151
|
Abstract
The mesencephalic locomotor region (MLR), which includes the pedunculopontine nucleus (PPN) and the cuneiform nucleus (CN), has been recently identified as a key structure for locomotion and gait control in mammals. However, the function and the precise anatomy of the MLR remain unclear in humans. To study the lateral mesencephalus, we used fMRI in 15 right-handed healthy volunteers performing two tasks: imagine walking in a hallway and imagine an object moving along the same hallway. Both tasks were performed at two different speeds: normal and 30% faster. We identified two distinct networks of cortical activation: one involving motor/premotor cortices and the cerebellum for the walking task and the other involving posterior parietal and dorsolateral prefrontal cortices for the object moving task. In the lateral mesencephalus, we found that two different but anatomically connected parts of the MLR were activated during the fast condition of each task. The CN and the dorsal part of the PPN were activated during the fast imaginary walking task, whereas the ventral part of the PPN and the ventral part of the reticular formation were activated while subjects were imagining the object moving fast. Our data suggest that the lateral mesencephalus participates in different aspects of gait in humans, with the CN and dorsal PPN controlling motor aspects of locomotion and the ventral PPN being involved in integrating sensory information.
Collapse
|
152
|
Abstract
The specific effect of DBS at high frequency, discovered during a VIM thalamotomy, was extended to the older targets of ablative neurosurgery such as the pallidum, for tremor in Parkinson's disease (PD), dyskinesias, essential tremor, as well as the internal capsule to treat psychiatric disorders (OCD). A second wave of targets came from basic research, enabled by the low morbidity, reversibility, and adaptability of DBS. This was the case for the subthalamic nucleus (STN) which improves the triad of dopaminergic symptoms, and the pedunculopontine nucleus (PPN) for gait disorders in PD. The new concepts of the role of basal ganglia in psychiatric disorders indicate the subgenual cortex CG 25 for severe resistant depression, the accumbens nucleus for depression, anorexia nervosa, and addiction, and the thalamus intralaminar nuclei for minimally conscious states. Serendipity and a scientific approach have provided several instances where targets have produced unexpected effects (such as STN in OCD), as well as limbic effects observed during attempts at VMH stimulation for obesity: this might offer a novel way to treat mild cognitive impairment, or memory deficits reported in Alzheimer's disease. While these might provide solutions for as yet unsolved problems, attention must be paid to ethical considerations.
Collapse
|
153
|
Mazzone P, Insola A, Valeriani M, Caliandro P, Sposato S, Scarnati E. Uncertainty, misunderstanding and the pedunculopontine nucleus: the exhumation of an already buried dispute. Acta Neurochir (Wien) 2012; 154:1527-9; author reply 1531-3. [PMID: 22588336 DOI: 10.1007/s00701-012-1364-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/18/2012] [Indexed: 11/28/2022]
|
154
|
Les mécanismes d’action de la stimulation cérébrale à haute fréquence. Revue de la littérature et concepts actuels. Neurochirurgie 2012; 58:209-17. [DOI: 10.1016/j.neuchi.2012.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Revised: 01/15/2012] [Accepted: 02/13/2012] [Indexed: 11/21/2022]
|
155
|
Treatment of motor and non-motor features of Parkinson's disease with deep brain stimulation. Lancet Neurol 2012; 11:429-42. [DOI: 10.1016/s1474-4422(12)70049-2] [Citation(s) in RCA: 290] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
156
|
Mazzone P, Insola A, Valeriani M, Caliandro P, Sposato S, Scarnati E. Is urinary incontinence a true consequence of deep brain stimulation of the pedunculopontine tegmental nucleus in Parkinson's disease? Acta Neurochir (Wien) 2012; 154:831-4; author reply 839-41. [PMID: 22418767 DOI: 10.1007/s00701-012-1314-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/22/2012] [Indexed: 12/19/2022]
|
157
|
Khan S, Javed S, Mooney L, White P, Plaha P, Whone A, Gill SS. Clinical outcomes from bilateral versus unilateral stimulation of the pedunculopontine nucleus with and without concomitant caudal zona incerta region stimulation in Parkinson's disease. Br J Neurosurg 2012; 26:722-5. [PMID: 22404735 DOI: 10.3109/02688697.2012.659297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The Pedunculopontine nucleus is a novel target for deep brain stimulation and this may improve postural instability and gait dysfunction in Parkinson's disease. If unilateral Pedunculopontine nucleus stimulation is as efficacious as bilateral stimulation this would lead to less surgical risk. METHODS 5 Parkinson's disease patients with bilateral caudal Zona Incerta region and Pedunculopontine nucleus electrodes were assessed using the motor component of the Unified Parkinson's Disease Rating Scale. Patients were assessed in the on-medication state to determine the optimal combination of stimulation setting for axial symptom control. RESULTS The on-medication composite axial-subscore only showed a statistically significant improvement when bilateral Pedunculopontine nucleus and caudal Zona Incerta region stimulation was used. CONCLUSIONS In the on-medication state bilateral Pedunculopontine nucleus and caudal Zona Incerta region stimulation is required in order to produce a significant change in the motor Unified Parkinson's Disease Rating Scale axial-subscore from baseline.
Collapse
Affiliation(s)
- Sadaquate Khan
- Department of Neurosurgery, Institute of Neurosciences, Frenchay Hospital, Bristol
| | | | | | | | | | | | | |
Collapse
|
158
|
Khan S, Gill SS, Mooney L, White P, Whone A, Brooks DJ, Pavese N. Combined pedunculopontine-subthalamic stimulation in Parkinson disease. Neurology 2012; 78:1090-5. [PMID: 22402859 DOI: 10.1212/wnl.0b013e31824e8e96] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the effect of deep brain stimulation (DBS) in the pedunculopontine nucleus (PPN) and caudal zona incerta (cZi)-both separately and in combination-on motor symptoms and regional cerebral blood flow (rCBF) in patients with Parkinson disease (PD). METHODS Four patients with bilateral cZi and PPN DBS electrodes were rated with the Unified Parkinson's Disease Rating Scale motor subscale (UPDRS-III) when taking and withdrawn from medication. A block of 16 [(15)O]-H(2)O PET resting measurements of rCBF were performed in 4 different states with patients withdrawn from medication: 1) no stimulation, 2) cZi stimulation alone, 3) PPN stimulation alone, 4) combined PPN/cZi stimulation. RESULTS When patients were medicated, combined PPN/cZi stimulation produced a statistically significant improvement in UPDRS-III score compared to cZi stimulation alone. In the "off" medication state, the clinical effect of combined stimulation was not significantly different from that induced by cZi stimulation alone. Concomitant PPN/cZi stimulation had a cumulative effect on levels of rCBF, effectively combining subcortical and cortical changes induced by stimulation of either target in isolation. CONCLUSIONS These findings suggest that concomitant low frequency stimulation of PPN and cZi regions induces additive brain activation changes and provides improved control of PD symptoms when medicated. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that concomitant low frequency stimulation of PPN and cZI improves motor symptoms in patients with PD on dopamine replacement. It provides Class III evidence that concomitant low frequency stimulation of PPN and cZi induces additive rCBF changes in motor areas of brain.
