151
|
Batista LF, Artandi SE. Understanding telomere diseases through analysis of patient-derived iPS cells. Curr Opin Genet Dev 2013; 23:526-33. [PMID: 23993228 PMCID: PMC3925063 DOI: 10.1016/j.gde.2013.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/30/2022]
Abstract
A unique characteristic of tissue stem cells is the ability to self-renew, a process that enables the life-long maintenance of many organs. Stem cell self-renewal is dependent in part on the synthesis of telomere repeats by the enzyme telomerase. Defects in telomerase and in genes in the telomere maintenance pathway result in diverse disease states, including dyskeratosis congenita, pulmonary fibrosis, aplastic anemia, liver cirrhosis and cancer. Many of these disease states share a tissue failure phenotype, such as loss of bone marrow cells or failure of pulmonary epithelium, suggesting that stem cell dysfunction is a common pathophysiological mechanism underlying these telomere diseases. Studies of telomere diseases in undifferentiated iPS cells have provided a quantitative relationship between the magnitude of biochemical defects in the telomerase pathway and disease severity in patients, thereby establishing a clear correlation between genotype and phenotype in telomere disease states. Modeling telomere diseases in iPS cells has also revealed diverse underlying disease mechanisms, including reduced telomerase catalytic activity, diminished assembly of the telomerase holoenzyme and impaired trafficking of the enzyme within the nucleus. These studies highlight the need for therapies tailored to the underlying biochemical defect in each class of patients.
Collapse
Affiliation(s)
- Luis F.Z. Batista
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven E. Artandi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Biochemistry Department, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- The Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
152
|
Matsui K, Giri N, Alter BP, Pinto LA. Cytokine production by bone marrow mononuclear cells in inherited bone marrow failure syndromes. Br J Haematol 2013; 163:81-92. [PMID: 23889587 PMCID: PMC3930339 DOI: 10.1111/bjh.12475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/21/2013] [Indexed: 12/11/2022]
Abstract
Fanconi anaemia (FA), dyskeratosis congenita (DC), Diamond-Blackfan anaemia (DBA), and Shwachman-Diamond syndrome (SDS) are characterized by the progressive development of bone marrow failure. Overproduction of tumour necrosis factor-α (TNF-α) from activated bone marrow T-cells has been proposed as a mechanism of FA-related aplasia. Whether such overproduction occurs in the other syndromes is unknown. We conducted a comparative study on bone marrow mononuclear cells to examine the cellular subset composition and cytokine production. We found lower proportions of haematopoietic stem cells in FA, DC, and SDS, and a lower proportion of monocytes in FA, DC, and DBA compared with controls. The T- and B-lymphocyte proportions were similar to controls, except for low B-cells in DC. We did not observe overproduction of TNF-α or IFN-γ by T-cells in any patients. Induction levels of TNF-α, interleukin (IL)-6, IL-1β, IL-10, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor in monocytes stimulated with high-dose lipopolysaccharide (LPS) were similar at 4 h but lower at 24 h when compared to controls. Unexpectedly, patient samples showed a trend toward higher cytokine level in response to low-dose (0·001 μg/ml) LPS. Increased sensitivity to LPS may have clinical implications and could contribute to the development of pancytopenia by creating a chronic subclinical inflammatory micro-environment in the bone marrow.
Collapse
Affiliation(s)
- Ken Matsui
- Human Papillomavirus Immunology Laboratory, Science Applications
International Corporation (SAIC)-Frederick, Incorporated, Frederick National
Laboratory for Cancer Research, Frederick, MD 21702
| | - Neelam Giri
- Division of Cancer Epidemiology and Genetics Clinical Genetics
Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD,
20892, United States
| | - Blanche P. Alter
- Division of Cancer Epidemiology and Genetics Clinical Genetics
Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD,
20892, United States
| | - Ligia A. Pinto
- Human Papillomavirus Immunology Laboratory, Science Applications
International Corporation (SAIC)-Frederick, Incorporated, Frederick National
Laboratory for Cancer Research, Frederick, MD 21702
| |
Collapse
|
153
|
Abstract
The inherited bone marrow failure syndromes (IBMFS) are a set of clinically related yet heterogeneous disorders in which at least one hematopoietic cell lineage is significantly reduced. Many of the IBMFS have notably increased cancer risks, as well as other physical findings. Highly penetrant germline mutations in key pathways, such as DNA repair, telomere biology, or ribosomal biogenesis, are causative of Fanconi anemia (FA), dyskeratosis congenita (DC), and Diamond-Blackfan anemia (DBA), respectively. Next-generation sequencing (NGS) generally refers to high-throughput, large-scale sequencing technologies and is being used more frequently to understand disease etiology. In the IBMFS, NGS has facilitated the discovery of germline mutations that cause thrombocytopenia absent radii syndrome (TAR), a subset of DC and DBA, and other uncharacterized, but related, disorders. Panels of large numbers of genes are being used to molecularly characterize patients with IBMFS, such as FA and DBA. NGS is also accelerating the discovery of the genetic etiology of previously unclassified IBMFS. In this review, we will highlight recent studies that have employed NGS to ascertain the genetic etiology of IBMFS, namely, FA, DC, DBA, and TAR, and discuss the translational utility of these findings.
