151
|
Liu ZW, Zhu HT, Chen KL, Dong X, Wei J, Qiu C, Xue JH. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol 2013; 12:158. [PMID: 24180212 PMCID: PMC4176998 DOI: 10.1186/1475-2840-12-158] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/29/2013] [Indexed: 12/12/2022] Open
Abstract
Background Endoplasmic reticulum (ER) stress is considered one of the mechanisms contributing to reactive oxygen species (ROS)- mediated cell apoptosis. In diabetic cardiomyopathy (DCM), cell apoptosis is generally accepted as the etiological factor and closely related to cardiac ROS generation. ER stress is proposed the link between ROS and cell apoptosis; however, the signaling pathways and their roles in participating ER stress- induced apoptosis in DCM are still unclear. Methods In this study, we investigated the signaling transductions in ROS- dependent ER stress- induced cardiomocyte apoptosis in animal model of DCM. Moreover, in order to clarify the roles of IRE1 (inositol - requiring enzyme-1), PERK (protein kinase RNA (PKR)- like ER kinase) and ATF6 (activating transcription factor-6) in conducting apoptotic signal in ROS- dependent ER stress- induced cardiomocyte apoptosis, we further investigated apoptosis in high- glucose incubated cardiomyocytes with IRE1, ATF6 and PERK- knocked down respectively. Results we demonstrated that the ER stress sensors, referred as PERK, IRE1 and ATF6, were activated in ROS- mediated ER stress- induced cell apoptosis in rat model of DCM which was characterized by cardiac pump and electrical dysfunctions. The deletion of PERK in myocytes exhibited stronger protective effect against apoptosis induced by high- glucose incubation than deletion of ATF6 or IRE in the same myocytes. By subcellular fractionation, rather than ATF6 and IRE1, in primary cardiomyocytes, PERK was found a component of MAMs (mitochondria-associated endoplasmic reticulum membranes) which was the functional and physical contact site between ER and mitochondria. Conclusions ROS- stimulated activation of PERK signaling pathway takes the major responsibility rather than IRE1 or ATF6 signaling pathways in ROS- medicated ER stress- induced myocyte apoptosis in DCM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jia-Hong Xue
- Department of Cardiology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
152
|
Tong M, Longato L, Ramirez T, Zabala V, Wands JR, de la Monte SM. Therapeutic reversal of chronic alcohol-related steatohepatitis with the ceramide inhibitor myriocin. Int J Exp Pathol 2013; 95:49-63. [PMID: 24456332 DOI: 10.1111/iep.12052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 08/18/2013] [Indexed: 12/13/2022] Open
Abstract
Alcohol-related liver disease (ALD) is associated with steatohepatitis and insulin resistance. Insulin resistance impairs growth and disrupts lipid metabolism in hepatocytes. Dysregulated lipid metabolism promotes ceramide accumulation and oxidative stress, leading to lipotoxic states that activate endoplasmic reticulum (ER) stress pathways and worsen inflammation and insulin resistance. In a rat model of chronic alcohol feeding, we characterized the effects of a ceramide inhibitor, myriocin, on the histopathological and ultrastructural features of steatohepatitis, and the biochemical and molecular indices of hepatic steatosis, insulin resistance and ER stress. Myriocin reduced the severity of alcohol-related steatohepatitis including the abundance and sizes of lipid droplets and mitochondria, inflammation and architectural disruption of the ER. In addition, myriocin-mediated reductions in hepatic lipid and ceramide levels were associated with constitutive enhancement of insulin signalling through the insulin receptor and IRS-2, reduced hepatic oxidative stress and modulation of ER stress signalling mechanisms. In conclusion, ceramide accumulation in liver mediates tissue injury, insulin resistance and lipotoxicity in ALD. Reducing hepatic ceramide levels can help restore the structural and functional integrity of the liver in chronic ALD due to amelioration of insulin resistance and ER stress. However, additional measures are needed to protect the liver from alcohol-induced necroinflammatory responses vis-à-vis continued alcohol abuse.
Collapse
Affiliation(s)
- Ming Tong
- Liver Research Center, Division of Gastroenterology, Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | | | | | | | | |
Collapse
|
153
|
Separovic D, Breen P, Boppana NB, Van Buren E, Joseph N, Kraveka JM, Rahmaniyan M, Li L, Gudz TI, Bielawska A, Bai A, Bielawski J, Pierce JS, Korbelik M. Increased killing of SCCVII squamous cell carcinoma cells after the combination of Pc 4 photodynamic therapy and dasatinib is associated with enhanced caspase-3 activity and ceramide synthase 1 upregulation. Int J Oncol 2013; 43:2064-72. [PMID: 24126464 PMCID: PMC3834346 DOI: 10.3892/ijo.2013.2132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/06/2013] [Indexed: 02/01/2023] Open
Abstract
Photodynamic therapy (PDT) is not always effective as an anticancer treatment, therefore, PDT is combined with other anticancer agents for improved efficacy. The combination of dasatinib and PDT with the silicone phthalocyanine photosensitizer Pc 4 was assessed for increased killing of SCCVII mouse squamous cell carcinoma cells, a preclinical model of head and neck squamous cell carcinoma, using apoptotic markers and colony formation as experimental end-points. Because each of these treatments regulates the metabolism of the sphingolipid ceramide, their effects on mRNA levels of ceramide synthase, a ceramide-producing enzyme, and the sphingolipid profile were determined. PDT + dasatinib induced an additive loss of clonogenicity. Unlike PDT alone or PDT + dasatinib, dasatinib induced zVAD-fmk-dependent cell killing. PDT or dasatinib-induced caspase-3 activation was potentiated after the combination. PDT alone induced mitochondrial depolarization, and the effect was inhibited after the combination. Annexin V+ and propidium iodide+ cells remained at control levels after treatments. In contrast to PDT alone, dasatinib induced upregulation of ceramide synthase 1 mRNA, and the effect was enhanced after the combination. Dasatinib induced a modest increase in C20:1-and C22-ceramide but had no effect on total ceramide levels. PDT increased the levels of 12 individual ceramides and total ceramides, and the addition of dasatinib did not affect these increases. PDT alone decreased substantially sphingosine levels and inhibited the activity of acid ceramidase, an enzyme that converts ceramide to sphingosine. The data suggest that PDT-induced increases in ceramide levels do not correlate with ceramide synthase mRNA levels but rather with inhibition of ceramidase. Cell killing was zVAD-fmk-sensitive after dasatinib but not after either PDT or the combination and enhanced cell killing after the combination correlated with potentiated caspase-3 activation and upregulation of ceramide synthase 1 mRNA but not the production of ceramide. The data imply potential significance of the combination for cancer treatment.
Collapse
Affiliation(s)
- Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Emerging roles of lipids in BCL-2 family-regulated apoptosis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1542-54. [DOI: 10.1016/j.bbalip.2013.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/28/2013] [Accepted: 03/02/2013] [Indexed: 01/06/2023]
|
155
|
Jiang W, Ogretmen B. Autophagy paradox and ceramide. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:783-92. [PMID: 24055889 DOI: 10.1016/j.bbalip.2013.09.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/22/2013] [Accepted: 09/10/2013] [Indexed: 12/30/2022]
Abstract
Sphingolipid molecules act as bioactive lipid messengers and exert their actions on the regulation of various cellular signaling pathways. Sphingolipids play essential roles in numerous cellular functions, including controlling cell inflammation, proliferation, death, migration, senescence, tumor metastasis and/or autophagy. Dysregulated sphingolipid metabolism has been also implicated in many human cancers. Macroautophagy (referred to here as autophagy) "self-eating" is characterized by nonselective sequestering of cytosolic materials by an isolation membrane, which can be either protective or lethal for cells. Ceramide (Cer), a central molecule of sphingolipid metabolism, has been extensively implicated in the control of autophagy. The increasing evidence suggests that Cer is highly involved in mediating two opposing autophagic pathways, which regulate either cell survival or death, which is referred here as autophagy paradox. However, the underlying mechanism that regulates the autophagy paradox remains unclear. Therefore, this review focuses on recent studies with regard to the regulation of autophagy by Cer and elucidates the roles and mechanisms of action of Cer in controlling autophagy paradox. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Wenhui Jiang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Room 512A, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Room 512A, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Room 512A, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Room 512A, Charleston, SC 29425, USA.
| |
Collapse
|
156
|
Uchida Y. Ceramide signaling in mammalian epidermis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:453-62. [PMID: 24055887 DOI: 10.1016/j.bbalip.2013.09.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 12/12/2022]
Abstract
Ceramide, the backbone structure of all sphingolipids, as well as a minor component of cellular membranes, has a unique role in the skin, by forming the epidermal permeability barrier at the extracellular domains of the outermost layer of the skin, the stratum corneum, which is required for terrestrial mammalian survival. In contrast to the role of ceramide in forming the permeability barrier, the signaling roles of ceramide and its metabolites have not yet been recognized. Ceramide and/or its metabolites regulate proliferation, differentiation, and apoptosis in epidermal keratinocytes. Recent studies have further demonstrated that a ceramide metabolite, sphingosine-1-phosphate, modulates innate immune function. Ceramide has already been applied to therapeutic approaches for treatment of eczema associated with attenuated epidermal permeability barrier function. Pharmacological modulation of ceramide and its metabolites' signaling can also be applied to cutaneous disease prevention and therapy. The author here describes the signaling roles of ceramide and its metabolites in mammalian cells and tissues, including the epidermis. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Yoshikazu Uchida
- Department of Dermatology, University of California, San Francisco, CA, USA; School of Medicine, University of California, San Francisco, CA, USA; Dermatology Service and Research Unit, Veterans Affairs Medical Center, San Francisco, CA, USA; Northern California Institute for Research and Education, San Francisco, CA, USA.
| |
Collapse
|
157
|
Park JW, Park WJ, Futerman AH. Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:671-81. [PMID: 24021978 DOI: 10.1016/j.bbalip.2013.08.019] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 01/10/2023]
Abstract
Ceramide is located at a key hub in the sphingolipid metabolic pathway and also acts as an important cellular signaling molecule. Ceramide contains one acyl chain which is attached to a sphingoid long chain base via an amide bond, with the acyl chain varying in length and degree of saturation. The identification of a family of six mammalian ceramide synthases (CerS) that synthesize ceramide with distinct acyl chains, has led to significant advances in our understanding of ceramide biology, including further delineation of the role of ceramide in various pathophysiologies in both mice and humans. Since ceramides, and the complex sphingolipids generated from ceramide, are implicated in disease, the CerS might potentially be novel targets for therapeutic intervention in the diseases in which the ceramide acyl chain length is altered. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Joo-Won Park
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158-710, South Korea
| | - Woo-Jae Park
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel; Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-799, South Korea
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
158
|
The impact of sphingosine kinase-1 in head and neck cancer. Biomolecules 2013; 3:481-513. [PMID: 24970177 PMCID: PMC4030949 DOI: 10.3390/biom3030481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a high reoccurrence rate and an extremely low survival rate. There is limited availability of effective therapies to reduce the rate of recurrence, resulting in high morbidity and mortality of advanced cases. Late presentation, delay in detection of lesions, and a high rate of metastasis make HNSCC a devastating disease. This review offers insight into the role of sphingosine kinase-1 (SphK1), a key enzyme in sphingolipid metabolism, in HNSCC. Sphingolipids not only play a structural role in cellular membranes, but also modulate cell signal transduction pathways to influence biological outcomes such as senescence, differentiation, apoptosis, migration, proliferation, and angiogenesis. SphK1 is a critical regulator of the delicate balance between proliferation and apoptosis. The highest expression of SphK1 is found in the advanced stage of disease, and there is a positive correlation between SphK1 expression and recurrent tumors. On the other hand, silencing SphK1 reduces HNSCC tumor growth and sensitizes tumors to radiation-induced death. Thus, SphK1 plays an important and influential role in determining HNSCC proliferation and metastasis. We discuss roles of SphK1 and other sphingolipids in HNSCC development and therapeutic strategies against HNSCC.