Collapse
Affiliation(s)
- S Khan
- Department of Neurosurgery, Institute of Neurosciences, Frenchay Hospital, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
159
|
Thevathasan W, Cole MH, Graepel CL, Hyam JA, Jenkinson N, Brittain JS, Coyne TJ, Silburn PA, Aziz TZ, Kerr G, Brown P. A spatiotemporal analysis of gait freezing and the impact of pedunculopontine nucleus stimulation. ACTA ACUST UNITED AC 2012; 135:1446-54. [PMID: 22396391 PMCID: PMC3338924 DOI: 10.1093/brain/aws039] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Gait freezing is an episodic arrest of locomotion due to an inability to take normal steps. Pedunculopontine nucleus stimulation is an emerging therapy proposed to improve gait freezing, even where refractory to medication. However, the efficacy and precise effects of pedunculopontine nucleus stimulation on Parkinsonian gait disturbance are not established. The clinical application of this new therapy is controversial and it is unknown if bilateral stimulation is more effective than unilateral. Here, in a double-blinded study using objective spatiotemporal gait analysis, we assessed the impact of unilateral and bilateral pedunculopontine nucleus stimulation on triggered episodes of gait freezing and on background deficits of unconstrained gait in Parkinson’s disease. Under experimental conditions, while OFF medication, Parkinsonian patients with severe gait freezing implanted with pedunculopontine nucleus stimulators below the pontomesencephalic junction were assessed during three conditions; off stimulation, unilateral stimulation and bilateral stimulation. Results were compared to Parkinsonian patients without gait freezing matched for disease severity and healthy controls. Pedunculopontine nucleus stimulation improved objective measures of gait freezing, with bilateral stimulation more effective than unilateral. During unconstrained walking, Parkinsonian patients who experience gait freezing had reduced step length and increased step length variability compared to patients without gait freezing; however, these deficits were unchanged by pedunculopontine nucleus stimulation. Chronic pedunculopontine nucleus stimulation improved Freezing of Gait Questionnaire scores, reflecting a reduction of the freezing encountered in patients’ usual environments and medication states. This study provides objective, double-blinded evidence that in a specific subgroup of Parkinsonian patients, stimulation of a caudal pedunculopontine nucleus region selectively improves gait freezing but not background deficits in step length. Bilateral stimulation was more effective than unilateral.
Collapse
Affiliation(s)
- Wesley Thevathasan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Jenkinson N, Brittain JS, Hicks SL, Kennard C, Aziz TZ. On the Origin of Oscillopsia during Pedunculopontine Stimulation. Stereotact Funct Neurosurg 2012; 90:124-9. [DOI: 10.1159/000335871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 12/10/2011] [Indexed: 11/19/2022]
|
161
|
Franzini A, Cordella R, Messina G, Marras CE, Romito LM, Albanese A, Rizzi M, Nardocci N, Zorzi G, Zekaj E, Villani F, Leone M, Gambini O, Broggi G. Targeting the brain: considerations in 332 consecutive patients treated by deep brain stimulation (DBS) for severe neurological diseases. Neurol Sci 2012; 33:1285-303. [PMID: 22271259 DOI: 10.1007/s10072-012-0937-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 12/23/2011] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation (DBS) extends the treatment of some severe neurological diseases beyond pharmacological and conservative therapy. Our experience extends the field of DBS beyond the treatment of Parkinson disease and dystonia, including several other diseases such as cluster headache and disruptive behavior. Since 1993, at the Istituto Nazionale Neurologico "Carlo Besta" in Milan, 580 deep brain electrodes were implanted in 332 patients. The DBS targets include Stn, GPi, Voa, Vop, Vim, CM-pf, pHyp, cZi, Nacc, IC, PPN, and Brodmann areas 24 and 25. Three hundred patients are still available for follow-up and therapeutic considerations. DBS gave a new therapeutic chance to these patients affected by severe neurological diseases and in some cases controlled life-threatening pathological conditions, which would otherwise result in the death of the patient such as in status dystonicus, status epilepticus and post-stroke hemiballismus. The balance of DBS in severe neurological disease is strongly positive even if further investigations and studies are needed to search for new applications and refine the selection criteria for the actual indications.
Collapse
Affiliation(s)
- Angelo Franzini
- Fondazione IRCCS Istituto Neurologico "C. Besta", Via Celoria 11, 20133, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Insola A, Valeriani M, Mazzone P. Targeting the Pedunculopontine Nucleus. Oper Neurosurg (Hagerstown) 2012; 71:96-103. [DOI: 10.1227/neu.0b013e318249c726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Pedunculopontine tegmental nucleus (PPTg) deep brain stimulation (DBS) has been used in patients with Parkinson disease.
OBJECTIVE:
To verify the position of the DBS lead within the pons during PPTg targeting.
METHODS:
In 10 Parkinson disease patients undergoing electrode implantation in the PPTg, somatosensory evoked potentials were recorded after median nerve stimulation from the 4 DBS electrode contacts and from 2 scalp leads placed in the frontal and parietal regions.
RESULTS:
The DBS electrode recorded a P16 potential (latency at contact 0, 16.33 ± 0.76 ms). There was a P16 latency shift of 0.18 ± 0.07 ms from contact 0 (lower) to contact 3 (upper). The scalp electrodes recorded the P14 far-field response (latency, 15.44 ± 0.63 ms) and the cortical N20 potential (latency, 21.58 ± 1.42 ms). The P16 potentials recorded by the intracranial electrode contacts are generated by the volley traveling along the medial lemniscus, whereas the scalp P14 potential represents a far-field response generated at the Obex level. Considering that the distance between the electrode contacts 0 and 3 is 6 mm, the distance of the electrode contact 0 from the Obex (ΔObex) was calculated by the equation: ΔObex = 6 × Δlatency P14- PPTg0/Δlatency PPTg0-PPTg3. The Obex-to-brainstem electrode distance obtained by the neurophysiological method confirmed that the electrode was located within the pons in all patients. Moreover, this distance was very similar to that issued from the individual brain magnetic resonance imaging.
CONCLUSION:
Somatosensory evoked potentials may be a helpful tool for calculating the macroelectrode position within the pons during PPTg targeting.
Collapse
Affiliation(s)
- Angelo Insola
- Unità Operativa di Neurofisiopatologia, CTO, Rome, Italy
| | - Massimiliano Valeriani
- Divisione di Neurologia, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
- Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | - Paolo Mazzone
- Unità Operativa di Neurochirurgia Funzionale e Stereotassica, CTO, Rome, Italy
| |
Collapse
|
163
|
Thevathasan W, Pogosyan A, Hyam JA, Jenkinson N, Foltynie T, Limousin P, Bogdanovic M, Zrinzo L, Green AL, Aziz TZ, Brown P. Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. ACTA ACUST UNITED AC 2012; 135:148-60. [PMID: 22232591 PMCID: PMC3267984 DOI: 10.1093/brain/awr315] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The pedunculopontine nucleus, a component of the reticular formation, is topographically organized in animal models and implicated in locomotor control. In Parkinson's disease, pedunculopontine nucleus stimulation is an emerging treatment for gait freezing. Local field potentials recorded from pedunculopontine nucleus electrodes in such patients have demonstrated oscillations in the alpha and beta frequency bands, reactive to self-paced movement. Whether these oscillations are topographically organized or relevant to locomotion is unknown. Here, we recorded local field potentials from the pedunculopontine nucleus in parkinsonian patients during rest and unconstrained walking. Relative gait speed was assessed with trunk accelerometry. Peaks of alpha power were present at rest and during gait, when they correlated with gait speed. Gait freezing was associated with attenuation of alpha activity. Beta peaks were less consistently observed across rest and gait, and did not correlate with gait speed. Alpha power was maximal in the caudal pedunculopontine nucleus region and beta power was maximal rostrally. These results indicate a topographic distribution of neuronal activity in the pedunculopontine nucleus region and concur with animal data suggesting that the caudal subregion has particular relevance to gait. Alpha synchronization, proposed to suppress 'task irrelevant' distraction, has previously been demonstrated to correlate with performance of cognitive tasks. Here, we demonstrate a correlation between alpha oscillations and improved gait performance. The results raise the possibility that stimulation of caudal and rostral pedunculopontine nucleus regions may differ in their clinical effects.
