151
|
Marcotte TD, Deutsch R, Michael BD, Franklin D, Cookson DR, Bharti AR, Grant I, Letendre SL. A concise panel of biomarkers identifies neurocognitive functioning changes in HIV-infected individuals. J Neuroimmune Pharmacol 2013; 8:1123-35. [PMID: 24101401 PMCID: PMC3874146 DOI: 10.1007/s11481-013-9504-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
Abstract
Neurocognitive (NC) impairment (NCI) occurs commonly in people living with HIV. Despite substantial effort, no biomarkers have been sufficiently validated for diagnosis and prognosis of NCI in the clinic. The goal of this project was to identify diagnostic or prognostic biomarkers for NCI in a comprehensively characterized HIV cohort. Multidisciplinary case review selected 98 HIV-infected individuals and categorized them into four NC groups using normative data: stably normal (SN), stably impaired (SI), worsening (Wo), or improving (Im). All subjects underwent comprehensive NC testing, phlebotomy, and lumbar puncture at two timepoints separated by a median of 6.2 months. Eight biomarkers were measured in CSF and blood by immunoassay. Results were analyzed using mixed model linear regression and staged recursive partitioning. At the first visit, subjects were mostly middle-aged (median 45) white (58 %) men (84 %) who had AIDS (70 %). Of the 73 % who took antiretroviral therapy (ART), 54 % had HIV RNA levels below 50 c/mL in plasma. Mixed model linear regression identified that only MCP-1 in CSF was associated with neurocognitive change group. Recursive partitioning models aimed at diagnosis (i.e., correctly classifying neurocognitive status at the first visit) were complex and required most biomarkers to achieve misclassification limits. In contrast, prognostic models were more efficient. A combination of three biomarkers (sCD14, MCP-1, SDF-1α) correctly classified 82 % of Wo and SN subjects, including 88 % of SN subjects. A combination of two biomarkers (MCP-1, TNF-α) correctly classified 81 % of Im and SI subjects, including 100 % of SI subjects. This analysis of well-characterized individuals identified concise panels of biomarkers associated with NC change. Across all analyses, the two most frequently identified biomarkers were sCD14 and MCP-1, indicators of monocyte/macrophage activation. While the panels differed depending on the outcome and on the degree of misclassification, nearly all stable patients were correctly classified.
Collapse
Affiliation(s)
| | - Reena Deutsch
- Department of Psychiatry, UC San Diego, San Diego, CA 92093 USA
| | - Benedict Daniel Michael
- Institute of Infection and Global Health, The University of Liverpool, Liverpool L69 7BE, UK
| | - Donald Franklin
- Department of Psychiatry, UC San Diego, San Diego, CA 92093 USA
| | | | - Ajay R. Bharti
- Department of Medicine, UC San Diego, San Diego, CA 92093 USA
| | - Igor Grant
- Department of Psychiatry, UC San Diego, San Diego, CA 92093 USA
| | - Scott L. Letendre
- Department of Medicine, UC San Diego, San Diego, CA 92093 USA, Fax: 619-543-5066, Telephone: 619-543-8080,
| | | |
Collapse
|
152
|
Haughey NJ, Zhu X, Bandaru VVR. A biological perspective of CSF lipids as surrogate markers for cognitive status in HIV. J Neuroimmune Pharmacol 2013; 8:1136-46. [PMID: 24203462 PMCID: PMC3909934 DOI: 10.1007/s11481-013-9506-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/03/2013] [Indexed: 12/14/2022]
Abstract
The development and application of biomarkers to neurodegenerative diseases has become increasingly important in clinical practice and therapeutic trials. While substantial progress has been made at the basic science level in understanding the pathophysiology of HIV-Associated Neurocognitive Disorders (HAND), there are significant limitations in our current ability to predict the onset or trajectory of disease, and to accurately determine the effects of therapeutic interventions. Thus, the development of objective biomarkers is critical to further our understanding and treatment of HAND. In recent years, biomarker discovery efforts have largely been driven forward through the implementation of multiple "omics" approaches that include (but are not restricted to): Lipidomics, proteomics, metabolomics, genomics, transcriptomics, and advances in brain imaging approaches such as functional connectomics. In this paper we summarize our progress to date on lipidomic approaches to biomarker discovery, discuss how these data have influenced basic research on the neuropathology of HAND, and implications for the development of therapeutics that target metabolic pathways involved in lipid handling.
