151
|
Roma Neto IV, Ribeiro RA, Hungria M. Genetic diversity of elite rhizobial strains of subtropical and tropical legumes based on the 16S rRNA and glnII genes. World J Microbiol Biotechnol 2010; 26:1291-302. [DOI: 10.1007/s11274-009-0300-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 12/29/2009] [Indexed: 11/29/2022]
|
152
|
THRALL PETERH, BROADHURST LINDAM, HOQUE MOHAMEDS, BAGNALL DAVIDJ. Diversity and salt tolerance of nativeAcaciarhizobia isolated from saline and non-saline soils. AUSTRAL ECOL 2009. [DOI: 10.1111/j.1442-9993.2009.01998.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
153
|
Symbiotic diversity of Ensifer meliloti strains recovered from various legume species in Tunisia. Syst Appl Microbiol 2009; 32:583-92. [DOI: 10.1016/j.syapm.2009.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/18/2009] [Accepted: 07/10/2009] [Indexed: 11/16/2022]
|
154
|
Alexandre A, Brígido C, Laranjo M, Rodrigues S, Oliveira S. Survey of Chickpea Rhizobia diversity in Portugal reveals the predominance of species distinct from Mesorhizobium ciceri and Mesorhizobium mediterraneum. MICROBIAL ECOLOGY 2009; 58:930-941. [PMID: 19468700 DOI: 10.1007/s00248-009-9536-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 05/06/2009] [Indexed: 05/27/2023]
Abstract
Several Mesorhizobium species are able to induce effective nodules in chickpea, one of the most important legumes worldwide. Our aims were to examine the biogeography of chickpea rhizobia, to search for a predominant species, and to identify the most efficient microsymbiont, considering Portugal as a case study. One hundred and ten isolates were obtained from continental Portugal and Madeira Island. The 16S ribosomal RNA gene phylogeny revealed that isolates are highly diverse, grouping with most Mesorhizobium type strains, in four main clusters (A-D). Interestingly, only 33% of the isolates grouped with Mesorhizobium ciceri (cluster B) or Mesorhizobium mediterraneum (cluster D), the formerly described specific chickpea microsymbionts. Most isolates belong to cluster A, showing higher sequence similarity with Mesorhizobium huakuii and Mesorhizobium amorphae. The association found between the province of origin and species cluster of the isolates suggests biogeography patterns: most isolates from the north, center, and south belong to clusters B, A, and D, respectively. Most of the highly efficient isolates (symbiotic effectiveness >75%) belong to cluster B. A correlation was found between species cluster and origin soil pH of the isolates, suggesting that pH is a key environmental factor, which influences the species geographic distribution. To our knowledge, this is one of the few surveys on chickpea rhizobia and the first systematic assessment of indigenous rhizobia in Portugal.
Collapse
Affiliation(s)
- Ana Alexandre
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias Mediterrânicas (I.C.A.M.), Universidade de Evora, Evora, Portugal
| | | | | | | | | |
Collapse
|
155
|
Li Q, Zhang X, Zou L, Chen Q, Fewer DP, Lindström K. Horizontal gene transfer and recombination shape mesorhizobial populations in the gene center of the host plantsAstragalus luteolusandAstragalus ernestiiin Sichuan, China. FEMS Microbiol Ecol 2009; 70:71-9. [DOI: 10.1111/j.1574-6941.2009.00776.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
156
|
