151
|
Linkies A, Müller K, Morris K, Turečková V, Wenk M, Cadman CS, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. THE PLANT CELL 2009; 21:3803-22. [PMID: 20023197 PMCID: PMC2814513 DOI: 10.1105/tpc.109.070201] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/12/2009] [Accepted: 11/17/2009] [Indexed: 05/18/2023]
Abstract
The micropylar endosperm cap covering the radicle in the mature seeds of most angiosperms acts as a constraint that regulates seed germination. Here, we report on a comparative seed biology study with the close Brassicaceae relatives Lepidium sativum and Arabidopsis thaliana showing that ethylene biosynthesis and signaling regulate seed germination by a mechanism that requires the coordinated action of the radicle and the endosperm cap. The larger seed size of Lepidium allows direct tissue-specific biomechanical, biochemical, and transcriptome analyses. We show that ethylene promotes endosperm cap weakening of Lepidium and endosperm rupture of both species and that it counteracts the inhibitory action of abscisic acid (ABA) on these two processes. Cross-species microarrays of the Lepidium micropylar endosperm cap and the radicle show that the ethylene-ABA antagonism involves both tissues and has the micropylar endosperm cap as a major target. Ethylene counteracts the ABA-induced inhibition without affecting seed ABA levels. The Arabidopsis loss-of-function mutants ACC oxidase2 (aco2; ethylene biosynthesis) and constitutive triple response1 (ethylene signaling) are impaired in the 1-aminocyclopropane-1-carboxylic acid (ACC)-mediated reversion of the ABA-induced inhibition of seed germination. Ethylene production by the ACC oxidase orthologs Lepidium ACO2 and Arabidopsis ACO2 appears to be a key regulatory step. Endosperm cap weakening and rupture are promoted by ethylene and inhibited by ABA to regulate germination in a process conserved across the Brassicaceae.
Collapse
Affiliation(s)
- Ada Linkies
- University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D-79104 Freiburg, Germany
| | - Kerstin Müller
- University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D-79104 Freiburg, Germany
| | - Karl Morris
- Warwick Horticulture Research International, Warwick University, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Veronika Turečková
- Palacky University and Institute of Experimental Botany Academy of Sciences of the Czech Republic, Laboratory of Growth Regulators, CZ-78371 Olomouc, Czech Republic
| | - Meike Wenk
- University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D-79104 Freiburg, Germany
| | - Cassandra S.C. Cadman
- Warwick Horticulture Research International, Warwick University, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Françoise Corbineau
- Université Pierre et Marie Curie-Paris 6, Germination et Dormance des Semences, UR5, Site d'Ivry, F-75005 Paris, France
| | - Miroslav Strnad
- Palacky University and Institute of Experimental Botany Academy of Sciences of the Czech Republic, Laboratory of Growth Regulators, CZ-78371 Olomouc, Czech Republic
| | - James R. Lynn
- Warwick Horticulture Research International, Warwick University, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - William E. Finch-Savage
- Warwick Horticulture Research International, Warwick University, Wellesbourne, Warwick CV35 9EF, United Kingdom
| | - Gerhard Leubner-Metzger
- University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D-79104 Freiburg, Germany
- Address correspondence to
| |
Collapse
|
152
|
Müller K, Carstens AC, Linkies A, Torres MA, Leubner-Metzger G. The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. THE NEW PHYTOLOGIST 2009; 184:885-97. [PMID: 19761445 DOI: 10.1111/j.1469-8137.2009.03005.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
*Seeds can enter a state of dormancy, in which they do not germinate under optimal environmental conditions. Dormancy can be broken during seed after-ripening in the low-hydrated state. *By screening enhancer trap lines of Arabidopsis, we identified a role for the NADPH-oxidase AtrbohB in after-ripening. Semiquantitative PCR was used to investigate AtrbohB transcripts in seeds. These methods were complemented with a pharmacological approach using the inhibitor diphenylene iodonium chloride (DPI) and biomechanical measurements in the Brassicaceae seed model system cress (Lepidium sativum) as well as protein carbonylation assays. *atrbohB mutants fail to after-ripen and show reduced protein oxidation. AtrbohB pre-mRNA is alternatively spliced in seeds in a hormonally and developmentally regulated manner. AtrbohB is a major producer of superoxide in germinating Arabidopsis seeds, and inhibition of superoxide production by diphenylene iodonium (DPI) leads to a delay in Arabidopsis and cress seed germination and cress endosperm weakening. *Reactive oxygen species produced by AtrbohB during after-ripening could act via abscisic acid (ABA) signalling or post-translational protein modifications. Alternative splicing could be a general mechanism in after-ripening: by altered processing of stored pre-mRNAs seeds could react quickly to environmental changes.
Collapse
Affiliation(s)
- Kerstin Müller
- Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
153
|
Müller K, Job C, Belghazi M, Job D, Leubner-Metzger G. Proteomics reveal tissue-specific features of the cress (Lepidium sativum
L.) endosperm cap proteome and its hormone-induced changes during seed germination. Proteomics 2009; 10:406-16. [DOI: 10.1002/pmic.200900548] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
154
|
Rodríguez-Gacio MDC, Matilla-Vázquez MA, Matilla AJ. Seed dormancy and ABA signaling: the breakthrough goes on. PLANT SIGNALING & BEHAVIOR 2009; 4:1035 - 49. [PMID: 19875942 PMCID: PMC2819511 DOI: 10.4161/psb.4.11.9902] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 05/18/2023]
Abstract
The seed is an important organ of higher plants regarding plant survival and species dispersion. The transition between seed dormancy and germination represents a critical stage in the plant life cycle and it is an important ecological and commercial trait. A dynamic balance of synthesis and catabolism of two antagonistic hormones, abscisic acid (ABA) and giberellins (GAs), controls the equilibrium between seed dormancy and germination. Embryonic ABA plays a central role in induction and maintenance of seed dormancy, and also inhibits the transition from embryonic to germination growth. Therefore, the ABA metabolism must be highly regulated at both temporal and spatial levels during phase of dessication tolerance. On the other hand, the ABA levels do not depend exclusively on the seeds because sometimes it becomes a strong sink and imports it from the roots and rhizosphere through the xylem and/or phloem. All theses events are discussed in depth here. Likewise, the role of some recently characterized genes belonging to seeds of woody species and related to ABA signaling, are also included. Finally, although four possible ABA receptors have been reported, not much is known about how they mediate ABA signalling transduction. However, new publications seem to shown that almost all these receptors lack several properties to consider them as such.