Collapse
|
159
|
Jiang Y, DiVittore NA, Young MM, Jia Z, Xie K, Ritty TM, Kester M, Fox TE. Altered sphingolipid metabolism in patients with metastatic pancreatic cancer. Biomolecules 2013; 3:435-48. [PMID: 24970174 PMCID: PMC4030952 DOI: 10.3390/biom3030435] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/10/2013] [Accepted: 07/24/2013] [Indexed: 01/28/2023] Open
Abstract
Although numerous genetic mutations and amplifications have been identified in pancreatic cancer, much of the molecular pathogenesis of the disease remains undefined. While proteomic and transcriptomic analyses have been utilized to probe and characterize pancreatic tumors, lipidomic analyses have not been applied to identify perturbations in pancreatic cancer patient samples. Thus, we utilized a mass spectrometry-based lipidomic approach, focused towards the sphingolipid class of lipids, to quantify changes in human pancreatic cancer tumor and plasma specimens. Subgroup analysis revealed that patients with positive lymph node metastasis have a markedly higher level of ceramide species (C16:0 and C24:1) in their tumor specimens compared to pancreatic cancer patients without nodal disease or to patients with pancreatitis. Also of interest, ceramide metabolites, including phosphorylated (sphingosine- and sphinganine-1-phosphate) and glycosylated (cerebroside) species were elevated in the plasma, but not the pancreas, of pancreatic cancer patients with nodal disease. Analysis of plasma level of cytokine and growth factors revealed that IL-6, IL-8, CCL11 (eotaxin), EGF and IP10 (interferon inducible protein 10, CXCL10) were elevated in patients with positive lymph nodes metastasis, but that only IP10 and EGF directly correlated with several sphingolipid changes. Taken together, these data indicate that sphingolipid metabolism is altered in human pancreatic cancer and associated with advanced disease. Assessing plasma and/or tissue sphingolipids could potentially risk stratify patients in the clinical setting.
Collapse
Affiliation(s)
- Yixing Jiang
- Pennsylvania state Hershey cancer institute, Hershey, PA17033, USA.
| | | | | | - Zhiliang Jia
- Department of gastrointestinal medical oncology, the University of Texas MD Anderson cancer center, Houston, TX77030, USA.
| | - Keping Xie
- Department of gastrointestinal medical oncology, the University of Texas MD Anderson cancer center, Houston, TX77030, USA.
| | - Timothy M Ritty
- Department of orthopedics Pennsylvania state college of medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Mark Kester
- Pennsylvania state Hershey cancer institute, Hershey, PA17033, USA.
| | - Todd E Fox
- Department of pharmacology, Hershey, PA17033, USA.
| |
Collapse
|
160
|
Abstract
Ceramide, a bioactive sphingolipid, is now at the forefront of cancer research. Classically, ceramide is thought to induce death, growth inhibition, and senescence in cancer cells. However, it is now clear that this simple picture of ceramide no longer holds true. Recent studies suggest that there are diverse functions of endogenously generated ceramides, which seem to be context dependent, regulated by subcellular/membrane localization and presence/absence of direct targets of these lipid molecules. For example, different fatty-acid chain lengths of ceramide, such as C(16)-ceramide that can be generated by ceramide synthase 6 (CerS6), have been implicated in cancer cell proliferation, whereas CerS1-generated C(18)-ceramide mediates cell death. The dichotomy of ceramides' function in cancer cells makes some of the metabolic enzymes of ceramide synthesis potential drug targets (such as Cers6) to prevent cancer growth in breast and head and neck cancers. Conversely, activation of CerS1 could be a new therapeutic option for the development of novel strategies against lung and head and neck cancers. This chapter focuses on recent discoveries about the mechanistic details of mainly de novo-generated ceramides and their signaling functions in cancer pathogenesis, and about how these mechanistic information can be translated into clinically relevant therapeutic options for the treatment of cancer.
Collapse
|
161
|
Ebel P, Vom Dorp K, Petrasch-Parwez E, Zlomuzica A, Kinugawa K, Mariani J, Minich D, Ginkel C, Welcker J, Degen J, Eckhardt M, Dere E, Dörmann P, Willecke K. Inactivation of ceramide synthase 6 in mice results in an altered sphingolipid metabolism and behavioral abnormalities. J Biol Chem 2013; 288:21433-21447. [PMID: 23760501 DOI: 10.1074/jbc.m113.479907] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The N-acyl chain length of ceramides is determined by the specificity of different ceramide synthases (CerS). The CerS family in mammals consists of six members with different substrate specificities and expression patterns. We have generated and characterized a mouse line harboring an enzymatically inactive ceramide synthase 6 (CerS6KO) gene and lacz reporter cDNA coding for β-galactosidase directed by the CerS6 promoter. These mice display a decrease in C16:0 containing sphingolipids. Relative to wild type tissues the amount of C16:0 containing sphingomyelin in kidney is ∼35%, whereas we find a reduction of C16:0 ceramide content in the small intestine to about 25%. The CerS6KO mice show behavioral abnormalities including a clasping abnormality of their hind limbs and a habituation deficit. LacZ reporter expression in the brain reveals CerS6 expression in hippocampus, cortex, and the Purkinje cell layer of the cerebellum. Using newly developed antibodies that specifically recognize the CerS6 protein we show that the endogenous CerS6 protein is N-glycosylated and expressed in several tissues of mice, mainly kidney, small and large intestine, and brain.
Collapse
Affiliation(s)
- Philipp Ebel
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | | | - Elisabeth Petrasch-Parwez
- the Department of Neuroanatomy and Molecular Brain Research, Ruhr-University of Bochum, 44801 Bochum, Germany
| | - Armin Zlomuzica
- the Mental Health Research and Treatment Center, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Kiyoka Kinugawa
- the Hôpital Charles Foix, Institut de la longévité, Paris 94205, France,; the Université Pierre et Marie Curie, Neurobiologie des Processus Adaptatifs, Paris 75005, France, and
| | - Jean Mariani
- the Hôpital Charles Foix, Institut de la longévité, Paris 94205, France,; the Université Pierre et Marie Curie, Neurobiologie des Processus Adaptatifs, Paris 75005, France, and
| | - David Minich
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | - Christina Ginkel
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | - Jochen Welcker
- the Department of Neuroscience, Max-Delbrueck-Centrum, Berlin, 13125 Berlin, Germany
| | - Joachim Degen
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES)
| | - Matthias Eckhardt
- the Institute of Biochemistry and Molecular Biology, University of Bonn, 53115 Bonn, Germany
| | - Ekrem Dere
- the Mental Health Research and Treatment Center, Ruhr-University of Bochum, 44780 Bochum, Germany,; the Hôpital Charles Foix, Institut de la longévité, Paris 94205, France,; the Université Pierre et Marie Curie, Neurobiologie des Processus Adaptatifs, Paris 75005, France, and
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, and
| | - Klaus Willecke
- From the Molecular Genetics, Life and Medical Sciences Institute (LIMES),.
| |
Collapse
|
162
|
Characterization of secretory sphingomyelinase activity, lipoprotein sphingolipid content and LDL aggregation in ldlr-/- mice fed on a high-fat diet. Biosci Rep 2013; 32:479-90. [PMID: 22712892 PMCID: PMC3475451 DOI: 10.1042/bsr20120036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The propensity of LDLs (low-density lipoproteins) for aggregation and/or oxidation has been linked to their sphingolipid content, specifically the levels of SM (sphingomyelin) and ceramide. To investigate this association in vivo, ldlr (LDL receptor)-null mice (ldlr−/−) were fed on a modified (atherogenic) diet containing saturated fats and cholesterol. The diet led to significantly elevated SM content in all serum lipoproteins. In contrast, ceramide increased only in the LDL particles. MS-based analyses of the lipid acyl chain composition revealed a marked elevation in C16:0 fatty acid in SM and ceramide, consistent with the prevalence of palmitic acid in the modified diet. The diet also led to increased activity of the S-SMase [secretory SMase (sphingomyelinase)], a protein that is generated by ASMase (acid SMase) and acts on serum LDL. An increased macrophage secretion seemed to be responsible for the elevated S-SMase activity. ASMase-deficient mice (asm−/−/ldlr−/−) lacked S-SMase activity and were protected from diet-induced elevation in LDL ceramide. LDL from asm−/−/ldlr−/− mice fed on the modified diet were less aggregated and oxidized than LDL from asm+/+/ldlr−/− mice. When tested in vitro, the propensity for aggregation was dependent on the SM level: only LDL from animals on modified diet that have high SM content aggregated when treated with recombinant S-SMase. In conclusion, LDL-SM content and S-SMase activity are up-regulated in mice fed on an atherogenic diet. S-SMase mediates diet-induced changes in LDL ceramide content and aggregation. S-SMase effectiveness in inducing aggregation is dependent on diet-induced enrichment of LDL with SM, possibly through increased hepatic synthesis.