Bromfield ESP, Tambong JT, Cloutier S, Prévost D, Laguerre G, van Berkum P, Thi TVT, Assabgui R, Barran LR. Ensifer, Phyllobacterium and Rhizobium species occupy nodules of Medicago sativa (alfalfa) and Melilotus alba (sweet clover) grown at a Canadian site without a history of cultivation. MICROBIOLOGY-SGM 2009; 156:505-520. [PMID: 19875436 DOI: 10.1099/mic.0.034058-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phage-resistant and -susceptible bacteria from nodules of alfalfa and sweet clover, grown at a site without a known history of cultivation, were identified as diverse genotypes of Ensifer, Rhizobium and Phyllobacterium species based on sequence analysis of ribosomal (16S and 23S rRNA) and protein-encoding (atpD and recA) genes, Southern hybridization/RFLP and a range of phenotypic characteristics. Among phage-resistant bacteria, one genotype of Rhizobium sp. predominated on alfalfa (frequency approximately 68 %) but was recovered infrequently ( approximately 1 %) from sweet clover. A second genotype was isolated infrequently only from alfalfa. These genotypes fixed nitrogen poorly in association with sweet clover and Phaseolus vulgaris, but were moderately effective with alfalfa. They produced a near-neutral reaction on mineral salts agar containing mannitol, which is atypical of the genus Rhizobium. A single isolate of Ensifer sp. and two of Phyllobacterium sp. were recovered only from sweet clover. All were highly resistant to multiple antibiotics. Phylogenetic analysis indicated that Ensifer sp. strain T173 is closely related to, but separate from, the non-symbiotic species 'Sinorhizobium morelense'. Strain T173 is unique in that it possesses a 175 kb symbiotic plasmid and elicits ineffective nodules on alfalfa, sweet clover, Medicago lupulina and Macroptilium atropurpureum. The two Phyllobacterium spp. were non-symbiotic and probably represent bacterial opportunists. Three genotypes of E. meliloti that were symbiotically effective with alfalfa and sweet clover were encountered infrequently. Among phage-susceptible isolates, two genotypes of E. medicae were encountered infrequently and were highly effective with alfalfa, sweet clover and Medicago polymorpha. The ecological and practical implications of the findings are discussed.
Collapse
Affiliation(s)
- E S P Bromfield
- Agriculture and Agri-Food Canada, Ottawa, Ontario K1A OC6, Canada
| | - J T Tambong
- Agriculture and Agri-Food Canada, Ottawa, Ontario K1A OC6, Canada
| | - S Cloutier
- Agriculture and Agri-Food Canada, Ottawa, Ontario K1A OC6, Canada
| | - D Prévost
- Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd, Quebec G1V 2J3, Canada
| | - G Laguerre
- INRA, USC 1242 Symbioses Tropicales et Méditerranéennes, F-34398 Montpellier, France
| | - P van Berkum
- USDA ARS, Bldg 006, BARC-West, 10300 Baltimore Ave, Beltsville, MD 20705, USA
| | - T V Tran Thi
- Agriculture and Agri-Food Canada, Ottawa, Ontario K1A OC6, Canada
| | - R Assabgui
- Agriculture and Agri-Food Canada, Ottawa, Ontario K1A OC6, Canada
| | - L R Barran
- Agriculture and Agri-Food Canada, Ottawa, Ontario K1A OC6, Canada
| |
Collapse
|
157
|
Rivas R, García-Fraile P, Velázquez E. Taxonomy of Bacteria Nodulating Legumes. Microbiol Insights 2009. [DOI: 10.4137/mbi.s3137] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Over the years, the term “rhizobia” has come to be used for all the bacteria that are capable of nodulation and nitrogen fixation in association with legumes but the taxonomy of rhizobia has changed considerably over the last 30 year. Recently, several non-rhizobial species belonging to alpha and beta subgroup of Proteobacteria have been identified as nitrogen-fixing legume symbionts. Here we provide an overview of the history of the rhizobia and the widespread phylogenetic diversity of nitrogen-fixing legume symbionts.