Collapse
Affiliation(s)
- Wesley Thevathasan
- Nuffield Department of Clinical Neurosciences, University of Oxford OX3 9DU, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Prats-Galino A, Soria G, Notaris MD, Puig J, Pedraza S. Functional anatomy of subcortical circuits issuing from or integrating at the human brainstem. Clin Neurophysiol 2012; 123:4-12. [DOI: 10.1016/j.clinph.2011.06.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/08/2011] [Accepted: 06/11/2011] [Indexed: 11/16/2022]
|
165
|
Youn J, Cho JW, Lee WY, Kim GM, Kim ST, Kim HT. Diffusion tensor imaging of freezing of gait in patients with white matter changes. Mov Disord 2011; 27:760-4. [PMID: 22162037 DOI: 10.1002/mds.24034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 09/19/2011] [Accepted: 10/23/2011] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Freezing of gait is a common and disabling symptom of parkinsonism. However, the corresponding anatomic structures have yet to be clearly elucidated. METHODS We performed diffusion tensor imaging on 40 subjects with white matter changes. We compared apparent diffusion coefficient values and fraction anisotropy values of 7 candidate anatomic structures between 14 patients with freezing of gait (freezing of gait group) and 26 without freezing of gait (control group). RESULTS Fraction anisotropy values of the bilateral pedunculopontine nucleus, bilateral superior premotor cortex, right orbitofrontal area, and left supplement motor area were significantly lower in the freezing of gait group than in the control group. In contrast, there were no significant differences in apparent diffusion coefficient values between freezing of gait and control groups. CONCLUSIONS Our findings suggest that the bilateral pedunculopontine nucleus, bilateral superior premotor cortex, right orbitofrontal area, and left supplement motor area are closely related to freezing of gait.
Collapse
Affiliation(s)
- Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
166
|
Abstract
The basal ganglia (BG) are a group of subcortical structures involved in diverse functions, such as motor, cognition and emotion. However, the BG do not control these functions directly, but rather modulate functional processes occurring in structures outside the BG. The BG form multiple functional loops, each of which controls different functions with similar architectures. Accordingly, to understand the modulatory role of the BG, it is strategic to uncover the mechanisms of signal processing within specific functional loops that control simple neural circuits outside the BG, and then extend the knowledge to other BG loops. The saccade control system is one of the best-understood neural circuits in the brain. Furthermore, sophisticated saccade paradigms have been used extensively in clinical research in patients with BG disorders as well as in basic research in behaving monkeys. In this review, we describe recent advances of BG research from the viewpoint of saccade control. Specifically, we account for experimental results from neuroimaging and clinical studies in humans based on the updated knowledge of BG functions derived from neurophysiological experiments in behaving monkeys by taking advantage of homologies in saccade behavior. It has become clear that the traditional BG network model for saccade control is too limited to account for recent evidence emerging from the roles of subcortical nuclei not incorporated in the model. Here, we extend the traditional model and propose a new hypothetical framework to facilitate clinical and basic BG research and dialogue in the future.
Collapse
Affiliation(s)
- Masayuki Watanabe
- Department of Physiology, Kansai Medical University, Fumizonocho 10-15, Moriguchi, Osaka 570-8506, Japan
| | | |
Collapse
|
167
|
Mazzone P, Scarnati E, Garcia-Rill E. Commentary: the pedunculopontine nucleus: clinical experience, basic questions and future directions. J Neural Transm (Vienna) 2011; 118:1391-6. [PMID: 21188437 PMCID: PMC3654381 DOI: 10.1007/s00702-010-0530-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 11/03/2010] [Indexed: 12/24/2022]
Abstract
This issue is dedicated to a potential new target for the treatment of movement disorders, the pedunculopontine tegmental nucleus (PPTg), or, more simply, the pedunculopontine nucleus, that some authors abbreviate as PPN. We provide an overview of the field as an introduction to the general reader, beginning with the clinical experience to date of Mazzone and co-workers in Rome, some basic questions that need to be addressed, and potential future directions required in order to ensure that the potential benefits of this work are realized.
Collapse
Affiliation(s)
- P. Mazzone
- Functional and Stereotactic Neurosurgery, CTO Hospital ASL Roma C, Via San Nemesio 21, 00145 Rome, Italy
| | - E. Scarnati
- Department of Biomedical Sciences and Technologies (STB), University of L’Aquila, Via Vetoio Coppito 2, 67100 L’Aquila, Italy
| | - E. Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology & Developmental Sciences College of Medicine University of Arkansas for Medical Sciences, 4301 West Markham St. Little Rock, AR 72205, USA
| |
Collapse
|
168
|
Garcia-Rill E, Simon C, Smith K, Kezunovic N, Hyde J. The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications: arousal from slices to humans: implications for DBS. J Neural Transm (Vienna) 2011; 118:1397-407. [PMID: 20936418 PMCID: PMC3084344 DOI: 10.1007/s00702-010-0500-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/24/2010] [Indexed: 12/23/2022]
Abstract
One element of the reticular activating system (RAS) is the pedunculopontine nucleus (PPN), which projects to the thalamus to trigger thalamocortical rhythms and the brainstem to modulate muscle tone and locomotion. The PPN is a posterior midbrain site known to induce locomotion in decerebrate animals when activated at 40-60 Hz, and has become a target for DBS in disorders involving gait deficits. We developed a research program using brainstem slices containing the PPN to study the cellular and molecular organization of this region. We showed that PPN neurons preferentially fire at gamma band frequency (30-60 Hz) when maximally activated, accounting for the effects of electrical stimulation. In addition, we developed the P13 midlatency auditory evoked potential, which is generated by PPN outputs, in freely moving rats. This allows the study of PPN cellular and molecular mechanisms in the whole animal. We also study the P50 midlatency auditory evoked potential, which is the human equivalent of the rodent P13 potential, allowing us to study PPN-related processes detected in vitro, confirmed in the whole animal, and tested in humans. Previous findings on the P50 potential in PD suggest that PPN output in this disorder is overactive. This translational research program led to the discovery of a novel mechanism of sleep-wake control based on electrical coupling, pointing the way to a number of new clinical applications in the development of novel stimulants (e.g., modafinil) and anesthetics. In addition, it provides methods for monitoring therapeutic efficacy of DBS in humans and animal models.
