151
|
Ma H, Zhang M, Zhang D, Huang R, Zhao Y, Yang H, Liu Y, Weng X, Zhou Y, Deng M, Xu L, Zhou X. Pyridyl-Substituted Corrole Isomers: Synthesis and their Regulation to G-quadruplex Structures. Chem Asian J 2010; 5:114-22. [DOI: 10.1002/asia.200900270] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
152
|
Sun D, Hurley LH. Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay. Methods Mol Biol 2010; 608:65-79. [PMID: 20012416 DOI: 10.1007/978-1-59745-363-9_5] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The proximal promoter region of many human growth-related genes contains a polypurine/polypyrimidine tract that serves as multiple binding sites for Sp1 or other transcription factors. These tracts often contain a guanine-rich sequence consisting of four runs of three or more contiguous guanines separated by one or more bases, corresponding to a general motif known for the formation of an intramolecular G-quadruplex. Recent results provide strong evidence that specific G-quadruplex structures form naturally within these polypurine/polypyrimidine tracts in many human promoter regions, raising the possibility that the transcriptional control of these genes can be modulated by G-quadruplex-interactive agents. In this chapter, we describe three general biochemical methodologies, electrophoretic mobility shift assay (EMSA), dimethylsulfate (DMS) footprinting, and the DNA polymerase stop assay, which can be useful for initial characterization of G-quadruplex structures formed by G-rich sequences.
Collapse
Affiliation(s)
- Daekyu Sun
- Department of Pharmacology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
153
|
Wang JT, Zheng XH, Xia Q, Mao ZW, Ji LN, Wang K. 1,10-Phenanthroline platinum(ii) complex: a simple molecule for efficient G-quadruplex stabilization. Dalton Trans 2010; 39:7214-6. [DOI: 10.1039/c0dt00211a] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
154
|
Shen W, Gao L, Balakrishnan M, Bambara RA. A recombination hot spot in HIV-1 contains guanosine runs that can form a G-quartet structure and promote strand transfer in vitro. J Biol Chem 2009; 284:33883-93. [PMID: 19822521 DOI: 10.1074/jbc.m109.055368] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The co-packaged RNA genomes of human immunodeficiency virus-1 recombine at a high rate. Recombination can mix mutations to generate viruses that escape immune response. A cell-culture-based system was designed previously to map recombination events in a 459-bp region spanning the primer binding site through a portion of the gag protein coding region. Strikingly, a strong preferential site for recombination in vivo was identified within a 112-nucleotide-long region near the beginning of gag. Strand transfer assays in vitro revealed that three pause bands in the gag hot spot each corresponded to a run of guanosine (G) residues. Pausing of reverse transcriptase is known to promote recombination by strand transfer both in vivo and in vitro. To assess the significance of the G runs, we altered them by base substitutions. Disruption of the G runs eliminated both the associated pausing and strand transfer. Some G-rich sequences can develop G-quartet structures, which were first proposed to form in telomeric DNA. G-quartet structure formation is highly dependent on the presence of specific cations. Incubation in cations discouraging G-quartets altered gel mobility of the gag template consistent with breakdown of G-quartet structure. The same cations faded G-run pauses but did not affect pauses caused by hairpins, indicating that quartet structure causes pausing. Moreover, gel analysis with cations favoring G-quartet structure indicated no structure in mutated templates. Overall, results point to reverse transcriptase pausing at G runs that can form quartets as a unique feature of the gag recombination hot spot.
Collapse
Affiliation(s)
- Wen Shen
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
155
|
He H, Hagihara M, Nakatani K. A Small Molecule Affecting the Replication of Trinucleotide Repeat d(GAA)n. Chemistry 2009; 15:10641-8. [DOI: 10.1002/chem.200901088] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
156
|
Nakatani K. Recognition of Mismatched Base Pairs in DNA. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2009. [DOI: 10.1246/bcsj.82.1055] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
157
|
González V, Guo K, Hurley L, Sun D. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J Biol Chem 2009; 284:23622-35. [PMID: 19581307 PMCID: PMC2749137 DOI: 10.1074/jbc.m109.018028] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/02/2009] [Indexed: 11/06/2022] Open
Abstract
myc is a proto-oncogene that plays an important role in the promotion of cellular growth and proliferation. Understanding the regulation of c-myc is important in cancer biology, as it is overexpressed in a wide variety of human cancers, including most gynecological, breast, and colon cancers. We previously demonstrated that a guanine-rich region upstream of the P1 promoter of c-myc that controls 85-90% of the transcriptional activation of this gene can form an intramolecular G-quadruplex (G4) that functions as a transcriptional repressor element. In this study, we used an affinity column to purify proteins that selectively bind to the human c-myc G-quadruplex. We found that nucleolin, a multifunctional phosphoprotein, binds in vitro to the c-myc G-quadruplex structure with high affinity and selectivity when compared with other known quadruplex structures. In addition, we demonstrate that upon binding, nucleolin facilitates the formation and increases the stability of the c-myc G-quadruplex structure. Furthermore, we provide evidence that nucleolin overexpression reduces the activity of a c-myc promoter in plasmid presumably by inducing and stabilizing the formation of the c-myc G-quadruplex. Finally, we show that nucleolin binds to the c-myc promoter in HeLa cells, which indicates that this interaction occurs in vivo. In summary, nucleolin may induce c-myc G4 formation in vivo.
Collapse
Affiliation(s)
| | - Kexiao Guo
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721
| | - Laurence Hurley
- From the College of Pharmacy and
- BIO5 Institute, Tucson, Arizona 85721, and
- Arizona Cancer Center, Tucson, Arizona 85724
| | | |
Collapse
|
158
|
|
159
|
Zambre VP, Murumkar PR, Giridhar R, Yadav MR. Structural Investigations of Acridine Derivatives by CoMFA and CoMSIA Reveal Novel Insight into Their Structures toward DNA G-Quadruplex Mediated Telomerase Inhibition and Offer a Highly Predictive 3D-Model for Substituted Acridines. J Chem Inf Model 2009; 49:1298-311. [DOI: 10.1021/ci900036w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vishal P. Zambre
- Pharmacy Department, Faculty of Technology and Engineering, Kalabhavan, The M.S. University of Baroda, Vadodara - 390001, Gujarat, India
| | - Prashant R. Murumkar
- Pharmacy Department, Faculty of Technology and Engineering, Kalabhavan, The M.S. University of Baroda, Vadodara - 390001, Gujarat, India
| | - Rajani Giridhar
- Pharmacy Department, Faculty of Technology and Engineering, Kalabhavan, The M.S. University of Baroda, Vadodara - 390001, Gujarat, India
| | - Mange Ram Yadav
- Pharmacy Department, Faculty of Technology and Engineering, Kalabhavan, The M.S. University of Baroda, Vadodara - 390001, Gujarat, India
| |
Collapse
|
160
|
Fu YT, Keppler BR, Soares J, Jarstfer MB. BRACO19 analog dimers with improved inhibition of telomerase and hPot 1. Bioorg Med Chem 2009; 17:2030-7. [DOI: 10.1016/j.bmc.2009.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 12/20/2022]
|
161
|
Bai LP, Hagihara M, Jiang ZH, Nakatani K. Ligand Binding to Tandem G Quadruplexes from Human Telomeric DNA. Chembiochem 2008; 9:2583-7. [DOI: 10.1002/cbic.200800256] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
162
|
Pomerantz AK, Moerner WE, Kool ET. Visualization of long human telomere mimics by single-molecule fluorescence imaging. J Phys Chem B 2008; 112:13184-7. [PMID: 18817431 PMCID: PMC2688642 DOI: 10.1021/jp806696u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Study of long single-stranded telomeric DNA is important for a variety of basic science and biotechnological applications, yet few methods exist for synthesis and visualization of single copies of this DNA in solution at biologically relevant length scales necessary for assessment of heterogeneity in its structure and behavior. We have synthesized kilobase-long single-stranded human telomere mimics in situ by rolling circle replication (RCR) on a microscope coverslip surface and visualized individual strands by staining with SYBR Gold. Under buffer flow, differential extensibility and varying morphology of these long telomere-mimicking DNA sequences were observed at the single-molecule level in real time. Using this procedure, we detected striking differences in the extensibility of individual RCR products based on the human G-rich telomeric sequence in the presence and absence of short, complementary single-stranded oligonucleotides. We also apply this new mode of single-stranded DNA characterization to probe the interaction of kilobase-length telomere mimics with the small-molecule G-quadruplex-binding agent TMPyP4.