Collapse
Affiliation(s)
- Norman J Haughey
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Pathology 517, 600 North Wolfe Street, Baltimore, MD, 21287, USA,
| | | | | |
Collapse
|
153
|
Cassol E, Misra V, Morgello S, Gabuzda D. Applications and limitations of inflammatory biomarkers for studies on neurocognitive impairment in HIV infection. J Neuroimmune Pharmacol 2013; 8:1087-97. [PMID: 24259252 PMCID: PMC3889222 DOI: 10.1007/s11481-013-9512-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/23/2013] [Indexed: 12/31/2022]
Abstract
Despite reduced prevalence of severe forms of HIV-associated neurocognitive disorders (HAND) on current antiretroviral therapy (ART) regimens, milder forms of neurocognitive impairment (NCI) remain prevalent in HIV-infected populations. These mild forms of HAND consist of subtypes, probably reflecting distinct, though possibly overlapping, pathophysiological mechanisms. Factors associated with HAND in HIV patients with prolonged viral suppression on ART include older age, low nadir CD4, active HCV co-infection, and cardiovascular risk factors, but underlying mechanisms and their relationship to innate immune activation, chronic inflammation, and other features of systemic disease are poorly understood. In this article, we discuss applications and limitations of plasma inflammatory biomarkers for studies on HAND in HIV patients on ART and describe an analysis pipeline to reduce common sources of noise and increase likelihood of identifying relevant inflammatory biomarkers. Clinical covariates and comorbidities that influence inflammatory biomarkers, such as aging, obesity, metabolic abnormalities, HCV co-infection, and substance abuse, are also reviewed. As an example for using this analytic pipeline, we present an exploratory study of 22 plasma inflammatory biomarkers (IFN-α 2b and -γ, 16 cytokines/chemokines, sIL-2R, sCD14, HA, and YKL-40) in a cohort of HIV-infected individuals with advanced disease, frequent HCV co-infection, and viral suppression on ART. The identification of inflammatory biomarkers associated with HAND in HIV+ patients on ART may be useful to distinguish between HAND subtypes with distinct pathophysiology, and is important for achieving a systems-level understanding of the biology of these disorders, developing effective therapies, and evaluating therapeutic outcomes.
Collapse
Affiliation(s)
- Edana Cassol
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA USA
| | - Vikas Misra
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA USA
| | | | - Dana Gabuzda
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA USA
- Dana Farber Cancer Institute, 450 Brookline Avenue CLS 1010, Boston, MA 02215 USA
| |
Collapse
|
154
|
Calderón-Garcidueñas L, Cross JV, Franco-Lira M, Aragón-Flores M, Kavanaugh M, Torres-Jardón R, Chao CK, Thompson C, Chang J, Zhu H, D'Angiulli A. Brain immune interactions and air pollution: macrophage inhibitory factor (MIF), prion cellular protein (PrP(C)), Interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1Ra), and interleukin-2 (IL-2) in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe vs. low air pollution. Front Neurosci 2013; 7:183. [PMID: 24133408 PMCID: PMC3794301 DOI: 10.3389/fnins.2013.00183] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/23/2013] [Indexed: 02/05/2023] Open
Abstract
Mexico City Metropolitan Area children chronically exposed to high concentrations of air pollutants exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, innate and adaptive immune responses along with accumulation of misfolded proteins observed in the early stages of Alzheimer and Parkinson's diseases. A complex modulation of serum cytokines and chemokines influences children's brain structural and gray/white matter volumetric responses to air pollution. The search for biomarkers associating systemic and CNS inflammation to brain growth and cognitive deficits in the short term and neurodegeneration in the long-term is our principal aim. We explored and compared a profile of cytokines, chemokines (Multiplexing LASER Bead Technology) and Cellular prion protein (PrP(C)) in normal cerebro-spinal-fluid (CSF) of urban children with high vs. low air pollution exposures. PrP(C) and macrophage inhibitory factor (MIF) were also measured in serum. Samples from 139 children ages 11.91 ± 4.2 years were measured. Highly exposed children exhibited significant increases in CSF MIF (p = 0.002), IL6 (p = 0.006), IL1ra (p = 0.014), IL-2 (p = 0.04), and PrP(C) (p = 0.039) vs. controls. MIF serum concentrations were higher in exposed children (p = 0.009). Our results suggest CSF as a MIF, IL6, IL1Ra, IL-2, and PrP(C) compartment that can possibly differentiate air pollution exposures in children. MIF, a key neuro-immune mediator, is a potential biomarker bridge to identify children with CNS inflammation. Fine tuning of immune-to-brain communication is crucial to neural networks appropriate functioning, thus the short and long term effects of systemic inflammation and dysregulated neural immune responses are of deep concern for millions of exposed children. Defining the linkage and the health consequences of the brain / immune system interactions in the developing brain chronically exposed to air pollutants ought to be of pressing importance for public health.