151
|
Joshi S, Kaur A, Sharma P, Harjai K, Capalash N. Lactonase-expressing Lactobacillus plantarum NC8 attenuates the virulence factors of multiple drug resistant Pseudomonas aeruginosa in co-culturing environment. World J Microbiol Biotechnol 2014; 30:2241-9. [PMID: 24671300 DOI: 10.1007/s11274-014-1645-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
Pseudomonas aeruginosa possesses an arcade of both cell-associated and extracellular cytotoxic virulence factors which are regulated by a multi-component quorum sensing system. Many research studies report success of lactonase in combating the pathogenicity of P. aeruginosa but delivery of lactonase remains a challenge. The present study aims at developing a delivery vehicle for lactonase. Lactobacillus plantarum NC8 was used as host for aiiA (Bacillus thuringiensis 4A3 lactonase gene) using pSIP409 expression vector. pSIP409: aiiA construct was stably maintained in L. plantarum NC8. Co-culturing of multi-drug resistant (MDR) clinical isolates of P. aeruginosa and PAO1 with recombinant L. plantarum NC8 led to significant reduction (p < 0.001) in extracellular virulence factors like pyocyanin, protease, elastase and rhamnolipids in P. aeruginosa and also showed significant reduction in adhesion of P. aeruginosa strains to uroepithelial cells in vitro. This study shows the heterologous expression of AiiA lactonase in L. plantarum NC8. Co-culturing of lactonase expressing L. plantarum NC8 with MDR P. aeruginosa strains led to attenuation of their virulence significantly. These results underscore the potential application of recombinant L. plantarum NC8 with anti-quorum sensing properties to control infections caused by multidrug resistant P. aeruginosa.
Collapse
Affiliation(s)
- Sudha Joshi
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India,
| | | | | | | | | |
Collapse
|
152
|
Wang Y, Li D, Huan X, Zhang L, Song H. Crystallization and preliminary X-ray crystallographic analysis of a putative nonribosomal peptide synthase AmbB from Pseudomonas aeruginosa. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:339-42. [PMID: 24598922 DOI: 10.1107/s2053230x14001782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/24/2014] [Indexed: 11/10/2022]
Abstract
AmbB is a putative nonribosomal peptide synthase from Pseudomonas aeruginosa, which is involved in the production of IQS, a potent cell-cell communication signal molecule that integrates the quorum-sensing mechanism and stress response. It consists of 1249 amino acids and contains an AMP-binding domain, a phosphopantetheine-binding (PB) domain and a condensation (C) domain. In this report, a truncated form of AmbB that contains the PB domain and the condensation domain was overexpressed with an N-terminal GST tag in Escherichia coli and purified as a monomer using affinity and size-exclusion chromatography. The recombinant AmbBc (comprising residues 727-1249 of full-length AmbB) was crystallized using the hanging-drop vapour-diffusion method and a full data set was collected to 2.45 Å resolution using a synchrotron-radiation source. The crystals belonged to space group P6122 or P6522, with unit-cell parameters a = b = 87.81, c = 286.8 Å, α = 90, β = 90, γ = 120°, and contained one molecule per asymmetric unit.