Collapse
Affiliation(s)
- Payal P. Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Children’s National Medical Center, Washington, DC
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
154
|
Ballew BJ, Joseph V, De S, Sarek G, Vannier JB, Stracker T, Schrader KA, Small TN, O'Reilly R, Manschreck C, Harlan Fleischut MM, Zhang L, Sullivan J, Stratton K, Yeager M, Jacobs K, Giri N, Alter BP, Boland J, Burdett L, Offit K, Boulton SJ, Savage SA, Petrini JHJ. A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome. PLoS Genet 2013; 9:e1003695. [PMID: 24009516 PMCID: PMC3757051 DOI: 10.1371/journal.pgen.1003695] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 06/11/2013] [Indexed: 11/18/2022] Open
Abstract
Dyskeratosis congenita (DC) is a heterogeneous inherited bone marrow failure and cancer predisposition syndrome in which germline mutations in telomere biology genes account for approximately one-half of known families. Hoyeraal Hreidarsson syndrome (HH) is a clinically severe variant of DC in which patients also have cerebellar hypoplasia and may present with severe immunodeficiency and enteropathy. We discovered a germline autosomal recessive mutation in RTEL1, a helicase with critical telomeric functions, in two unrelated families of Ashkenazi Jewish (AJ) ancestry. The affected individuals in these families are homozygous for the same mutation, R1264H, which affects three isoforms of RTEL1. Each parent was a heterozygous carrier of one mutant allele. Patient-derived cell lines revealed evidence of telomere dysfunction, including significantly decreased telomere length, telomere length heterogeneity, and the presence of extra-chromosomal circular telomeric DNA. In addition, RTEL1 mutant cells exhibited enhanced sensitivity to the interstrand cross-linking agent mitomycin C. The molecular data and the patterns of inheritance are consistent with a hypomorphic mutation in RTEL1 as the underlying basis of the clinical and cellular phenotypes. This study further implicates RTEL1 in the etiology of DC/HH and immunodeficiency, and identifies the first known homozygous autosomal recessive disease-associated mutation in RTEL1.
Collapse
Affiliation(s)
- Bari J. Ballew
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Vijai Joseph
- Clinical Genetics Service, Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Saurav De
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Grzegorz Sarek
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, South Mimms, United Kingdom
| | - Jean-Baptiste Vannier
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, South Mimms, United Kingdom
| | - Travis Stracker
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Kasmintan A. Schrader
- Clinical Genetics Service, Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Trudy N. Small
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Richard O'Reilly
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Chris Manschreck
- Clinical Genetics Service, Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Megan M. Harlan Fleischut
- Clinical Genetics Service, Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Liying Zhang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - John Sullivan
- Clinical Genetics Service, Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Kelly Stratton
- Clinical Genetics Service, Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
| | - Kevin Jacobs
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Joseph Boland
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
| | - Laurie Burdett
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Hospital, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Cancer Genetics and Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Simon J. Boulton
- DNA Damage Response Laboratory, London Research Institute, Cancer Research UK, South Mimms, United Kingdom
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - John H. J. Petrini
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
155
|
Abstract
While the majority of leukemia cases occur in the absence of any known predisposing factor, there are germline mutations that significantly increase the risk of developing hematopoietic malignancies in childhood. In this review article, we describe a number of these mutations and their clinical features. These predispositions can be broadly classified as those leading to bone marrow failure, those involving tumor suppressor genes, DNA repair defects, immunodeficiencies or other congenital syndromes associated with transient myeloid disorders. While leukemia can develop as a secondary event in the aforementioned syndromes, there are also several syndromes that specifically lead to the development of leukemia as their primary phenotype. Many of the genes discussed in this review can also be somatically mutated in other cancers, highlighting the importance of understanding shared alterations and mechanisms underpinning syndromic and sporadic leukemia.