Collapse
Affiliation(s)
| | - W. E. Moerner
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
163
|
Lane AN, Chaires JB, Gray RD, Trent JO. Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 2008; 36:5482-515. [PMID: 18718931 PMCID: PMC2553573 DOI: 10.1093/nar/gkn517] [Citation(s) in RCA: 593] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 07/26/2008] [Accepted: 07/29/2008] [Indexed: 12/30/2022] Open
Abstract
In this review, we give an overview of recent literature on the structure and stability of unimolecular G-rich quadruplex structures that are relevant to drug design and for in vivo function. The unifying theme in this review is energetics. The thermodynamic stability of quadruplexes has not been studied in the same detail as DNA and RNA duplexes, and there are important differences in the balance of forces between these classes of folded oligonucleotides. We provide an overview of the principles of stability and where available the experimental data that report on these principles. Significant gaps in the literature have been identified, that should be filled by a systematic study of well-defined quadruplexes not only to provide the basic understanding of stability both for design purposes, but also as it relates to in vivo occurrence of quadruplexes. Techniques that are commonly applied to the determination of the structure, stability and folding are discussed in terms of information content and limitations. Quadruplex structures fold and unfold comparatively slowly, and DNA unwinding events associated with transcription and replication may be operating far from equilibrium. The kinetics of formation and resolution of quadruplexes, and methodologies are discussed in the context of stability and their possible biological occurrence.
Collapse
Affiliation(s)
- Andrew N Lane
- Structural Biology Program, JG Brown Cancer Center, University of Louisville, KY 40202, USA.
| | | | | | | |
Collapse
|
164
|
Guo K, Gokhale V, Hurley LH, Sun D. Intramolecularly folded G-quadruplex and i-motif structures in the proximal promoter of the vascular endothelial growth factor gene. Nucleic Acids Res 2008; 36:4598-608. [PMID: 18614607 PMCID: PMC2504309 DOI: 10.1093/nar/gkn380] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A polyguanine/polycytosine (polyG/polyC) tract in the proximal promoter of the vascular endothelial growth factor (VEGF) gene is essential for transcriptional activation. The guanine-rich (G-rich) and cytosine-rich (C-rich) strands on this tract are shown to form specific secondary structures, characterized as G-quadruplexes and i-motifs, respectively. Mutational analysis of the G-rich strand combined with dimethyl sulfate (DMS) footprinting, a polymerase stop assay, and circular dichroism (CD) spectroscopy revealed that the G-quadruplex containing a 1:4:1 double-chain reversal loop is the most thermodynamically stable conformation that this strand readily adopts. These studies provide strong evidence that the size of loop regions plays a critical role in determining the most favored folding pattern of a G-quadruplex. The secondary structure formed on the complementary C-rich strand was also determined by mutational analysis combined with Br(2) footprinting and CD spectroscopy. Our results reveal that at a pH of 5.9 this strand is able to form an intramolecular i-motif structure that involves six C-C(+) base pairs and a 2:3:2 loop configuration. Taken together, our results demonstrate that the G-quadruplex and i-motif structures are able to form on the G- and C-rich strands, respectively, of the polyG/polyC tract in the VEGF proximal promoter under conditions that favor the transition from B-DNA to non-B-DNA conformations.
Collapse
Affiliation(s)
- Kexiao Guo
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
165
|
Arora A, Maiti S. Effect of loop orientation on quadruplex-TMPyP4 interaction. J Phys Chem B 2008; 112:8151-9. [PMID: 18553964 DOI: 10.1021/jp711608y] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
G-quadruplexes are believed to be potential targets for therapeutic intervention and this has resulted in designing of various quadruplex interacting ligands. Moreover, reports about existence of quadruplex forming sequences across the genome have propelled greater interest in understanding their interaction with small molecules. An intramolecular quadruplex sequence can adopt different conformations, owing to different orientation of loops in the structure. The differences in the loop orientation can affect their molecular recognition. Herein, we have studied the interaction of 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H, 23H-porphine (TMPyP4), a well-known G quadruplex binding ligand with three DNA quadruplexes differing in loop orientations. Results obtained from UV, ITC, and SPR studies have coherently revealed that the TMPyP4 molecule shows preferential binding to parallel G-quadruplex ( c-myc and c-kit) over its antiparallel counterpart (human telomeric). The binding affinity for parallel quadruplex was (10(7)) 1 order of magnitude higher than that for antiparallel DNA quadruplex (10 ). The study shows two binding modes, stronger binding (10(7)) of TMPyP4 involving end stacking and a weaker external binding (10 ), while TMPyP4 shows only one binding mode with duplex with a binding affinity of the order of 10(6). Overall, the study emphasizes that differences in the loop orientation give rise to different conformations of quadruplex, which in turn govern its binding to small molecules, and thereby play a pivotal role in molecular recognition.
Collapse
Affiliation(s)
- Amit Arora
- Proteomics and Structural Biology Unit, Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India
| | | |
Collapse
|
166
|
Sun D, Liu WJ, Guo K, Rusche JJ, Ebbinghaus S, Gokhale V, Hurley LH. The proximal promoter region of the human vascular endothelial growth factor gene has a G-quadruplex structure that can be targeted by G-quadruplex-interactive agents. Mol Cancer Ther 2008; 7:880-9. [PMID: 18413801 PMCID: PMC2367258 DOI: 10.1158/1535-7163.mct-07-2119] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous studies on the functional analysis of the human vascular endothelial growth factor (VEGF) promoter using the full-length VEGF promoter reporter revealed that the proximal 36-bp region (-85 to -50 relative to transcription initiation site) is essential for basal or inducible VEGF promoter activity in several human cancer cells. This region consists of a polypurine (guanine) tract that contains four runs of at least three contiguous guanines separated by one or more bases, thus conforming to a general motif capable of forming an intramolecular G-quadruplex. Here, we show that the G-rich strand in this region is able to form an intramolecular propeller-type parallel-stranded G-quadruplex structure in vitro by using the electrophoretic mobility shift assay, dimethyl sulfate footprinting technique, the DNA polymerase stop assay, circular dichroism spectroscopy, and computer-aided molecular modeling. Two well-known G-quadruplex-interactive agents, TMPyP4 and Se2SAP, stabilize G-quadruplex structures formed by this sequence in the presence of a potassium ion, although Se2SAP is at least 10-fold more effective in binding to the G-quadruplex than TMPyP4. Between these two agents, Se2SAP better suppresses VEGF transcription in different cancer cell lines, including HEC1A and MDA-MB-231. Collectively, our results provide evidence that specific G-quadruplex structures can be formed in the VEGF promoter region, and that the transcription of this gene can be controlled by ligand-mediated G-quadruplex stabilization. Our results also provide further support for the idea that G-quadruplex structures may play structural roles in vivo and therefore might provide insight into novel methodologies for rational drug design.