Collapse
Affiliation(s)
- Yiwen Wang
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou, People's Republic of China
| | - Dewang Li
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou, People's Republic of China
| | - Xuelu Huan
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Lianhui Zhang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Haiwei Song
- Life Sciences Institute, Zhejiang University, 388 Yuhangtang Road, Hangzhou, People's Republic of China
| |
Collapse
|
153
|
Stationary phase-specific virulence factor overproduction by a lasR mutant of Pseudomonas aeruginosa. PLoS One 2014; 9:e88743. [PMID: 24533146 PMCID: PMC3923063 DOI: 10.1371/journal.pone.0088743] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/09/2014] [Indexed: 12/14/2022] Open
Abstract
Secreted virulence factors of the human pathogen Pseudomonas aeruginosa are often under quorum sensing control. Cells lacking the quorum-sensing regulator LasR show reduced virulence factor production under typical laboratory conditions and are hypo-virulent in short-term animal infection models, yet lasR mutants are frequently associated with long-term infection in cystic fibrosis patients. Here, I show that in stationary-phase or slow-growth conditions, lasR cells continuously and strongly produce the important virulence factor pyocyanin while wild-type cells do not. Pyocyanin overproduction by lasR cells is permitted by loss of repression by RsaL, a LasR-dependent negative regulator. lasR cells also contribute pyocyanin in mixed cultures, even under “cheating” conditions where they depend on their wild-type neighbors for nutrients. Finally, some clinical P. aeruginosa isolates with lasR mutations can overproduce pyocyanin in the laboratory. These results imply that slow-growing clinical populations of lasR cells in chronic infections may contribute to virulence by producing pyocyanin under conditions where lasR+ cells do not.
Collapse
|
154
|
The stringent response modulates 4-hydroxy-2-alkylquinoline biosynthesis and quorum-sensing hierarchy in Pseudomonas aeruginosa. J Bacteriol 2014; 196:1641-50. [PMID: 24509318 DOI: 10.1128/jb.01086-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a ubiquitous environmental organism and an important human pathogen, Pseudomonas aeruginosa readily adapts and responds to a wide range of conditions and habitats. The intricate regulatory networks that link quorum sensing and other global regulators allow P. aeruginosa to coordinate its gene expression and cell signaling in response to different growth conditions and stressors. Upon nutrient transitions and starvation, as well as other environmental stresses, the stringent response is activated, mediated by the signal (p)ppGpp. P. aeruginosa produces a family of molecules called HAQ (4-hydroxy-2-alkylquinolines), some of which exhibit antibacterial and quorum-sensing signaling functions and regulate virulence genes. In this study, we report that (p)ppGpp negatively regulates HAQ biosynthesis: in a (p)ppGpp-null (ΔSR) mutant, HHQ (4-hydroxyl-2-heptylquinoline) and PQS (3,4-dihydroxy-2-heptylquinoline) levels are increased due to upregulated pqsA and pqsR expression and reduced repression by the rhl system. We also found that (p)ppGpp is required for full expression of both rhl and las AHL (acyl-homoserine lactone) quorum-sensing systems, since the ΔSR mutant has reduced rhlI, rhlR, lasI, and lasR expression, butanoyl-homoserine lactone (C4-HSL) and 3-oxo-dodecanoyl-homoserine lactone (3-oxo-C12-HSL) levels, and rhamnolipid and elastase production. Furthermore, (p)ppGpp significantly modulates the AHL and PQS quorum-sensing hierarchy, as the las system no longer has a dominant effect on HAQ biosynthesis when the stringent response is inactivated.
Collapse
|
155
|
Baillie S, Ireland K, Warwick S, Wareham D, Wilks M. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry: rapid identification of bacteria isolated from patients with cystic fibrosis. Br J Biomed Sci 2014; 70:144-8. [PMID: 24400425 DOI: 10.1080/09674845.2013.11669948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Despite extensive research into the diagnosis and management of cystic fibrosis (CF) over the past decades, sufferers still have a median life expectancy of less than 37 years. Respiratory tract infections have a significant role in increasing the morbidity and mortality of patients with CF via a progressive decline in lung function. Rapid identification of organisms recovered from CF sputum is necessary for effective management of respiratory tract infections; however, standard techniques of identification are slow, technically demanding and expensive. The aim of this study is to asses the suitability of matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) in identifying bacteria isolated from the respiratory tract of patients with CF, and is assessed by testing the accuracy of MALDI-TOF MS in identifying samples from a reference collection of rare CF strains in conjunction with comparing MALDI-TOF MS and standard techniques in identifying clinical isolates from sputum samples of CF patients. MALDI-TOF MS accurately identified 100% of isolates from the reference collection of rare CF pathogens (EuroCare CF collection). The isolate identification given by MALDI-TOF MS agreed with that given by standard techniques for 479/481 (99.6%) clinical isolates obtained from respiratory samples provided by patients with CE In two (0.4%) of 481 samples there was a discrepancy in identification between MALDI-TOF MS and standard techniques. One organism was identified as Pseudomonas aeruginosa by MALDI-TOF but could only be identified by the laboratory's standard methods as of the Pseudomonas genus. The second organism was identified as P. beteli by MALDI-TOF MS and Stenotrophomonas maltophilia by standard methods. This study shows that MALDI-TOF MS is superior to standard techniques in providing cheap, rapid and accurate identification of CF sputum isolates.