Collapse
|
155
|
Linkies A, Schuster-Sherpa U, Tintelnot S, Leubner-Metzger G, Müller K. Peroxidases identified in a subtractive cDNA library approach show tissue-specific transcript abundance and enzyme activity during seed germination of Lepidium sativum. JOURNAL OF EXPERIMENTAL BOTANY 2009; 61:491-502. [PMID: 19884228 PMCID: PMC2803213 DOI: 10.1093/jxb/erp318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/06/2009] [Accepted: 10/12/2009] [Indexed: 05/06/2023]
Abstract
The micropylar endosperm is a major regulator of seed germination in endospermic species, to which the close Brassicaceae relatives Arabidopsis thaliana and Lepidium sativum (cress) belong. Cress seeds are about 20 times larger than the seeds of Arabidopsis. This advantage was used to construct a tissue-specific subtractive cDNA library of transcripts that are up-regulated late in the germination process specifically in the micropylar endosperm of cress seeds. The library showed that a number of transcripts known to be up-regulated late during germination are up-regulated in the micropylar endosperm cap. Detailed germination kinetics of SALK lines carrying insertions in genes present in our library showed that the identified transcripts do indeed play roles during germination. Three peroxidases were present in the library. These peroxidases were identified as orthologues of Arabidopsis AtAPX01, AtPrx16, and AtPrxIIE. The corresponding SALK lines displayed significant germination phenotypes. Their transcripts were quantified in specific cress seed tissues during germination in the presence and absence of ABA and they were found to be regulated in a tissue-specific manner. Peroxidase activity, and particularly its regulation by ABA, also differed between radicles and micropylar endosperm caps. Possible implications of this tissue-specificity are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Kerstin Müller
- University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, Schänzlestr. 1, D-79104 Freiburg, Germany
| |
Collapse
|
156
|
Liu Y, Zhang J. Rapid accumulation of NO regulates ABA catabolism and seed dormancy during imbibition in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2009; 4:905-7. [PMID: 19847111 PMCID: PMC2802802 DOI: 10.4161/psb.4.9.9532] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 07/10/2009] [Indexed: 05/07/2023]
Abstract
Nitric oxide's (NO) involvement in breaking seed dormancy has been demonstrated in previous research but its action mechanism remains to be clarified. We observed that a rapid accumulation of NO induces an equally rapid decrease of abscisic acid (ABA) that is required for the NO's action in Arabidopsis. In addition, the NO-induced ABA decrease correlates with the regulation of CYP707A2 transcription and the (+)-abscisic acid 8'-hydroxylase (encoded by CYP707A2) protein expression. By analyzing cyp707a1, cyp707a2 and cyp707a3 mutants, we found that CYP707A2 plays a major role in ABA catabolism during the first stage of imbibition. Fluorescent images demonstrate that NO is released rapidly in the early hours at the endosperm layer during imbibition. Evidently such response precedes the enhancement of ABA catabolism which is required for subsequent seed germination.
Collapse
Affiliation(s)
- Yinggao Liu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | | |
Collapse
|
157
|
Belin C, Megies C, Hauserová E, Lopez-Molina L. Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. THE PLANT CELL 2009; 21:2253-68. [PMID: 19666738 PMCID: PMC2751952 DOI: 10.1105/tpc.109.067702] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/14/2009] [Accepted: 07/25/2009] [Indexed: 05/18/2023]
Abstract
Under unfavorable environmental conditions, the stress phytohormone ABA inhibits the developmental transition from an embryo in a dry seed into a young seedling. We developed a genetic screen to isolate Arabidopsis thaliana mutants whose early seedling development is resistant to ABA. Here, we report the identification of a recessive mutation in AUXIN RESISTANT1 (AUX1), encoding a cellular auxin influx carrier. Although auxin is a major morphogenesis hormone in plants, little is known about ABA-auxin interactions during early seedling growth. We show that aux1 and pin2 mutants are insensitive to ABA-dependent repression of embryonic axis (hypocotyl and radicle) elongation. Genetic and physiological experiments show that this involves auxin transport to the embryonic axis elongation zone, where ABA enhances the activity of an auxin-responsive promoter. We propose that ABA represses embryonic axis elongation by potentiating auxin signaling in its elongation zone. This involves repression of the AUXIN INDUCIBLE (Aux/IAA) gene AXR2/IAA7, encoding a key component of ABA- and auxin-dependent responses during postgerminative growth.