Collapse
Affiliation(s)
- Daekyu Sun
- BIO5 Institute, Room 102, 1657 East Helen Street, Tucson, AZ 85721, USA.
| | | | | | | | | | | | | |
Collapse
|
167
|
Hagihara M, Goto Y, Nakatani K. Ligand-Stabilized Hairpin Structures Interfere with Elongation of Human Telomere. Chembiochem 2008; 9:510-3. [DOI: 10.1002/cbic.200700667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
168
|
Huppert JL. Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem Soc Rev 2008; 37:1375-84. [DOI: 10.1039/b702491f] [Citation(s) in RCA: 391] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
169
|
Tang J, Kan ZY, Yao Y, Wang Q, Hao YH, Tan Z. G-quadruplex preferentially forms at the very 3' end of vertebrate telomeric DNA. Nucleic Acids Res 2007; 36:1200-8. [PMID: 18158301 PMCID: PMC2275102 DOI: 10.1093/nar/gkm1137] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human chromosome ends are protected with kilobases repeats of TTAGGG. Telomere DNA shortens at replication. This shortening in most tumor cells is compensated by telomerase that adds telomere repeats to the 3' end of the G-rich telomere strand. Four TTAGGG repeats can fold into G-quadruplex that is a poor substrate for telomerase. This property has been suggested to regulate telomerase activity in vivo and telomerase inhibition via G-quadruplex stabilization is considered a therapeutic strategy against cancer. Theoretically G-quadruplex can form anywhere along the long G-rich strand. Where G-quadruplex forms determines whether the 3' telomere end is accessible to telomerase and may have implications in other functions telomere plays. We investigated G-quadruplex formation at different positions by DMS footprinting and exonuclease hydrolysis. We show that G-quadruplex preferentially forms at the very 3' end than at internal positions. This property provides a molecular basis for telomerase inhibition by G-quadruplex formation. Moreover, it may also regulate those processes that depend on the structure of the very 3' telomere end, for instance, the alternative lengthening of telomere mechanism, telomere T-loop formation, telomere end protection and the replication of bulky telomere DNA. Therefore, targeting telomere G-quadruplex may influence more telomere functions than simply inhibiting telomerase.
Collapse
Affiliation(s)
- Jun Tang
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | |
Collapse
|
170
|
Qin Y, Rezler EM, Gokhale V, Sun D, Hurley LH. Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4. Nucleic Acids Res 2007; 35:7698-713. [PMID: 17984069 PMCID: PMC2190695 DOI: 10.1093/nar/gkm538] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The proximal 5′-flanking region of the human platelet-derived growth factor A (PDGF-A) promoter contains one nuclease hypersensitive element (NHE) that is critical for PDGF-A gene transcription. On the basis of circular dichroism (CD) and electrophoretic mobility shift assay (EMSA), we have shown that the guanine-rich (G-rich) strand of the DNA in this region can form stable intramolecular parallel G-quadruplexes under physiological conditions. A Taq polymerase stop assay has shown that the G-rich strand of the NHE can form two major G-quadruplex structures, which are in dynamic equilibrium and differentially stabilized by three G-quadruplex-interactive drugs. One major parallel G-quadruplex structure of the G-rich strand DNA of NHE was identified by CD and dimethyl sulfate (DMS) footprinting. Surprisingly, CD spectroscopy shows a stable parallel G-quadruplex structure formed within the duplex DNA of the NHE at temperatures up to 100°C. This structure has been characterized by DMS footprinting in the double-stranded DNA of the NHE. In transfection experiments, 10 μM TMPyP4 reduced the activity of the basal promoter of PDGF-A ∼40%, relative to the control. On the basis of these results, we have established that ligand-mediated stabilization of G-quadruplex structures within the PDGF-A NHE can silence PDGF-A expression.
Collapse
Affiliation(s)
- Yong Qin
- College of Pharmacy, 1703 E. Mabel, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | |
Collapse
|
171
|
De Cian A, Cristofari G, Reichenbach P, De Lemos E, Monchaud D, Teulade-Fichou MP, Shin-ya K, Lacroix L, Lingner J, Mergny JL. Reevaluation of telomerase inhibition by quadruplex ligands and their mechanisms of action. Proc Natl Acad Sci U S A 2007; 104:17347-52. [PMID: 17954919 PMCID: PMC2077259 DOI: 10.1073/pnas.0707365104] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Indexed: 11/18/2022] Open
Abstract
Quadruplex ligands are often considered as telomerase inhibitors. Given the fact that some of these molecules are present in the clinical setting, it is important to establish the validity of this assertion. To analyze the effects of these compounds, we used a direct assay with telomerase-enriched extracts. The comparison of potent ligands from various chemical families revealed important differences in terms of effects on telomerase initiation and processivity. Although most quadruplex ligands may lock a quadruplex-prone sequence into a quadruplex structure that inhibits the initiation of elongation by telomerase, the analysis of telomerase-elongation steps revealed that only a few molecules interfered with the processivity of telomerase (i.e., inhibit elongation once one or more repeats have been incorporated). The demonstration that these molecules are actually more effective inhibitors of telomeric DNA amplification than extension by telomerase contributes to the already growing suspicion that quadruplex ligands are not simple telomerase inhibitors but, rather, constitute a different class of biologically active molecules. We also demonstrate that the popular telomeric repeat amplification protocol is completely inappropriate for the determination of telomerase inhibition by quadruplex ligands, even when PCR controls are included. As a consequence, the inhibitory effect of many quadruplex ligands has been overestimated.