Collapse
Affiliation(s)
- S Baillie
- Centre for Immunology and Infectious Diseases, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - K Ireland
- Centre for Immunology and Infectious Diseases, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - S Warwick
- Department of Microbiology, Barts Health NHS trust, London, UK
| | - D Wareham
- Centre for Immunology and Infectious Diseases, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - M Wilks
- Centre for Immunology and Infectious Diseases, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
156
|
Christiaen SE, Matthijs N, Zhang XH, Nelis HJ, Bossier P, Coenye T. Bacteria that inhibit quorum sensing decrease biofilm formation and virulence inPseudomonas aeruginosaPAO1. Pathog Dis 2014; 70:271-9. [DOI: 10.1111/2049-632x.12124] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Nele Matthijs
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Xiao-Hua Zhang
- College of Marine Life Sciences; Ocean University of China; Qingdao China
| | - Hans J. Nelis
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center; Ghent University; Ghent Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| |
Collapse
|
157
|
Interspecific small molecule interactions between clinical isolates of Pseudomonas aeruginosa and Staphylococcus aureus from adult cystic fibrosis patients. PLoS One 2014; 9:e86705. [PMID: 24466207 PMCID: PMC3900594 DOI: 10.1371/journal.pone.0086705] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/12/2013] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are the most prevalent pathogens in airway infections of cystic fibrosis (CF) patients. We studied how these pathogens coexist and interact with each other. Clinical isolates of both species were retrieved from adult CF patients. Culture supernatants from 63 P. aeruginosa isolates triggered a wide range of biofilm-stimulatory activities when added to the culture of a control S. aureus strain. The extent of biofilm formation by S. aureus was positively correlated to the levels of the 2-alkyl-4-(1H)-quinolones (AQs) Pseudomonas Quinolone Signal (PQS) and 2-heptyl-4-hydroxy quinoline N-oxide (HQNO) produced by the P. aeruginosa isolates. Supernatants from P. aeruginosa isogenic mutants deficient in PQS and HQNO production stimulated significantly less biofilm formation by S. aureus than that seen with the parental strain PA14. When studying co-isolated pairs of P. aeruginosa and S. aureus retrieved from patients showing both pathogens, P. aeruginosa supernatants stimulated less biofilm production by the S. aureus counterparts compared to that observed using the control S. aureus strain. Accordingly, some P. aeruginosa isolates produced low levels of exoproducts and also some of the clinical S. aureus isolates were not stimulated by their co-isolates or by PA14 despite adequate production of HQNO. This suggests that colonization of the CF lungs promotes some type of strain selection, or that co-existence requires specific adaptations by either or both pathogens. Results provide insights on bacterial interactions in CF.