Collapse
MESH Headings
- Abscisic Acid/pharmacology
- Arabidopsis/drug effects
- Arabidopsis/embryology
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Arabidopsis Proteins/physiology
- Blotting, Northern
- Blotting, Western
- Chromatography, High Pressure Liquid
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Gene Expression Regulation, Plant/physiology
- Germination/drug effects
- Germination/genetics
- Germination/physiology
- Indoleacetic Acids/metabolism
- Microscopy, Fluorescence
- Plant Growth Regulators/metabolism
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/embryology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Seedlings/drug effects
- Seedlings/embryology
- Seedlings/genetics
- Seedlings/metabolism
- Seeds/drug effects
- Seeds/embryology
- Seeds/genetics
- Seeds/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/physiology
- Spectrometry, Mass, Electrospray Ionization
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Christophe Belin
- Département de Biologie Végétale, Université de Genève, 1211 Genève 4, Switzerland
| | | | | | | |
Collapse
|
158
|
Müller K, Linkies A, Vreeburg RAM, Fry SC, Krieger-Liszkay A, Leubner-Metzger G. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. PLANT PHYSIOLOGY 2009; 150:1855-65. [PMID: 19493972 PMCID: PMC2719145 DOI: 10.1104/pp.109.139204] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 05/29/2009] [Indexed: 05/18/2023]
Abstract
Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical ((*)OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance spectroscopy to show that (*)OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativum; Brassicaceae) seeds. Endosperm weakening precedes radicle emergence, as demonstrated by direct biomechanical measurements. By (3)H fingerprinting, we showed that wall polysaccharides are oxidized in vivo by the developmentally regulated action of apoplastic (*)OH in radicles and endosperm caps: the production and action of (*)OH increased during endosperm weakening and radicle elongation and were inhibited by the germination-inhibiting hormone abscisic acid. Both effects were reversed by gibberellin. Distinct and tissue-specific target sites of (*)OH attack on polysaccharides were evident. In vivo (*)OH attack on cell wall polysaccharides were evident not only in germinating seeds but also in elongating maize (Zea mays; Poaceae) seedling coleoptiles. We conclude that plant cell wall loosening by (*)OH is a controlled action of this type of reactive oxygen species.
Collapse
Affiliation(s)
- Kerstin Müller
- University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
159
|
Piskurewicz U, Turecková V, Lacombe E, Lopez-Molina L. Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. EMBO J 2009; 28:2259-71. [PMID: 19556968 DOI: 10.1038/emboj.2009.170] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/27/2009] [Indexed: 11/09/2022] Open
Abstract
Under the canopy, far-red (FR) light represses seed germination by inactivating phytochrome photoreceptors. This elicits a decrease in gibberellins (GA) levels and an increase in abscisic acid (ABA) levels. GA promotes germination by enhancing the proteasome-mediated destruction of DELLA repressors. ABA prevents germination by stimulating the expression of ABI repressors. How phytochromes elicit changes in hormone levels or how GA- and ABA-dependent signals are coordinated to repress germination remains poorly understood. We show that repression of germination by FR light involves stabilized DELLA factors GAI, RGA and RGL2 that stimulate endogenous ABA synthesis. In turn, ABA blocks germination through the transcription factor ABI3. The role of PIL5, a basic helix-loop-helix transcription factor stimulating GAI and RGA expression, is significant, provided GA synthesis is high enough; otherwise, high GAI and RGA protein levels persist to block germination. Under white light, GAI and RGA driven by the RGL2 promoter can substitute for RGL2 to promote ABA synthesis and repress germination, consistent with the recent findings with RGL2. The three DELLA factors inhibit testa rupture whereas ABI3 blocks endosperm rupture.
Collapse
Affiliation(s)
- Urszula Piskurewicz
- Département de Biologie Végétale, Université de Genève, Genève 4, Switzerland
| | | | | | | |
Collapse
|
160
|
Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F. Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. PLANT PHYSIOLOGY 2009; 150:1006-21. [PMID: 19386806 PMCID: PMC2689963 DOI: 10.1104/pp.109.137901] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 04/17/2009] [Indexed: 05/19/2023]
Abstract
The decay of seed dormancy during after-ripening is not well understood, but elucidation of the mechanisms involved may be important for developing strategies for modifying dormancy in crop species and, for example, addressing the problem of preharvest sprouting in cereals. We have studied the germination characteristics of barley (Hordeum vulgare 'Betzes') embryos, including a description of anatomical changes in the coleorhiza and the enclosed seminal roots. The changes that occur correlate with abscisic acid (ABA) contents of embryo tissues. To understand the molecular mechanisms involved in dormancy loss, we compared the transcriptome of dormant and after-ripened barley embryos using a tissue-specific microarray approach. Our results indicate that in the coleorhiza, ABA catabolism is promoted and ABA sensitivity is reduced and that this is associated with differential regulation by after-ripening of ABA 8'-hydroxylase and of the LIPID PHOSPHATE PHOSPHATASE gene family and ABI3-INTERACTING PROTEIN2, respectively. We also identified other processes, including jasmonate responses, cell wall modification, nitrate and nitrite reduction, mRNA stability, and blue light sensitivity, that were affected by after-ripening in the coleorhiza that may be downstream of ABA signaling. Based on these results, we propose that the coleorhiza plays a major role in causing dormancy by acting as a barrier to root emergence and that after-ripening potentiates molecular changes related to ABA metabolism and sensitivity that ultimately lead to degradation of the coleorhiza, root emergence, and germination.