Collapse
Affiliation(s)
- Elliot Stieglitz
- Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco, USA
| | | |
Collapse
|
156
|
snoRNPs Regulate Telomerase Activity in Neuroblastoma and Are Associated with Poor Prognosis. Transl Oncol 2013; 6:447-57. [PMID: 23908688 DOI: 10.1593/tlo.13112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/03/2013] [Accepted: 04/12/2013] [Indexed: 12/31/2022] Open
Abstract
Amplification of the MYCN oncogene is strongly associated with poor prognosis in neuroblastoma (NB). In addition to MYCN amplification, many studies have focused on identifying patients with a poor prognosis based on gene expression profiling. The majority of prognostic signatures today are comprised of large gene lists limiting their clinical application. In addition, although of prognostic significance, most of these signatures fail to identify cellular processes that can explain their relation to prognosis. Here, we determined prognostically predictive genes in a data set containing 251 NBs. Gene Ontology analysis was performed on significant genes with a positive hazard ratio to search for cellular processes associated with poor prognosis. An enrichment in ribonucleoproteins (RNPs) was found. Genes involved in the stabilization and formation of the central small nucleolar RNP (snoRNP) complex were scrutinized using a backward conditional Cox regression resulting in an snoRNP signature consisting of three genes: DKC1, NHP2, and GAR1. The snoRNP signature significantly and independently predicted prognosis when compared to the established clinical risk factors. Association of snoRNP protein expression and prognosis was confirmed using tissue micro-arrays. Knockdown of snoRNP expression in NB cell lines resulted in reduced telomerase activity and an increase in anaphase bridge frequency. In addition, in patient material, expression of the snoRNP complex was significantly associated with telomerase activity, occurrence of segmental aberrations, and expression-based measurements of chromosomal instability. Together, these results underscore the prognostic value of snoRNP complex expression in NB and suggest a role for snoRNPs in telomere maintenance and genomic stability.
Collapse
|
157
|
Marchand-Adam S, Diot B, Magro P, De Muret A, Guignabert C, Kannengiesser C, Londono-Vallejo A, Draskovic I, Toutain A, Diot P. Pulmonary Alveolar Proteinosis Revealing a Telomerase Disease. Am J Respir Crit Care Med 2013; 188:402-4. [DOI: 10.1164/rccm.201301-0010le] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
158
|
Sørensen KD. Research Highlights: New insights into prostate cancer susceptibility. Per Med 2013; 10:427-430. [DOI: 10.2217/pme.13.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Karina D Sørensen
- Department of Molecular Medicine, Aarhus University Hospital, Brendstrupgaardsvej 100, DK-8200, Aarhus, Denmark
| |
Collapse
|
159
|
Islam A, Rafiq S, Kirwan M, Walne A, Cavenagh J, Vulliamy T, Dokal I. Haematological recovery in dyskeratosis congenita patients treated with danazol. Br J Haematol 2013; 162:854-6. [PMID: 23782100 DOI: 10.1111/bjh.12432] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
160
|
Gadalla SM, Sales-Bonfim C, Carreras J, Alter BP, Antin JH, Ayas M, Bodhi P, Davis J, Davies SM, Deconinck E, Deeg HJ, Duerst RE, Fasth A, Ghavamzadeh A, Giri N, Goldman FD, Kolb EA, Krance R, Kurtzberg J, Leung WH, Srivastava A, Or R, Richman CM, Rosenberg PS, Toledo Codina JSD, Shenoy S, Socié G, Tolar J, Williams KM, Eapen M, Savage SA. Outcomes of allogeneic hematopoietic cell transplantation in patients with dyskeratosis congenita. Biol Blood Marrow Transplant 2013; 19:1238-43. [PMID: 23751955 DOI: 10.1016/j.bbmt.2013.05.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/31/2013] [Indexed: 01/09/2023]
Abstract
We describe outcomes after allogeneic transplantation in 34 patients with dyskeratosis congenita who underwent transplantation between 1981 and 2009. The median age at transplantation was 13 years (range, 2 to 35). Approximately 50% of transplantations were from related donors. Bone marrow was the predominant source of stem cells (24 of 34). The day-28 probability of neutrophil recovery was 73% and the day-100 platelet recovery was 72%. The day-100 probability of grade II to IV acute GVHD and the 3-year probability of chronic graft-versus-host disease were 24% and 37%, respectively. The 10-year probability of survival was 30%; 14 patients were alive at last follow-up. Ten deaths occurred within 4 months from transplantation because of graft failure (n = 6) or other transplantation-related complications; 9 of these patients had undergone transplantation from mismatched related or from unrelated donors. Another 10 deaths occurred after 4 months; 6 of them occurred more than 5 years after transplantation, and 4 of these were attributed to pulmonary failure. Transplantation regimen intensity and transplantations from mismatched related or unrelated donors were associated with early mortality. Transplantation of grafts from HLA-matched siblings with cyclophosphamide-containing nonradiation regimens was associated with early low toxicity. Late mortality was attributed mainly to pulmonary complications and likely related to the underlying disease.
