an increasing degree such that abundant sequences to construct an MSA of a target protein are readily obtainable. Nevertheless, many cases present different ends of the number of sequences that can be included in an MSA used for contact prediction. The abundant sequences might degrade prediction results, but opportunities remain for a limited number of sequences to construct an MSA. To resolve these persistent issues, we strove to develop a novel framework using DNNs in an end-to-end manner for contact prediction. Results We developed neural network models to improve precision of both deep and shallow MSAs. Results show that higher prediction accuracy was achieved by assigning weights to sequences in a deep MSA. Moreover, for shallow MSAs, adding a few sequential features was useful to increase the prediction accuracy of long-range contacts in our model. Based on these models, we expanded our model to a multi-task model to achieve higher accuracy by incorporating predictions of secondary structures and solvent-accessible surface areas. Moreover, we demonstrated that ensemble averaging of our models can raise accuracy. Using past CASP target protein domains, we tested our models and demonstrated that our final model is superior to or equivalent to existing meta-predictors. Conclusions The end-to-end learning framework we built can use information derived from either deep or shallow MSAs for contact prediction. Recently, an increasing number of protein sequences have become accessible, including metagenomic sequences, which might degrade contact prediction results. Under such circumstances, our model can provide a means to reduce noise automatically. According to results of tertiary structure prediction based on contacts and secondary structures predicted by our model, more accurate three-dimensional models of a target protein are obtainable than those from existing ECA methods, starting from its MSA. DeepECA is available from https://github.com/tomiilab/DeepECA.
Collapse
Affiliation(s)
- Hiroyuki Fukuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8562, Japan
| | - Kentaro Tomii
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba-ken, 277-8562, Japan. .,Artificial Intelligence Research Center (AIRC), Biotechnology Research Institute for Drug Discovery, Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
| |
Collapse
|
196
|
Jing X, Zeng H, Wang S, Xu J. A Web-Based Protocol for Interprotein Contact Prediction by Deep Learning. Methods Mol Biol 2020; 2074:67-80. [PMID: 31583631 DOI: 10.1007/978-1-4939-9873-9_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Identifying residue-residue contacts in protein-protein interactions or complex is crucial for understanding protein and cell functions. DCA (direct-coupling analysis) methods shed some light on this, but they need many sequence homologs to yield accurate prediction. Inspired by the success of our deep-learning method for intraprotein contact prediction, we have developed RaptorX-ComplexContact, a web server for interprotein residue-residue contact prediction. Given a pair of interacting protein sequences, RaptorX-ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA) based on genomic distance and phylogeny information, respectively. Then, RaptorX-ComplexContact uses two deep convolutional residual neural networks (ResNet) to predict interprotein contacts from sequential features and coevolution information of paired MSAs. RaptorX-ComplexContact shall be useful for protein docking, protein-protein interaction prediction, and protein interaction network construction.
Collapse
Affiliation(s)
- Xiaoyang Jing
- Toyota Technological Institute at Chicago, Chicago, IL, USA
- School of Computer Science, Fudan University, Shanghai, China
| | - Hong Zeng
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China
| | - Sheng Wang
- Toyota Technological Institute at Chicago, Chicago, IL, USA
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, IL, USA.
| |
Collapse
|
197
|
Rizzato F, Coucke A, de Leonardis E, Barton JP, Tubiana J, Monasson R, Cocco S. Inference of compressed Potts graphical models. Phys Rev E 2020; 101:012309. [PMID: 32069678 DOI: 10.1103/physreve.101.012309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 06/10/2023]
Abstract
We consider the problem of inferring a graphical Potts model on a population of variables. This inverse Potts problem generally involves the inference of a large number of parameters, often larger than the number of available data, and, hence, requires the introduction of regularization. We study here a double regularization scheme, in which the number of Potts states (colors) available to each variable is reduced and interaction networks are made sparse. To achieve the color compression, only Potts states with large empirical frequency (exceeding some threshold) are explicitly modeled on each site, while the others are grouped into a single state. We benchmark the performances of this mixed regularization approach, with two inference algorithms, adaptive cluster expansion (ACE) and pseudolikelihood maximization (PLM), on synthetic data obtained by sampling disordered Potts models on Erdős-Rényi random graphs. We show in particular that color compression does not affect the quality of reconstruction of the parameters corresponding to high-frequency symbols, while drastically reducing the number of the other parameters and thus the computational time. Our procedure is also applied to multisequence alignments of protein families, with similar results.