Collapse
Affiliation(s)
- José M Barrero
- Plant Industry, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | | | |
Collapse
|
161
|
Yang MF, Liu YJ, Liu Y, Chen H, Chen F, Shen SH. Proteomic Analysis of Oil Mobilization in Seed Germination and Postgermination Development of Jatropha curcas. J Proteome Res 2009; 8:1441-51. [DOI: 10.1021/pr800799s] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming-Feng Yang
- Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P. R. China and Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Yu-Jun Liu
- Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P. R. China and Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Yun Liu
- Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P. R. China and Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Hui Chen
- Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P. R. China and Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Fan Chen
- Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P. R. China and Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Shi-Hua Shen
- Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P. R. China and Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, Beijing 100080, P. R. China
| |
Collapse
|
162
|
Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J. Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. THE NEW PHYTOLOGIST 2009; 183:1030-1042. [PMID: 19522839 DOI: 10.1111/j.1469-8137.2009.02899.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) has been reported to be involved in breaking seed dormancy but its mechanism of action is unclear. Here, we report that a rapid accumulation of NO induced an equally rapid decrease of abscisic acid (ABA) that is required for this action in Arabidopsis. Results of quantitative real-time polymerase chain reaction (QRT-PCR) and Western blotting indicate that the NO-induced ABA decrease correlates with the regulation of CYP707A2 transcription and (+)-abscisic acid 8'-hydroxylase (encoded by CYP707A2) protein expression. By analysing cyp707a1, cyp707a2 and cyp707a3 mutants, we found that CYP707A2 plays a major role in ABA catabolism during the first stage of imbibition. Fluorescent images demonstrate that NO is released rapidly in the early hours at the endosperm layer during imbibition. Evidently, such response precedes the enhancement of ABA catabolism which is required for subsequent seed germination.
Collapse
Affiliation(s)
- Yinggao Liu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Lin Shi
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Nenghui Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Rui Liu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Wensuo Jia
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
163
|
Abstract
Seed dormancy allows seeds to overcome periods that are unfavourable for seedling established and is therefore important for plant ecology and agriculture. Several processes are known to be involved in the induction of dormancy and in the switch from the dormant to the germinating state. The role of plant hormones, the different tissues and genes involved, including newly identified genes in dormancy and germination are described in this chapter, as well as the use transcriptome, proteome and metabolome analyses to study these mechanistically not well understood processes.
Collapse
Affiliation(s)
- Leónie Bentsink
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Maarten Koornneef
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Laboratory of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| |
Collapse
|
164
|
Ogé L, Bourdais G, Bove J, Collet B, Godin B, Granier F, Boutin JP, Job D, Jullien M, Grappin P. Protein repair L-isoaspartyl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis. THE PLANT CELL 2008; 20:3022-37. [PMID: 19011119 PMCID: PMC2613667 DOI: 10.1105/tpc.108.058479] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 10/22/2008] [Accepted: 11/01/2008] [Indexed: 05/04/2023]
Abstract
The formation of abnormal amino acid residues is a major source of spontaneous age-related protein damage in cells. The protein l-isoaspartyl methyltransferase (PIMT) combats protein misfolding resulting from l-isoaspartyl formation by catalyzing the conversion of abnormal l-isoaspartyl residues to their normal l-aspartyl forms. In this way, the PIMT repair enzyme system contributes to longevity and survival in bacterial and animal kingdoms. Despite the discovery of PIMT activity in plants two decades ago, the role of this enzyme during plant stress adaptation and in seed longevity remains undefined. In this work, we have isolated Arabidopsis thaliana lines exhibiting altered expression of PIMT1, one of the two genes encoding the PIMT enzyme in Arabidopsis. PIMT1 overaccumulation reduced the accumulation of l-isoaspartyl residues in seed proteins and increased both seed longevity and germination vigor. Conversely, reduced PIMT1 accumulation was associated with an increase in the accumulation of l-isoaspartyl residues in the proteome of freshly harvested dry mature seeds, thus leading to heightened sensitivity to aging treatments and loss of seed vigor under stressful germination conditions. These data implicate PIMT1 as a major endogenous factor that limits abnormal l-isoaspartyl accumulation in seed proteins, thereby improving seed traits such as longevity and vigor. The PIMT repair pathway likely works in concert with other anti-aging pathways to actively eliminate deleterious protein products, thus enabling successful seedling establishment and strengthening plant proliferation in natural environments.
Collapse
Affiliation(s)
- Laurent Ogé
- Laboratoire de Biologie des Semences, Unité Mixte de Recherche 204 Institut National de la Recherche Agronomique-AgroParisTech, Institut Jean-Pierre Bourgin, F-78026 Versailles cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. THE PLANT CELL 2008; 20:2729-45. [PMID: 18941053 PMCID: PMC2590721 DOI: 10.1105/tpc.108.061515] [Citation(s) in RCA: 315] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 09/19/2008] [Accepted: 10/06/2008] [Indexed: 05/18/2023]
Abstract
Seed germination is antagonistically controlled by the phytohormones gibberellic acid (GA) and abscisic acid (ABA). GA promotes seed germination by enhancing the proteasome-mediated destruction of RGL2 (for RGA-LIKE2), a key DELLA factor repressing germination. By contrast, ABA blocks germination by inducing ABI5 (for ABA-INSENSITIVE5), a basic domain/leucine zipper transcription factor repressing germination. Decreased GA synthesis leads to an increase in endogenous ABA levels through a stabilized RGL2, a process that may involve XERICO, a RING-H2 zinc finger factor promoting ABA synthesis. In turn, increased endogenous ABA synthesis is necessary to elevate not only ABI5 RNA and protein levels but also, critically, those of RGL2. Increased ABI5 protein is ultimately responsible for preventing seed germination when GA levels are reduced. However, overexpression of ABI5 was not sufficient to repress germination, as ABI5 activity requires phosphorylation. The endogenous ABI5 phosphorylation and inhibition of germination could be recapitulated by the addition of a SnRK2 protein kinase to the ABI5 overexpression line. In sleepy1 mutant seeds, RGL2 overaccumulates; germination of these seeds can occur under conditions that produce low ABI5 expression. These data support the notion that ABI5 acts as the final common repressor of germination in response to changes in ABA and GA levels.