Collapse
Affiliation(s)
- Edgar Garcia-Rill
- Department of Neurobiology and Developmental Science, Center For Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
169
|
Singh A, Kammermeier S, Plate A, Mehrkens JH, Ilmberger J, Bötzel K. Pattern of local field potential activity in the globus pallidus internum of dystonic patients during walking on a treadmill. Exp Neurol 2011; 232:162-7. [PMID: 21910989 DOI: 10.1016/j.expneurol.2011.08.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/02/2011] [Accepted: 08/22/2011] [Indexed: 11/19/2022]
Abstract
The basal ganglia (BG) are involved in gait. This notion is exemplified by observations that gait is disturbed by most diseases that affect the BG. However, it is unclear in what way the BG are activated during gait. One method to investigate the activity of the BG is to record local field potentials (LFPs) from electrodes placed in the BG for therapeutic purposes. Nowadays, the globus pallidus internum (GPi) represents the target for deep brain stimulation (DBS) in dystonia. LFPs recorded from this area have been shown to delineate activity associated with dystonic cramps but also activity that may be relevant for certain types of movement. In this study we recorded LFPs from DBS electrodes implanted into the GPi of eight patients with dystonia during walking on a treadmill machine and compared these data with data acquired during rest (sitting and standing). There was no difference in the power of frequency bands during the sitting and standing conditions. LFP power in the theta (4-8 Hz), alpha (8-12 Hz) and gamma (60-90 Hz) frequency bands was higher during walking than during the resting conditions. Beta (15-25 Hz) frequencies were the only frequencies that were down-regulated during walking. The amplitude of the theta and alpha frequency bands was modulated during the gait cycle. These data shed light on the function of the BG in patients with dystonia and demonstrate that, during gait, their overall activity increases in a specific way without showing increases of narrow frequency bands.
Collapse
Affiliation(s)
- Arun Singh
- Department of Neurology, Ludwig-Maximilian University, Munich, Germany
| | | | | | | | | | | |
Collapse
|
170
|
Thevathasan W, Pogosyan A, Hyam JA, Jenkinson N, Bogdanovic M, Coyne TJ, Silburn PA, Aziz TZ, Brown P. A block to pre-prepared movement in gait freezing, relieved by pedunculopontine nucleus stimulation. ACTA ACUST UNITED AC 2011; 134:2085-95. [PMID: 21705424 PMCID: PMC3122373 DOI: 10.1093/brain/awr131] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Gait freezing and postural instability are disabling features of Parkinsonian disorders, treatable with pedunculopontine nucleus stimulation. Both features are considered deficits of proximal and axial musculature, innervated predominantly by reticulospinal pathways and tend to manifest when gait and posture require adjustment. Adjustments to gait and posture are amenable to pre-preparation and rapid triggered release. Experimentally, such accelerated release can be elicited by loud auditory stimuli—a phenomenon known as ‘StartReact’. We observed StartReact in healthy and Parkinsonian controls. However, StartReact was absent in Parkinsonian patients with severe gait freezing and postural instability. Pedunculopontine nucleus stimulation restored StartReact proximally and proximal reaction times to loud stimuli correlated with gait and postural disturbance. These findings suggest a relative block to triggered, pre-prepared movement in gait freezing and postural instability, relieved by pedunculopontine nucleus stimulation.
Collapse
|
171
|
Gut NK, Winn P. The Role of the Pedunculopontine Tegmental Nucleus in Motor Disorders. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-1-61779-301-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
172
|
Improvement of hand dexterity induced by stimulation of the peduncolopontine nucleus in a patient with advanced Parkinson's disease and previous long-lasting bilateral subthalamic DBS. Acta Neurochir (Wien) 2011; 153:1587-90. [PMID: 21638144 DOI: 10.1007/s00701-011-1051-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/12/2011] [Indexed: 12/26/2022]
Abstract
We report the case of a patient already submitted to bilateral deep-brain stimulation (DBS) of the subthalamic nucleus (STN) who started to develop gait impairment, postural imbalance and frequent falls in the course of the disease and who subsequently underwent DBS of the right pedunculopontine nucleus (PPN) at our institute. An immediate clinical benefit in hand dexterity was observed with acute external stimulation and maintained after the definitive implant of the internal pulse generator (IPG) at 6 months' follow-up. The benefit on hand dexterity seemed to be related to the interactions between the PPN low-frequency stimulation and the bilateral STN high-frequency stimulation.
Collapse
|
173
|
Tykocki T, Mandat T, Nauman P. Pedunculopontine nucleus deep brain stimulation in Parkinson's disease. Arch Med Sci 2011; 7:555-64. [PMID: 22291786 PMCID: PMC3258764 DOI: 10.5114/aoms.2011.24119] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/10/2011] [Accepted: 04/14/2011] [Indexed: 11/17/2022] Open
Abstract
Postural instability and gait difficulty (PIGD) are commonly observed in advanced Parkinson's disease. The neuronal mechanism of PIGD is not fully understood. Dysfunction of the pedunculopontine nucleus (PPN) might be a possible cause of these symptoms. The autopsy studies of subjects with PIGD revealed a neurodegenerative process involving mainly PPN cholinergic neurons. The PPN participates in the locomotion processes by initiation, modulation and execution of stereotyped patterns of movement. The standard neurosurgical treatment of PD is subthalamic deep brain stimulation (STN DBS). Clinical results revealed low efficiency of STN DBS on PIGD. Preliminary results of simultaneous PPN and STN DBS are very promising. Only a few reports have been published until now; a significant improvement of PIGD was observed in both ON and OFF L-dopa states.
Collapse
Affiliation(s)
- Tomasz Tykocki
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Mandat
- Department of Neurosurgery, Maria Skłodowska-Curie Memorial Oncology Centre, Warsaw, Poland
| | - Paweł Nauman
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
174
|
Effect of globus pallidus internus stimulation on neuronal activity in the pedunculopontine tegmental nucleus in the primate model of Parkinson's disease. Exp Neurol 2011; 233:575-80. [PMID: 21821025 DOI: 10.1016/j.expneurol.2011.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 07/16/2011] [Indexed: 11/22/2022]
Abstract
The pedunculopontine tegmental nucleus (PPN) is being explored as a site for deep brain stimulation (DBS) for the treatment of patients with medically refractory gait and postural abnormalities (MRGPA) associated with Parkinson's disease (PD). The PPN is involved in initiation and modulation of gait and other stereotyped motor behaviors and is inter-connected with the pallido-thalamo-cortical circuit. Internal segment of the globus pallidus (GPi) DBS is effective at treating the motor signs associated with PD, however its impact on MRGPA is limited and its effect on PPN neuronal activity is unknown. The current work characterizes the effect of therapeutically-effective GPi DBS on PPN neuronal activity in a single rhesus monkey made parkinsonian using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). A scaled-down, quadripolar DBS lead was implanted into sensorimotor GPi under electrophysiological and stereotactic guidance. Single-neuron activity was recorded from PPN before, during and after DBS. GPi DBS reduced the mean discharge rate of PPN neurons from 16.8 Hz to 12.8 Hz, with 30 (66.7%) neurons showing a decreased mean rate, 3 (6.7%) increased and 12 (26.7%) unchanged. Consistent with known GABAergic projections from GPi to PPN, and with previous observations that stimulation increases output from the stimulated structure, GPi DBS suppressed activity in the PPN. The present observations, together with previous reports of improvement in MRGPA during low frequency stimulation in PPN, suggest that activation of PPN output may be required to improve MRGPA and may account for the lack of improvement in MRGPA typically observed with GPi or subthalamic nucleus (STN) DBS.