Collapse
|
158
|
Loss of social behaviours in populations of Pseudomonas aeruginosa infecting lungs of patients with cystic fibrosis. PLoS One 2014; 9:e83124. [PMID: 24454693 PMCID: PMC3891558 DOI: 10.1371/journal.pone.0083124] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/31/2013] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa, is an opportunistic, bacterial pathogen causing persistent and frequently fatal infections of the lung in patients with cystic fibrosis. Isolates from chronic infections differ from laboratory and environmental strains in a range of traits and this is widely interpreted as the result of adaptation to the lung environment. Typically, chronic strains carry mutations in global regulation factors that could effect reduced expression of social traits, raising the possibility that competitive dynamics between cooperative and selfish, cheating strains could also drive changes in P. aeruginosa infections. We compared the expression of cooperative traits - biofilm formation, secretion of exo-products and quorum sensing (QS) - in P. aeruginosa isolates that were estimated to have spent different lengths of time in the lung based on clinical information. All three exo-products involved in nutrient acquisition were produced in significantly smaller quantities with increased duration of infection, and patterns across four QS signal molecules were consistent with accumulation over time of mutations in lasR, which are known to disrupt the ability of cells to respond to QS signal. Pyocyanin production, and the proportion of cells in biofilm relative to motile, free-living cells in liquid culture, did not change. Overall, our results confirm that the loss of social behaviour is a consistent trend with time spent in the lung and suggest that social dynamics are potentially relevant to understanding the behaviour of P. aeruginosa in lung infections.
Collapse
|
159
|
Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by Pseudomonas aeruginosa. ISME JOURNAL 2014; 8:1210-20. [PMID: 24401856 DOI: 10.1038/ismej.2013.232] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/12/2013] [Accepted: 11/25/2013] [Indexed: 12/25/2022]
Abstract
The respiratory tract of cystic fibrosis (CF) patients harbor persistent microbial communities (CF airway microbiome) with Pseudomonas aeruginosa emerging as a dominant pathogen. Within a polymicrobial infection, interactions between co-habitant microbes can be important for pathogenesis, but even when considered, these interactions are not well understood. Here, we show with in vitro experiments that, compared with glucose, common fermentation products from co-habitant bacteria significantly increase virulence factor production, antimicrobial activity and biofilm formation of P. aeruginosa. The maximum stimulating effect was produced with the fermentation product 2,3-butanediol, which is a substrate for P. aeruginosa, resulting in a metabolic relationship between fermenters and this pathogen. The global transcription regulator LasI LasR, which controls quorum sensing, was upregulated threefold with 2,3-butanediol, resulting in higher phenazine and exotoxin concentrations and improved biofilm formation. This indicates that the success of P. aeruginosa in CF airway microbiomes could be governed by the location within the food web with fermenting bacteria. Our findings suggest that interbacterial metabolite transfer in polymicrobial infections stimulates virulence of P. aeruginosa and could have a considerable impact on disease progression.
Collapse
|
160
|
Physiological framework for the regulation of quorum sensing-dependent public goods in Pseudomonas aeruginosa. J Bacteriol 2013; 196:1155-64. [PMID: 24375105 DOI: 10.1128/jb.01223-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many bacteria possess cell density-dependent quorum-sensing (QS) systems that often regulate cooperative secretions involved in host-microbe or microbe-microbe interactions. These secretions, or "public goods," are frequently coregulated by stress and starvation responses. Here we provide a physiological rationale for such regulatory complexity in the opportunistic pathogen Pseudomonas aeruginosa. Using minimal-medium batch and chemostat cultures, we comprehensively characterized specific growth rate-limiting macronutrients as key triggers for the expression of extracellular enzymes and metabolites directly controlled by the las and rhl QS systems. Expression was unrelated to cell density, depended on the secreted product's elemental composition, and was induced only when the limiting nutrient was not also a building block of the product; rhl-dependent products showed the strongest response, caused by the largely las-independent induction of the regulator RhlR and its cognate signal. In agreement with the prominent role of the rhl system, slow growth inverted the las-to-rhl signal ratio, previously considered a characteristic distinguishing between planktonic and biofilm lifestyles. Our results highlight a supply-driven, metabolically prudent regulation of public goods that minimizes production costs and thereby helps stabilize cooperative behavior. Such regulation would be beneficial for QS-dependent public goods that act broadly and nonspecifically, and whose need cannot always be accurately assessed by the producing cell. Clear differences in the capacities of the las and rhl systems to integrate starvation signals help explain the existence of multiple QS systems in one cell.