Collapse
|
163
|
Russo SB, Tidhar R, Futerman AH, Cowart LA. Myristate-derived d16:0 sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties. J Biol Chem 2013; 288:13397-409. [PMID: 23530041 DOI: 10.1074/jbc.m112.428185] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Myristate is a novel potential substrate for sphingoid base synthesis. RESULTS Myocardial sphingoid base synthesis utilizes myristate; these sphingolipids are functionally non-redundant with canonical sphingoid bases. CONCLUSION d16:0 and d16:1 sphingolipids constitute an appreciable proportion of cardiac dihydrosphingosine and dihydroceramide, with distinct biological roles. SIGNIFICANCE This pool of sphingolipids may play a heretofore unsuspected role in myocardial pathology or protection. The enzyme serine palmitoyltransferase (SPT) catalyzes the formation of the sphingoid base "backbone" from which all sphingolipids are derived. Previous studies have shown that inhibition of SPT ameliorates pathological cardiac outcomes in models of lipid overload, but the metabolites responsible for these phenotypes remain unidentified. Recent in vitro studies have shown that incorporation of the novel subunit SPTLC3 broadens the substrate specificity of SPT, allowing utilization of myristoyl-coenzyme A (CoA) in addition to its canonical substrate palmitoyl-CoA. However, the relevance of these findings in vivo has yet to be determined. The present study sought to determine whether myristate-derived d16 sphingolipids are represented among myocardial sphingolipids and, if so, whether their function and metabolic routes were distinct from those of palmitate-derived d18 sphingolipids. Data showed that d16:0 sphingoid bases occurred in more than one-third of total dihydrosphingosine and dihydroceramides in myocardium, and a diet high in saturated fat promoted their de novo production. Intriguingly, d16-ceramides demonstrated highly limited N-acyl chain diversity, and in vitro enzyme activity assays showed that these bases were utilized preferentially to canonical bases by CerS1. Functional differences between myristate- and palmitate-derived sphingolipids were observed in that, unlike d18 sphingolipids and SPTLC2, d16 sphingolipids and SPTLC3 did not appear to contribute to myristate-induced autophagy, whereas only d16 sphingolipids promoted cell death and cleavage of poly(ADP-ribose) polymerase in cardiomyocytes. Thus, these results reveal a previously unappreciated component of cardiac sphingolipids with functional differences from canonical sphingolipids.
Collapse
Affiliation(s)
- Sarah Brice Russo
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29403, USA
| | | | | | | |
Collapse
|
164
|
Hoeferlin LA, Fekry B, Ogretmen B, Krupenko SA, Krupenko NI. Folate stress induces apoptosis via p53-dependent de novo ceramide synthesis and up-regulation of ceramide synthase 6. J Biol Chem 2013; 288:12880-90. [PMID: 23519469 DOI: 10.1074/jbc.m113.461798] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have investigated the role of ceramide in the cellular adaptation to folate stress induced by Aldh1l1, the enzyme involved in the regulation of folate metabolism. Our previous studies demonstrated that Aldh1l1, similar to folate deficiency, evokes metabolic stress and causes apoptosis in cancer cells. Here we report that the expression of Aldh1l1 in A549 or HCT116 cells results in the elevation of C16-ceramide and a transient up-regulation of ceramide synthase 6 (CerS6) mRNA and protein. Pretreatment with ceramide synthesis inhibitors myriocin and fumonisin B1 or siRNA silencing of CerS6 prevented C16-ceramide accumulation and rescued cells supporting the role of CerS6/C16-ceramide as effectors of Aldh1l1-induced apoptosis. The CerS6 activation by Aldh1l1 and increased ceramide generation were p53-dependent; this effect was ablated in p53-null cells. Furthermore, the expression of wild type p53 but not transcriptionally inactive R175H p53 mutant strongly elevated CerS6. Also, this dominant negative mutant prevented accumulation of CerS6 in response to Aldh1l1, indicating that CerS6 is a transcriptional target of p53. In support of this mechanism, bioinformatics analysis revealed the p53 binding site 3 kb downstream of the CerS6 transcription start. Interestingly, ceramide elevation in response to Aldh1l1 was inhibited by silencing of PUMA, a proapoptotic downstream effector of p53 whereas the transient expression of CerS6 elevated PUMA in a p53-dependent manner indicating reciprocal relationships between ceramide and p53/PUMA pathways. Importantly, folate withdrawal also induced CerS6/C16-ceramide elevation accompanied by p53 accumulation. Overall, these novel findings link folate and de novo ceramide pathways in cellular stress response.
Collapse
Affiliation(s)
- L Alexis Hoeferlin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
165
|
Hage-Sleiman R, Esmerian MO, Kobeissy H, Dbaibo G. p53 and Ceramide as Collaborators in the Stress Response. Int J Mol Sci 2013; 14:4982-5012. [PMID: 23455468 PMCID: PMC3634419 DOI: 10.3390/ijms14034982] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/22/2013] [Accepted: 02/01/2013] [Indexed: 02/08/2023] Open
Abstract
The sphingolipid ceramide mediates various cellular processes in response to several extracellular stimuli. Some genotoxic stresses are able to induce p53-dependent ceramide accumulation leading to cell death. However, in other cases, in the absence of the tumor suppressor protein p53, apoptosis proceeds partly due to the activity of this "tumor suppressor lipid", ceramide. In the current review, we describe ceramide and its roles in signaling pathways such as cell cycle arrest, hypoxia, hyperoxia, cell death, and cancer. In a specific manner, we are elaborating on the role of ceramide in mitochondrial apoptotic cell death signaling. Furthermore, after highlighting the role and mechanism of action of p53 in apoptosis, we review the association of ceramide and p53 with respect to apoptosis. Strikingly, the hypothesis for a direct interaction between ceramide and p53 is less favored. Recent data suggest that ceramide can act either upstream or downstream of p53 protein through posttranscriptional regulation or through many potential mediators, respectively.
Collapse
Affiliation(s)
- Rouba Hage-Sleiman
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +961-1-350-000 (ext. 4883)
| | - Maria O. Esmerian
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| | - Hadile Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| |
Collapse
|
166
|
Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Selvam SP, Ramshesh VK, Peterson YK, Lemasters JJ, Szulc ZM, Bielawski J, Ogretmen B. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 2013; 8:831-8. [PMID: 22922758 PMCID: PMC3689583 DOI: 10.1038/nchembio.1059] [Citation(s) in RCA: 409] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 07/31/2012] [Indexed: 12/23/2022]
Abstract
Mechanisms by which autophagy promotes cell survival or death are unclear. We provide evidence that C(18)-pyridinium ceramide treatment or endogenous C(18)-ceramide generation by ceramide synthase 1 (CerS1) expression mediates autophagic cell death, independent of apoptosis in human cancer cells. C(18)-ceramide-induced lethal autophagy was regulated via microtubule-associated protein 1 light chain 3 β-lipidation, forming LC3B-II, and selective targeting of mitochondria by LC3B-II-containing autophagolysosomes (mitophagy) through direct interaction between ceramide and LC3B-II upon Drp1-dependent mitochondrial fission, leading to inhibition of mitochondrial function and oxygen consumption. Accordingly, expression of mutant LC3B with impaired ceramide binding, as predicted by molecular modeling, prevented CerS1-mediated mitochondrial targeting, recovering oxygen consumption. Moreover, knockdown of CerS1 abrogated sodium selenite-induced mitophagy, and stable LC3B knockdown protected against CerS1- and C(18)-ceramide-dependent mitophagy and blocked tumor suppression in vivo. Thus, these data suggest a new receptor function of ceramide for anchoring LC3B-II autophagolysosomes to mitochondrial membranes, defining a key mechanism for the induction of lethal mitophagy.
Collapse
Affiliation(s)
- R David Sentelle
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Park JW, Park WJ, Kuperman Y, Boura-Halfon S, Pewzner-Jung Y, Futerman AH. Ablation of very long acyl chain sphingolipids causes hepatic insulin resistance in mice due to altered detergent-resistant membranes. Hepatology 2013; 57:525-32. [PMID: 22911490 DOI: 10.1002/hep.26015] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/08/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Sphingolipids are important structural components of cell membranes and act as critical regulators of cell function by modulating intracellular signaling pathways. Specific sphingolipids, such as ceramide, glucosylceramide, and ganglioside GM3, have been implicated in various aspects of insulin resistance, because they have been shown to modify several steps in the insulin signaling pathway, such as phosphorylation of either protein kinase B (Akt) or of the insulin receptor. We now explore the role of the ceramide acyl chain length in insulin signaling by using a ceramide synthase 2 (CerS2) null mouse, which is unable to synthesize very long acyl chain (C22-C24) ceramides. CerS2 null mice exhibited glucose intolerance despite normal insulin secretion from the pancreas. Both insulin receptor and Akt phosphorylation were abrogated in liver, but not in adipose tissue or in skeletal muscle. The lack of insulin receptor phosphorylation in liver correlated with its inability to translocate into detergent-resistant membranes (DRMs). Moreover, DRMs in CerS2 null mice displayed properties significantly different from those in wild-type mice, suggesting that the altered sphingolipid acyl chain length directly affects insulin receptor translocation and subsequent signaling. CONCLUSION We conclude that the sphingolipid acyl chain composition of liver regulates insulin signaling by modifying insulin receptor translocation into membrane microdomains.
Collapse
Affiliation(s)
- Joo-Won Park
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
168
|
Russo SB, Baicu CF, Van Laer A, Geng T, Kasiganesan H, Zile MR, Cowart LA. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J Clin Invest 2013; 122:3919-30. [PMID: 23023704 DOI: 10.1172/jci63888] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/02/2012] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiomyopathy (DbCM), which consists of cardiac hypertrophy and failure in the absence of traditional risk factors, is a major contributor to increased heart failure risk in type 2 diabetes patients. In rodent models of DbCM, cardiac hypertrophy and dysfunction have been shown to depend upon saturated fatty acid (SFA) oversupply and de novo sphingolipid synthesis. However, it is not known whether these effects are mediated by bulk SFAs and sphingolipids or by individual lipid species. In this report, we demonstrate that a diet high in SFA induced cardiac hypertrophy, left ventricular systolic and diastolic dysfunction, and autophagy in mice. Furthermore, treatment with the SFA myristate, but not palmitate, induced hypertrophy and autophagy in adult primary cardiomyocytes. De novo sphingolipid synthesis was required for induction of all pathological features observed both in vitro and in vivo, and autophagy was required for induction of hypertrophy in vitro. Finally, we implicated a specific ceramide N-acyl chain length in this process and demonstrated a requirement for (dihydro)ceramide synthase 5 in cardiomyocyte autophagy and myristate-mediated hypertrophy. Thus, this report reveals a requirement for a specific sphingolipid metabolic route and dietary SFAs in the molecular pathogenesis of lipotoxic cardiomyopathy and hypertrophy.
Collapse
Affiliation(s)
- Sarah Brice Russo
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Ramirez T, Tong M, Chen WC, Nguyen QG, Wands JR, de la Monte SM. Chronic alcohol-induced hepatic insulin resistance and endoplasmic reticulum stress ameliorated by peroxisome-proliferator activated receptor-δ agonist treatment. J Gastroenterol Hepatol 2013; 28:179-87. [PMID: 22988930 PMCID: PMC4406771 DOI: 10.1111/j.1440-1746.2012.07256.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Chronic alcoholic liver disease is associated with hepatic insulin resistance, dysregulated lipid metabolism with increased toxic lipid (ceramide) accumulation, lipid peroxidation, and oxidative and endoplasmic reticulum (ER) stress. Peroxisome-proliferator activated receptor (PPAR) agonists are insulin sensitizers that can restore hepatic insulin responsiveness in both alcohol and non-alcohol-related steatohepatitis. Herein, we demonstrate that treatment with a PPAR-δ agonist enhances insulin signaling and reduces the severities of ER stress and ceramide accumulation in an experimental model of ethanol-induced steatohepatitis. METHODS Adult male Long Evans rats were pair fed with isocaloric liquid diets containing 0% or 37% ethanol (caloric) for 8 weeks. After 3 weeks on the diets, rats were treated with vehicle or PPAR-δ agonist twice weekly by i.p. injection. RESULTS Ethanol-fed rats developed steatohepatitis with inhibition of signaling through the insulin and insulin-like growth factor-1 receptors, and Akt activated pathways. Despite continued ethanol exposure, PPAR-δ agonist co-treatments increased Akt activation, reduced multiple molecular indices of ER stress and steatohepatitis. CONCLUSIONS These results suggest that PPAR-δ agonist rescue of chronic alcoholic liver disease is mediated by enhancement of insulin signaling through Akt/metabolic pathways that reduce lipotoxicity and ER stress.