Collapse
Affiliation(s)
- Anne De Cian
- *Institut National de la Santé et de la Recherche Médicale, U565, F-75231 Paris Cedex 05, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5153, F-75231 Paris Cedex 05, France
- Régulation et Dynamique des Génomes, Muséum National d'Histoire Naturelle, USM 503, 43 Rue Cuvier, CP26, F-75231 Paris Cedex 05, France
| | - Gael Cristofari
- Swiss Institute for Experimental Cancer Research (ISREC) and National Center of Competence in Research “Frontiers in Genetics,” Ecole Polytechnique Federale de Lausanne (EPFL), Chemin des Boveresses 155, CH-1066 Epalinges s/Lausanne Switzerland
| | - Patrick Reichenbach
- Swiss Institute for Experimental Cancer Research (ISREC) and National Center of Competence in Research “Frontiers in Genetics,” Ecole Polytechnique Federale de Lausanne (EPFL), Chemin des Boveresses 155, CH-1066 Epalinges s/Lausanne Switzerland
| | - Elsa De Lemos
- Institut Curie, Section Recherche, Centre National de la Recherche Scientifique Unité Mixte de Recherche 176, Centre Universitaire Paris XI, Bât. 110, 91405 Orsay, France; and
| | - David Monchaud
- Institut Curie, Section Recherche, Centre National de la Recherche Scientifique Unité Mixte de Recherche 176, Centre Universitaire Paris XI, Bât. 110, 91405 Orsay, France; and
| | - Marie-Paule Teulade-Fichou
- Institut Curie, Section Recherche, Centre National de la Recherche Scientifique Unité Mixte de Recherche 176, Centre Universitaire Paris XI, Bât. 110, 91405 Orsay, France; and
| | - Kazuo Shin-ya
- **Chemical Biology Team, Biological Information Research Center (BIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo Waterfront Bio-IT Research Building 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Laurent Lacroix
- *Institut National de la Santé et de la Recherche Médicale, U565, F-75231 Paris Cedex 05, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5153, F-75231 Paris Cedex 05, France
- Régulation et Dynamique des Génomes, Muséum National d'Histoire Naturelle, USM 503, 43 Rue Cuvier, CP26, F-75231 Paris Cedex 05, France
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC) and National Center of Competence in Research “Frontiers in Genetics,” Ecole Polytechnique Federale de Lausanne (EPFL), Chemin des Boveresses 155, CH-1066 Epalinges s/Lausanne Switzerland
| | - Jean-Louis Mergny
- *Institut National de la Santé et de la Recherche Médicale, U565, F-75231 Paris Cedex 05, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5153, F-75231 Paris Cedex 05, France
- Régulation et Dynamique des Génomes, Muséum National d'Histoire Naturelle, USM 503, 43 Rue Cuvier, CP26, F-75231 Paris Cedex 05, France
| |
Collapse
|
172
|
Zhang L, Huang J, Ren L, Bai M, Wu L, Zhai B, Zhou X. Synthesis and evaluation of cationic phthalocyanine derivatives as potential inhibitors of telomerase. Bioorg Med Chem 2007; 16:303-12. [PMID: 17945501 DOI: 10.1016/j.bmc.2007.09.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 09/16/2007] [Accepted: 09/19/2007] [Indexed: 01/16/2023]
Abstract
A series of water-soluble cationic phthalocyanine derivatives (1-10) were designed and synthesized to develop novel and potent telomerase inhibitors. These phthalocyanine derivatives as inhibitors of telomerase were investigated via modified telomerase repeat amplification protocol (TRAP) assay. The TRAP assay indicates that these cationic compounds had strong telomerase inhibitory activity (IC(50)<1.65 microM). To determine whether the phthalocyanine derivatives binding to G-quadruplex enhance the block to DNA synthesis, primer extension reactions were carried out in the presence of phthalocyanines. The interaction of the G-quadruplex of telomerase DNA with these molecules was examined by CD melting and PCR stop assay. These cationic phthalocyanine derivatives can stabilize G-quadruplex, which is demonstrated by the increased T(m) values. All these results indicate that the phthalocyanine derivatives might be potential lead compounds for the development of new telomerase inhibitor.
Collapse
Affiliation(s)
- Lixia Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, Wuhan 430072, PR China
| | | | | | | | | | | | | |
Collapse
|
173
|
Guo K, Pourpak A, Beetz-Rogers K, Gokhale V, Sun D, Hurley LH. Formation of pseudosymmetrical G-quadruplex and i-motif structures in the proximal promoter region of the RET oncogene. J Am Chem Soc 2007; 129:10220-8. [PMID: 17672459 PMCID: PMC2566970 DOI: 10.1021/ja072185g] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A polypurine (guanine)/polypyrimidine (cytosine)-rich sequence within the proximal promoter region of the human RET oncogene has been shown to be essential for RET basal transcription. Specifically, the G-rich strand within this region consists of five consecutive runs of guanines, which is consistent with the general motif capable of forming intramolecular G-quadruplexes. Here we demonstrate that, in the presence of 100 mM K+, this G-rich strand has the ability to adopt two intramolecular G-quadruplex structures in vitro. Moreover, comparative circular dichroism (CD) and DMS footprinting studies have revealed that the 3'-G-quadruplex structure is a parallel-type intramolecular structure containing three G-tetrads. The G-quadruplex-interactive agents TMPyP4 and telomestatin further stabilize this G-quadruplex structure. In addition, we demonstrate that the complementary C-rich strand forms an i-motif structure in vitro, as shown by CD spectroscopy and chemical footprinting. This 19-mer duplex sequence is predicted to form stable intramolecular G-quadruplex and i-motif species having minimum symmetrical loop sizes of 1:3:1 and 2:3:2, respectively. Together, our results indicate that stable G-quadruplex and i-motif structures can form within the proximal promoter region of the human RET oncogene, suggesting that these secondary structures play an important role in transcriptional regulation of this gene.
Collapse
Affiliation(s)
- Kexiao Guo
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721
| | - Alan Pourpak
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724
| | - Kara Beetz-Rogers
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724
| | - Vijay Gokhale
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona 85721
| | - Daekyu Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona 85721
| | - Laurence H. Hurley
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona 85721
- Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, Arizona 85724
- BIO5 Collaborative Research Institute, 1657 E. Helen Street, Tucson, Arizona 85719
| |
Collapse
|
174
|
Ren L, Zhang A, Huang J, Wang P, Weng X, Zhang L, Liang F, Tan Z, Zhou X. Quaternary ammonium zinc phthalocyanine: inhibiting telomerase by stabilizing G quadruplexes and inducing G-quadruplex structure transition and formation. Chembiochem 2007; 8:775-80. [PMID: 17361982 DOI: 10.1002/cbic.200600554] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Water-soluble, octacationic zinc phthalocyanine (ZnPc) was found to be a very good G-quadruplex DNA stabilizer by using UV-melting studies and DNA polymerase stop assays, and a potent telomerase inhibitor by using the telomeric repeat amplification protocol (TRAP) assay. The compound's DNA-binding properties were also studied by surface plasmon resonance (SPR). Furthermore, CD experiments demonstrated that ZnPc could induce intramolecular G-quadruplex structure transition from the antiparallel to parallel form. More importantly, ZnPc was found to induce parallel structure formation in cation-deficient conditions. The stability of the induced structure was determined with CD melting assays.
Collapse
Affiliation(s)
- Lige Ren
- College of Chemistry and Molecular Sciences, Wuhan University, Hongshan, Luo Jia Shan, Hubei, Wuhan 430072, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Yao Y, Wang Q, Hao YH, Tan Z. An exonuclease I hydrolysis assay for evaluating G-quadruplex stabilization by small molecules. Nucleic Acids Res 2007; 35:e68. [PMID: 17426118 PMCID: PMC1888815 DOI: 10.1093/nar/gkm194] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Telomere length homeostasis is a prerequisite for the generation and growth of cancer. In >85% cancer cells, telomere length is maintained by telomerase that add telomere repeats to the end of telomere DNA. Because the G-rich strand of telomere DNA can fold into G-quadruplex that inhibits telomerase activity, stabilizing telomere quadruplex by small molecules is emerging as a potential therapeutic strategy against cancer. In these applications, the specificity of small molecules toward quadruplex over other forms of DNA is an important property to ensure no processes other than telomere elongation are interrupted. The evaluating assays currently available more or less have difficulty identifying or distinguishing quadruplex-irrelevant effect from quadruplex stabilization. Here, we describe an exonuclease I hydrolysis assay that evaluates quadruplex stabilization by DNA-interacting compounds, discriminates inhibitory effect from different sources and helps determine the optimal compound concentration.