Collapse
|
175
|
Amara AW, Watts RL, Walker HC. The effects of deep brain stimulation on sleep in Parkinson's disease. Ther Adv Neurol Disord 2011; 4:15-24. [PMID: 21339905 DOI: 10.1177/1756285610392446] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sleep dysfunction is a common nonmotor symptom experienced by patients with Parkinson's disease (PD). Symptoms, including excessive daytime sleepiness, sleep fragmentation, rapid eye movement (REM) sleep behavior disorder and others, can significantly affect quality of life and daytime functioning in these patients. Recent studies have evaluated the effects of deep brain stimulation (DBS) at various targets on sleep in patients with advanced PD. Several of these studies have provided evidence that subthalamic nucleus DBS improves subjective and objective measures of sleep, including sleep efficiency, nocturnal mobility, and wake after sleep onset (minutes spent awake after initial sleep onset). Although fewer studies have investigated the effects of bilateral internal globus pallidus and thalamic ventral intermedius DBS on sleep, pallidal stimulation does appear to improve subjective sleep quality. Stimulation of the pedunculopontine nucleus has recently been proposed for selected patients with advanced PD to treat severe gait and postural dysfunction. Owing to the role of the pedunculopontine nucleus in modulating behavioral state, the impact of stimulation at this target on sleep has also been evaluated in a small number of patients, showing that pedunculopontine nucleus DBS increases REM sleep. In this review, we discuss the effects of stimulation at these various targets on sleep in patients with PD. Studying the effects of DBS on sleep can enhance our understanding of the pathophysiology of sleep disorders, provide strategies for optimizing clinical benefit from DBS, and may eventually guide novel therapies for sleep dysfunction.
Collapse
Affiliation(s)
- Amy W Amara
- Division of Movement Disorders, Department of Neurology, University of Alabama at Birmingham, SC 360, 1530 3rd Avenue South, Birmingham, AL 35294-0017, USA
| | | | | |
Collapse
|
176
|
Subthalamic nucleus versus pedunculopontine nucleus stimulation in Parkinson disease: synergy or antagonism? J Neural Transm (Vienna) 2011; 118:1469-75. [PMID: 21695419 DOI: 10.1007/s00702-011-0673-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 06/05/2011] [Indexed: 01/07/2023]
Abstract
Stimulation of the subthalamic nucleus (STN) improves the cardinal features of Parkinson disease (PD). However, its efficacy on gait disorders is less satisfying in the long term. In recent years, the pedunculopontine (PPN) nucleus has emerged as a possible promising deep brain stimulation target for gait disorders in PD. In this review, we examine whether STN and PPN act synergistically or antagonistically. Results suggest that the combination of STN and PPN stimulations leads to a significant further improvement in gait as compared with STN stimulation alone, but additive effects on the classical motor triad are questionable. Thus, they highlight the specificity of STN stimulation over PPN's for the PD cardinal features and the specificity of PPN stimulation over STN for gait disorders. In addition, low-frequency stimulation of the PPN may improve alertness. The additive rather than potentiating effects of STN and PPN stimulations suggest that they may be mediated by distinct pathways. Nevertheless, considering the inconsistencies in published results regarding the influence of PPN stimulation on gait disorders, work is still needed before one can know whether it will convert into a standard surgical treatment and to decipher its place beside STN stimulation.
Collapse
|
177
|
Hickey P, Stacy M. The surgical management of Parkinson’s disease. Neurodegener Dis Manag 2011. [DOI: 10.2217/nmt.11.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Parkinson’s disease (PD) is one of the most frequently encountered neurodegenerative disorders in terms of worldwide prevalence. Although medications are typically effective at treating motor symptoms in early to moderately advanced stages, the efficacy of these agents often wanes as the disease progresses. With long-term pharmacologic therapy, many PD patients will also experience motor fluctuations, dyskinesias and unpredictable wearing off of the therapeutic benefit. Deep brain stimulation, the preferred surgical treatment for PD, often improves many of these complications. New surgical options are currently under clinical investigation for advanced PD patients including gene and cell-based therapies.
Collapse
Affiliation(s)
- Patrick Hickey
- Division of Neurology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
178
|
Acar F, Acar G, Bir LS, Gedik B, Oğuzhanoğlu A. Deep brain stimulation of the pedunculopontine nucleus in a patient with freezing of gait. Stereotact Funct Neurosurg 2011; 89:214-9. [PMID: 21597312 DOI: 10.1159/000326617] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 10/11/2010] [Indexed: 11/19/2022]
Abstract
CASE PRESENTATION A 54-year-old male patient presenting probable multiple system atrophy with predominant parkinsonism who underwent bilateral deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) is presented. The patient had dominant freezing of gait (FOG), levodopa-resistant bradykinesia, and autonomic disturbances, but with a good cognitive condition. METHODS The patient underwent bilateral DBS of the PPN, which ended with modest benefits. RESULTS AND CONCLUSION Although he had a short postoperative follow-up (6 months), his neurological status remained stable and PPN DBS provided modest improvements in the gait disorder and freezing episodes. This unusual case suggests that the mesencephalic pedunculopontine region may have a role in locomotor symptoms and the potential to provide a limited improvement in FOG.
Collapse
Affiliation(s)
- Feridun Acar
- Department of Neurosurgery, Medical School, Pamukkale University, Denizli, Turkey
| | | | | | | | | |
Collapse
|
179
|
Yeo SS, Ahn SH, Choi BY, Chang CH, Lee J, Jang SH. Contribution of the Pedunculopontine Nucleus on Walking in Stroke Patients. Eur Neurol 2011; 65:332-7. [DOI: 10.1159/000324152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 01/05/2011] [Indexed: 11/19/2022]
|
180
|
Hickey P, Stacy M. Available and emerging treatments for Parkinson's disease: a review. Drug Des Devel Ther 2011; 5:241-54. [PMID: 21607020 PMCID: PMC3096539 DOI: 10.2147/dddt.s11836] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease is a commonly encountered neurodegenerative disorder primarily found in aged populations. A number of medications are available to control symptoms, although these are less effective in advanced disease. Deep brain stimulation provides a practicable alternative at this stage, although a minority of patients meet the strict criteria for surgery. Novel medications that provide enhanced symptomatic control remain in developmental demand. Both gene and cell-based therapies have shown promise in early clinical studies. A major unmet need is a treatment that slows or stops disease progression.