Collapse
Affiliation(s)
- Shahinaz M Gadalla
- Clinical Genetic Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
An N, Fleming AM, Burrows CJ. Interactions of the human telomere sequence with the nanocavity of the α-hemolysin ion channel reveal structure-dependent electrical signatures for hybrid folds. J Am Chem Soc 2013; 135:8562-70. [PMID: 23682802 DOI: 10.1021/ja400973m] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human telomeric DNA consists of tandem repeats of the sequence 5'-TTAGGG-3', including a 3' terminal single-stranded overhang of 100-200 nucleotides that can fold into quadruplex structures in the presence of suitable metal ions. In the presence of an applied voltage, the α-hemolysin (α-HL) protein ion channel can produce unique current patterns that are found to be characteristic for various interactions between G-quadruplexes and the protein nanocavity. In this study, the human telomere in a complete sequence context, 5'-TAGGG(TTAGGG)3TT-3', was evaluated with respect to its multiple folding topologies. Notably, the coexistence of two interchangeable conformations of the K(+)-induced folds, hybrid-1 and hybrid-2, were readily resolved at a single-molecule level along with triplex folding intermediates, whose characterization has been challenging in experiments that measure the bulk solution. These results enabled us to profile the thermal denaturation process of these structures to elucidate the relative distributions of hybrid-1, hybrid-2, and folding intermediates such as triplexes. For example, at 37 °C, pH 7.9, in 50 mM aqueous KCl, the ratio of hybrid-1:hybrid-2:triplex is approximately 11:5:1 in dilute solution. The results obtained lay the foundation for utilizing the α-HL ion channel as a simple tool for monitoring how small molecules and physical context shift the equilibrium between the many G-quadruplex folds of the human telomere sequence.
Collapse
Affiliation(s)
- Na An
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | | | |
Collapse
|
162
|
Ballew BJ, Yeager M, Jacobs K, Giri N, Boland J, Burdett L, Alter BP, Savage SA. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita. Hum Genet 2013; 132:473-80. [PMID: 23329068 PMCID: PMC3600110 DOI: 10.1007/s00439-013-1265-8] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/06/2013] [Indexed: 01/09/2023]
Abstract
Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. In addition, inheritance of only the missense mutation led to very short telomeres in the proband's brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC.
Collapse
Affiliation(s)
- Bari J. Ballew
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 20877
| | - Kevin Jacobs
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 20877
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892
| | - Joseph Boland
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 20877
| | - Laurie Burdett
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 20877
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892
| |
Collapse
|
163
|
Walne AJ, Vulliamy T, Kirwan M, Plagnol V, Dokal I. Constitutional mutations in RTEL1 cause severe dyskeratosis congenita. Am J Hum Genet 2013; 92:448-53. [PMID: 23453664 PMCID: PMC3591859 DOI: 10.1016/j.ajhg.2013.02.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 11/30/2022] Open
Abstract
Dyskeratosis congenita (DC) and its phenotypically severe variant, Hoyeraal-Hreidarsson syndrome (HHS), are multisystem bone-marrow-failure syndromes in which the principal pathology is defective telomere maintenance. The genetic basis of many cases of DC and HHS remains unknown. Using whole-exome sequencing, we identified biallelic mutations in RTEL1, encoding a helicase essential for telomere maintenance and regulation of homologous recombination, in an individual with familial HHS. Additional screening of RTEL1 identified biallelic mutations in 6/23 index cases with HHS but none in 102 DC or DC-like cases. All 11 mutations in ten HHS individuals from seven families segregated in an autosomal-recessive manner, and telomere lengths were significantly shorter in cases than in controls (p = 0.0003). This group had significantly higher levels of telomeric circles, produced as a consequence of incorrect processing of telomere ends, than did controls (p = 0.0148). These biallelic RTEL1 mutations are responsible for a major subgroup (∼29%) of HHS. Our studies show that cells harboring these mutations have significant defects in telomere maintenance, but not in homologous recombination, and that incorrect resolution of T-loops is a mechanism for telomere shortening and disease causation in humans. They also demonstrate the severe multisystem consequences of its dysfunction.
Collapse
Affiliation(s)
- Amanda J Walne
- Centre for Paediatrics, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts and The London Children's Hospital, London, UK.
| | | | | | | | | |
Collapse
|
164
|
Telomerase Activity Increased and Telomere Length Shortened in Peripheral Blood Cells from Patients with Immune Thrombocytopenia. J Clin Immunol 2012; 33:577-85. [DOI: 10.1007/s10875-012-9848-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
|
165
|
Muraki K, Nyhan K, Han L, Murnane JP. Mechanisms of telomere loss and their consequences for chromosome instability. Front Oncol 2012; 2:135. [PMID: 23061048 PMCID: PMC3463808 DOI: 10.3389/fonc.2012.00135] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/19/2012] [Indexed: 12/17/2022] Open
Abstract
The ends of chromosomes in mammals, called telomeres, are composed of a 6-bp repeat sequence, TTAGGG, which is added on by the enzyme telomerase. In combination with a protein complex called shelterin, these telomeric repeat sequences form a cap that protects the ends of chromosomes. Due to insufficient telomerase expression, telomeres shorten gradually with each cell division in human somatic cells, which limits the number of times they can divide. The extensive cell division involved in cancer cell progression therefore requires that cancer cells must acquire the ability to maintain telomeres, either through expression of telomerase, or through an alternative mechanism involving recombination. It is commonly thought that the source of many chromosome rearrangements in cancer cells is a result of the extensive telomere shortening that occurs prior to the expression of telomerase. However, despite the expression of telomerase, tumor cells can continue to show chromosome instability due to telomere loss. Dysfunctional telomeres in cancer cells can result from oncogene-induced replication stress, which results in double-strand breaks (DSBs) at fragile sites, including telomeres. DSBs near telomeres are especially prone to chromosome rearrangements, because telomeric regions are deficient in DSB repair. The deficiency in DSB repair near telomeres is also an important mechanism for ionizing radiation-induced replicative senescence in normal human cells. In addition, DSBs near telomeres can result in chromosome instability in mouse embryonic stem cells, suggesting that telomere loss can contribute to heritable chromosome rearrangements. Consistent with this possibility, telomeric regions in humans are highly heterogeneous, and chromosome rearrangements near telomeres are commonly involved in human genetic disease. Understanding the mechanisms of telomere loss will therefore provide important insights into both human cancer and genetic disease.