Collapse
|
161
|
Design and synthesis of a biotinylated chemical probe for detecting the molecular targets of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin. Molecules 2013; 18:11783-96. [PMID: 24071985 PMCID: PMC6269773 DOI: 10.3390/molecules181011783] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a human pathogen associated with a variety of life-threatening nosocomial infections. This organism produces a range of virulence factors which actively cause damage to host tissues. One such virulence factor is pyocyanin, known to play a crucial role in the pathogenesis of P. aeruginosa infections. Previous studies had identified a novel compound capable of strongly inhibiting the production of pyocyanin. It was postulated that this inhibition results from modulation of an intercellular communication system termed quorum sensing, via direct binding of the compound with the LasR protein receptor. This raised the possibility that the compound could be an antagonist of quorum sensing in P. aeruginosa, which could have important implications as this intercellular signaling mechanism is known to regulate many additional facets of P. aeruginosa pathogenicity. However, there was no direct evidence for the binding of the active compound to LasR (or any other targets). Herein we describe the design and synthesis of a biotin-tagged version of the active compound. This could potentially be used as an affinity-based chemical probe to ascertain, in a direct fashion, the active compound’s macromolecular biological targets, and thus better delineate the mechanism by which it reduces the level of pyocyanin production.
Collapse
|
162
|
Choosing an appropriate infection model to study quorum sensing inhibition in Pseudomonas infections. Int J Mol Sci 2013; 14:19309-40. [PMID: 24065108 PMCID: PMC3794835 DOI: 10.3390/ijms140919309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 02/07/2023] Open
Abstract
Bacteria, although considered for decades to be antisocial organisms whose sole purpose is to find nutrients and multiply are, in fact, highly communicative organisms. Referred to as quorum sensing, cell-to-cell communication mechanisms have been adopted by bacteria in order to co-ordinate their gene expression. By behaving as a community rather than as individuals, bacteria can simultaneously switch on their virulence factor production and establish successful infections in eukaryotes. Understanding pathogen-host interactions requires the use of infection models. As the use of rodents is limited, for ethical considerations and the high costs associated with their use, alternative models based on invertebrates have been developed. Invertebrate models have the benefits of low handling costs, limited space requirements and rapid generation of results. This review presents examples of such models available for studying the pathogenicity of the Gram-negative bacterium Pseudomonas aeruginosa. Quorum sensing interference, known as quorum quenching, suggests a promising disease-control strategy since quorum-quenching mechanisms appear to play important roles in microbe-microbe and host-pathogen interactions. Examples of natural and synthetic quorum sensing inhibitors and their potential as antimicrobials in Pseudomonas-related infections are discussed in the second part of this review.
Collapse
|
163
|
Tay SB, Yew WS. Development of quorum-based anti-virulence therapeutics targeting Gram-negative bacterial pathogens. Int J Mol Sci 2013; 14:16570-99. [PMID: 23939429 PMCID: PMC3759926 DOI: 10.3390/ijms140816570] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/25/2013] [Accepted: 08/01/2013] [Indexed: 02/02/2023] Open
Abstract
Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria.
Collapse
Affiliation(s)
- Song Buck Tay
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | | |
Collapse
|
164
|
Negative regulation of bacterial quorum sensing tunes public goods cooperation. ISME JOURNAL 2013; 7:2159-68. [PMID: 23823496 DOI: 10.1038/ismej.2013.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/17/2013] [Indexed: 12/28/2022]
Abstract
Bacterial quorum sensing (QS) often coordinates the expression of other, generally more costly public goods involved in virulence and nutrient acquisition. In many Proteobacteria, the basic QS circuitry consists of a synthase that produces a diffusible acyl-homoserine lactone and a cognate receptor that activates public goods expression. In some species, the circuitry also contains negative regulators that have the potential to modulate the timing and magnitude of activation. In this study, we experimentally investigated the contribution of this regulatory function to the evolutionary stability of public goods cooperation in the opportunistic pathogen Pseudomonas aeruginosa. We compared fitness and public goods expression rates of strains lacking either qteE or qscR, each encoding a distinct negative regulator, with those of the wild-type parent and a signal-blind receptor mutant under defined growth conditions. We found that (1) qteE and qscR mutations behave virtually identically and have a stronger effect on the magnitude than on the timing of expression, (2) high expression in qteE and qscR mutants imposes a metabolic burden under nutrient conditions that advance induction and (3) high expression in qteE and qscR mutants increases population growth when QS is required, but also permits invasion by both wild-type and receptor mutant strains. Our data indicate that negative regulation of QS balances the costs and benefits of public goods by attenuating expression after transition to the induced state. As the cells cannot accurately assess the amount of cooperation needed, such bet-hedging would be advantageous in changing parasitic and nonparasitic environments.