Collapse
Affiliation(s)
- Urszula Piskurewicz
- Université de Genève, Département de Biologie Végétale, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
166
|
Argyris J, Dahal P, Hayashi E, Still DW, Bradford KJ. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic Acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. PLANT PHYSIOLOGY 2008; 148:926-47. [PMID: 18753282 PMCID: PMC2556833 DOI: 10.1104/pp.108.125807] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 08/25/2008] [Indexed: 05/19/2023]
Abstract
Lettuce (Lactuca sativa 'Salinas') seeds fail to germinate when imbibed at temperatures above 25 degrees C to 30 degrees C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37 degrees C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature. Germination of the two genotypes was differentially sensitive to abscisic acid (ABA) and gibberellin (GA) at elevated temperatures. Quantitative trait loci associated with these phenotypes colocated with a major quantitative trait locus (Htg6.1) from UC96US23 conferring germination thermotolerance. ABA contents were elevated in Salinas seeds that exhibited thermoinhibition, consistent with the ability of fluridone (an ABA biosynthesis inhibitor) to improve germination at high temperatures. Expression of many genes involved in ABA, GA, and ethylene biosynthesis, metabolism, and response was differentially affected by high temperature and light in the two genotypes. In general, ABA-related genes were more highly expressed when germination was inhibited, and GA- and ethylene-related genes were more highly expressed when germination was permitted. In particular, LsNCED4, a gene encoding an enzyme in the ABA biosynthetic pathway, was up-regulated by high temperature only in Salinas seeds and also colocated with Htg6.1. The temperature sensitivity of expression of LsNCED4 may determine the upper temperature limit for lettuce seed germination and may indirectly influence other regulatory pathways via interconnected effects of increased ABA biosynthesis.
Collapse
Affiliation(s)
- Jason Argyris
- Department of Plant Sciences, University of California, Davis, CA 95616-8780, USA
| | | | | | | | | |
Collapse
|
167
|
Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N, Iuchi S, Kobayashi M, Yamaguchi S, Kamiya Y, Nambara E, Kawakami N. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. PLANT PHYSIOLOGY 2008; 146:1368-85. [PMID: 18162586 PMCID: PMC2259091 DOI: 10.1104/pp.107.113738] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Suppression of seed germination at supraoptimal high temperature (thermoinhibiton) during summer is crucial for Arabidopsis (Arabidopsis thaliana) to establish vegetative and reproductive growth in appropriate seasons. Abscisic acid (ABA) and gibberellins (GAs) are well known to be involved in germination control, but it remains unknown how these hormone actions (metabolism and responsiveness) are altered at high temperature. Here, we show that ABA levels in imbibed seeds are elevated at high temperature and that this increase is correlated with up-regulation of the zeaxanthin epoxidase gene ABA1/ZEP and three 9-cis-epoxycarotenoid dioxygenase genes, NCED2, NCED5, and NCED9. Reverse-genetic studies show that NCED9 plays a major and NCED5 and NCED2 play relatively minor roles in high temperature-induced ABA synthesis and germination inhibition. We also show that bioactive GAs stay at low levels at high temperature, presumably through suppression of GA 20-oxidase genes, GA20ox1, GA20ox2, and GA20ox3, and GA 3-oxidase genes, GA3ox1 and GA3ox2. Thermoinhibition-tolerant germination of loss-of-function mutants of GA negative regulators, SPINDLY (SPY) and RGL2, suggests that repression of GA signaling is required for thermoinibition. Interestingly, ABA-deficient aba2-2 mutant seeds show significant expression of GA synthesis genes and repression of SPY expression even at high temperature. In addition, the thermoinhibition-resistant germination phenotype of aba2-1 seeds is suppressed by a GA biosynthesis inhibitor, paclobutrazol. We conclude that high temperature stimulates ABA synthesis and represses GA synthesis and signaling through the action of ABA in Arabidopsis seeds.
Collapse
Affiliation(s)
- Shigeo Toh
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
El-Maarouf-Bouteau H, Bailly C. Oxidative signaling in seed germination and dormancy. PLANT SIGNALING & BEHAVIOR 2008; 3:175-82. [PMID: 19513212 PMCID: PMC2634111 DOI: 10.4161/psb.3.3.5539] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 01/08/2008] [Indexed: 05/18/2023]
Abstract
Reactive Oxygen Species (ROS) play a key role in various events of seed life. In orthodox seeds, ROS are produced from embryogenesis to germination, i.e., in metabolically active cells, but also in quiescent dry tissues during after ripening and storage, owing various mechanisms depending on the seed moisture content. Although ROS have been up to now widely considered as detrimental to seeds, recent advances in plant physiology signaling pathways has lead to reconsider their role. ROS accumulation can therefore be also beneficial for seed germination and seedling growth by regulating cellular growth, ensuring a protection against pathogens or controlling the cell redox status. ROS probably also act as a positive signal in seed dormancy release. They interact with abscisic acid and gibberellins transduction pathway and are likely to control numerous transcription factors and properties of specific protein through their carbonylation.