Collapse
Affiliation(s)
- Francesca Rizzato
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Alice Coucke
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Eleonora de Leonardis
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - John P Barton
- Department of Physics and Astronomy, University of California, Riverside, 900 University Avenue, Riverside, California 92521, USA
| | - Jérôme Tubiana
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Rémi Monasson
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Simona Cocco
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| |
Collapse
|
198
|
Sala D, Cerofolini L, Fragai M, Giachetti A, Luchinat C, Rosato A. A protocol to automatically calculate homo-oligomeric protein structures through the integration of evolutionary constraints and NMR ambiguous contacts. Comput Struct Biotechnol J 2019; 18:114-124. [PMID: 31969972 PMCID: PMC6961069 DOI: 10.1016/j.csbj.2019.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Protein assemblies are involved in many important biological processes. Solid-state NMR (SSNMR) spectroscopy is a technique suitable for the structural characterization of samples with high molecular weight and thus can be applied to such assemblies. A significant bottleneck in terms of both effort and time required is the manual identification of unambiguous intermolecular contacts. This is particularly challenging for homo-oligomeric complexes, where simple uniform labeling may not be effective. We tackled this challenge by exploiting coevolution analysis to extract information on homo-oligomeric interfaces from NMR-derived ambiguous contacts. After removing the evolutionary couplings (ECs) that are already satisfied by the 3D structure of the monomer, the predicted ECs are matched with the automatically generated list of experimental contacts. This approach provides a selection of potential interface residues that is used directly in monomer-monomer docking calculations. We validated the protocol on tetrameric L-asparaginase II and dimeric Sod1.
Collapse
Affiliation(s)
- Davide Sala
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Linda Cerofolini
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Andrea Giachetti
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
199
|
Mao W, Ding W, Xing Y, Gong H. AmoebaContact and GDFold as a pipeline for rapid de novo protein structure prediction. NAT MACH INTELL 2019. [DOI: 10.1038/s42256-019-0130-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
200
|
Kim D, Han SK, Lee K, Kim I, Kong J, Kim S. Evolutionary coupling analysis identifies the impact of disease-associated variants at less-conserved sites. Nucleic Acids Res 2019; 47:e94. [PMID: 31199866 PMCID: PMC6895274 DOI: 10.1093/nar/gkz536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies have discovered a large number of genetic variants in human patients with the disease. Thus, predicting the impact of these variants is important for sorting disease-associated variants (DVs) from neutral variants. Current methods to predict the mutational impacts depend on evolutionary conservation at the mutation site, which is determined using homologous sequences and based on the assumption that variants at well-conserved sites have high impacts. However, many DVs at less-conserved but functionally important sites cannot be predicted by the current methods. Here, we present a method to find DVs at less-conserved sites by predicting the mutational impacts using evolutionary coupling analysis. Functionally important and evolutionarily coupled sites often have compensatory variants on cooperative sites to avoid loss of function. We found that our method identified known intolerant variants in a diverse group of proteins. Furthermore, at less-conserved sites, we identified DVs that were not identified using conservation-based methods. These newly identified DVs were frequently found at protein interaction interfaces, where species-specific mutations often alter interaction specificity. This work presents a means to identify less-conserved DVs and provides insight into the relationship between evolutionarily coupled sites and human DVs.
Collapse
Affiliation(s)
- Donghyo Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Seong Kyu Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kwanghwan Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhae Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - JungHo Kong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|