Collapse
Affiliation(s)
- Patrick Hickey
- Division of Neurology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
181
|
Barroso-Chinea P, Rico AJ, Conte-Perales L, Gómez-Bautista V, Luquin N, Sierra S, Roda E, Lanciego JL. Glutamatergic and cholinergic pedunculopontine neurons innervate the thalamic parafascicular nucleus in rats: changes following experimental parkinsonism. Brain Struct Funct 2011; 216:319-30. [PMID: 21499800 DOI: 10.1007/s00429-011-0317-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 03/31/2011] [Indexed: 12/29/2022]
Abstract
The tegmental pedunculopontine nucleus (PPN) is a basal ganglia-related structure that has recently gained renewed interest as a potential surgical target for the treatment of several aspects of Parkinson's disease. However, the underlying anatomical substrates sustaining the choice of the PPN nucleus as a surgical candidate remain poorly understood. Here, we characterized the chemical phenotypes of different subtypes of PPN efferent neurons innervating the rat parafascicular (PF) nucleus. Emphasis was placed on elucidating the impact of unilateral nigrostriatal denervation on the expression patterns of the mRNA coding the vesicular glutamate transporter type 2 (vGlut2 mRNA). We found a bilateral projection from the PPN nucleus to the PF nucleus arising from cholinergic and glutamatergic efferent neurons, with a small fraction of projection neurons co-expressing both cholinergic and glutamatergic markers. Furthermore, the unilateral nigrostriatal depletion induced a bilateral twofold increase in the expression levels of vGlut2 mRNA within the PPN nucleus. Our results support the view that heterogeneous chemical profiles account for PPN efferent neurons innervating thalamic targets. Moreover, a bilateral enhancement of glutamatergic transmission arising from the PPN nucleus occurs following unilateral dopaminergic denervation, therefore sustaining the well-known hyperactivity of the PF nucleus in parkinsonian-like conditions. In conclusion, our data suggest that the ascending projections from the PPN that reach basal ganglia-related targets could play an important role in the pathophysiology of Parkinson's disease.
Collapse
Affiliation(s)
- Pedro Barroso-Chinea
- Neurosciences Division, Center for Applied Medical Research (CIMA and CIBERNED), University of Navarra, Pio XII Ave 55, Edificio CIMA, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Yeo SS, Kim SH, Ahn YH, Son SM, Jang SH. Anatomical location of the pedunculopontine nucleus in the human brain: diffusion tensor imaging study. Stereotact Funct Neurosurg 2011; 89:152-6. [PMID: 21494066 DOI: 10.1159/000324890] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/07/2011] [Indexed: 11/19/2022]
Abstract
We investigated the anatomical location of the pedunculopontine nucleus (PPN) in the human brain using diffusion tensor imaging. Forty normal healthy subjects were recruited. To confirm the boundary of the PPN, we analyzed the superior cerebellar peduncle and medial lemniscus using DTI-Studio software. We identified the PPN on red green blue (RGB) images, and defined four points of the PPN and four boundaries of the midbrain: point a - the most anterior point, point b - the most posterior point, point c - the most medial point, point d - the most lateral point; anterior boundary - the line of the most posterior point of the interpeduncular fossa, posterior boundary - the line of the upper part of the inferior colliculus, lateral boundary - the line of the most lateral point of the midbrain, medial boundary - the line of the midline of the midbrain. Points a and b were located at an average of 20.19 and 30.52% from the anterior boundary, respectively. By contrast, points c and d were located at an average of 22.50 and 41.65% from the medial boundary, respectively. We believe that the methodology and data of this study would be helpful in research and procedures on the PPN.
Collapse
Affiliation(s)
- Sang Seok Yeo
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Taegu, Republic of Korea
| | | | | | | | | |
Collapse
|
183
|
Profice P, Mazzone P, Pilato F, Dileone M, Insola A, Ranieri F, Di Lazzaro V. Neurophysiological evaluation of the pedunculopontine nucleus in humans. J Neural Transm (Vienna) 2011; 118:1423-9. [PMID: 21479864 DOI: 10.1007/s00702-011-0644-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/28/2011] [Indexed: 12/19/2022]
Abstract
The pedunculopontine nucleus (PPTg) is constituted by a heterogeneous cluster of neurons located in caudal mesencephalic tegmentum which projects to the thalamus to trigger thalamocortical rhythms and the brainstem to modulate muscle tone and locomotion. It has been investigated as potential deep brain stimulation (DBS) target for treating Parkinson's disease (PD) symptoms. Neurophysiological studies conducted in humans using DBS electrodes for exploring functional properties of PPTg in vivo, reviewed in this paper, demonstrated that the functional connections between PPTg and cortex, basal ganglia, brainstem network involved in sleep/wake control, and spinal cord can be explored in vivo and provided useful insights about the physiology of this nucleus and pathophysiology of PD.
Collapse
Affiliation(s)
- P Profice
- Institute of Neurology, Università Cattolica, L.go A. Gemelli 8, 00168, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
184
|
Zrinzo L, Zrinzo LV, Massey LA, Thornton J, Parkes HG, White M, Yousry TA, Strand C, Revesz T, Limousin P, Hariz MI, Holton JL. Targeting of the pedunculopontine nucleus by an MRI-guided approach: a cadaver study. J Neural Transm (Vienna) 2011; 118:1487-95. [PMID: 21484277 DOI: 10.1007/s00702-011-0639-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
Abstract
Laboratory evidence suggests that the pedunculopontine nucleus (PPN) plays a central role in the initiation and maintenance of gait. Translational research has led to reports on deep brain stimulation (DBS) of the rostral brainstem in parkinsonian patients. However, initial clinical results appear to be rather variable. Possible factors include patient selection and the wide variability in anatomical location of implanted electrodes. Clinical studies on PPN DBS efficacy would, therefore, benefit from an accurate and reproducible method of stereotactic localization of the nucleus. The present study evaluates the anatomical accuracy of a specific protocol for MRI-guided stereotactic targeting of the PPN in a human cadaver. Imaging at 1.5 and 9.4 T confirmed electrode location in the intended region as defined anatomically by the surrounding fiber tracts. The spatial relations of each electrode track to the nucleus were explored by subsequent histological examination. This confirmed that the neuropil surrounding each electrode track contained scattered large neurons morphologically consistent with those of the subnucleus dissipatus and compactus of the PPN. The results support the accuracy of the described specific MR imaging protocol.
Collapse
Affiliation(s)
- Ludvic Zrinzo
- Unit of Functional Neurosurgery, Box 146, Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Rolland AS, Karachi C, Muriel MP, Hirsch EC, François C. Internal pallidum and substantia nigra control different parts of the mesopontine reticular formation in primate. Mov Disord 2011; 26:1648-56. [PMID: 21469212 DOI: 10.1002/mds.23705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/31/2011] [Accepted: 02/10/2011] [Indexed: 11/08/2022] Open
Abstract
The locomotor area has recently emerged as a target for deep brain stimulation to lessen gait disturbances in advanced parkinsonian patients. An important step in choosing this target is to define anatomical limits of its 2 components, the pedunculopontine nucleus and the cuneiform nucleus, their connections with the basal ganglia, and their output descending pathway. Based on the hypothesis that pedunculopontine nucleus controls locomotion whereas cuneiform nucleus controls axial posture, we analyzed whether both nuclei receive inputs from the internal pallidum and substantia nigra using anterograde and retrograde tract tracing in monkeys. We also examined whether these nuclei convey descending projections to the reticulospinal pathway. Pallidal terminals were densely distributed and restricted to the pedunculopontine nucleus, whereas nigral terminals were diffusely observed in the whole extent of both the pedunculopontine nucleus and the cuneiform nucleus. Moreover, nigral terminals formed symmetric synapses with pedunculopontine nucleus and cuneiform nucleus dendrites. Retrograde tracing experiments confirmed these results because labeled cell bodies were observed in both the internal pallidum and substantia nigra after pedunculopontine nucleus injection, but only in the substantia nigra after cuneiform nucleus injection. Furthermore, anterograde tracing experiments revealed that the pedunculopontine nucleus and cuneiform nucleus project to large portions of the pontomedullary reticular formation. This is the first anatomical evidence that the internal pallidum and the substantia nigra control different parts of the brain stem and can modulate the descending reticulospinal pathway in primates. These findings support the functional hypothesis that the nigro-cuneiform nucleus pathway could control axial posture whereas the pallido-pedunculopontine nucleus pathway could modulate locomotion.