Collapse
Affiliation(s)
- Keiko Muraki
- Department of Radiation Oncology, University of California at San Francisco San Francisco, CA, USA
| | | | | | | |
Collapse
|
166
|
Abstract
Telomerase adds simple-sequence repeats to the ends of linear chromosomes to counteract the loss of end sequence inherent in conventional DNA replication. Catalytic activity for repeat synthesis results from the cooperation of the telomerase reverse transcriptase protein (TERT) and the template-containing telomerase RNA (TER). TERs vary widely in sequence and structure but share a set of motifs required for TERT binding and catalytic activity. Species-specific TER motifs play essential roles in RNP biogenesis, stability, trafficking, and regulation. Remarkably, the biogenesis pathways that generate mature TER differ across eukaryotes. Furthermore, the cellular processes that direct the assembly of a biologically functional telomerase holoenzyme and its engagement with telomeres are evolutionarily varied and regulated. This review highlights the diversity of strategies for telomerase RNP biogenesis, RNP assembly, and telomere recruitment among ciliates, yeasts, and vertebrates and suggests common themes in these pathways and their regulation.
Collapse
Affiliation(s)
- Emily D. Egan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200, USA
- Corresponding authorE-mail
| |
Collapse
|
167
|
Bender HS, Murchison EP, Pickett HA, Deakin JE, Strong MA, Conlan C, McMillan DA, Neumann AA, Greider CW, Hannon GJ, Reddel RR, Graves JAM. Extreme telomere length dimorphism in the Tasmanian devil and related marsupials suggests parental control of telomere length. PLoS One 2012; 7:e46195. [PMID: 23049977 PMCID: PMC3458001 DOI: 10.1371/journal.pone.0046195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/27/2012] [Indexed: 01/21/2023] Open
Abstract
Telomeres, specialised structures that protect chromosome ends, play a critical role in preserving chromosome integrity. Telomere dynamics in the Tasmanian devil (Sarcophilus harrisii) are of particular interest in light of the emergence of devil facial tumour disease (DFTD), a transmissible malignancy that causes rapid mortality and threatens the species with extinction. We used fluorescent in situ hybridisation to investigate telomere length in DFTD cells, in healthy Tasmanian devils and in four closely related marsupial species. Here we report that animals in the Order Dasyuromorphia have chromosomes characterised by striking telomere length dimorphism between homologues. Findings in sex chromosomes suggest that telomere length dimorphism may be regulated by events in the parental germlines. Long telomeres on the Y chromosome imply that telomere lengthening occurs during spermatogenesis, whereas telomere diminution occurs during oogenesis. Although found in several somatic cell tissue types, telomere length dimorphism was not found in DFTD cancer cells, which are characterised by uniformly short telomeres. This is, to our knowledge, the first report of naturally occurring telomere length dimorphism in any species and suggests a novel strategy of telomere length control. Comparative studies in five distantly related marsupials and a monotreme indicate that telomere dimorphism evolved at least 50 million years ago.
Collapse
Affiliation(s)
- Hannah S Bender
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Cesare AJ, Karlseder J. A three-state model of telomere control over human proliferative boundaries. Curr Opin Cell Biol 2012; 24:731-8. [PMID: 22947495 DOI: 10.1016/j.ceb.2012.08.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/27/2012] [Accepted: 08/20/2012] [Indexed: 12/15/2022]
Abstract
Intrinsic limits on cellular proliferation in human somatic tissue serves as a tumor suppressor mechanism by restricting cell growth in aged cells with accrued pre-cancerous mutations. This is accompanied by the potential cost of restricting regenerative capacity and contributing to cellular and organismal aging. Emerging data support a model where telomere erosion controls proliferative boundaries through the progressive change of telomere structure from a protected state, through two distinct states of telomere deprotection. In this model telomeres facilitate a controlled permanent cell cycle arrest with a stable diploid genome during differentiation and may serve as an epigenetic sensor of general stress in DNA metabolism processes.