Collapse
Affiliation(s)
- Yuan Yao
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | - Quan Wang
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | - Yu-hua Hao
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | - Zheng Tan
- Laboratory of Biochemistry and Biophysics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
- *To whom correspondence should be addressed. +86 (10) 6480-7259+86 (10) 6480-7099,
| |
Collapse
|
176
|
Szilagyi A, Bonn GK, Guttman A. Capillary gel electrophoresis analysis of G-quartet forming oligonucleotides used in DNA-protein interaction studies. J Chromatogr A 2007; 1161:15-21. [PMID: 17391683 DOI: 10.1016/j.chroma.2007.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/28/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
DNA-protein binding is among the most frequently studied biomolecular interactions with high importance in modern systems biology research. One interesting aspect of this rapidly developing field is the affinity capture of proteins by G-quartet forming oligonucleotides also referred to as aptamers. G-quartets are structural motifs formed by guanine-rich sequences commonly occurring in the human genome. In this paper, we describe a capillary gel electrophoresis based method to validate G-quartet formation of in-house designed oligonucleotides and discuss the effect of monovalent cation concentration on the development of this structure. The relevant aptamer was then bound to magnetic beads to form an affinity capture surface for target proteins, which were then analyzed by matrix-assisted laser desorption/ionization mass spectrometry.
Collapse
Affiliation(s)
- Agnes Szilagyi
- Horváth Laboratory of Bioseparation Sciences, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 66, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
177
|
Fu B, Huang J, Ren L, Weng X, Zhou Y, Du Y, Wu X, Zhou X, Yang G. Cationic corrole derivatives: a new family of G-quadruplex inducing and stabilizing ligands. Chem Commun (Camb) 2007:3264-6. [PMID: 17668095 DOI: 10.1039/b704599a] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Water-soluble cationic corrole derivatives were designed and synthesized, and the first observation of their interactions with the telomeric G-quadruplex was made.
Collapse
Affiliation(s)
- Boqiao Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, Wuhan 430072, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Abstract
Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Houssam S. Hajj Houssein
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Ram I. Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
179
|
Yang D, Hurley LH. Structure of the biologically relevant G-quadruplex in the c-MYC promoter. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:951-68. [PMID: 16901825 DOI: 10.1080/15257770600809913] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The nuclease hypersensitivity element III1 (NHE III1) in the c-MYC promoter controls up to 80-90% of the transcriptional activity of this gene. We have demonstrated that the guanine-rich strand of the NHE III1 forms a G-quadruplex consisting of a mixture of four biologically relevant loop isomers that function as a silencer element. NMR studies have shown that these G-quadruplexes are propeller-type parallel structures consisting of three stacked G-tetrads and three double-chain reversal loops. An NMR-derived solution structure for this quadruplex provides insight into the unusual stability of the structure. This structure is a target for small molecule inhibitors of c-MYC gene expression.
Collapse
Affiliation(s)
- Danzhou Yang
- University of Arizona, College of Pharmacy, Tucson, AZ 85721, USA
| | | |
Collapse
|
180
|
Wang P, Ren L, He H, Liang F, Zhou X, Tan Z. A Phenol Quaternary Ammonium Porphyrin as a Potent Telomerase Inhibitor by Selective Interaction with Quadruplex DNA. Chembiochem 2006; 7:1155-9. [PMID: 16810656 DOI: 10.1002/cbic.200600036] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ping Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, Wuhan 430072 (P. R. of China)
| | | | | | | | | | | |
Collapse
|
181
|
Nakagama H, Higuchi K, Tanaka E, Tsuchiya N, Nakashima K, Katahira M, Fukuda H. Molecular mechanisms for maintenance of G-rich short tandem repeats capable of adopting G4 DNA structures. Mutat Res 2006; 598:120-31. [PMID: 16513142 DOI: 10.1016/j.mrfmmm.2006.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Mammalian genomes contain several types of repetitive sequences. Some of these sequences are implicated in various specific cellular events, including meiotic recombination, chromosomal breaks and transcriptional regulation, and also in several human disorders. In this review, we document the formation of DNA secondary structures by the G-rich repetitive sequences that have been found in several minisatellites, telomeres and in various triplet repeats, and report their effects on in vitro DNA synthesis. d(GGCAG) repeats in the mouse minisatellite Pc-1 were demonstrated to form an intra-molecular folded-back quadruplex structure (also called a G4' structure) by NMR and CD spectrum analyses. d(TTAGGG) telomere repeats and d(CGG) triplet repeats were also shown to form G4' and other unspecified higher order structures, respectively. In vitro DNA synthesis was substantially arrested within the repeats, and this could be responsible for the preferential mutability of the G-rich repetitive sequences. Electrophoretic mobility shift assays using NIH3T3 cell extracts revealed heterogeneous nuclear ribonucleoprotein (hnRNP) A1 and A3, which were tightly and specifically bound to d(GGCAG) and d(TTAGGG) repeats with K(d) values in the order of nM. HnRNP A1 unfolded the G4' structure formed in the d(GGCAG)(n) and d(TTAGGG)(n) repeat regions, and also resolved the higher order structure formed by d(CGG) triplet repeats. Furthermore, DNA synthesis arrest at the secondary structures of d(GGCAG) repeats, telomeres and d(CGG) triplet repeats was efficiently repressed by the addition of hnRNP A1. High expression of hnRNPs may contribute to the maintenance of G-rich repetitive sequences, including telomere repeats, and may also participate in ensuring the stability of the genome in cells with enhanced proliferation. Transcriptional regulation of genes, such as c-myc and insulin, by G4 sequences found in the promoter regions could be an intriguing field of research and help further elucidate the biological functions of the hnRNP family of proteins in human diseases.
Collapse
Affiliation(s)
- Hitoshi Nakagama
- Biochemistry Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | |
Collapse
|
182
|
Cogoi S, Xodo LE. G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res 2006; 34:2536-49. [PMID: 16687659 PMCID: PMC1459413 DOI: 10.1093/nar/gkl286] [Citation(s) in RCA: 600] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In human and mouse, the promoter of the KRAS gene contains a nuclease hypersensitive polypurine-polypyrimidine element (NHPPE) that is essential for transcription. An interesting feature of the polypurine G-rich strand of NHPPE is its ability to assume an unusual DNA structure that, according to circular dichroism (CD) and DMS footprinting experiments, is attributed to an intramolecular parallel G-quadruplex, consisting of three G-tetrads and three loops. The human and mouse KRAS NHPPE G-rich strands display melting temperature of 64 and 73 degrees C, respectively, as well as a K+-dependent capacity to arrest DNA polymerase. Photocleavage and CD experiments showed that the cationic porphyrin TMPyP4 stacks to the external G-tetrads of the KRAS quadruplexes, increasing the T(m) by approximately 20 degrees C. These findings raise the intriguing question that the G-quadruplex formed within the NHPPE of KRAS may be involved in the regulation of transcription. Indeed, transfection experiments showed that the activity of the mouse KRAS promoter is reduced to 20% of control, in the presence of the quadruplex-stabilizing TMPyP4. In addition, we found that G-rich oligonucleotides mimicking the KRAS quadruplex, but not the corresponding 4-base mutant sequences or oligonucleotides forming quadruplexes with different structures, competed with the NHPPE duplex for binding to nuclear proteins. When vector pKRS-413, containing CAT driven by the mouse KRAS promoter, and KRAS quadruplex oligonucleotides were co-transfected in 293 cells, the expression of CAT was found to be downregulated to 40% of the control. On the basis of these data, we propose that the NHPPE of KRAS exists in equilibrium between a double-stranded form favouring transcription and a folded quadruplex form, which instead inhibits transcription. Such a mechanism, which is probably adopted by other growth-related genes, provides useful hints for the rational design of anticancer drugs against the KRAS oncogene.