Collapse
Affiliation(s)
- Anne-Sophie Rolland
- Université Pierre et Marie Curie-Paris 6, CR-ICM, UMR-S975, INSERM, U975, CNRS, UMR 7225, Assistance Publique-Hôpitaux de Paris, Groupe Pitié-Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
186
|
Pedunculopontine stimulation from primate to patient. J Neural Transm (Vienna) 2011; 118:1453-60. [DOI: 10.1007/s00702-011-0631-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/13/2011] [Indexed: 12/24/2022]
|
187
|
Lourens MAJ, Meijer HGE, Heida T, Marani E, van Gils SA. The pedunculopontine nucleus as an additional target for deep brain stimulation. Neural Netw 2011; 24:617-30. [PMID: 21458229 DOI: 10.1016/j.neunet.2011.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/08/2011] [Accepted: 03/05/2011] [Indexed: 10/18/2022]
Abstract
The pedunculopontine nucleus has been suggested as a target for DBS. In this paper we propose a single compartment computational model for a PPN Type I cell and compare its dynamic behavior with experimental data. The model shows bursts after a period of hyperpolarization and spontaneous firing at 8 Hz. Bifurcation analysis of the single PPN cell shows bistability of fast and slow spiking solutions for a range of applied currents. A network model for STN, GPe and GPi produces basal ganglia output that is used as input for the PPN cell. The conductances for projections from the STN and the GPi to the PPN are determined from experimental data. The resulting behavior of the PPN cell is studied under normal and Parkinsonian conditions of the basal ganglia network. The effect of high frequency stimulation of the STN is considered as well as the effect of combined high frequency stimulation of the STN and the PPN at various frequencies. The relay properties of the PPN cell demonstrate that the combined high frequency stimulation of STN and low frequency (10 Hz, 25 Hz, 40 Hz) stimulation of PPN hardly improves the effect of exclusive STN stimulation. Moreover, PPN-DBS at low stimulation amplitude has a better effect than at higher stimulation amplitude. The effect of PPN output on the basal ganglia is investigated, in particular the effect of STN-DBS and/or PPN-DBS on the pathological firing pattern of STN and GPe cells. PPN-DBS eliminates the pathological firing pattern of STN and GPe cells, whereas STN-DBS and combined STN-DBS and PPN-DBS eliminate the pathological firing pattern only from STN cells.
Collapse
Affiliation(s)
- M A J Lourens
- Department of Applied Mathematics, University of Twente, Enschede 7500 AE, The Netherlands.
| | | | | | | | | |
Collapse
|
188
|
Khan S, Mooney L, Plaha P, Javed S, White P, Whone AL, Gill SS. Outcomes from stimulation of the caudal zona incerta and pedunculopontine nucleus in patients with Parkinson's disease. Br J Neurosurg 2011; 25:273-80. [PMID: 21344974 DOI: 10.3109/02688697.2010.544790] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Axial symptoms including postural instability, falls and failure of gait initiation are some of the most disabling motor symptoms of Parkinson's disease (PD). We performed bilateral deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) in combination with the caudal zona incerta (cZi) in order to determine their efficacy in alleviating these symptoms. METHODS Seven patients with predominant axial symptoms in both the 'on' and 'off' medication states underwent bilateral cZi and PPN DBS. Motor outcomes were assessed using the motor component of the Unified Parkinson's Disease Rating Scale (UPDRS 3) and a composite axial subscore was derived from items 27, 28, 29 and 30 (arising from chair, posture, gait and postural stability). Quality of life was measured using the PDQ39. Comparisons were made between scores obtained at baseline and those at a mean follow-up of 12 months. RESULTS In both the off and on medication states, a statistically significant improvement in the UPDRS part 3 score was achieved by stimulation of the PPN, cZi and both in combination. In the off medication state, our composite axial subscore of the UPDRS part 3 improved with stimulation of the PPN, cZi and both in combination. The composite axial subscore, in the 'on' medication state, however, only showed a statistically significant improvement when a combination of cZi and PPN stimulation was used. CONCLUSIONS This study provides evidence that a combination of PPN and cZi stimulation can achieve a significant improvement in the hitherto untreatable 'on' medication axial symptoms of PD.
Collapse
Affiliation(s)
- Sadaquate Khan
- Department of Neurosurgery, Institute of Neurosciences, Frenchay Hospital, Bristol, UK
| | | | | | | | | | | | | |
Collapse
|
189
|
Kringelbach ML, Green AL, Owen SLF, Schweder PM, Aziz TZ. Sing the mind electric - principles of deep brain stimulation. Eur J Neurosci 2011; 32:1070-9. [PMID: 21039946 DOI: 10.1111/j.1460-9568.2010.07419.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The remarkable efficacy of deep brain stimulation (DBS) for a range of treatment-resistant disorders is still not matched by a comparable understanding of the underlying neural mechanisms. Some progress has been made using translational research with a range of neuroscientific techniques, and here we review the most promising emerging principles. On balance, DBS appears to work by restoring normal oscillatory activity between a network of key brain regions. Further research using this causal neuromodulatory tool may provide vital insights into fundamental brain function, as well as guide targets for future treatments. In particular, DBS could have an important role in restoring the balance of the brain's default network and thus repairing the malignant brain states associated with affective disorders, which give rise to serious disabling problems such as anhedonia, the lack of pleasure. At the same time, it is important to proceed with caution and not repeat the errors from the era of psychosurgery.