Collapse
Affiliation(s)
- Anthony J Cesare
- The Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | |
Collapse
|
169
|
Walne AJ, Bhagat T, Kirwan M, Gitiaux C, Desguerre I, Leonard N, Nogales E, Vulliamy T, Dokal IS. Mutations in the telomere capping complex in bone marrow failure and related syndromes. Haematologica 2012; 98:334-8. [PMID: 22899577 DOI: 10.3324/haematol.2012.071068] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dyskeratosis congenita and its variants have overlapping phenotypes with many disorders including Coats plus, and their underlying pathology is thought to be one of defective telomere maintenance. Recently, biallelic CTC1 mutations have been described in patients with syndromes overlapping Coats plus. CTC1, STN1 and TEN1 are part of the telomere-capping complex involved in maintaining telomeric structural integrity. Based on phenotypic overlap we screened 73 genetically uncharacterized patients with dyskeratosis congenita and related bone marrow failure syndromes for mutations in this complex. Biallelic CTC1 mutations were identified in 6 patients but none in either STN1 or TEN1. We have expanded the phenotypic spectrum associated with CTC1 mutations and report that intracranial and retinal abnormalities are not a defining feature, as well as showing that the effect of these mutations on telomere length is variable. The study also demonstrates the lack of disease-causing mutations in other components of the telomere-capping complex.
Collapse
|
170
|
Weng NP. Telomeres and immune competency. Curr Opin Immunol 2012; 24:470-5. [PMID: 22626625 PMCID: PMC3423542 DOI: 10.1016/j.coi.2012.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 11/26/2022]
Abstract
Telomeres are essential for the integrity of chromosomes and for cellular replication. Attrition of telomeres occurs during DNA replication owing to the inability of conventional DNA polymerase to replicate chromosomal termini and the insufficient compensation for telomere loss by telomerase, an enzyme that synthesizes telomeric DNA. A number of genetic defects have been described in humans and in animal models that cause accelerated telomere attrition, in turn leading to severe phenotypes of hematopoietic and other proliferating cells. Telomere length, most frequently measured as an average value in heterogeneous peripheral blood leukocyte populations in humans, has been associated with a wide range of health conditions and diseases of immune and non-immune cells. Here, I review recent studies of telomere length dynamics with particular relevance to immune function.
Collapse
Affiliation(s)
- Nan-ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
171
|
Churpek JE, Lorenz R, Nedumgottil S, Onel K, Olopade OI, Sorrell A, Owen CJ, Bertuch AA, Godley LA. Proposal for the clinical detection and management of patients and their family members with familial myelodysplastic syndrome/acute leukemia predisposition syndromes. Leuk Lymphoma 2012; 54:28-35. [PMID: 22691122 DOI: 10.3109/10428194.2012.701738] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
As with most genetic cancer predisposition syndromes, inherited susceptibility to myelodysplastic syndrome (MDS) and acute leukemia (AL) is likely to be more common than previously appreciated. As next-generation sequencing technologies become integrated into clinical practice, we anticipate that the number of cases of familial MDS/AL identified will increase. Although the existence of syndromes predisposing to MDS/AL has been known for some time, clinical guidelines for the screening and management of suspected or confirmed cases do not exist. Based on our collective experience caring for families with these syndromes, we propose recommendations for genetic counseling, testing, and clinical management. We welcome discussion about these proposals and hope that they will catalyze an ongoing dialog leading to optimal medical and psychosocial care for these patients.
Collapse
Affiliation(s)
- Jane E Churpek
- Section of Hematology/Oncology, Department of Medicine and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Abstract
Telomere function is tightly regulated in order to maintain chromosomal stability. When telomeres become dysfunctional, the replicative capacity of cells diminishes and cellular senescence ensues. This can lead to impaired tissue replenishment and eventually degenerative disorders, referred to as telomere syndromes. Cancer can also develop as a result of the genomic instability associated with telomere dysfunction. TERRA (TElomeric Repeat containing RNA) is a long non-coding transcript that stems from sub-telomeric regions and continues into the telomeric tract and is therefore a hybrid of both sub-telomeric and telomeric sequence. In general, increased TERRA transcription is associated with telomere shortening and compromised telomere function. Here we will briefly outline the general principles behind telomere dysfunction-associated diseases. Furthermore, we will discuss the few known links that exist between telomere transcription (TERRA) and disease. Finally, we will speculate on how the understanding, and eventual manipulation, of TERRA transcription could potentially be used in terms of therapeutic strategies.
Collapse
Affiliation(s)
- André Maicher
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | | | | |
Collapse
|
173
|
De Felice B, Nappi C, Zizolfi B, Guida M, Sardo ADS, Bifulco G, Guida M. Telomere shortening in women resident close to waste landfill sites. Gene 2012; 500:101-6. [DOI: 10.1016/j.gene.2012.03.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/08/2012] [Accepted: 03/04/2012] [Indexed: 12/21/2022]
|
174
|
Pickett HA, Reddel RR. The role of telomere trimming in normal telomere length dynamics. Cell Cycle 2012; 11:1309-15. [PMID: 22421147 DOI: 10.4161/cc.19632] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Telomeres consist of repetitive DNA and associated proteins that protect chromosome ends from illicit DNA repair. It is well known that telomeric DNA is progressively eroded during cell division, until telomeres become too short and the cell stops dividing. There is a second mode of telomere shortening, however, which is a regulated form of telomere rapid deletion (TRD) termed telomere trimming that is reviewed here. Telomere trimming appears to involve resolution of recombination intermediate structures, which shortens the telomere by release of extrachromosomal telomeric DNA. This has been detected in human and in mouse cells and occurs both in somatic and germline cells, where it sets an upper limit on telomere length and contributes to a length equilibrium set-point in cells that have a telomere elongation mechanism. Telomere trimming thus represents an additional mechanism of telomere length control that contributes to normal telomere dynamics and cell proliferative potential.