Collapse
Affiliation(s)
- Raúl Rivas
- Departamento de Microbiología y Genética, Laboratorio 209, Edificio Departamental de Biología, Doctores de la Reina s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Laboratorio 209, Edificio Departamental de Biología, Doctores de la Reina s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Encarna Velázquez
- Departamento de Microbiología y Genética, Laboratorio 209, Edificio Departamental de Biología, Doctores de la Reina s/n, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
158
|
León-Barrios M, Lorite MJ, Donate-Correa J, Sanjuán J. Ensifer meliloti bv. lancerottense establishes nitrogen-fixing symbiosis with Lotus endemic to the Canary Islands and shows distinctive symbiotic genotypes and host range. Syst Appl Microbiol 2009; 32:413-420. [PMID: 19477097 DOI: 10.1016/j.syapm.2009.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Indexed: 11/18/2022]
Abstract
Eleven strains were isolated from root nodules of Lotus endemic to the Canary Islands and they belonged to the genus Ensifer, a genus never previously described as a symbiont of Lotus. According to their 16S rRNA and atpD gene sequences, two isolates represented minority genotypes that could belong to previously undescribed Ensifer species, but most of the isolates were classified within the species Ensifer meliloti. These isolates nodulated Lotus lancerottensis, Lotus corniculatus and Lotus japonicus, whereas Lotus tenuis and Lotus uliginosus were more restrictive hosts. However, effective nitrogen fixation only occurred with the endemic L. lancerottensis. The E. meliloti strains did not nodulate Medicago sativa, Medicago laciniata Glycine max or Glycine soja, but induced non-fixing nodules on Phaseolus vulgaris roots. nodC and nifH symbiotic gene phylogenies showed that the E. meliloti symbionts of Lotus markedly diverged from strains of Mesorhizobium loti, the usual symbionts of Lotus, as well as from the three biovars (bv. meliloti, bv. medicaginis, and bv. mediterranense) so far described within E. meliloti. Indeed, the nodC and nifH genes from the E. meliloti isolates from Lotus represented unique symbiotic genotypes. According to their symbiotic gene sequences and host range, the Lotus symbionts would represent a new biovar of E. meliloti for which bv. lancerottense is proposed.
Collapse
Affiliation(s)
- Milagros León-Barrios
- Departamento de Microbiología y Biología Celular, Facultad de Farmacia, Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain.
| | | | | | | |
Collapse
|
159
|
Rong X, Guo Y, Huang Y. Proposal to reclassify the Streptomyces albidoflavus clade on the basis of multilocus sequence analysis and DNA–DNA hybridization, and taxonomic elucidation of Streptomyces griseus subsp. solvifaciens. Syst Appl Microbiol 2009; 32:314-22. [DOI: 10.1016/j.syapm.2009.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Indexed: 11/30/2022]
|
160
|
Pascual J, Macián MC, Arahal DR, Garay E, Pujalte MJ. Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. Int J Syst Evol Microbiol 2009; 60:154-165. [PMID: 19648344 DOI: 10.1099/ijs.0.010702-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The central clade of the genus Vibrio, also called the Vibrio core group, comprises six species that are tightly related (DNA-DNA reassociation values are very close to 70 % for most species pairs). Identification of novel strains to the species level within this group is troublesome and results are quite often dependent on the methodology employed. Therefore, this group represents an excellent framework to test the robustness of multilocus sequence analysis (MLSA) not only for inferring phylogeny but also as an identification tool without the need for DNA-DNA hybridization assays. The genes selected, 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR, were amplified by direct PCR from 44 Vibrio core-group strains. Subsequent analysis allowed us to recognize toxR and rpoD as the most resolving individual genes and showed that concatenated sequences of rpoD, rctB and toxR were more useful than concatenated sequences of all seven genes. To validate our conclusions, MLSA similarities have been correlated with DNA-DNA relatedness values obtained in this study and values taken from the literature. Although the seven concatenated genes gave the best correlation, the concatenated sequences of rpoD, rctB and toxR have the practical advantage of showing a considerable gap between the maximal interspecies similarity and the minimal intraspecies similarity recorded, meaning that they can be used quite conveniently for species identification of vibrios.