Collapse
Affiliation(s)
| | - Luigi E. Xodo
- To whom correspondence should be addressed. Tel: +39 0432 494395; Fax: +39 0432 494301;
| |
Collapse
|
183
|
Dexheimer TS, Sun D, Hurley LH. Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter. J Am Chem Soc 2006; 128:5404-15. [PMID: 16620112 PMCID: PMC2580050 DOI: 10.1021/ja0563861] [Citation(s) in RCA: 314] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The human bcl-2 gene contains a GC-rich region upstream of the P1 promoter that has been shown to be critically involved in the regulation of bcl-2 gene expression. We have demonstrated that the guanine-rich strand of the DNA in this region can form any one of three distinct intramolecular G-quadruplex structures. Mutation and deletion analysis permitted isolation and identification of three overlapping DNA sequences within this element that formed the three individual G-quadruplexes. Each of these was characterized using nondenaturing gel analysis, DMS footprinting, and circular dichroism. The central G-quadruplex, which is the most stable, forms a mixed parallel/antiparallel structure consisting of three tetrads connected by loops of one, seven, and three bases. Three different G-quadruplex-interactive agents were found to further stabilize these structures, with individual selectivity toward one or more of these G-quadruplexes. Collectively, these results suggest that the multiple G-quadruplexes identified in the promoter region of the bcl-2 gene are likely to play a similar role to the G-quadruplexes in the c-myc promoter in that their formation could serve to modulate gene transcription. Last, we demonstrate that the complexity of the G-quadruplexes in the bcl-2 promoter extends beyond the ability to form any one of three separate G-quadruplexes to each having the capacity to form either three or six different loop isomers. These results are discussed in relation to the biological significance of this G-quadruplex-forming element in modulation of bcl-2 gene expression and the inherent complexity of the system where different G-quadruplexes and loop isomers are possible.
Collapse
Affiliation(s)
| | - Daekyu Sun
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721
| | - Laurence H. Hurley
- College of Pharmacy, University of Arizona, Tucson, Arizona 85721
- Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, Arizona 85724
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
184
|
Hooda J, Bednarski D, Irish L, Firestine SM. Synthesis and testing of a triaza-cyclopenta[b]phenanthrene scaffold as a DNA binding agent. Bioorg Med Chem 2006; 14:1902-9. [PMID: 16298133 DOI: 10.1016/j.bmc.2005.10.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 10/24/2005] [Accepted: 10/25/2005] [Indexed: 11/17/2022]
Abstract
A novel DNA binding agent based upon a triaza-cyclopenta[b]phenanthrene scaffold, compound 1, has been synthesized. dsDNA binding analysis of this compound using the ethidium bromide displacement assay indicated a preference for GC-rich sequences. However, equilibrium dialysis experiments against a variety of nucleic acids showed that the target compound bound about 20-fold tighter to G-quartet DNA than to dsDNA under physiological salt concentrations. The binding of 1 to G-quartet DNA was verified by the ability of the compound to promote the formation of the quartet and to compete with TmPyP4 for binding to the quadruplex. Given the importance of G-quartet binding agents in the treatment of cancer and in the understanding of drug-DNA interactions, 1 and its related analogs should find utility as a new class of G-quartet specific agents.
Collapse
Affiliation(s)
- Jaipal Hooda
- Wayne State University, Eugene Applebaum College of Pharmacy and Health Science, Department of Pharmaceutical Sciences, 259 Mack Avenue, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
185
|
Rezler EM, Seenisamy J, Bashyam S, Kim MY, White E, Wilson WD, Hurley LH. Telomestatin and diseleno sapphyrin bind selectively to two different forms of the human telomeric G-quadruplex structure. J Am Chem Soc 2005; 127:9439-47. [PMID: 15984871 DOI: 10.1021/ja0505088] [Citation(s) in RCA: 285] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human telomeric sequence d[T(2)AG(3)](4) has been demonstrated to form different types of G-quadruplex structures, depending upon the incubation conditions. For example, in sodium (Na(+)), a basket-type G-quadruplex structure is formed. In this investigation, using circular dichroism (CD), biosensor-surface plasmon resonance (SPR), and a polymerase stop assay, we have examined how the addition of different G-quadruplex-binding ligands affects the conformation of the telomeric G-quadruplex found in solution. The results show that while telomestatin binds preferentially to the basket-type G-quadruplex structure with a 2:1 stoichiometry, 5,10,15,20-[tetra-(N-methyl-3-pyridyl)]-26-28-diselena sapphyrin chloride (Se2SAP) binds to a different form with a 1:1 stoichiometry in potassium (K(+)). CD studies suggest that Se2SAP binds to a hybrid G-quadruplex that has strong parallel and antiparallel characteristics, suggestive of a structure containing both propeller and lateral, or edgewise, loops. Telomestatin is unique in that it can induce the formation of the basket-type G-quadruplex from a random coil human telomeric oligonucleotide, even in the absence of added monovalent cations such as K(+) or Na(+). In contrast, in the presence of K(+), Se2SAP was found to convert the preformed basket G-quadruplex to the hybrid structure. The significance of these results is that the presence of different ligands can determine the type of telomeric G-quadruplex structures formed in solution. Thus, the biochemical and biological consequences of binding of ligands to G-quadruplex structures found in telomeres and promoter regions of certain important oncogenes go beyond mere stabilization of these structures.
Collapse
Affiliation(s)
- Evonne M Rezler
- College of Pharmacy, The University of Arizona, 1703 East Mabel, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | |
Collapse
|
186
|
Sun D, Guo K, Rusche JJ, Hurley LH. Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res 2005; 33:6070-80. [PMID: 16239639 PMCID: PMC1266068 DOI: 10.1093/nar/gki917] [Citation(s) in RCA: 333] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The proximal promoter region of the human vascular endothelial growth factor (VEGF) gene contains a polypurine/polypyrimidine tract that serves as a multiple binding site for Sp1 and Egr-1 transcription factors. This tract contains a guanine-rich sequence consisting of four runs of three or more contiguous guanines separated by one or more bases, corresponding to a general motif for the formation of an intramolecular G-quadruplex. In this study, we observed the progressive unwinding of the oligomer duplex DNA containing this region into single-stranded forms in the presence of KCl and the G-quadruplex-interactive agents TMPyP4 and telomestatin, suggesting the dynamic nature of this tract under conditions which favor the formation of the G-quadruplex structures. Subsequent footprinting studies with DNase I and S1 nucleases using a supercoiled plasmid DNA containing the human VEGF promoter region also revealed a long protected region, including the guanine-rich sequences, in the presence of KCl and telomestatin. Significantly, a striking hypersensitivity to both nucleases was observed at the 3′-side residue of the predicted G-quadruplex-forming region in the presence of KCl and telomestatin, indicating altered conformation of the human VEGF proximal promoter region surrounding the guanine-rich sequence. In contrast, when specific point mutations were introduced into specific guanine residues within the G-quadruplex-forming region (Sp1 binding sites) to abolish G-quadruplex-forming ability, the reactivity of both nucleases toward the mutated human VEGF proximal promoter region was almost identical, even in the presence of telomestatin with KCl. This comparison of wild-type and mutant sequences strongly suggests that the formation of highly organized secondary structures such as G-quadruplexes within the G-rich region of the human VEGF promoter region is responsible for observed changes in the reactivity of both nucleases within the polypurine/polypyrimidine tract of the human VEGF gene. The formation of the G-quadruplex structures from this G-rich sequence in the human VEGF promoter is further confirmed by the CD experiments. Collectively, our results provide strong evidence that specific G-quadruplex structures can naturally be formed by the G-rich sequence within the polypurine/polypyrimidine tract of the human VEGF promoter region, raising the possibility that the transcriptional control of the VEGF gene can be modulated by G-quadruplex-interactive agents.