Collapse
|
169
|
Tatematsu K, Nakabayashi K, Kamiya Y, Nambara E. Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:42-52. [PMID: 17953649 DOI: 10.1111/j.1365-313x.2007.03308.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To understand the molecular mechanisms underlying regulation of seed germination, we searched enriched cis elements in the upstream regions of Arabidopsis genes whose transcript levels increased during seed germination. Using available published microarray data, we found that two cis elements, Up1 or Up2, which regulate outgrowth of Arabidopsis axillary shoots, were significantly over-represented. Classification of Up1- and Up2-containing genes by gene ontology revealed that protein synthesis-related genes, especially ribosomal protein genes, were highly over-represented. Expression analysis using a reporter gene driven by a synthetic promoter regulated by these elements showed that the Up1 is necessary and sufficient for germination-associated gene induction, whereas Up2 acts as an enhancer of Up1. Up1-mediated gene expression was suppressed by treatments that blocked germination. Up1 is almost identical to the site II motif, which is the predicted target of TCP transcription factors. Of 24 AtTCP genes, AtTCP14, which showed the highest transcript level just prior to germination, was functionally characterized to test its involvement in the regulation of seed germination. Transposon-tagged lines for AtTCP14 showed delayed germination. In addition, germination of attcp14 mutants exhibited hypersensitivity to exogenously applied abscisic acid and paclobutrazol, an inhibitor of gibberellin biosynthesis. AtTCP14 was predominantly expressed in the vascular tissues of the embryo, and affected gene expression in radicles in a non-cell-autonomous manner. Taken together, these results indicate that AtTCP14 regulates the activation of embryonic growth potential in Arabidopsis seeds.
Collapse
Affiliation(s)
- Kiyoshi Tatematsu
- Growth Regulation Research Group, RIKEN Plant Science Center, Yokohama, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
170
|
Holdsworth MJ, Bentsink L, Soppe WJJ. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. THE NEW PHYTOLOGIST 2008; 179:33-54. [PMID: 18422904 DOI: 10.1111/j.1469-8137.2008.02437.x] [Citation(s) in RCA: 553] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The transition between dormancy and germination represents a critical stage in the life cycle of higher plants and is an important ecological and commercial trait. In this review we present current knowledge of the molecular control of this trait in Arabidopsis thaliana, focussing on important components functioning during the developmental phases of seed maturation, after-ripening and imbibition. Establishment of dormancy during seed maturation is regulated by networks of transcription factors with overlapping and discrete functions. Following desiccation, after-ripening determines germination potential and, surprisingly, recent observations suggest that transcriptional and post-transcriptional processes occur in the dry seed. The single-cell endosperm layer that surrounds the embryo plays a crucial role in the maintenance of dormancy, and transcriptomics approaches are beginning to uncover endosperm-specific genes and processes. Molecular genetic approaches have provided many new components of hormone signalling pathways, but also indicate the importance of hormone-independent pathways and of natural variation in key regulatory loci. The influence of environmental signals (particularly light) following after-ripening, and the effect of moist chilling (stratification) are increasingly being understood at the molecular level. Combined postgenomics, physiology and molecular genetics approaches are beginning to provide an unparalleled understanding of the molecular processes underlying dormancy and germination.
Collapse
Affiliation(s)
- Michael J Holdsworth
- Department of Agricultural and Environmental Sciences, School of BioSciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Leónie Bentsink
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Wim J J Soppe
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| |
Collapse
|
171
|
Carrera E, Holman T, Medhurst A, Dietrich D, Footitt S, Theodoulou FL, Holdsworth MJ. Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:214-24. [PMID: 18028281 PMCID: PMC2254144 DOI: 10.1111/j.1365-313x.2007.03331.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/10/2007] [Accepted: 09/17/2007] [Indexed: 05/18/2023]
Abstract
After-ripening (AR) is a time and environment regulated process occurring in the dry seed, which determines the germination potential of seeds. Both metabolism and perception of the phytohormone abscisic acid (ABA) are important in the initiation and maintenance of dormancy. However, molecular mechanisms that regulate the capacity for dormancy or germination through AR are unknown. To understand the relationship between ABA and AR, we analysed genome expression in Arabidopsis thaliana mutants defective in seed ABA synthesis (aba1-1) or perception (abi1-1). Even though imbibed mutant seeds showed no dormancy, they exhibited changes in global gene expression resulting from dry AR that were comparable with changes occurring in wild-type (WT) seeds. Core gene sets were identified that were positively or negatively regulated by dry seed storage. Each set included a gene encoding repression or activation of ABA function (LPP2 and ABA1, respectively), thereby suggesting a mechanism through which dry AR may modulate subsequent germination potential in WT seeds. Application of exogenous ABA to after-ripened WT seeds did not reimpose characteristics of freshly harvested seeds on imbibed seed gene expression patterns. It was shown that secondary dormancy states reinstate AR status-specific gene expression patterns. A model is presented that separates the action of ABA in seed dormancy from AR and dry storage regulated gene expression. These results have major implications for the study of genetic mechanisms altered in seeds as a result of crop domestication into agriculture, and for seed behaviour during dormancy cycling in natural ecosystems.
Collapse
Affiliation(s)
- Esther Carrera
- Crop Performance and Improvement Division, Rothamsted ResearchHarpenden, Hertfordshire AL5 2JQ, UK
| | - Tara Holman
- Department of Agricultural and Environmental Sciences, School of BioSciences, University of NottinghamNottingham LE12 5RD, UK
| | - Anne Medhurst
- Department of Agricultural and Environmental Sciences, School of BioSciences, University of NottinghamNottingham LE12 5RD, UK
| | - Daniela Dietrich
- Crop Performance and Improvement Division, Rothamsted ResearchHarpenden, Hertfordshire AL5 2JQ, UK
- Department of Agricultural and Environmental Sciences, School of BioSciences, University of NottinghamNottingham LE12 5RD, UK
| | - Steven Footitt
- Crop Performance and Improvement Division, Rothamsted ResearchHarpenden, Hertfordshire AL5 2JQ, UK
| | - Frederica L Theodoulou
- Crop Performance and Improvement Division, Rothamsted ResearchHarpenden, Hertfordshire AL5 2JQ, UK
| | - Michael J Holdsworth
- Department of Agricultural and Environmental Sciences, School of BioSciences, University of NottinghamNottingham LE12 5RD, UK
| |
Collapse
|
172
|
Holdsworth MJ, Finch-Savage WE, Grappin P, Job D. Post-genomics dissection of seed dormancy and germination. TRENDS IN PLANT SCIENCE 2008; 13:7-13. [PMID: 18160329 DOI: 10.1016/j.tplants.2007.11.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/19/2007] [Accepted: 11/01/2007] [Indexed: 05/05/2023]
Abstract
Studies of genome expression in Arabidopsis have provided important new information about mechanisms controlling germination and suggest new avenues to explore. Unexpectedly, changes in transcription and protein metabolism were observed in the 'dry'(1) quiescent seed state, suggesting that careful controls are required for seed expression-profiling experiments. Changes in the transcriptome following seed imbibition suggest a dynamic relationship between RNAs 'stored' from seed maturation, and synthesis of new RNAs related to post-imbibition germinating- or dormant-seed states. Recent post-genomics approaches suggest that RNA translation or post-translation are the major levels of control for germination completion and that transcriptome changes might reflect alteration in dormancy status or enhancement of germination vigour and effects on post-germination functions that relate to seedling growth.