Collapse
Affiliation(s)
- Javier Pascual
- Departamento de Microbiología y Ecología, Universidad de Valencia, Spain.,Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Universidad de Valencia, Spain
| | - M Carmen Macián
- Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Spain.,Departamento de Microbiología y Ecología, Universidad de Valencia, Spain
| | - David R Arahal
- Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Spain.,Departamento de Microbiología y Ecología, Universidad de Valencia, Spain
| | - Esperanza Garay
- Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Spain.,Departamento de Microbiología y Ecología, Universidad de Valencia, Spain
| | - María J Pujalte
- Colección Española de Cultivos Tipo (CECT), Universidad de Valencia, Spain.,Departamento de Microbiología y Ecología, Universidad de Valencia, Spain
| |
Collapse
|
161
|
Menna P, Barcellos FG, Hungria M. Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. Int J Syst Evol Microbiol 2009; 59:2934-50. [PMID: 19628593 DOI: 10.1099/ijs.0.009779-0] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Bradyrhizobium encompasses a variety of bacteria that can live in symbiotic and endophytic associations with legumes and non-legumes, and are characterized by physiological and symbiotic versatility and broad geographical distribution. However, despite indications of great genetic variability within the genus, only eight species have been described, mainly because of the highly conserved nature of the 16S rRNA gene. In this study, 169 strains isolated from 43 different legumes were analysed by rep-PCR with the BOX primer, by sequence analysis of the 16S rRNA gene and the 16S-23S rRNA intergenic transcribed spacer (ITS) and by multilocus sequence analysis (MLSA) of four housekeeping genes, glnII, recA, atpD and dnaK. Considering a cut-off at a level of 70 % similarity, 80 rep-PCR profiles were distinguished, which, together with type strains, were clustered at a very low level of similarity (24 %). In both single and concatenated analyses of the 16S rRNA gene and ITS sequences, two large groups were formed, with bootstrap support of 99 % in the concatenated analysis. The first group included the type and/or reference strains of Bradyrhizobium japonicum, B. betae, B. liaoningense, B. canariense and B. yuanmingense and B. japonicum USDA 110, and the second group included strains related to Bradyrhizobium elkanii USDA 76(T), B. pachyrhizi PAC48(T) and B. jicamae PAC68(T). Similar results were obtained with MLSA of glnII, recA, atpD and dnaK. Greatest variability was observed when the atpD gene was amplified, and five strains related to B. elkanii revealed a level of variability never reported before. Another important observation was that a group composed of strains USDA 110, SEMIA 5080 and SEMIA 6059, all isolated from soybean, clustered in all six trees with high bootstrap support and were quite distinct from the clusters that included B. japonicum USDA 6(T). The results confirm that MLSA is a rapid and reliable way of providing information on phylogenetic relationships and of identifying rhizobial strains potentially representative of novel species.
Collapse
Affiliation(s)
- Pâmela Menna
- Embrapa Soja, Cx Postal 231, 86001-970 Londrina, Paraná, Brazil
| | | | | |
Collapse
|
162
|
Lei L, Zhang W, Wei H, Xia Z, Liu X. Characterization of a novel nicotine-degradingEnsifer sp. strain N7 isolated from tobacco rhizosphere. ANN MICROBIOL 2009. [DOI: 10.1007/bf03178324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
163
|
Ribeiro RA, Barcellos FG, Thompson FL, Hungria M. Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus vulgaris L.) reveals unexpected taxonomic diversity. Res Microbiol 2009; 160:297-306. [DOI: 10.1016/j.resmic.2009.03.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 03/12/2009] [Accepted: 03/13/2009] [Indexed: 11/16/2022]
|
164
|
Rivas R, Martens M, de Lajudie P, Willems A. Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 2009; 32:101-10. [PMID: 19201125 DOI: 10.1016/j.syapm.2008.12.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/18/2008] [Accepted: 12/22/2008] [Indexed: 11/17/2022]
Abstract
The use of multilocus sequence analysis (MLSA) for the taxonomy of Bradyrhizobium was assessed. We compared partial sequences for atpD, recA, gyrB, rpoB and dnaK for a set of reference strains representing named species and genospecies, and a number of new isolates from Lupinus albus, Arachis hypogaea and Ornithopus compressus from Spain. The phylogenies of the individual genes were compared with previous DNA-DNA hybridization results. High hybridization values were well reflected, but intermediary hybridization values were less clearly apparent. However, the phylogeny of a concatenated dataset of the five genes did reflect all values and thus is more informative of overall genome similarity. Our results indicate that only for the genes gyrB, rpoB and dnaK there is a small gap between the interspecies sequence similarities and the intraspecies similarity, and therefore cut-off levels for species delineation cannot be set, although high sequence similarity (>99%) does permit identification. In a few instances, a reference strain did not group as expected for one of the five genes tested. This may be a result of horizontal gene transfer and recombination events occasionally involving housekeeping genes. This observation indicates it is best to consider more than one gene for taxonomic inferences. The majority of the new isolates from the three host species was identified as Bradyrhizobium canariense. Four strains from L. albus from León, Spain, formed a separate group close to Bradyrhizobium japonicum.