Collapse
|
165
|
Screening and anti-virulent study of N-acyl homoserine lactones DNA aptamers against Pseudomonas aeruginosa quorum sensing. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-012-0556-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
166
|
Zhao ZG, Yan SS, Yu YM, Mi N, Zhang LX, Liu J, Li XL, Liu F, Xu JF, Yang WQ, Li GM. An aqueous extract of Yunnan Baiyao inhibits the quorum-sensing-related virulence of Pseudomonas aeruginosa. J Microbiol 2013; 51:207-12. [PMID: 23625222 DOI: 10.1007/s12275-013-2595-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/30/2012] [Indexed: 11/29/2022]
Abstract
Yunnan Baiyao is a famous Chinese medicine that has long been directly applied to wounds to reduce bleeding, pain, and swelling without causing infection. However, little is known about its ability to prevent infection. The present study aimed to assess in vitro the anti-virulence activity of an aqueous extract of Yunnan Baiyao (YBX) using Pseudomonas aeruginosa as a pathogenic model. We found that a sub-MIC (2.5 mg/ml) of YBX can efficiently interfere with the quorum-sensing (QS) signaling circuit. Real-time polymerase chain reaction analysis showed that a sub-MIC of YBX down-regulated the transcriptions of lasR, lasI, rhlR, and rhlI, which resulted in global attenuation of QS-regulated virulence activities, such as biofilm formation, and secretion of LasA protease, LasB elastase and pyocyanin. Further, YBX reduced the motility of P. aeruginosa related to QS, and impaired the formation of biofilms. These results suggest that YBX may possess global inhibitory activity against the virulence of P. aeruginosa and that YBX may also exhibit antimicrobial activity in vivo. The present study suggests that Yunnan Baiyao represents a potential source for isolating novel, safe, and efficacious antimicrobial agents.
Collapse
Affiliation(s)
- Zu-Guo Zhao
- Department of Microbiology and Immunology, Guangdong Medical College, Zhanjiang 524023, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J, Chang C, Dong Y, Williams P, Zhang LH. A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 2013; 9:339-43. [PMID: 23542643 DOI: 10.1038/nchembio.1225] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 02/26/2013] [Indexed: 01/08/2023]
Abstract
Pseudomonas aeruginosa uses a hierarchical quorum sensing (QS) network consisting of las, pqs and rhl regulatory elements to coordinate the expression of bacterial virulence genes. However, clinical isolates frequently contain loss-of-function mutations in the central las system. This motivated us to search for a mechanism that may functionally substitute las. Here we report identification of a new QS signal, IQS. Disruption of IQS biosynthesis paralyzes the pqs and rhl QS systems and attenuates bacterial virulence. Production of IQS is tightly controlled by las under normal culture conditions but is also activated by phosphate limitation, a common stressor that bacteria encounter during infections. Thus, these results have established an integrated QS system that connects the central las system and phosphate-stress response mechanism to the downstream pqs and rhl regulatory systems. Our discovery highlights the complexity of QS signaling systems and extends the gamut of QS and stress-response mechanisms.