Collapse
Affiliation(s)
- Hilda A Pickett
- Children's Medical Research Institute and Sydney Medical School, University of Sydney, New South Wales, Australia
| | | |
Collapse
|
175
|
Rackley S, Pao M, Seratti GF, Giri N, Rasimas JJ, Alter BP, Savage SA. Neuropsychiatric conditions among patients with dyskeratosis congenita: a link with telomere biology? PSYCHOSOMATICS 2012; 53:230-5. [PMID: 22458992 DOI: 10.1016/j.psym.2011.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 01/30/2023]
Abstract
BACKGROUND Dyskeratosis congenita (DC), an inherited bone marrow failure syndrome (IBMFS), is caused by defects in telomere biology, which result in very short germline telomeres. Telomeres, long nucleotide repeats and a protein complex at chromosome ends, are essential for chromosomal stability. Several association studies suggest that short telomeres are associated with certain psychiatric disorders, including mood disorders and schizophrenia. There are two cases in the literature of schizophrenia and DC occurring as co-morbid conditions. We noted that many patients with DC in our cohort had neuropsychiatric conditions. METHODS Subjects were participants in NCI's IBMFS prospective cohort study. Psychiatric evaluation was incorporated into our clinical assessment in January 2009. Fourteen DC or DC-like patients, including six children, were evaluated in this study through in person interview by either a psychiatrist specialized in psychosomatic medicine or a child and adolescent psychiatrist. RESULTS Three of the six pediatric subjects and five of the eight adults had a neuropsychiatric condition such as a mood, anxiety, or adjustment disorder, intellectual disability, attention deficit hyperactivity disorder, or pervasive developmental disorders. The lifetime occurrence of any of these disorders in our study was 83% in pediatric subjects and 88% in adults. Notably, the literature reports neuropsychiatric conditions in 25% and 38% in chronically ill children and adults, respectively. CONCLUSION This pilot study suggests that patients with DC may have higher rates of neuropsychiatric conditions than the general population or other chronically ill individuals. This potential link between very short telomeres and neuropsychiatric conditions warrants further study.
Collapse
Affiliation(s)
- Sandra Rackley
- Department of Psychiatry and Behavioral Sciences, Children's National Medical Center, Washington, DC, USA
| | | | | | | | | | | | | |
Collapse
|
176
|
Polvi A, Linnankivi T, Kivelä T, Herva R, Keating J, Mäkitie O, Pareyson D, Vainionpää L, Lahtinen J, Hovatta I, Pihko H, Lehesjoki AE. Mutations in CTC1, encoding the CTS telomere maintenance complex component 1, cause cerebroretinal microangiopathy with calcifications and cysts. Am J Hum Genet 2012; 90:540-9. [PMID: 22387016 PMCID: PMC3309194 DOI: 10.1016/j.ajhg.2012.02.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/27/2012] [Accepted: 02/02/2012] [Indexed: 01/26/2023] Open
Abstract
Cerebroretinal microangiopathy with calcifications and cysts (CRMCC) is a rare multisystem disorder characterized by extensive intracranial calcifications and cysts, leukoencephalopathy, and retinal vascular abnormalities. Additional features include poor growth, skeletal and hematological abnormalities, and recurrent gastrointestinal bleedings. Autosomal-recessive inheritance has been postulated. The pathogenesis of CRMCC is unknown, but its phenotype has key similarities with Revesz syndrome, which is caused by mutations in TINF2, a gene encoding a member of the telomere protecting shelterin complex. After a whole-exome sequencing approach in four unrelated individuals with CRMCC, we observed four recessively inherited compound heterozygous mutations in CTC1, which encodes the CTS telomere maintenance complex component 1. Sanger sequencing revealed seven more compound heterozygous mutations in eight more unrelated affected individuals. Two individuals who displayed late-onset cerebral findings, a normal fundus appearance, and no systemic findings did not have CTC1 mutations, implying that systemic findings are an important indication for CTC1 sequencing. Of the 11 mutations identified, four were missense, one was nonsense, two resulted in in-frame amino acid deletions, and four were short frameshift-creating deletions. All but two affected individuals were compound heterozygous for a missense mutation and a frameshift or nonsense mutation. No individuals with two frameshift or nonsense mutations were identified, which implies that severe disturbance of CTC1 function from both alleles might not be compatible with survival. Our preliminary functional experiments did not show evidence of severely affected telomere integrity in the affected individuals. Therefore, determining the underlying pathomechanisms associated with deficient CTC1 function will require further studies.