Collapse
Affiliation(s)
- Raul Rivas
- Laboratory of Microbiology (WE10), Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | |
Collapse
|
165
|
Ah-You N, Gagnevin L, Grimont PAD, Brisse S, Nesme X, Chiroleu F, Bui Thi Ngoc L, Jouen E, Lefeuvre P, Verniere C, Pruvost O. Polyphasic characterization of xanthomonads pathogenic to members of the Anacardiaceae and their relatedness to species of Xanthomonas. Int J Syst Evol Microbiol 2009; 59:306-18. [DOI: 10.1099/ijs.0.65453-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
166
|
Young J. An overview of bacterial nomenclature with special reference to plant pathogens. Syst Appl Microbiol 2008; 31:405-24. [DOI: 10.1016/j.syapm.2008.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
|
167
|
Young JM, Park DC, Shearman HM, Fargier E. A multilocus sequence analysis of the genus Xanthomonas. Syst Appl Microbiol 2008; 31:366-77. [PMID: 18783906 DOI: 10.1016/j.syapm.2008.06.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
A multilocus sequence analysis (MLSA) of strains representing all validly published Xanthomonas spp. (119 strains) was conducted using four genes; dnaK, fyuA, gyrB and rpoD, a total of 440 sequences. Xanthomonas spp. were divided into two groups similar to those indicated in earlier 16S rDNA comparative analyses, and they possibly represent distinct genera. The analysis clearly differentiated most species that have been established by DNA-DNA reassociation. A similarity matrix of the data indicated clear numerical differences that could form the basis for species differentiation in the future, as an alternative to DNA-DNA reassociation. Some species, X. cynarae, X. gardneri and X. hortorum, formed a single heterogeneous group that is in need of further investigation. X. gardneri appeared to be a synonym of X. cynarae. Recently proposed new species, X. alfalfae, X. citri, X. euvesicatoria, X. fuscans and X. perforans, were not clearly differentiated as species from X. axonopodis, and X. euvesicatoria and X. perforans are very probably synonyms. MLSA offers a powerful tool for further investigation of the classification of Xanthomonas. Based on the dataset produced, the method also offers a relatively simple way of identifying strains as members of known species, or of indicating their status as members of new species.
Collapse
Affiliation(s)
- J M Young
- Landcare Research, Private Bag 92170, Auckland, New Zealand.
| | | | | | | |
Collapse
|
168
|
Han TX, Wang ET, Han LL, Chen WF, Sui XH, Chen WX. Molecular diversity and phylogeny of rhizobia associated with wild legumes native to Xinjiang, China. Syst Appl Microbiol 2008; 31:287-301. [DOI: 10.1016/j.syapm.2008.04.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/16/2008] [Accepted: 04/17/2008] [Indexed: 11/16/2022]
|
169
|
Lei X, Wang ET, Chen WF, Sui XH, Chen WX. Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China. Arch Microbiol 2008; 190:657-71. [DOI: 10.1007/s00203-008-0418-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 11/24/2022]
|
170
|
Scholz HC, Al Dahouk S, Tomaso H, Neubauer H, Witte A, Schloter M, Kämpfer P, Falsen E, Pfeffer M, Engel M. Genetic diversity and phylogenetic relationships of bacteria belonging to the Ochrobactrum-Brucella group by recA and 16S rRNA gene-based comparative sequence analysis. Syst Appl Microbiol 2008; 31:1-16. [PMID: 18222618 DOI: 10.1016/j.syapm.2007.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 10/08/2007] [Accepted: 10/17/2007] [Indexed: 11/25/2022]
Abstract
The genetic diversity and phylogenetic interrelationships among 106 Ochrobactrum strains (O. anthropi: 72, O. intermedium: 22, O. tritici: 5, O. oryzae: 2, O. grignonense: 2, O. gallinifaecis: 1, O. lupini: 2), the type strains of the eight Brucella species and other closely related taxa were studied by recA and rrs gene (16S rRNA) comparative sequence analysis. Both markers correctly delineated the various Ochrobactrum species; however, resolution at the subspecies level was considerably higher in the recA gene-based approach. Phylogenetic analyses using neighbor-joining, parsimony, and maximum likelihood algorithms generated trees with similar topologies but the overall branching order, and also the order of the subclades, were not stable in either assay, which could be explained by generally high recA and rrs sequence similarities. Ochrobactrum and Pseudochrobactrum formed separate clades distinct from other Alphaproteobacteria with Bartonella, Agrobacterium, and Rhizobium as the closest relatives. O. gallinifaecis was the most distinct member, when compared to the type species O. anthropi, with rrs and recA similarities of 96.2% and 81.4%. Brucella species were indistinguishable, exhibiting high rrs and recA gene similarities of 98.6% and 85.5% compared with Ochrobactrum intermedium. At the protein level, all RecA sequences among the various Ochrobactrum species and between Ochrobactrum and Brucella were highly similar with only a few amino acid substitutions. O. anthropi and O. tritici were indistinguishable by means of their RecA proteins. A set of initially biochemically classified strains did not cluster within their assigned species and they either grouped within other known species or grouped as potential novel Ochrobactrum species. In further investigations, these strains were reclassified and described as novel species. In summary, Ochrobactrum is a highly diverse genus comprising several novel species. We recommend recA- in addition to rrs gene-analysis for correct species allocation and subtyping of novel Ochrobactrum isolates.