Collapse
Affiliation(s)
- Daekyu Sun
- College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
187
|
Ziemba AJ, Zhilina ZV, Krotova-Khan Y, Stankova L, Ebbinghaus SW. Targeting and regulation of the HER-2/neu oncogene promoter with bis-peptide nucleic acids. Oligonucleotides 2005; 15:36-50. [PMID: 15788899 DOI: 10.1089/oli.2005.15.36] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antigene oligonucleotides have the potential to regulate gene expression through site-specific DNA binding. However, in vivo applications have been hindered by inefficient cellular uptake, degradation, and strand displacement. Peptide nucleic acids (PNAs) address several of these problems, as they are resistant to degradation and bind DNA with high affinity. We designed two cationic pyrimidine bis-PNAs (cpy-PNAs) to target the polypurine tract of the HER-2/neu promoter and compared them to an unmodified phosphodiester triplex-forming oligonucleotide (TFO1) and a TFO-nitrogen mustard conjugate (TFO2). PNA1 contains a + 2 charge and bound two adjacent 9-bp target sequences with high affinity and specificity, but only at low pH. PNA2 contains a +5 charge and bound one 11-bp target with high affinity up to pH 7.4, but with lower specificity. The PNA:DNA:PNA triplex formed by these cpy-bis-PNAs presented a stable barrier to DNA polymerase extension. The cpy-bis-PNAs and the TFO-alkylator conjugate prevented HER-2/neu transcription in a reporter gene assay (TFO2 = PNA1 > PNA2 >> TFO1). Both PNAs and TFOs were effective at binding the target sequence in naked genomic DNA, but only the TFO-alkylator (TFO2) and the more cationic PNA (PNA2) were detected at the endogenous HER-2/neu promoter in permeabilized cells. This work demonstrates the potential for preventing HER-2/neu gene expression with cpy-bis-PNAs in tumor cells.
Collapse
|
188
|
Patel SD, Isalan M, Gavory G, Ladame S, Choo Y, Balasubramanian S. Inhibition of human telomerase activity by an engineered zinc finger protein that binds G-quadruplexes. Biochemistry 2004; 43:13452-8. [PMID: 15491152 PMCID: PMC1876260 DOI: 10.1021/bi048892t] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The G-quadruplex nucleic acid structural motif is a target for designing molecules that could potentially modulate telomere length or have anticancer properties. We have recently described an engineered zinc finger protein (Gq1) that binds with specificity to the intramolecular G-quadruplex formed by the human telomeric sequence 5'-(GGTTAG)(5)-3' (Isalan et al. (2001) Biochemistry 40, 830-836). Here, we report that Gq1 is able to arrest the action of a DNA polymerase on a template-containing telomeric sequence. Inhibition occurs in a concentration-dependent manner, probably by forming a stabilized G-quadruplex.protein complex. Furthermore, Gq1 inhibits the apparent activity of the enzyme telomerase in vitro, with an IC(50) value of 74.3 +/- 11.1 nM. Possible molecular mechanisms of inhibition are discussed, together with the potential for using engineered zinc fingers to interfere with the cellular processes associated with telomere function.
Collapse
Affiliation(s)
- Sachin D. Patel
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Mark Isalan
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Gérald Gavory
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sylvain Ladame
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yen Choo
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- To whom correspondence should be addressed. Telephone: +44 (0)1223 336347, Fax: +44 (0)1223 336913, E-mail:
| |
Collapse
|
189
|
Boán F, Blanco MG, Barros P, González AI, Gómez-Márquez J. Inhibition of DNA synthesis by K+-stabilised G-quadruplex promotes allelic preferential amplification. FEBS Lett 2004; 571:112-8. [PMID: 15280027 DOI: 10.1016/j.febslet.2004.06.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/28/2004] [Accepted: 06/28/2004] [Indexed: 11/28/2022]
Abstract
PCR preferential amplification consists of the inefficient amplification of one allele in a heterozygous sample. Here, we report the isolation of a GC-rich human minisatellite, MsH43, that undergoes allelic preferential amplification during PCR. This effect requires the existence of a (TGGGGC)(4) motif that is able to form a G-quadruplex in the presence of K(+). This structure interferes with the DNA synthesis of the alleles harbouring this motif during PCR The present results are the first demonstration that the formation of G-quadruplex can be one of the mechanisms involved in some kinds of preferential amplification.
Collapse
Affiliation(s)
- Francisco Boán
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | | | | | | | | |
Collapse
|
190
|
Cocco MJ, Hanakahi LA, Huber MD, Maizels N. Specific interactions of distamycin with G-quadruplex DNA. Nucleic Acids Res 2003; 31:2944-51. [PMID: 12771220 PMCID: PMC156726 DOI: 10.1093/nar/gkg392] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Revised: 03/19/2003] [Accepted: 04/04/2003] [Indexed: 11/14/2022] Open
Abstract
Distamycin binds the minor groove of duplex DNA at AT-rich regions and has been a valuable probe of protein interactions with double-stranded DNA. We find that distamycin can also inhibit protein interactions with G-quadruplex (G4) DNA, a stable four-stranded structure in which the repeating unit is a G-quartet. Using NMR, we show that distamycin binds specifically to G4 DNA, stacking on the terminal G-quartets and contacting the flanking bases. These results demonstrate the utility of distamycin as a probe of G4 DNA-protein interactions and show that there are (at least) two distinct modes of protein-G4 DNA recognition which can be distinguished by sensitivity to distamycin.
Collapse
Affiliation(s)
- Melanie J Cocco
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
191
|
Kypr J, Kejnovská I, Vorlícková M. DNA homoduplexes containing no pyrimidine nucleotide. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2003; 32:154-8. [PMID: 12679858 DOI: 10.1007/s00249-003-0287-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Revised: 01/20/2003] [Accepted: 02/11/2003] [Indexed: 10/25/2022]
Abstract
We show using polyacrylamide gel electrophoresis that guanine+adenine repeat strands of DNA associate into homoduplexes at neutral pH and moderate ionic strength. The homoduplexes melt in a cooperative way like the Watson-Crick duplex, although they contain no Watson-Crick base pair. Guanine is absolutely needed for the homoduplex formation and the homoduplex stability increases with the guanine content of the repeat. The present results have implications for the nature of the first replicators, as well as regarding forces stabilizing the duplexes of DNA.
Collapse
Affiliation(s)
- Jaroslav Kypr
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic.
| | | | | |
Collapse
|
192
|
Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 2002; 99:11593-8. [PMID: 12195017 PMCID: PMC129314 DOI: 10.1073/pnas.182256799] [Citation(s) in RCA: 1839] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The nuclease hypersensitivity element III(1) upstream of the P1 promoter of c-MYC controls 85-90% of the transcriptional activation of this gene. We have demonstrated that the purine-rich strand of the DNA in this region can form two different intramolecular G-quadruplex structures, only one of which seems to be biologically relevant. This biologically relevant structure is the kinetically favored chair-form G-quadruplex, which is destabilized when mutated with a single G --> A transition, resulting in a 3-fold increase in basal transcriptional activity of the c-MYC promoter. The cationic porphyrin TMPyP4, which has been shown to stabilize this G-quadruplex structure, is able to suppress further c-MYC transcriptional activation. These results provide compelling evidence that a specific G-quadruplex structure formed in the c-MYC promoter region functions as a transcriptional repressor element. Furthermore, we establish the principle that c-MYC transcription can be controlled by ligand-mediated G-quadruplex stabilization.