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Department of Biomedical Sciences, The Center for Structural and Functional Neurosciences, The University of Montana Missoula, MT, USA ; Hospital Central Militar, Secretaria de la Defensa Nacional Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Price RW, Peterson J, Fuchs D, Angel TE, Zetterberg H, Hagberg L, Spudich S, Smith RD, Jacobs JM, Brown JN, Gisslen M. Approach to cerebrospinal fluid (CSF) biomarker discovery and evaluation in HIV infection. J Neuroimmune Pharmacol 2013; 8:1147-58. [PMID: 23943280 PMCID: PMC3889225 DOI: 10.1007/s11481-013-9491-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/10/2013] [Indexed: 11/30/2022]
Abstract
Central nervous system (CNS) infection is a nearly universal facet of systemic HIV infection that varies in character and neurological consequences. While clinical staging and neuropsychological test performance have been helpful in evaluating patients, cerebrospinal fluid (CSF) biomarkers present a valuable and objective approach to more accurate diagnosis, assessment of treatment effects and understanding of evolving pathobiology. We review some lessons from our recent experience with CSF biomarker studies. We have used two approaches to biomarker analysis: targeted, hypothesis-driven and non-targeted exploratory discovery methods. We illustrate the first with data from a cross-sectional study of defined subject groups across the spectrum of systemic and CNS disease progression and the second with a longitudinal study of the CSF proteome in subjects initiating antiretroviral treatment. Both approaches can be useful and, indeed, complementary. The first is helpful in assessing known or hypothesized biomarkers while the second can identify novel biomarkers and point to broad interactions in pathogenesis. Common to both is the need for well-defined samples and subjects that span a spectrum of biological activity and biomarker concentrations. Previously-defined guide biomarkers of CNS infection, inflammation and neural injury are useful in categorizing samples for analysis and providing critical biological context for biomarker discovery studies. CSF biomarkers represent an underutilized but valuable approach to understanding the interactions of HIV and the CNS and to more objective diagnosis and assessment of disease activity. Both hypothesis-based and discovery methods can be useful in advancing the definition and use of these biomarkers.
Collapse
Affiliation(s)
- Richard W Price
- Department of Neurology, University of California San Francisco, San Francisco General Hospital, Bldg 1 Room 101, Potrero Avenue, Box 0870 1001, San Francisco, CA, 94110, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Williams DW, Calderon TM, Lopez L, Carvallo-Torres L, Gaskill PJ, Eugenin EA, Morgello S, Berman JW. Mechanisms of HIV entry into the CNS: increased sensitivity of HIV infected CD14+CD16+ monocytes to CCL2 and key roles of CCR2, JAM-A, and ALCAM in diapedesis. PLoS One 2013; 8:e69270. [PMID: 23922698 PMCID: PMC3724935 DOI: 10.1371/journal.pone.0069270] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/06/2013] [Indexed: 11/19/2022] Open
Abstract
As HIV infected individuals live longer, the prevalence of HIV associated neurocognitive disorders is increasing, despite successful antiretroviral therapy. CD14(+)CD16(+) monocytes are critical to the neuropathogenesis of HIV as they promote viral seeding of the brain and establish neuroinflammation. The mechanisms by which HIV infected and uninfected monocytes cross the blood brain barrier and enter the central nervous system are not fully understood. We determined that HIV infection of CD14(+)CD16(+) monocytes resulted in their highly increased transmigration across the blood brain barrier in response to CCL2 as compared to uninfected cells, which did not occur in the absence of the chemokine. This exuberant transmigration of HIV infected monocytes was due, at least in part, to increased CCR2 and significantly heightened sensitivity to CCL2. The entry of HIV infected and uninfected CD14(+)CD16(+) monocytes into the brain was facilitated by significantly increased surface JAM-A, ALCAM, CD99, and PECAM-1, as compared to CD14(+) cells that are CD16 negative. Upon HIV infection, there was an additional increase in surface JAM-A and ALCAM on CD14(+)CD16(+) monocytes isolated from some individuals. Antibodies to ALCAM and JAM-A inhibited the transmigration of both HIV infected and uninfected CD14(+)CD16(+) monocytes across the BBB, demonstrating their importance in facilitating monocyte transmigration and entry into the brain parenchyma. Targeting CCR2, JAM-A, and ALCAM present on CD14(+)CD16(+) monocytes that preferentially infiltrate the CNS represents a therapeutic strategy to reduce viral seeding of the brain as well as the ongoing neuroinflammation that occurs during HIV pathogenesis.