Collapse
Affiliation(s)
- Anne Polvi
- Folkhälsan Institute of Genetics, Helsinki 00290, Finland
- Molecular Medicine Research Program, Research Programs Unit and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki 00290, Finland
- Neuroscience Center, University of Helsinki, Helsinki 00290, Finland
| | - Tarja Linnankivi
- Department of Pediatric Neurology, Children's Castle, Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Tero Kivelä
- Department of Ophthalmology, Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Riitta Herva
- Department of Pathology, Oulu University Hospital, Oulu 90029, Finland
| | - James P. Keating
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri 63110, USA
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Helsinki 00290, Finland
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences, Fondazione Instituto di Ricovero e Cura a Carattere Scientifico, C. Besta Neurological Institute, Milan 20133, Italy
| | - Leena Vainionpää
- Department of Pediatrics, Oulu University Hospital, Oulu 90029, Finland
| | - Jenni Lahtinen
- Molecular Neurology Research Program, Research Programs Unit and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki 00290, Finland
| | - Iiris Hovatta
- Molecular Neurology Research Program, Research Programs Unit and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki 00290, Finland
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki 00271, Finland
| | - Helena Pihko
- Department of Pediatric Neurology, Children's Castle, Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics, Helsinki 00290, Finland
- Molecular Medicine Research Program, Research Programs Unit and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki 00290, Finland
- Neuroscience Center, University of Helsinki, Helsinki 00290, Finland
| |
Collapse
|
177
|
|
178
|
Telomeres: the beginnings and ends of eukaryotic chromosomes. Exp Cell Res 2012; 318:1456-60. [PMID: 22391099 DOI: 10.1016/j.yexcr.2012.02.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 11/22/2022]
Abstract
The ends of eukaryotic chromosomes are called telomeres. This article provides a short history of telomere and telomerase research starting with the pioneering work of Muller and McClintock through the molecular era of telomere biology. These studies culminated in the 2009 Nobel Prize in Medicine. Critical findings that moved the field forward and that suggest directions for future research are emphasized.
Collapse
|
179
|
Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nat Genet 2012; 44:338-42. [DOI: 10.1038/ng.1084] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/21/2011] [Indexed: 11/09/2022]
|
180
|
Abstract
Telomeres are long (TTAGGG)(n) nucleotide repeats and an associated protein complex located at the end of the chromosomes. They shorten with every cell division and, thus are markers for cellular aging, senescence, and replicative capacity. Telomere dysfunction is linked to several bone marrow disorders, including dyskeratosis congenita, aplastic anemia, myelodysplastic syndrome, and hematopoietic malignancies. Hematopoietic stem cell transplantation (HSCT) provides an opportunity in which to study telomere dynamics in a high cell proliferative environment. Rapid telomere shortening of donor cells occurs in the recipient shortly after HSCT; the degree of telomere attrition does not appear to differ by graft source. As expected, telomeres are longer in recipients of grafts with longer telomeres (e.g., cord blood). Telomere attrition may play a role in, or be a marker of, long term outcome after HSCT, but these data are limited. In this review, we discuss telomere biology in normal and abnormal hematopoiesis, including HSCT.
Collapse
Affiliation(s)
- Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20852, USA.
| | | |
Collapse
|
181
|
Nelson ND, Bertuch AA. Dyskeratosis congenita as a disorder of telomere maintenance. Mutat Res 2011; 730:43-51. [PMID: 21745483 DOI: 10.1016/j.mrfmmm.2011.06.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/16/2011] [Accepted: 06/25/2011] [Indexed: 12/11/2022]
Abstract
Since 1998, there have been great advances in our understanding of the pathogenesis of dyskeratosis congenita (DC), a rare inherited bone marrow failure and cancer predisposition syndrome with prominent mucocutaneous abnormalities and features of premature aging. DC is now characterized molecularly by the presence of short age-adjusted telomeres. Mutations in seven genes have been unequivocally associated with DC, each with a role in telomere length maintenance. These observations, combined with knowledge that progressive telomere shortening can impose a proliferative barrier on dividing cells and contribute to chromosome instability, have led to the understanding that extreme telomere shortening drives the clinical features of DC. However, some of the genes implicated in DC encode proteins that are also components of H/ACA-ribonucleoprotein enzymes, which are responsible for the post-translational modification of ribosomal and spliceosomal RNAs, raising the question whether alterations in these activities play a role in the pathogenesis of DC. In addition, recent reports suggest that some cases of DC may not be characterized by short age-adjusted telomeres. This review will highlight our current knowledge of the telomere length defects in DC and the factors involved in its development.
Collapse
Affiliation(s)
- Nya D Nelson
- Department of Molecular and Human Genetics, Texas Children's Hospital, Houston, TX 77030, USA
| | | |
Collapse
|