Collapse
Affiliation(s)
- Morten L Kringelbach
- University of Oxford, Department of Psychiatry, Warneford Hospital, Oxford OX3 7JX, UK.
| | | | | | | | | |
Collapse
|
190
|
Mazzone P, Sposato S, Insola A, Scarnati E. The deep brain stimulation of the pedunculopontine tegmental nucleus: towards a new stereotactic neurosurgery. J Neural Transm (Vienna) 2011; 118:1431-51. [DOI: 10.1007/s00702-011-0593-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
191
|
Yeh IJ, Tsang EW, Hamani C, Moro E, Mazzella F, Poon YY, Lozano AM, Chen R. Somatosensory evoked potentials recorded from the human pedunculopontine nucleus region. Mov Disord 2011; 25:2076-83. [PMID: 20669321 DOI: 10.1002/mds.23233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pedunculopontine nucleus region (PPNR) is an integral component of the midbrain locomotor region and has widespread connections with the cortex, thalamus, brain stem, cerebellum, spinal cord, and especially, the basal ganglia. No previous study examined the somatosensory connection of the PPNR in human. We recorded somatosensory evoked potentials (SEP) from median nerve stimulation through deep brain stimulation (DBS) electrodes implanted in the PPNR in 8 patients (6 with Parkinson's disease, 2 with progressive supranuclear palsy). Monopolar recordings from the PPNR contacts showed triphasic or biphasic potentials. The latency of the largest negative peak was between 16.8 and 18.7 milliseconds. Bipolar derivation revealed phase reversal with median nerve stimulation contralateral to the DBS electrode in 6 patients. There was no difference in SEP amplitude and latency between on and off medication states. We also studied the high frequency oscillations (HFOs) by filtering the signal between 500 and 2,500 Hz. The HFOs could be identified only from contralateral stimulation and had intraburst frequencies of 1061 ± 121 Hz, onset latencies of 13.8 ± 1.2 milliseconds, and burst durations of 7.3 ± 1.1 milliseconds. Among the 10 recordings with HFOs, only 1 had possible phase reversal in the bipolar derivation. Our results suggest that there are direct somatosensory inputs to the PPNR. The slow components and HFOs of the SEP have different origins.
Collapse
Affiliation(s)
- I-Jin Yeh
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Azulay JP, Cantiniaux S, Vacherot F, Vaugoyeau M, Assaiante C. Locomozione: fisiologia, tecniche di analisi e classificazione dei principali disturbi. Neurologia 2011. [DOI: 10.1016/s1634-7072(11)70696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
193
|
Le Ray D, Juvin L, Ryczko D, Dubuc R. Supraspinal control of locomotion. PROGRESS IN BRAIN RESEARCH 2011; 188:51-70. [DOI: 10.1016/b978-0-444-53825-3.00009-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
194
|
The pedunculopontine nucleus as a target for deep brain stimulation. J Neural Transm (Vienna) 2010; 118:1461-8. [PMID: 21194002 DOI: 10.1007/s00702-010-0547-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
The pedunculopontine nucleus (PPN) is a brain stem locomotive center that is also involved in the processing of sensory and behavioral information. The PPN has been recently proposed as a potential target for the treatment of axial symptoms in Parkinson's disease (PD). To date, results of the first series of PD patients treated with PPN deep brain stimulation (DBS) have shown promising results. In this article, we review some of the basic aspects of the PPN as a target and the outcome of the recently published clinical trials.
Collapse
|
195
|
Alam M, Schwabe K, Krauss JK. The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain 2010; 134:11-23. [PMID: 21147837 DOI: 10.1093/brain/awq322] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, the pedunculopontine nucleus has been highlighted as a target for deep brain stimulation for the treatment of freezing of postural instability and gait disorders in Parkinson's disease and progressive supranuclear palsy. There is great controversy, however, as to the exact location of the optimal site for stimulation. In this review, we give an overview of anatomy and connectivity of the pedunculopontine nucleus area in rats, cats, non-human primates and humans. Additionally, we report on the behavioural changes after chemical or electrical manipulation of the pedunculopontine nucleus. We discuss the relation to adjacent regions of the pedunculopontine nucleus, such as the cuneiform nucleus and the subcuneiform nucleus, which together with the pedunculopontine nucleus are the main areas of the mesencephalic locomotor region and play a major role in the initiation of gait. This information is discussed with respect to the experimental designs used for research purposes directed to a better understanding of the circuitry pathway of the pedunculopontine nucleus in association with basal ganglia pathology, and with respect to deep brain stimulation of the pedunculopontine nucleus area in humans.
Collapse
Affiliation(s)
- Mesbah Alam
- Department of Neurosurgery, Medical University of Hannover, Carl-Neuberg-Str 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
196
|
Prakash KM. An Overview of Surgical Therapy for Movement Disorders. PROCEEDINGS OF SINGAPORE HEALTHCARE 2010. [DOI: 10.1177/201010581001900405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Surgical treatments are an important consideration in the management of many movement disorders, particularly for patients refractory to medications. Increasing number of published reports have demonstrated an overall improvement in motor function, activities of daily living and quality of life particularly with deep brain stimulation. In addition the procedure is also relatively safe. In this article, we review the various types of movement disorders that may benefit from surgical intervention.
Collapse
Affiliation(s)
- Kumar M Prakash
- Department of Neurology, National Neuroscience Institute (Singapore General Hospital Campus), Singapore
| |
Collapse
|
197
|
Ceravolo R, Brusa L, Galati S, Volterrani D, Peppe A, Siciliano G, Pierantozzi M, Moschella V, Bonuccelli U, Stanzione P, Stefani A. Low frequency stimulation of the nucleus tegmenti pedunculopontini increases cortical metabolism in Parkinsonian patients. Eur J Neurol 2010; 18:842-9. [DOI: 10.1111/j.1468-1331.2010.03254.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
198
|
Tsang EW, Hamani C, Moro E, Mazzella F, Poon YY, Lozano AM, Chen R. Involvement of the human pedunculopontine nucleus region in voluntary movements. Neurology 2010; 75:950-9. [PMID: 20702790 DOI: 10.1212/wnl.0b013e3181f25b35] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The pedunculopontine nucleus region (PPNR) is being investigated as a target for deep brain stimulation (DBS) in Parkinson disease (PD), particularly for gait and postural impairment. A greater understanding of how PPNR activities and oscillations are modulated with voluntary movements is crucial to the development of neuromodulation strategies. METHODS We studied 7 patients with PD who underwent DBS electrode implantations in the PPNR. PPNR local field potential and EEG were recorded while patients performed self-paced wrist and ankle movements. RESULTS Back-averaging of the PPNR recording showed movement-related potentials before electromyography onset. Frequency analysis showed 2 discrete movement-related frequency bands in the theta (6- to 10-Hz) and beta (14- to 30-Hz) ranges. The PPNR theta band showed greater event-related desynchronization with movements in the ON than in the OFF medication state and was coupled with the sensorimotor cortices in the ON state only. Beta event-related desynchronization was observed in the PPNR during the premovement and movement execution phases in the OFF state. In contrast, premovement PPNR beta event-related synchronization occurred in the ON state. Moreover, beta band coherence between the PPNR and the midline prefrontal region was observed during movement preparation in the ON but not the OFF state. CONCLUSIONS Activities of PPNR change during movement preparation and execution in patients with PD. Dopaminergic medications modulate PPNR activities and promote the interactions between the cortex and PPNR. Beta oscillations may have different functions in the basal ganglia and PPNR, and may be prokinetic rather than antikinetic in the PPNR.
Collapse
Affiliation(s)
- E W Tsang
- Division of Brain Imaging & Behaviour Systems-Neuroscience, Toronto Western Hospital, McLaughlin Pavilion, Toronto, Ontario M5T 2S8, Canada
| | | | | | | | | | | | | |
Collapse
|
199
|
|
200
|
Rauch F, Schwabe K, Krauss JK. Effect of deep brain stimulation in the pedunculopontine nucleus on motor function in the rat 6-hydroxydopamine Parkinson model. Behav Brain Res 2010; 210:46-53. [DOI: 10.1016/j.bbr.2010.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 01/27/2010] [Accepted: 02/01/2010] [Indexed: 10/19/2022]
|