Collapse
|
193
|
Affiliation(s)
- C Bailly
- INSERM U-524, and Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret IRCL, 59045 Lille, France
| |
Collapse
|
194
|
Affiliation(s)
- D Sun
- Institute for Drug Development, San Antonio, Texas 78245, USA
| | | |
Collapse
|
195
|
Kerwin SM, Sun D, Kern JT, Rangan A, Thomas PW. G-quadruplex DNA binding by a series of carbocyanine dyes. Bioorg Med Chem Lett 2001; 11:2411-4. [PMID: 11549435 DOI: 10.1016/s0960-894x(01)00490-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have examined a number of carbocyanine dyes for their ability to bind intramolecular G-quadruplex DNA structures (G4'-DNA) using a Taq polymerase stop assay. Of the five dyes examined, only one, N,N'-diethylthiacarbocyanine iodide (DTC), was found to bind to G4'-DNA. DTC was also the only dye found to inhibit human telomerase at 50 microM concentration.
Collapse
Affiliation(s)
- S M Kerwin
- Division of Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, 78712, USA.
| | | | | | | | | |
Collapse
|
196
|
Koeppel F, Riou JF, Laoui A, Mailliet P, Arimondo PB, Labit D, Petitgenet O, Hélène C, Mergny JL. Ethidium derivatives bind to G-quartets, inhibit telomerase and act as fluorescent probes for quadruplexes. Nucleic Acids Res 2001; 29:1087-96. [PMID: 11222758 PMCID: PMC29720 DOI: 10.1093/nar/29.5.1087] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2000] [Revised: 01/09/2001] [Accepted: 01/09/2001] [Indexed: 11/12/2022] Open
Abstract
The telomeric G-rich single-stranded DNA can adopt in vitro an intramolecular quadruplex structure, which has been shown to directly inhibit telomerase activity. The reactivation of this enzyme in immortalized and most cancer cells suggests that telomerase is a relevant target in oncology, and telomerase inhibitors have been proposed as new potential anticancer agents. In this paper, we describe ethidium derivatives that stabilize G-quadruplexes. These molecules were shown to increase the melting temperature of an intramolecular quadruplex structure, as shown by fluorescence and absorbance measurements, and to facilitate the formation of intermolecular quadruplex structures. In addition, these molecules may be used to reveal the formation of multi-stranded DNA structures by standard fluorescence imaging, and therefore become fluorescent probes of quadruplex structures. This recognition was associated with telomerase inhibition in vitro: these derivatives showed a potent anti-telomerase activity, with IC(50) values of 18-100 nM in a standard TRAP assay.
Collapse
Affiliation(s)
- F Koeppel
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U201, CNRS UMR 8646, 43 rue Cuvier, 75005 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Lavelle F, Riou JF, Laoui A, Mailliet P. Telomerase: a therapeutic target for the third millennium? Crit Rev Oncol Hematol 2000; 34:111-26. [PMID: 10799836 DOI: 10.1016/s1040-8428(00)00057-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Telomerase offers the potential opportunity to control cell proliferation by interfering with a totally new and unique biological process which is cell senescence. The aim of this review is to impartially present the state of the art in telomerase with the pros and the cons of the current scientific situation of this fast-growing and fascinating topic for answering the key question asked by experimental and medical oncologists: Will telomerase be a therapeutic target for the third millenium? The most convincing argument (which is a scientifically documented one) for going ahead with this target is obviously the strong correlation existing between the level and frequency of telomerase expression and the malignant properties of tumors. This has been now largely documented in established tumor cell lines and fresh tumor samples obtained from patients. Noteworthy is the very important difference of telomerase expression between malignant and normal tissues. This difference is much higher than those observed for classical enzymatic targets of chemotherapy such as thymidylate synthetase, dihydrofolate reductase and topoisomerases. If this translates to the clinical situation, telomerase inhibitors might display a good selectivity for tumor cells with a minimal toxicity for normal tissues. The most appealing criticism (which is still purely speculative) is obviously the clinical relevance of inhibiting telomerase in cancer patients. According to the paradigm currently proposed for telomeres and telomerases, it can be predicted that telomerase inhibition will not affect a tumor until its telomeres reach the critical size for entering senescence. This means that during anti-telomerase therapy, the tumor cells will continue grow undergoing 20-30 divisions until the telomeres reach a critical size leading to tumor senescence. Does this make sense, especially in patients with advanced tumors at the beginning of the therapy? Ultimately, the definitive answer to the question will not come from intellectual speculation but from the properties of telomerase inhibitors, first in tumor bearing animals, then finally in cancer patients! Several institutions are very active in the development of telomerase inhibitors. Different stategies are used: direct inhibition of telomerase, interference with telomeres (G quartets), interaction with other proteins involved in the regulation of telomerase and telomeres.
Collapse
Affiliation(s)
- F Lavelle
- Centre de Recherche de Vitry-Alfortvide, Rhône-Poulenc Rorer, 94403, Vitry-sur-Seine, France.
| | | | | | | |
Collapse
|
198
|
Abstract
In addition to the familiar duplex DNA, certain DNA sequences can fold into secondary structures that are four-stranded; because they are made up of guanine (G) bases, such structures are called G-quadruplexes. Considerable circumstantial evidence suggests that these structures can exist in vivo in specific regions of the genome including the telomeric ends of chromosomes and oncogene regulatory regions. Recent studies have demonstrated that small molecules can facilitate the formation of, and stabilize, G-quadruplexes. The possible role of G-quadruplex-interactive compounds as pharmacologically important molecules is explored in this article.
Collapse
Affiliation(s)
- H Han
- Arizona Cancer Center, Tucson, AZ 85724, USA.
| | | |
Collapse
|
199
|
Recent advances in the development of telomerase inhibitors for the treatment of cancer. Expert Opin Investig Drugs 1999; 8:1981-2008. [PMID: 11139836 DOI: 10.1517/13543784.8.12.1981] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Telomerase is an holoenzyme responsible for the maintenance of telomeres, the protein-nucleic acid structures which exist at the ends of eukaryotic chromosomes that serve to protect chromosomal stability and integrity. Telomerase activity is essential for the sustained proliferation of most immortal cells, including cancer cells. Since the discovery that telomerase activity is expressed in 85 - 90% of all human tumours and tumour-derived cell lines but not in most normal somatic cells, telomerase has become the focus of much attention as a novel and potentially highly-specific target for the development of new anticancer chemotherapeutics. Herein we review recent advances in the development of telomerase inhibitors for the treatment of cancer. To date, these have included antisense strategies, reverse transcriptase inhibitors and compounds capable of interacting with high-order telomeric DNA tetraplex ('G-quadruplex') structures to prevent enzyme access to the necessary linear telomere substrate. In addition, a number of telomerase-inhibitory therapies have been shown to synergistically enhance the effects of clinically-established anticancer drugs. Critical appraisal of each individual approach is provided, together with highlighted areas of likely future development. We also review recent developments in telomere and telomerase biology, of which a more detailed understanding would be essential in order to further develop the present classes of telomerase inhibitors into viable, clinically applicable therapies.
Collapse
|