Collapse
Affiliation(s)
- Michael J Holdsworth
- Department of Agricultural and Environmental Sciences, University of Nottingham, Nottingham LE12 5RD, UK.
| | | | | | | |
Collapse
|
173
|
Nishimura N, Yoshida T, Kitahata N, Asami T, Shinozaki K, Hirayama T. ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:935-49. [PMID: 17461784 DOI: 10.1111/j.1365-313x.2007.03107.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The phytohormone abscisic acid (ABA) regulates physiologically important stress and developmental responses in plants. To reveal the mechanism of response to ABA, we isolated several novel ABA-hypersensitive Arabidopsis thaliana mutants, named ahg (ABA-hypersensitive germination). ahg1-1 mutants showed hypersensitivity to ABA, NaCl, KCl, mannitol, glucose and sucrose during germination and post-germination growth, but did not display any significant phenotypes in adult plants. ahg1-1 seeds accumulated slightly more ABA before stratification and showed increased seed dormancy. Map-based cloning of AHG1 revealed that ahg1-1 has a nonsense mutation in a gene encoding a novel protein phosphatase 2C (PP2C). We previously showed that the ahg3-1 mutant has a point mutation in the AtPP2CA gene, which encodes another PP2C that has a major role in the ABA response in seeds (Yoshida et al., 2006b). The levels of AHG1 mRNA were higher in dry seeds and increased during late seed maturation--an expression pattern similar to that of ABI5. Transcriptome analysis revealed that, in ABA-treated germinating seeds, many seed-specific genes and ABA-inducible genes were highly expressed in ahg1-1 and ahg3-1 mutants compared with the wild-type. Detailed analysis suggested differences between the functions of AHG1 and AHG3. Dozens of genes were expressed more strongly in the ahg1-1 mutant than in ahg3-1. Promoter-GUS analyses demonstrated both overlapping and distinct expression patterns in seed. In addition, the ahg1-1 ahg3-1 double mutant was more hypersensitive than either monogenic mutant. These results suggest that AHG1 has specific functions in seed development and germination, shared partly with AHG3.
Collapse
Affiliation(s)
- Noriyuki Nishimura
- Laboratory of Environmental Molecular Biology, RIKEN Wako Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
174
|
Carrera E, Holman T, Medhurst A, Peer W, Schmuths H, Footitt S, Theodoulou FL, Holdsworth MJ. Gene expression profiling reveals defined functions of the ATP-binding cassette transporter COMATOSE late in phase II of germination. PLANT PHYSIOLOGY 2007; 143:1669-79. [PMID: 17322332 PMCID: PMC1851828 DOI: 10.1104/pp.107.096057] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Phase II of germination represents a key developmental stage of plant growth during which imbibed seeds either enter stage III of germination, completing the germination process via radicle protrusion, or remain dormant. In this study, we analyzed the influence of the peroxisomal ATP-binding cassette transporter COMATOSE (CTS) on the postimbibition seed transcriptome of Arabidopsis (Arabidopsis thaliana) and also investigated interactions between gibberellin (GA) and CTS function. A novel method for analysis of transcriptome datasets allowed visualization of developmental signatures of seeds, showing that cts-1 retains the capacity to after ripen, indicating a germination block late in phase II. Expression of the key GA biosynthetic genes GA3ox1 and 2 was greatly reduced in cts seeds and genetic analysis suggested that CTS was epistatic to RGL2, a germination-repressing DELLA protein that is degraded by GA. Comparative analysis of seed transcriptome datasets indicated that specific cohorts of genes were influenced by GA and CTS. CTS function was required for expression of the flavonoid biosynthetic pathway. Confocal imaging demonstrated the exclusive accumulation of flavonoids in the epidermis of wild-type seeds. In contrast, flavonoids were absent from cts and kat2-1 mutant seeds, but accumulated following the application of sucrose, indicating an essential role for beta-oxidation in inducing flavonoid biosynthetic genes. These results demonstrate that CTS functions very late in phase II of germination and that its function is required for the expression of specific gene sets related to an important biochemical pathway associated with seedling establishment and survival.