Collapse
Affiliation(s)
- Teresa Ramirez
- Liver Research Center and Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | | | | | | | | | | |
Collapse
|
170
|
Russo SB, Ross JS, Cowart LA. Sphingolipids in obesity, type 2 diabetes, and metabolic disease. Handb Exp Pharmacol 2013:373-401. [PMID: 23563667 DOI: 10.1007/978-3-7091-1511-4_19] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolic disease, including obesity and type 2 diabetes, constitutes a major emerging health crisis in Western nations. Although the symptoms and clinical pathology and physiology of these conditions are well understood, the molecular mechanisms underlying the disease process have largely remained obscure. Sphingolipids, a lipid class with both signaling and structural properties, have recently emerged as key players in most major tissues affected by diabetes and are required components in the molecular etiology of this disease. Indeed, sphingolipids have been shown to mediate loss of insulin sensitivity, to promote the characteristic diabetic proinflammatory state, and to induce cell death and dysfunction in important organs such as the pancreas and heart. Furthermore, plasma sphingolipid levels are emerging as potential biomarkers for the decompensation of insulin resistance to frank type 2 diabetes. Despite these discoveries, the roles of specific sphingolipid species and sphingolipid metabolic pathways remain obscure, and newly developed experimental approaches must be employed to elucidate the detailed molecular mechanisms necessary for rational drug development and other clinical applications.
Collapse
Affiliation(s)
- S B Russo
- Department of Biochemistry and Molecular Biology, The Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
171
|
Dihydroceramide delays cell cycle G1/S transition via activation of ER stress and induction of autophagy. Int J Biochem Cell Biol 2012; 44:2135-43. [DOI: 10.1016/j.biocel.2012.08.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/18/2012] [Accepted: 08/29/2012] [Indexed: 12/31/2022]
|
172
|
Young MM, Kester M, Wang HG. Sphingolipids: regulators of crosstalk between apoptosis and autophagy. J Lipid Res 2012; 54:5-19. [PMID: 23152582 DOI: 10.1194/jlr.r031278] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Apoptosis and autophagy are two evolutionarily conserved processes that maintain homeostasis during stress. Although the two pathways utilize fundamentally distinct machinery, apoptosis and autophagy are highly interconnected and share many key regulators. The crosstalk between apoptosis and autophagy is complex, as autophagy can function to promote cell survival or cell death under various cellular conditions. The molecular mechanisms of crosstalk are beginning to be elucidated and have critical implications for the treatment of various diseases, such as cancer. Sphingolipids are a class of bioactive lipids that mediate many key cellular processes, including apoptosis and autophagy. By targeting several of the shared regulators, sphingolipid metabolites differentially regulate the induction of apoptosis and autophagy. Importantly, individual sphingolipid species appear to "switch" autophagy toward cell survival (e.g., sphingosine-1-phosphate) or cell death (e.g., ceramide, gangliosides). This review assesses the current understanding of sphingolipid-induced apoptosis and autophagy to address how sphingolipids mediate the "switch" between the cell survival and cell death. As sphingolipid metabolism is frequently dysregulated in cancer, sphingolipid-modulating agents, or sphingomimetics, have emerged as a novel chemotherapeutic strategy. Ultimately, a greater understanding of sphingolipid-mediated crosstalk between apoptosis and autophagy may be critical for enhancing the chemotherapeutic efficacy of these agents.
Collapse
Affiliation(s)
- Megan M Young
- Department of Pharmacology and Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | |
Collapse
|
173
|
Kajiwara K, Muneoka T, Watanabe Y, Karashima T, Kitagaki H, Funato K. Perturbation of sphingolipid metabolism induces endoplasmic reticulum stress-mediated mitochondrial apoptosis in budding yeast. Mol Microbiol 2012; 86:1246-61. [PMID: 23062268 DOI: 10.1111/mmi.12056] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2012] [Indexed: 12/26/2022]
Abstract
Sphingolipids are a class of membrane lipids conserved from yeast to mammals which determine whether a cell dies or survives. Perturbations in sphingolipid metabolism cause apoptotic cell death. Recent studies indicate that reduced sphingolipid levels trigger the cell death, but little is known about the mechanisms. In the budding yeast Saccharomyces cerevisiae, we show that reduction in complex sphingolipid levels causes loss of viability, most likely due to the induction of mitochondria-dependent apoptotic cell death pathway, accompanied by changes in mitochondrial and endoplasmic reticulum morphology and endoplasmic reticulum stress. Elevated cytosolic free calcium is required for the loss of viability. These results indicate that complex sphingolipids are essential for maintaining endoplasmic reticulum homeostasis and suggest that perturbation in complex sphingolipid levels activates an endoplasmic reticulum stress-mediated and calcium-dependent pathway to propagate apoptotic signals to the mitochondria.
Collapse
Affiliation(s)
- Kentaro Kajiwara
- Department of Bioresource Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | | | | | | | | | |
Collapse
|
174
|
Yao S, Zong C, Zhang Y, Sang H, Yang M, Jiao P, Fang Y, Yang N, Song G, Qin S. Activating transcription factor 6 mediates oxidized LDL-induced cholesterol accumulation and apoptosis in macrophages by up-regulating CHOP expression. J Atheroscler Thromb 2012; 20:94-107. [PMID: 23037953 DOI: 10.5551/jat.13425] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM This study was to explore whether activating transcription factor 6 (ATF6), an important sensor to endoplasmic reticulum (ER) stress, would mediate oxidized low-density lipoprotein (ox-LDL)- induced cholesterol accumulation and apoptosis in cultured macrophages and the underlying molecular mechanisms. METHODS Intracellular lipid droplets and total cholesterol levels were assayed by oil red O staining and enzymatic colorimetry, respectively. Cell viability and apoptosis were determined using MTT assay and AnnexinV-FITC apoptosis detection kit, respectively. The nuclear translocation of ATF6 in cells was detected by immunofluorescence analysis. Protein and mRNA levels were examined by Western blot analysis and real time-PCR, respectively. ATF6 siRNA was transfected to RAW264.7 cells by lipofectamin. RESULTS Exposure of cells to ox-LDL induced glucose-regulated protein 78 (GRP78). C/EBP homologous protein (CHOP), a key-signaling component of ER stress-induced apoptosis, was up-regulated in ox-LDL-treated cells. ATF6, a factor that positively regulates CHOP expression, was activated by ox-LDL in a concentration- and time- dependent manner. The role of the ATF6-mediated ER stress pathway was further confirmed through the siRNA-mediated knockdown of ATF6, which attenuated ox-LDL-induced upregulation of CHOP, cholesterol accumulation and apoptosis in macrophages. In addition, the phosphorylation of double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), another factor that positively regulates CHOP expression, was induced in the presence of ox-LDL, and PERK-specific siRNA also inhibited the ox-LDL-induced upregulation of CHOP and apoptosis in RAW264.7 cells. CONCLUSION These results demonstrate that ER stress-related proteins, particularly ATF6 and its downstream molecule CHOP, are involved in ox-LDL-induced cholesterol accumulation and apoptosis in macrophages.
Collapse
Affiliation(s)
- Shutong Yao
- Institute of Atherosclerosis, Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Taian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Ramirez T, Longato L, Dostalek M, Tong M, Wands JR, de la Monte SM. Insulin resistance, ceramide accumulation and endoplasmic reticulum stress in experimental chronic alcohol-induced steatohepatitis. Alcohol Alcohol 2012; 48:39-52. [PMID: 22997409 DOI: 10.1093/alcalc/ags106] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS Chronic alcohol abuse causes steatohepatitis with insulin resistance, which impairs hepatocellular growth, survival and metabolism. However, growing evidence supports the concept that progressive alcohol-related liver injury may be mediated by concurrent mal-signaling through other networks that promote insulin resistance, e.g. pro-inflammatory, pro-ceramide and endoplasmic reticulum (ER) stress cascades. METHODS Using the Long Evans rat model of chronic ethanol feeding, we characterized the histopathologic and ultrastructural features of steatohepatitis in relation to biochemical and molecular indices of tissue injury, inflammation, insulin resistance, dysregulated lipid metabolism and ER stress. RESULTS Chronic steatohepatitis with early chicken-wire fibrosis was associated with enlargement of mitochondria and disruption of ER structure by electron microscopy, elevated indices of lipid storage, lipid peroxidation and DNA damage, increased activation of pro-inflammatory cytokines, impaired signaling through the insulin receptor (InR), InR substrate-1, Akt, ribosomal protein S6 kinase and proline-rich Akt substrate 40 kDa, glycogen synthase kinase 3β activation and constitutive up-regulation of ceramide and ER stress-related genes. Liquid chromatography coupled with tandem mass spectrometry demonstrated altered ceramide profiles with higher levels of C14 and C18, and reduced C16 species in ethanol-exposed livers. CONCLUSION The histopathologic and ultrastructural abnormalities in chronic alcohol-related steatohepatitis are associated with persistent hepatic insulin resistance and pro-inflammatory cytokine activation, dysregulated lipid metabolism with altered ceramide profiles and both ER and oxidative stress. Corresponding increases in lipid peroxidation, DNA damage and protein carbonylation may have contributed to the chronicity and progression of disease. The findings herein suggest that multi-pronged therapeutic strategies may be needed for effective treatment of chronic alcoholic liver disease in humans.