Collapse
Affiliation(s)
- Dionna W. Williams
- Department of Pathology, the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Tina M. Calderon
- Department of Pathology, the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Lillie Lopez
- Department of Pathology, the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Loreto Carvallo-Torres
- Department of Pathology, the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Peter J. Gaskill
- Department of Pathology, the Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Eliseo A. Eugenin
- Public Health Research Institute, University of Medicine and Dentistry, New Jersey, Newark, New Jersey, United States of America
- Department of Immunology and Molecular Genetics, University of Medicine and Dentistry, New Jersey, Newark, New Jersey, United States of America
| | - Susan Morgello
- Department of Neurology, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
- Department of Pathology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Joan W. Berman
- Department of Pathology, the Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Microbiology and Immunology, the Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
157
|
Abstract
In pathogenic simian immunodeficiency virus (SIV) and human immunodeficiency virus (HIV) infections, the translocation of microbial products from the gastrointestinal (GI) tract to portal and systemic circulation has been proposed as a major driver of the chronic immune activation that is associated with disease progression. Consistently, microbial translocation is not present in nonpathogenic SIV infections of natural host species. In vivo studies demonstrated that HIV/SIV-associated microbial translocation results from a series of immunopathological events occurring at the GI mucosa: (i) early and severe mucosal CD4(+) depletion, (ii) mucosal immune hyperactivation/persistent inflammation; (iii) damage to the integrity of the intestinal epithelium with enterocyte apoptosis and tight junction disruption; and (iv) subverted the gut microbiome, with a predominance of opportunistic bacteria. Direct in situ evidence of microbial translocation has been provided for SIV-infected rhesus macaques showing translocated microbial products in the intestinal lamina propria and distant sites. While the mechanisms by which microbial translocation causes immune activation remain controversial, a key pathogenic event appears to be innate immunity activation via Toll-like receptors and other pathogen recognition receptors. Accumulating clinical observations suggest that microbial translocation might affect HIV disease progression, response to therapy, and non-AIDS comorbidities. Given its detrimental effect on overall immunity, several interventions to prevent/block microbial translocation are currently under investigation as novel therapeutic agents for HIV/AIDS.
Collapse
|
158
|
Gaskill PJ, Calderon TM, Coley JS, Berman JW. Drug induced increases in CNS dopamine alter monocyte, macrophage and T cell functions: implications for HAND. J Neuroimmune Pharmacol 2013; 8:621-42. [PMID: 23456305 PMCID: PMC4303241 DOI: 10.1007/s11481-013-9443-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/13/2013] [Indexed: 02/08/2023]
Abstract
Central nervous system (CNS) complications resulting from HIV infection remain a major public health problem as individuals live longer due to the success of combined antiretroviral therapy (cART). As many as 70 % of HIV infected people have HIV associated neurocognitive disorders (HAND). Many HIV infected individuals abuse drugs, such as cocaine, heroin or methamphetamine, that may be important cofactors in the development of HIV CNS disease. Despite different mechanisms of action, all drugs of abuse increase extracellular dopamine in the CNS. The effects of dopamine on HIV neuropathogenesis are not well understood, and drug induced increases in CNS dopamine may be a common mechanism by which different types of drugs of abuse impact the development of HAND. Monocytes and macrophages are central to HIV infection of the CNS and to HAND. While T cells have not been shown to be a major factor in HIV-associated neuropathogenesis, studies indicate that T cells may play a larger role in the development of HAND in HIV infected drug abusers. Drug induced increases in CNS dopamine may dysregulate functions of, or increase HIV infection in, monocytes, macrophages and T cells in the brain. Thus, characterizing the effects of dopamine on these cells is important for understanding the mechanisms that mediate the development of HAND in drug abusers.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
159
|
|
160
|
|