Collapse
Affiliation(s)
- Holger C Scholz
- Bundeswehr Institute of Microbiology, Neuherbergstrasse 11, D-80937 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Martens M, Weidner S, Linke B, de Vos P, Gillis M, Willems A. A prototype taxonomic microarray targeting the rpsA housekeeping gene permits species identification within the rhizobial genus Ensifer. Syst Appl Microbiol 2007; 30:390-400. [PMID: 17291704 DOI: 10.1016/j.syapm.2007.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Indexed: 10/23/2022]
Abstract
To develop a reliable tool for the identification and classification of the different Ensifer species, without the need for sequencing, a prototype DNA microarray that targets the rpsA housekeeping gene was designed and tested. Internal segments of the rpsA gene from 34 reference strains, representing the different Ensifer species, were sequenced and the sequences were used to select 44 diagnostic oligonucleotides that served as probes for the identification microarray. Both, genomic DNA and specific rpsA PCR-products were tested as a target in hybridisation experiments. Experimental conditions were optimised and the diagnostic oligonucleotides were validated. Hybridisation results with the rpsA PCR-products showed reliable identification of the reference strains to species and genomovar level. Our data indicate that a microarray targeting housekeeping genes is a promising, accurate and relatively simple genotyping technique that would also be applicable for the identification and characterization of other bacterial groups of interest.
Collapse
Affiliation(s)
- Miet Martens
- Laboratorium voor Microbiologie (WE10), Universiteit Gent, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
172
|
Bailly X, Olivieri I, Brunel B, Cleyet-Marel JC, Béna G. Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species. J Bacteriol 2007; 189:5223-36. [PMID: 17496100 PMCID: PMC1951869 DOI: 10.1128/jb.00105-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using nitrogen-fixing Sinorhizobium species that interact with Medicago plants as a model system, we aimed at clarifying how sex has shaped the diversity of bacteria associated with the genus Medicago on the interspecific and intraspecific scales. To gain insights into the diversification of these symbionts, we inferred a topology that includes the different specificity groups which interact with Medicago species, based on sequences of the nodulation gene cluster. Furthermore, 126 bacterial isolates were obtained from two soil samples, using Medicago truncatula and Medicago laciniata as host plants, to study the differentiation between populations of Sinorhizobium medicae, Sinorhizobium meliloti bv. meliloti, and S. meliloti bv. medicaginis. The former two can be associated with M. truncatula (among other species of Medicago), whereas the last organism is the specific symbiont of M. laciniata. These bacteria were characterized using a multilocus sequence analysis of four loci, located on the chromosome and on the two megaplasmids of S. meliloti. The phylogenetic results reveal that several interspecific horizontal gene transfers occurred during the diversification of Medicago symbionts. Within S. meliloti, the analyses show that nod genes specific to different host plants have spread to different genetic backgrounds through homologous recombination, preventing further divergence of the different ecotypes. Thus, specialization to different host plant species does not prevent the occurrence of gene flow among host-specific biovars of S. meliloti, whereas reproductive isolation between S. meliloti bv. meliloti and S. medicae is maintained even though these bacteria can cooccur in sympatry on the same individual host plants.
Collapse
Affiliation(s)
- Xavier Bailly
- Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR 113 IRD-Cirad-Ensam-UM2/USC INRA, Campus de Baillarguet, 34398 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|