Collapse
Affiliation(s)
- Teresa Ramirez
- Liver Research Center, Divisions of Gastroenterology and Neuropathology, Departments of Medicine, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Claverick Street, Providence, RI 02903, USA
| | | | | | | | | | | |
Collapse
|
176
|
Park SS, Kim MO, Yun SP, Ryu JM, Park JH, Seo BN, Jeon JH, Han HJ. C(16)-Ceramide-induced F-actin regulation stimulates mouse embryonic stem cell migration: involvement of N-WASP/Cdc42/Arp2/3 complex and cofilin-1/α-actinin. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:350-60. [PMID: 22989773 DOI: 10.1016/j.bbalip.2012.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/31/2012] [Accepted: 09/08/2012] [Indexed: 01/15/2023]
Abstract
Ceramide, a major structural element in the cellular membrane, is a key regulatory factor in various cellular behaviors that are dependent on ceramide-induced association of specific proteins. However, molecular mechanisms that regulate ceramide-induced embryonic stem cell (ESC) migration are still not well understood. Thus, we investigated the effect of ceramide on migration and its related signal pathways in mouse ESCs. Among ceramide species with different fatty acid chain lengths, C(16)-Cer increased migration of mouse ESCs in a dose- (≥1μM) and time-dependent (≥8h) manners, as determined by the cell migration assay. C(16)-Cer (10μM) increased protein-kinase C (PKC) phosphorylation. Subsequently, C(16)-Cer increased focal adhesion kinase (FAK) and Paxillin phosphorylation, which were inhibited by PKC inhibitor Bisindolylmaleimide I (1μM). When we examined for the downstream signaling molecules, C(16)-Cer activated small G protein (Cdc42) and increased the formation of complex with Neural Wiskott-Aldrich Syndrome Protein (N-WASP)/Cdc42/Actin-Related Protein 2/3 (Arp2/3). This complex formation was disrupted by FAK- and Paxillin-specific siRNAs. Furthermore, C(16)-Cer-induced increase of filamentous actin (F-actin) expression was inhibited by Cdc42-, N-WASP-, and Arp2/3-specific siRNAs, respectively. Indeed, C(16)-Cer increased cofilin-1/F-actin interaction or F-actin/α-actinin-1 and α-actinin-4 interactions in the cytoskeleton compartment, which was reversed by Cdc42-specific siRNA. Finally, C(16)-Cer-induced increase of cell migration was inhibited by knocking down each signal pathway-related molecules with siRNA or inhibitors. In conclusion, C(16)-Cer enhances mouse ESC migration through the regulation of PKC and FAK/Paxillin-dependent N-WASP/Cdc42/Arp2/3 complex formation as well as through promoting the interaction between cofilin-1 or α-actinin-1/-4 and F-actin.
Collapse
Affiliation(s)
- Su Shin Park
- Department of Veterinary Physiology, Biotherapy Human Resources Center (BK 21), College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Separovic D, Breen P, Joseph N, Bielawski J, Pierce JS, VAN Buren E, Gudz TI. siRNA-mediated down-regulation of ceramide synthase 1 leads to apoptotic resistance in human head and neck squamous carcinoma cells after photodynamic therapy. Anticancer Res 2012; 32:2479-2485. [PMID: 22753704 PMCID: PMC3934872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND The effectiveness of photodynamic therapy (PDT) for cancer treatment correlates with apoptosis. We previously observed that the knockdown of ceramide synthase 6, an enzyme from the de novo sphingolipid biosynthesis pathway, is associated with marked reduction in C18-dihydroceramide and makes cells resistant to apoptosis post-PDT. Down-regulation of ceramide synthase 1 (CERS1) can also render cells resistant to anticancer drugs. AIM To explore the impact of CERS1 knockdown on apoptosis and the sphingolipid profile, post-PDT, with the silicone phthalocyanine Pc 4, in a human head and neck squamous carcinoma cell line. MATERIALS AND METHODS Besides siRNA transfection and PDT treatment, the following methods were used: immunoblotting for protein expression, mass spectrometry for sphingolipid analysis, spectroflurometry and flow cytometry for apoptosis detection, and trypan blue assay for cell viability evaluation. RESULTS CERS1 knockdown led to inhibition of PDT-induced caspase 3-like (DEVDase) activation, of apoptosis and cell death. CERS1 knockdown was associated with global and selective decreases in ceramides and dihydroceramides, in particular C18-, C18:1- and C20-ceramide post-PDT. CONCLUSION Our novel findings are consistent with the notion that CERS1 regulates apoptotic resistance to PDT, partly via C18- and C20-ceramide, and that CERS1 is a molecular target for controlling resistance to PDT.
Collapse
Affiliation(s)
- Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Paul Breen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Nicholas Joseph
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina Charleston, SC, U.S.A
| | - Jason S Pierce
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina Charleston, SC, U.S.A
| | - Eric VAN Buren
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Tatyana I Gudz
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina Charleston, SC, U.S.A
- Department of Neuroscience, Medical University of South Carolina Charleston, SC, U.S.A
| |
Collapse
|
178
|
Kim HJ, Qiao Q, Toop HD, Morris JC, Don AS. A fluorescent assay for ceramide synthase activity. J Lipid Res 2012; 53:1701-7. [PMID: 22661289 DOI: 10.1194/jlr.d025627] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The sphingolipids are a diverse family of lipids with important roles in membrane compartmentalization, intracellular signaling, and cell-cell recognition. The central sphingolipid metabolite is ceramide, formed by the transfer of a variable length fatty acid from coenzyme A to a sphingoid base, generally sphingosine or dihydrosphingosine (sphinganine) in mammals. This reaction is catalyzed by a family of six ceramide synthases (CerS1-6). CerS activity is usually assayed using either radioactive substrates or LC-MS/MS. We describe a CerS assay with fluorescent, NBD-labeled sphinganine as substrate. The assay is readily able to detect endogenous CerS activity when using amounts of cell or tissue homogenate protein that are lower than those reported for the radioactive assay, and the Michaelis-Menten constant was essentially the same for NBD-sphinganine and unlabeled sphinganine, indicating that NBD-sphinganine is a good substrate for these enzymes. Using our assay, we confirm that the new clinical immunosuppressant FTY720 is a competitive inhibitor of CerS activity, and show that inhibition requires the compound's lipid tail and amine headgroup. In summary, we describe a fluorescent assay for CerS activity that circumvents the need to use radioactive substrates, while being more accessible and cheaper than LC-MS based assays.
Collapse
Affiliation(s)
- Hyun Joon Kim
- Lowy Cancer Research Centre, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, 2052, NSW, Australia
| | | | | | | | | |
Collapse
|
179
|
Jazwinski SM, Kriete A. The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunction. Front Physiol 2012; 3:139. [PMID: 22629248 PMCID: PMC3354551 DOI: 10.3389/fphys.2012.00139] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/26/2012] [Indexed: 12/03/2022] Open
Abstract
Mitochondrial dysfunction activates intracellular signaling pathways that impact yeast longevity, and the best known of these pathways is the retrograde response. More recently, similar responses have been discerned in other systems, from invertebrates to human cells. However, the identity of the signal transducers is either unknown or apparently diverse, contrasting with the well-established signaling module of the yeast retrograde response. On the other hand, it has become equally clear that several other pathways and processes interact with the retrograde response, embedding it in a network responsive to a variety of cellular states. An examination of this network supports the notion that the master regulator NFκB aggregated a variety of mitochondria-related cellular responses at some point in evolution and has become the retrograde transcription factor. This has significant consequences for how we view some of the deficits associated with aging, such as inflammation. The support for NFκB as the retrograde response transcription factor is not only based on functional analyses. It is bolstered by the fact that NFκB can regulate Myc–Max, which is activated in human cells with dysfunctional mitochondria and impacts cellular metabolism. Myc–Max is homologous to the yeast retrograde response transcription factor Rtg1–Rtg3. Further research will be needed to disentangle the pro-aging from the anti-aging effects of NFκB. Interestingly, this is also a challenge for the complete understanding of the yeast retrograde response.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Department of Medicine, Tulane Center for Aging, Tulane University Health Sciences Center New Orleans, LA, USA
| | | |
Collapse
|
180
|
Insulin resistance, ceramide accumulation, and endoplasmic reticulum stress in human chronic alcohol-related liver disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:479348. [PMID: 22577490 PMCID: PMC3347750 DOI: 10.1155/2012/479348] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/28/2011] [Accepted: 01/10/2012] [Indexed: 12/14/2022]
Abstract
Background. Chronic alcohol-related liver disease (ALD) is mediated by insulin resistance, mitochondrial dysfunction, inflammation, oxidative stress, and DNA damage. Recent studies suggest that dysregulated lipid metabolism with accumulation of ceramides, together with ER stress potentiate hepatic insulin resistance and may cause steatohepatitis to progress. Objective. We examined the degree to which hepatic insulin resistance in advanced human ALD is correlated with ER stress, dysregulated lipid metabolism, and ceramide accumulation. Methods. We assessed the integrity of insulin signaling through the Akt pathway and measured proceramide and ER stress gene expression, ER stress signaling proteins, and ceramide profiles in liver tissue. Results. Chronic ALD was associated with increased expression of insulin, IGF-1, and IGF-2 receptors, impaired signaling through IGF-1R and IRS1, increased expression of multiple proceramide and ER stress genes and proteins, and higher levels of the C14, C16, C18, and C20 ceramide species relative to control. Conclusions. In human chronic ALD, persistent hepatic insulin resistance is associated with dysregulated lipid metabolism, ceramide accumulation, and striking upregulation of multiple ER stress signaling molecules. Given the role of ceramides as mediators of ER stress and insulin resistance, treatment with ceramide enzyme inhibitors may help reverse or halt progression of chronic ALD.
Collapse
|
181
|
Abstract
The bioactive sphingolipids including, ceramide, sphingosine, and sphingosine-1-phosphate (S1P) have important roles in several types of signaling and regulation of many cellular processes including cell proliferation, apoptosis, senescence, angiogenesis, and transformation. Recent accumulating evidence suggests that ceramide- and S1P-mediated pathways have been implicated in cancer development, progression, and chemotherapy. Ceramide mediates numerous cell-stress responses, such as induction of apoptosis and cell senescence, whereas S1P plays pivotal roles in cell survival, migration, and inflammation. These sphingolipids with opposing roles can be interconverted within cells, suggesting that the balance between them is related to cell fate. Importantly, these sphingolipids are metabolically related through actions of enzymes including ceramidases, ceramide synthases, sphingosine kinases, and S1P phosphatases thereby forming a network of metabolically interrelated bioactive lipid mediators whose importance in normal cellular function and diseases is gaining appreciation. In this review, we summarize involvement of sphingolipids and their related enzymes in pathogenesis and therapy of cancer and discuss future directions of sphingolipid field in cancer research.
Collapse
Affiliation(s)
- Hideki Furuya
- University of Hawaii Cancer Center, 651 Ilalo Street, BSB #222H, Honolulu, HI 96813, USA
| | | | | |
Collapse
|
182
|
Abstract
Sphingolipid metabolism in metazoan cells consists of a complex interconnected web of numerous enzymes, metabolites and modes of regulation. At the centre of sphingolipid metabolism reside CerSs (ceramide synthases), a group of enzymes that catalyse the formation of ceramides from sphingoid base and acyl-CoA substrates. From a metabolic perspective, these enzymes occupy a unique niche in that they simultaneously regulate de novo sphingolipid synthesis and the recycling of free sphingosine produced from the degradation of pre-formed sphingolipids (salvage pathway). Six mammalian CerSs (CerS1-CerS6) have been identified. Unique characteristics have been described for each of these enzymes, but perhaps the most notable is the ability of individual CerS isoforms to produce ceramides with characteristic acyl-chain distributions. Through this control of acyl-chain length and perhaps in a compartment-specific manner, CerSs appear to regulate multiple aspects of sphingolipid-mediated cell and organismal biology. In the present review, we discuss the function of CerSs as critical regulators of sphingolipid metabolism, highlight their unique characteristics and explore the emerging roles of CerSs in regulating programmed cell death, cancer and many other aspects of biology.