Collapse
Affiliation(s)
- Esther Carrera
- Centro de Genomica, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee HS, Sun TP, Kamiya Y, Choi G. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. THE PLANT CELL 2007; 19:1192-208. [PMID: 17449805 PMCID: PMC1913757 DOI: 10.1105/tpc.107.050153] [Citation(s) in RCA: 317] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Previous work showed that PHYTOCHROME-INTERACTING FACTOR3-LIKE5 (PIL5), a light-labile basic helix-loop-helix protein, inhibits seed germination by repressing GIBBERELLIN 3beta-HYDROXYLASE1 (GA3ox1) and GA3ox2 and activating a gibberellic acid (GA) catabolic gene (GA2ox2). However, we show persistent light-dependent and PIL5-inhibited germination behavior in the absence of both de novo GA biosynthesis and deactivation by GA2ox2, suggesting that PIL5 regulates not only GA metabolism but also GA responsiveness. PIL5 increases the expression of two GA repressor (DELLA) genes, GA-INSENSITIVE (GAI) and REPRESSOR OF GA1-3 (RGA/RGA1), in darkness. The hypersensitivity of gai-t6 rga-28 to red light and the suppression of germination defects of a rga-28 PIL5 overexpression line show the significant role of this transcriptional regulation in seed germination. PIL5 also increases abscisic acid (ABA) levels by activating ABA biosynthetic genes and repressing an ABA catabolic gene. PIL5 binds directly to GAI and RGA promoters but not to GA and ABA metabolic gene promoters. Together, our results show that light signals perceived by phytochromes cause a reduction in the PIL5 protein level, which in turn regulates the transcription of two DELLA genes directly and that of GA and ABA metabolic genes indirectly.
Collapse
Affiliation(s)
- Eunkyoo Oh
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Bethke PC, Libourel IGL, Aoyama N, Chung YY, Still DW, Jones RL. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. PLANT PHYSIOLOGY 2007; 143:1173-88. [PMID: 17220360 PMCID: PMC1820924 DOI: 10.1104/pp.106.093435] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Seed dormancy is a common phase of the plant life cycle, and several parts of the seed can contribute to dormancy. Whole seeds, seeds lacking the testa, embryos, and isolated aleurone layers of Arabidopsis (Arabidopsis thaliana) were used in experiments designed to identify components of the Arabidopsis seed that contribute to seed dormancy and to learn more about how dormancy and germination are regulated in this species. The aleurone layer was found to be the primary determinant of seed dormancy. Embryos from dormant seeds, however, had a lesser growth potential than those from nondormant seeds. Arabidopsis aleurone cells were examined by light and electron microscopy, and cell ultrastructure was similar to that of cereal aleurone cells. Arabidopsis aleurone cells responded to nitric oxide (NO), gibberellin (GA), and abscisic acid, with NO being upstream of GA in a signaling pathway that leads to vacuolation of protein storage vacuoles and abscisic acid inhibiting vacuolation. Molecular changes that occurred in embryos and aleurone layers prior to germination were measured, and these data show that both the aleurone layer and the embryo expressed the NO-associated gene AtNOS1, but only the embryo expressed genes for the GA biosynthetic enzyme GA3 oxidase.
Collapse
Affiliation(s)
- Paul C Bethke
- United States Department of Agriculture, Agricultural Research Service, Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | |
Collapse
|
177
|
Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Hess B, Machácková I, Fischer U, Leubner-Metzger G. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3047-60. [PMID: 17761730 DOI: 10.1093/jxb/erm162] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The control of sugar beet (Beta vulgaris L.) germination by plant hormones was studied by comparing fruits and seeds. Treatment of sugar beet fruits and seeds with gibberellins, brassinosteroids, auxins, cytokinins, and jasmonates or corresponding hormone biosynthesis inhibitors did not appreciably affect radicle emergence of fruits or seeds. By contrast, treatment with ethylene or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) promoted radicle emergence of fruits and seeds. Abscisic acid (ABA) acted as an antagonist of ethylene and inhibited radicle emergence of seeds, but not appreciably of fruits. High endogenous contents of ACC and of ABA were evident in seeds and pericarps of dry mature fruits, but declined early during imbibition. ABA-treatment of seeds and fruits induced seed ACC accumulation while ACC-treatment did not affect the seed ABA content. Transcripts of ACC oxidase (ACO, ethylene-forming enzyme) and ABA 8'-hydroxylase (CYP707A, ABA-degrading enzyme) accumulate in fruits and seeds upon imbibition. ABA and ACC and the pericarp did not affect the seed CYP707A transcript levels. By contrast, seed ACO transcript accumulation was promoted by ABA and by pericarp removal, but not by ACC. Quantification of the endogenous ABA and ACC contents, ABA and ACC leaching, and ethylene evolution, demonstrate that an embryo-mediated active ABA extrusion system is involved in keeping the endogenous seed ABA content low by 'active ABA leaching', while the pericarp restricts ACC leaching during imbibition. Sugar beet radicle emergence appears to be controlled by the pericarp, by ABA and ACC leaching, and by an ABA-ethylene antagonism that affects ACC biosynthesis and ACO gene expression.
Collapse
Affiliation(s)
- Katrin Hermann
- Institute of Biology II, Botany/Plant Physiology, Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, D-79104 Freiburg i. Br., Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Abstract
Seed dormancy is an innate seed property that defines the environmental conditions in which the seed is able to germinate. It is determined by genetics with a substantial environmental influence which is mediated, at least in part, by the plant hormones abscisic acid and gibberellins. Not only is the dormancy status influenced by the seed maturation environment, it is also continuously changing with time following shedding in a manner determined by the ambient environment. As dormancy is present throughout the higher plants in all major climatic regions, adaptation has resulted in divergent responses to the environment. Through this adaptation, germination is timed to avoid unfavourable weather for subsequent plant establishment and reproductive growth. In this review, we present an integrated view of the evolution, molecular genetics, physiology, biochemistry, ecology and modelling of seed dormancy mechanisms and their control of germination. We argue that adaptation has taken place on a theme rather than via fundamentally different paths and identify similarities underlying the extensive diversity in the dormancy response to the environment that controls germination.
Collapse
|