Collapse
|
183
|
Jiang Q, Rao X, Kim CY, Freiser H, Zhang Q, Jiang Z, Li G. Gamma-tocotrienol induces apoptosis and autophagy in prostate cancer cells by increasing intracellular dihydrosphingosine and dihydroceramide. Int J Cancer 2012; 130:685-93. [PMID: 21400505 PMCID: PMC3381336 DOI: 10.1002/ijc.26054] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/14/2011] [Indexed: 02/05/2023]
Abstract
Although cell-based studies have shown that γ-tocotrienol (γTE) exhibits stronger anticancer activities than other forms of vitamin E including γ-tocopherol (γT), the molecular bases underlying γTE-exerted effects remains to be elucidated. Here we showed that γTE treatment promoted apoptosis, necrosis and autophagy in human prostate PC-3 and LNCaP cancer cells. In search of potential mechanisms of γTE-provoked effects, we found that γTE treatment led to marked increase of intracellular dihydroceramide and dihydrosphingosine, the sphingolipid intermediates in de novo sphingolipid synthesis pathway but had no effects on ceramide or sphingosine. The elevation of these sphingolipids by γTE preceded or coincided with biochemical and morphological signs of cell death and was much more pronounced than that induced by γT, which accompanied with much higher cellular uptake of γTE than γT. The importance of sphingolipid accumulation in γTE-caused fatality was underscored by the observation that dihydrosphingosine and dihydroceramide potently reduced the viability of both prostate cell lines and LNCaP cells, respectively. In addition, myriosin, a specific inhibitor of de novo sphingolipid synthesis, counteracted γTE-induced cell death. In agreement with these cell-based studies, γTE inhibited LNCaP xenograft growth by 53% (p < 0.05), compared to 33% (p = 0.07) by γT, in nude mice. These findings provide a molecular basis of γTE-stimulated cancer cell death and support the notion that elevation of intracellular dihydroceramide and dihydrosphingosine is likely a novel anticancer mechanism.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Foods and Nutrition, Interdepartmental Nutrition Program, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | |
Collapse
|
184
|
Palma CD, Perrotta C. Ceramide as a target of chemotherapy: its role in apoptosis and autophagy. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.11.71] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
185
|
Hartmann D, Lucks J, Fuchs S, Schiffmann S, Schreiber Y, Ferreirós N, Merkens J, Marschalek R, Geisslinger G, Grösch S. Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int J Biochem Cell Biol 2012; 44:620-8. [PMID: 22230369 DOI: 10.1016/j.biocel.2011.12.019] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/14/2011] [Accepted: 12/22/2011] [Indexed: 01/14/2023]
Abstract
Ceramides are known to be key players in intracellular signaling and are involved in apoptosis, cell senescence, proliferation, cell growth and differentiation. They are synthesized by ceramide synthases (CerS). So far, six different mammalian CerS (CerS1-6) have been described. Recently, we demonstrated that human breast cancer tissue displays increased activity of CerS2, 4, and 6, together with enhanced generation of their products, ceramides C(16:0), C(24:0), and C(24:1). Moreover, these increases were significantly associated with tumor dignity. To clarify the impact of this observation, we manipulated cellular ceramide levels by overexpressing ceramide synthases 2, 4 or 6 in MCF-7 (breast cancer) and HCT-116 (colon cancer) cells, respectively. Overexpression of ceramide synthases 4 and 6 elevated generation of short chain ceramides C(16:0), C(18:0) and C(20:0), while overexpression of ceramide synthase 2 had no effect on ceramide production in vivo, presumably due to limited substrate availability, because external addition of very long chain acyl-CoAs resulted in a significant upregulation of very long chain ceramides. We also demonstrated that upregulation of CerS4 and 6 led to the inhibition of cell proliferation and induction of apoptosis, whereas upregulation of CerS2 increased cell proliferation. On the basis of our data, we propose that a disequilibrium between ceramides of various chain length is crucial for cancer progression, while normal cells require an equilibrium between very long and long chain ceramides for normal physiology.
Collapse
Affiliation(s)
- Daniela Hartmann
- Pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Ternes P, Feussner K, Werner S, Lerche J, Iven T, Heilmann I, Riezman H, Feussner I. Disruption of the ceramide synthase LOH1 causes spontaneous cell death in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2011; 192:841-854. [PMID: 21883234 DOI: 10.1111/j.1469-8137.2011.03852.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The bioactive lipid ceramide is produced by the enzyme ceramide synthase, which exists in several isoforms in most eukaryotic organisms. Here, we investigated functional differences between the three ceramide synthase isoforms in Arabidopsis thaliana. The biochemical properties of the three ceramide synthases were investigated by comparing lipid profiles of yeast strains expressing LOH1, LOH2 or LOH3 with those of wild-type and loh1, loh2 and loh3 knockout plants. Expression profiles of the ceramide synthases and of the pathogenesis-related gene PR-1 were investigated by real-time PCR. Each ceramide synthase isoform showed a characteristic preference regarding acyl-CoA chain length as well as sphingoid base hydroxylation, which matches the pattern of ceramide and glucosylceramide species found in leaves. After extended culture under short-day conditions, loh1 plants showed spontaneous cell death accompanied by enhanced expression of PR-1. The levels of free trihydroxy sphingoid bases as well as ceramide and glucosylceramide species with C(16) fatty acid were significantly elevated while species with C(20) -C(28) fatty acids were reduced. These data suggest that spontaneous cell death in the loh1 line is triggered either by the accumulation of free trihydroxy sphingoid bases or ceramide species with C(16) fatty acid.
Collapse
Affiliation(s)
- Philipp Ternes
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, D-37077 Göttingen, Germany
- Present address: metanomics GmbH, Tegeler Weg 33, D-10589 Berlin, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, D-37077 Göttingen, Germany
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | - Stephanie Werner
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, D-37077 Göttingen, Germany
| | - Jennifer Lerche
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, D-37077 Göttingen, Germany
| | - Tim Iven
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, D-37077 Göttingen, Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, D-37077 Göttingen, Germany
| | - Howard Riezman
- Department of Biochemistry, Sciences II, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, D-37077 Göttingen, Germany
| |
Collapse
|
187
|
Abstract
Ceramides are a class of sphingolipids that are abundant in cell membranes. They are important structural components of the membrane but can also act as second messengers in various signaling pathways. Until recently, ceramides and dihydroceramides were considered as a single functional class of lipids and no distinction was made between molecules with different chain lengths. However, based on the development of high-throughput, structure-specific and quantitative analytical methods to measure ceramides, it has now become clear that in cellular systems the amounts of ceramides differ with respect to their chain length. Further studies have indicated that some functions of ceramides are chain-length dependent. In this review, we discuss the chain length-specific differences of ceramides including their pathological impact on Alzheimer's disease, inflammation, autophagy, apoptosis and cancer.
Collapse
Affiliation(s)
- Sabine Grösch
- pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany.
| | | | | |
Collapse
|
188
|
Sphingomyelin and sphingomyelin synthase (SMS) in the malignant transformation of glioma cells and in 2-hydroxyoleic acid therapy. Proc Natl Acad Sci U S A 2011; 108:19569-74. [PMID: 22106271 DOI: 10.1073/pnas.1115484108] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent antitumor compound, has not yet been fully elucidated. Here, we show that human cancer cells have markedly lower levels of sphingomyelin (SM) than nontumor (MRC-5) cells. In this context, 2OHOA treatment strongly augments SM mass (4.6-fold), restoring the levels found in MRC-5 cells, while a loss of phosphatidylethanolamine and phosphatidylcholine is observed (57 and 30%, respectively). The increased SM mass was due to a rapid and highly specific activation of SM synthases (SMS). This effect appeared to be specific against cancer cells as it did not affect nontumor MRC-5 cells. Therefore, low SM levels are associated with the tumorigenic transformation that produces cancer cells. SM accumulation occurred at the plasma membrane and caused an increase in membrane global order and lipid raft packing in model membranes. These modifications would account for the observed alteration by 2OHOA in the localization of proteins involved in cell apoptosis (Fas receptor) or differentiation (Ras). Importantly, SMS inhibition by D609 diminished 2OHOA effect on cell cycle. Therefore, we propose that the regulation of SMS activity in tumor cells is a critical upstream event in 2OHOA antitumor mechanism, which also explains its specificity for cancer cells, its potency, and the lack of undesired side effects. Finally, the specific activation of SMS explains the ability of this compound to trigger cell cycle arrest, cell differentiation, and autophagy or apoptosis in cancer cells.
Collapse
|
189
|
Lépine S, Allegood JC, Edmonds Y, Milstien S, Spiegel S. Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage. J Biol Chem 2011; 286:44380-90. [PMID: 22052905 DOI: 10.1074/jbc.m111.257519] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) and ceramide have been implicated in both autophagy and apoptosis. However, the roles of these sphingolipid metabolites in the links between these two processes are not completely understood. Depletion of S1P phosphohydrolase-1 (SPP1), which degrades intracellular S1P, induces the unfolded protein response and endoplasmic reticulum stress-induced autophagy (Lépine, S., Allegood, J. C., Park, M., Dent, P., Milstien, S., and Spiegel, S. (2011) Cell Death Differ. 18, 350-361). Surprisingly, however, treatment with doxorubicin, which by itself also induced autophagy, markedly reduced the extent of autophagy mediated by depletion of SPP1. Concomitantly, doxorubicin-induced apoptosis was greatly enhanced by down-regulation of SPP1. Autophagy and apoptosis seemed to be sequentially linked because inhibiting autophagy with 3-methyladenine also markedly attenuated apoptosis. Moreover, silencing Atg5 or the three sensors of the unfolded protein response, IRE1α, ATF6, and PKR-like eIF2α kinase (PERK), significantly decreased both autophagy and apoptosis. Doxorubicin stimulated calpain activity and Atg5 cleavage, which were significantly enhanced in SPP1-depleted cells. Inhibition or depletion of calpain not only suppressed Atg5 cleavage, it also markedly decreased the robust apoptosis induced by doxorubicin in SPP1-deficient cells. Importantly, doxorubicin also increased de novo synthesis of the pro-apoptotic sphingolipid metabolite ceramide. Elevation of ceramide in turn stimulated calpain; conversely, inhibiting ceramide formation suppressed Atg5 cleavage and apoptosis. Hence, doxorubicin switches protective autophagy in SPP1-depleted cells to apoptosis by calpain-mediated Atg5 cleavage.
Collapse
Affiliation(s)
- Sandrine Lépine
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
190
|
Loh KC, Baldwin D, Saba JD. Sphingolipid signaling and hematopoietic malignancies: to the rheostat and beyond. Anticancer Agents Med Chem 2011; 11:782-93. [PMID: 21707493 PMCID: PMC3259192 DOI: 10.2174/187152011797655159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 05/06/2011] [Accepted: 05/09/2011] [Indexed: 12/20/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid with diverse functions including the promotion of cell survival, proliferation and migration, as well as the regulation of angiogenesis, inflammation, immunity, vascular permeability and nuclear mechanisms that control gene transcription. S1P is derived from metabolism of ceramide, which itself has diverse and generally growth-inhibitory effects through its impact on downstream targets involved in regulation of apoptosis, senescence and cell cycle progression. Regulation of ceramide, S1P and the biochemical steps that modulate the balance and interconversion of these two lipids are major determinants of cell fate, a concept referred to as the "sphingolipid rheostat." There is abundant evidence that the sphingolipid rheostat plays a role in the origination, progression and drug resistance patterns of hematopoietic malignancies. The pathway has also been exploited to circumvent the problem of chemotherapy resistance in leukemia and lymphoma. Given the broad effects of sphingolipids, targeting multiple steps in the metabolic pathway may provide possible therapeutic avenues. However, new observations have revealed that sphingolipid signaling effects are more complex than previously recognized, requiring a revision of the sphingolipid rheostat model. Here, we summarize recent insights regarding the sphingolipid metabolic pathway and its role in hematopoietic malignancies.
Collapse
Affiliation(s)
- Kenneth C Loh
- Children's Hospital Oakland Research Institute, Center for Cancer Research, CA 94609, USA
| | | | | |
Collapse
|
191
|
Senkal CE, Ponnusamy S, Manevich Y, Meyers-Needham M, Saddoughi SA, Mukhopadyay A, Dent P, Bielawski J, Ogretmen B. Alteration of ceramide synthase 6/C16-ceramide induces activating transcription factor 6-mediated endoplasmic reticulum (ER) stress and apoptosis via perturbation of cellular Ca2+ and ER/Golgi membrane network. J Biol Chem 2011; 286:42446-42458. [PMID: 22013072 DOI: 10.1074/jbc.m111.287383] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms that regulate endoplasmic reticulum (ER) stress-induced apoptosis in cancer cells remain enigmatic. Recent data suggest that ceramide synthase1-6 (CerS1-6)-generated ceramides, containing different fatty acid chain lengths, might exhibit distinct and opposing functions, such as apoptosis versus survival in a context-dependent manner. Here, we investigated the mechanisms involved in the activation of one of the major ER stress response proteins, ATF-6, and subsequent apoptosis by alterations of CerS6/C(16)-ceramide. Induction of wild type (WT), but not the catalytically inactive mutant CerS6, increased tumor growth in SCID mice, whereas siRNA-mediated knockdown of CerS6 induced ATF-6 activation and apoptosis in multiple human cancer cells. Down-regulation of CerS6/C(16)-ceramide, and not its further metabolism to glucosylceramide or sphingomyelin, activated ATF-6 upon treatment with ER stress inducers tunicamycin or SAHA (suberoylanilide hydroxamic acid). Induction of WT-CerS6 expression, but not its mutant, or ectopic expression of the dominant-negative mutant form of ATF-6 protected cells from apoptosis in response to CerS6 knockdown and tunicamycin or SAHA treatment. Mechanistically, ATF-6 activation was regulated by a concerted two-step process involving the release of Ca(2+) from the ER stores ([Ca(2+)](ER)), which resulted in the fragmentation of Golgi membranes in response to CerS6/C(16)-ceramide alteration. This resulted in the accumulation of pro-ATF-6 in the disrupted ER/Golgi membrane network, where pro-ATF6 is activated. Accordingly, ectopic expression of a Ca(2+) chelator calbindin prevented the Golgi fragmentation, ATF-6 activation, and apoptosis in response to CerS6/C(16)-ceramide down-regulation. Overall, these data suggest a novel mechanism of how CerS6/C(16)-ceramide alteration activates ATF6 and induces ER-stress-mediated apoptosis in squamous cell carcinomas.
Collapse
Affiliation(s)
- Can E Senkal
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Suriyan Ponnusamy
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Yefim Manevich
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Marisa Meyers-Needham
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Sahar A Saddoughi
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Archana Mukhopadyay
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Paul Dent
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
192
|
Smith SE, Granell S, Salcedo-Sicilia L, Baldini G, Egea G, Teckman JH, Baldini G. Activating transcription factor 6 limits intracellular accumulation of mutant α(1)-antitrypsin Z and mitochondrial damage in hepatoma cells. J Biol Chem 2011; 286:41563-41577. [PMID: 21976666 DOI: 10.1074/jbc.m111.280073] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α(1)-Antitrypsin is a serine protease inhibitor secreted by hepatocytes. A variant of α(1)-antitrypsin with an E342K (Z) mutation (ATZ) has propensity to form polymers, is retained in the endoplasmic reticulum (ER), is degraded by both ER-associated degradation and autophagy, and causes hepatocyte loss. Constant features in hepatocytes of PiZZ individuals and in PiZ transgenic mice expressing ATZ are the formation of membrane-limited globular inclusions containing ATZ and mitochondrial damage. Expression of ATZ in the liver does not induce the unfolded protein response (UPR), a protective mechanism aimed to maintain ER homeostasis in the face of an increased load of proteins. Here we found that in hepatoma cells the ER E3 ligase HRD1 functioned to degrade most of the ATZ before globular inclusions are formed. Activation of the activating transcription factor 6 (ATF6) branch of the UPR by expression of spliced ATF6(1-373) decreased intracellular accumulation of ATZ and the formation of globular inclusions by a pathway that required HRD1 and the proteasome. Expression of ATF6(1-373) in ATZ-expressing hepatoma cells did not induce autophagy and increased the level of the proapoptotic factor CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) but did not lead to apoptotic DNA fragmentation. Expression of ATF6(1-373) did not cause inhibition of protein synthesis and prevented mitochondrial damage induced by ATZ expression. It was concluded that activation of the ATF6 pathway of the UPR limits ATZ-dependent cell toxicity by selectively promoting ER-associated degradation of ATZ and is thereby a potential target to prevent hepatocyte loss in addition to autophagy-enhancing drugs.
Collapse
Affiliation(s)
- Steven E Smith
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Susana Granell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Laia Salcedo-Sicilia
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiquens August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona E-08036, Spain
| | - Giovanna Baldini
- Dipartimento Universitario Clinico di Scienze Mediche, Chirurgiche e della Salute, Università degli Studi di Trieste, Trieste I-34138, Italy
| | - Gustavo Egea
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Institut d'Investigacions Biomèdiquens August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona E-08036, Spain
| | - Jeff H Teckman
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.
| |
Collapse
|
193
|
Schiffmann S, Hartmann D, Fuchs S, Birod K, Ferreiròs N, Schreiber Y, Zivkovic A, Geisslinger G, Grösch S, Stark H. Inhibitors of specific ceramide synthases. Biochimie 2011; 94:558-65. [PMID: 21945810 DOI: 10.1016/j.biochi.2011.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 09/09/2011] [Indexed: 10/17/2022]
Abstract
Ceramide synthases (CerSs) are key enzymes in the biosynthesis of ceramides and display a group of at least six different isoenzymes (CerS1-6). Ceramides itself are bioactive molecules. Ceramides with different N-acyl side chains (C(14:0)-Cer - C(26:0)-Cer) possess distinct roles in cell signaling. Therefore, the selective inhibition of specific CerSs which are responsible for the formation of a specific ceramide holds promise for a number of new clinical treatment strategies, e.g., cancer. Here, we identified four of hitherto unknown functional inhibitors of CerSs derived from the FTY720 (Fingolimod) lead structure and showed their inhibitory effectiveness by two in vitro CerS activity assays. Additionally, we tested the substances in two cell lines (HCT-116 and HeLa) with different ceramide patterns. In summary, the in vitro activity assays revealed out that ST1058 and ST1074 preferentially inhibit CerS2 and CerS4, while ST1072 inhibits most potently CerS4 and CerS6. Importantly, ST1060 inhibits predominately CerS2. First structure-activity relationships and the potential biological impact of these compounds are discussed.
Collapse
Affiliation(s)
- Susanne Schiffmann
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Abstract
Nuclear lipid metabolism is implicated in various processes, including transcription, splicing, and DNA repair. Sphingolipids play roles in numerous cellular functions, and an emerging body of literature has identified roles for these lipid mediators in distinct nuclear processes. Different sphingolipid species are localized in various subnuclear domains, including chromatin, the nuclear matrix, and the nuclear envelope, where sphingolipids exert specific regulatory and structural functions. Sphingomyelin, the most abundant nuclear sphingolipid, plays both structural and regulatory roles in chromatin assembly and dynamics in addition to being an integral component of the nuclear matrix. Sphingosine-1-phosphate modulates histone acetylation, sphingosine is a ligand for steroidogenic factor 1, and nuclear accumulation of ceramide has been implicated in apoptosis. Finally, nuclear membrane-associated ganglioside GM1 plays a pivotal role in Ca(2+) homeostasis. This review highlights research on the factors that control nuclear sphingolipid metabolism and summarizes the roles of these lipids in various nuclear processes.
Collapse
Affiliation(s)
- Natasha C Lucki
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | |
Collapse
|
195
|
Saddoughi SA, Garrett-Mayer E, Chaudhary U, O'Brien PE, Afrin LB, Day TA, Gillespie MB, Sharma AK, Wilhoit CS, Bostick R, Senkal CE, Hannun YA, Bielawski J, Simon GR, Shirai K, Ogretmen B. Results of a phase II trial of gemcitabine plus doxorubicin in patients with recurrent head and neck cancers: serum C₁₈-ceramide as a novel biomarker for monitoring response. Clin Cancer Res 2011; 17:6097-105. [PMID: 21791630 DOI: 10.1158/1078-0432.ccr-11-0930] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Here we report a phase II clinical trial, which was designed to test a novel hypothesis that treatment with gemcitabine (GEM)/doxorubicin (DOX) would be efficacious via reconstitution of C(18)-ceramide signaling in head and neck squamous cell carcinoma (HNSCC) patients for whom first-line platinum-based therapy failed. EXPERIMENTAL DESIGN Patients received GEM (1,000 mg/m²) and DOX (25 mg/m²) on days 1 and 8, every 21 days, until disease progression. After completion of 2 treatment cycles, patients were assessed radiographically, and serum samples were taken for sphingolipid measurements. RESULTS We enrolled 18 patients in the trial, who were evaluable for toxicity, and 17 for response. The most common toxicity was neutropenia, observed in 9 of 18 patients, and there were no major nonhematologic toxicities. Of the 17 patients, 5 patients had progressive disease (PD), 1 had complete response (CR), 3 exhibited partial response (PR), and 8 had stable disease (SD). The median progression-free survival was 1.6 months (95% CI: 1.4-4.2) with a median survival of 5.6 months (95% CI: 3.8-18.2). Remarkably, serum sphingolipid analysis revealed significant differences in patterns of C₁₈-ceramide elevation in patients with CR/PR/SD in comparison with patients with PD, indicating the reconstitution of tumor suppressor ceramide generation by GEM/DOX treatment. CONCLUSIONS Our data suggest that the GEM/DOX combination could represent an effective treatment for some patients with recurrent or metastatic HNSCC, and that serum C₁₈-ceramide elevation might be a novel serum biomarker of chemotherapy response.
Collapse
Affiliation(s)
- Sahar A Saddoughi
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Hu W, Ross J, Geng T, Brice SE, Cowart LA. Differential regulation of dihydroceramide desaturase by palmitate versus monounsaturated fatty acids: implications for insulin resistance. J Biol Chem 2011; 286:16596-605. [PMID: 21454530 PMCID: PMC3089502 DOI: 10.1074/jbc.m110.186916] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/18/2011] [Indexed: 11/06/2022] Open
Abstract
Much data implicate saturated fatty acids in deleterious processes associated with obesity, diabetes, and the metabolic syndrome. Many of these changes may be due to aberrant generation of bioactive lipids when saturated fatty acid availability to tissues is increased. On the other hand, studies are emerging that implicate the monounsaturated fatty acid oleate in protection from saturated fat mediated toxicity; however, the mechanisms are not well understood. Our data demonstrate a novel role for palmitate in increasing mRNA encoding DES1, which is the enzyme responsible for generating ceramide from its precursor dihydroceramide and thus controls synthesis of the bioactive lipid ceramide. Moreover, co-treatment with oleate prevented the increase in ceramide, and this occurred through attenuation of the increase in message and activity of DES1. Knockdown of DES1 also protected from palmitate-induced insulin resistance, and overexpression of this enzyme ameliorated the protective effect of oleate. Together, these findings provide insight into the mechanisms of oleate-mediated protection against metabolic disease and provide novel evidence for fatty acid-mediated regulation of a key enzyme of ceramide biosynthesis.
Collapse
Affiliation(s)
- Wei Hu
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403 and
| | - Jessica Ross
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403 and
| | - Tuoyu Geng
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403 and
| | - Sarah E. Brice
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403 and
| | - L. Ashley Cowart
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403 and
- the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29403
| |
Collapse
|
197
|
Doyle T, Chen Z, Muscoli C, Obeid LM, Salvemini D. Intraplantar-injected ceramide in rats induces hyperalgesia through an NF-κB- and p38 kinase-dependent cyclooxygenase 2/prostaglandin E2 pathway. FASEB J 2011; 25:2782-91. [PMID: 21551240 DOI: 10.1096/fj.10-178095] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Inflammatory pain represents an important unmet clinical need with important socioeconomic implications. Ceramide, a potent proinflammatory sphingolipid, has been shown to elicit mechanical hyperalgesia, but the mechanisms remain largely unknown. We now demonstrate that, in addition to mechanical hyperalgesia, intraplantar injection of ceramide (10 μg) led to the development of thermal hyperalgesia that was dependent on induction of the inducible cyclooxygenase (COX-2) and subsequent increase of prostaglandin E(2) (PGE(2)). The development of mechanical and thermal hyperalgesia and increased production of PGE(2) was blocked by NS-398 (15-150 ng), a selective COX-2 inhibitor. The importance of the COX-2 to PGE(2) pathway in ceramide signaling was underscored by the findings that intraplantar injection of a monoclonal PGE(2) antibody (4 μg) blocked the development of hyperalgesia. Our results further revealed that COX-2 induction is regulated by NF-κB and p38 kinase activation, since intraplantar injection of SC-514 (0.1-1 μg) or SB 203580 (1-10 μg), well-characterized inhibitors of NF-κB and p38 kinase activation, respectively, blocked COX-2 induction and increased formation of PGE(2) and thermal hyperalgesia in a dose-dependent manner. Moreover, activation of NF-κB was dependent on upstream activation of p38 MAPK, since SB 203580 (10 μg) blocked p65 phosphorylation, whereas p38 kinase phosphorylation was unaffected by NF-κB inhibition by SC-514 (1 μg). Our findings not only provide mechanistic insight into the signaling pathways engaged by ceramide in the development of hyperalgesia, but also provide a potential pharmacological basis for developing inhibitors targeting the ceramide metabolic-to-COX-2 pathway as novel analgesics.
Collapse
Affiliation(s)
- Tim Doyle
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
198
|
O'Neill SM, Yun JK, Fox TE, Kester M. Transcriptional regulation of the human neutral ceramidase gene. Arch Biochem Biophys 2011; 511:21-30. [PMID: 21531200 DOI: 10.1016/j.abb.2011.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/24/2011] [Accepted: 04/18/2011] [Indexed: 12/28/2022]
Abstract
Ceramidases play a critical role in generating sphingosine-1-phosphate by hydrolyzing ceramide into sphingosine, a substrate for sphingosine kinase. In order to elucidate its transcriptional regulation, we identify here a putative promoter region in the 5'-UTR of the human neutral CDase (nCDase) gene. Using human genomic DNA, we cloned a 3000 bp region upstream of the translational start site of the nCDase gene. Luciferase reporter analyses demonstrated that this 3000 bp region had promoter activity, with the strongest induction occurring within the first 200 bp. Computational analysis revealed the 200 bp essential promoter region contained several well-characterized promoter elements, lacked a conical TATA box, but did contain a reverse oriented CCAAT box, a feature common to housekeeping genes. Electrophoretic mobility shift assays demonstrated that the identified candidate transcriptional response elements (TRE) bind their respective transcription factors, including NF-Y, AP-2, Oct-1, and GATA. Mutagenic analyses of the TRE revealed that these sites regulated promoter activity and mutating an individual site decreased promoter reporter activity by up to 50%. Together, our findings suggest that regulation of nCDase expression involves coordinated TATA-less transcriptional activity.
Collapse
Affiliation(s)
- Sean M O'Neill
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
199
|
Hu X, Yang D, Zimmerman M, Liu F, Yang J, Kannan S, Burchert A, Szulc Z, Bielawska A, Ozato K, Bhalla K, Liu K. IRF8 regulates acid ceramidase expression to mediate apoptosis and suppresses myelogeneous leukemia. Cancer Res 2011; 71:2882-91. [PMID: 21487040 PMCID: PMC3078194 DOI: 10.1158/0008-5472.can-10-2493] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IFN regulatory factor 8 (IRF8) is a key transcription factor for myeloid cell differentiation and its expression is frequently lost in hematopoietic cells of human myeloid leukemia patients. IRF8-deficient mice exhibit uncontrolled clonal expansion of undifferentiated myeloid cells that can progress to a fatal blast crisis, thereby resembling human chronic myelogeneous leukemia (CML). Therefore, IRF8 is a myeloid leukemia suppressor. Whereas the understanding of IRF8 function in CML has recently improved, the molecular mechanisms underlying IRF8 function in CML are still largely unknown. In this study, we identified acid ceramidase (A-CDase) as a general transcription target of IRF8. We demonstrated that IRF8 expression is regulated by IRF8 promoter DNA methylation in myeloid leukemia cells. Restoration of IRF8 expression repressed A-CDase expression, resulting in C16 ceramide accumulation and increased sensitivity of CML cells to FasL-induced apoptosis. In myeloid cells derived from IRF8-deficient mice, A-CDase protein level was dramatically increased. Furthermore, we demonstrated that IRF8 directly binds to the A-CDase promoter. At the functional level, inhibition of A-CDase activity, silencing A-CDase expression, or application of exogenous C16 ceramide sensitized CML cells to FasL-induced apoptosis, whereas overexpression of A-CDase decreased CML cells' sensitivity to FasL-induced apoptosis. Consequently, restoration of IRF8 expression suppressed CML development in vivo at least partially through a Fas-dependent mechanism. In summary, our findings determine the mechanism of IRF8 downregulation in CML cells and they determine a primary pathway of resistance to Fas-mediated apoptosis and disease progression.
Collapse
MESH Headings
- Acid Ceramidase/biosynthesis
- Animals
- Apoptosis/physiology
- Cell Line, Tumor
- Ceramides/metabolism
- DNA Methylation
- Fas Ligand Protein/immunology
- Fas Ligand Protein/pharmacology
- HT29 Cells
- Humans
- Interferon Regulatory Factors/biosynthesis
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Myeloid Cells/enzymology
- Myeloid Cells/metabolism
- Promoter Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Xiaolin Hu
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Mary Zimmerman
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Feiyan Liu
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Jine Yang
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Swati Kannan
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Andreas Burchert
- Klinik für Hämatologie, Onkologie und Immunologie, Universitätsklinikum Marburg, D-35043 Marburg, Germany
| | - Zdzislaw Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Keiko Ozato
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kapil Bhalla
- Cancer Center, Georgia Health Sciences University, Augusta, GA 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Georgia Health Sciences University, Augusta, GA 30912, USA
| |
Collapse
|
200
|
Nabetani T, Makino A, Hullin-Matsuda F, Hirakawa TA, Takeoka S, Okino N, Ito M, Kobayashi T, Hirabayashi Y. Multiplex analysis of sphingolipids using amine-reactive tags (iTRAQ). J Lipid Res 2011; 52:1294-1302. [PMID: 21487068 DOI: 10.1194/jlr.d014621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ceramides play a crucial role in divergent signaling events, including differentiation, senescence, proliferation, and apoptosis. Ceramides are a minor lipid component in terms of content; thus, highly sensitive detection is required for accurate quantification. The recently developed isobaric tags for relative and absolute quantitation (iTRAQ) method enables a precise comparison of both protein and aminophospholipids. However, iTRAQ tagging had not been applied to the determination of sphingolipids. Here we report a method for the simultaneous measurement of multiple ceramide and monohexosylceramide samples using iTRAQ tags. Samples were hydrolyzed with sphingolipid ceramide N-deacylase (SCDase) to expose the free amino group of the sphingolipids, to which the N-hydroxysuccinimide group of iTRAQ reagent was conjugated. The reaction was performed in the presence of a cleavable detergent, 3-[3-(1,1-bisalkyloxyethyl)pyridine-1-yl]propane-1-sulfonate (PPS) to both improve the hydrolysis and ensure the accuracy of the mass spectrometry analysis performed after iTRAQ labeling. This method was successfully applied to the profiling of ceramides and monohexosylceramides in sphingomyelinase-treated Madin Darby canine kidney (MDCK) cells and apoptotic Jurkat cells.
Collapse
Affiliation(s)
- Takuji Nabetani
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Asami Makino
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | - Françoise Hullin-Matsuda
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; INSERM U1060, université Lyon1, INSA-Lyon, 69621 Villeurbanne, France
| | - Taka-Aki Hirakawa
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Shinjuku-ku, Tokyo 162-8480, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, Advanced Science Institute, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan; INSERM U1060, université Lyon1, INSA-Lyon, 69621 Villeurbanne, France.
| | - Yoshio Hirabayashi
- Laboratory for Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|