Collapse
Affiliation(s)
- Jasmine Lee
- Institute of Molecular and Cell Biology, Proteos, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Rasamiravaka T, Jedrzejowski A, Kiendrebeogo M, Rajaonson S, Randriamampionona D, Rabemanantsoa C, Andriantsimahavandy A, Rasamindrakotroka A, Duez P, El Jaziri M, Vandeputte OM. Endemic malagasy Dalbergia species inhibit quorum sensing in Pseudomonas aeruginosa PAO1. MICROBIOLOGY-SGM 2013; 159:924-938. [PMID: 23449917 DOI: 10.1099/mic.0.064378-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Various species of the plant genus Dalbergia are traditionally used as medicine for sundry ailments and some of them have been shown recently to quench the virulence of Gram-positive and Gram-negative bacteria. Cell-to-cell communication mechanisms, quorum sensing (QS) in particular, are key regulators of virulence in many pathogenic bacteria. Screening n-hexane extracts of leaves, roots and bark of endemic Malagasy Dalbergia species for their capacity to antagonize QS mechanisms in Pseudomonas aeruginosa PAO1 showed that many reduced the expression of the QS-regulated genes lasB and rhlA. However, only the extract of Dalbergia trichocarpa bark (DTB) showed a significant reduction of QS gene expression without any effect on the aceA gene encoding a QS-independent isocitrate lyase. Further characterization of DTB impact on QS revealed that the QS systems las and rhl are inhibited and that swarming, twitching, biofilm formation and the production of pyocyanin, elastase and proteases are also hampered in the presence of the DTB extract. Importantly, compared with the known QS inhibitor naringenin, the DTB extract showed a stronger negative effect on twitching, biofilm formation and tobramycin resistance. Preliminary structural characterization of these potent biofilm disrupters suggests that they belong to the phytosterols. The strong inhibition of motility and biofilm formation suggests that the DTB extract contains agents disrupting biofilm architecture, which is an important observation in the context of the design of new drugs targeting biofilm-encapsulated pathogens.
Collapse
Affiliation(s)
- Tsiry Rasamiravaka
- Laboratoire de Formation et de Recherche en Biologie Médicale, Université d'Antananarivo, B.P. 566 Antananarivo 101, Madagascar.,Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Anaïs Jedrzejowski
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Martin Kiendrebeogo
- Laboratoire de Biochimie et de Chimie Appliquées, Université de Ouagadougou, 09 BP 848 Ouagadougou 09, Burkina Faso.,Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Sanda Rajaonson
- Laboratoire de Physiologie Végétale, Université d'Antananarivo, B.P. 906 Antananarivo 101, Madagascar.,Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Denis Randriamampionona
- Laboratoire de Physiologie Végétale, Université d'Antananarivo, B.P. 906 Antananarivo 101, Madagascar.,Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Christian Rabemanantsoa
- Laboratoire de Biodiversité et de Biotechnologie, Institut Malgache de Recherches Appliquées (IMRA), B.P. 3833 Avarabohitra Itaosy, Antananarivo 102, Madagascar
| | - Abel Andriantsimahavandy
- Laboratoire de Formation et de Recherche en Biologie Médicale, Université d'Antananarivo, B.P. 566 Antananarivo 101, Madagascar
| | - Andry Rasamindrakotroka
- Laboratoire de Formation et de Recherche en Biologie Médicale, Université d'Antananarivo, B.P. 566 Antananarivo 101, Madagascar
| | - Pierre Duez
- Laboratoire de Pharmacognosie, de Bromatologie et de Nutrition Humaine, Université Libre de Bruxelles, CP 205/9, Boulevard du Triomphe, B-1050 Brussels, Belgium
| | - Mondher El Jaziri
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | - Olivier M Vandeputte
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| |
Collapse
|
169
|
Sarabhai S, Sharma P, Capalash N. Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One 2013; 8:e53441. [PMID: 23320085 PMCID: PMC3539995 DOI: 10.1371/journal.pone.0053441] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/28/2012] [Indexed: 11/25/2022] Open
Abstract
Background Burgeoning antibiotic resistance in Pseudomonas aeruginosa has necessitated the development of anti pathogenic agents that can quench acylhomoserine lactone (AHL) mediated QS with least risk of resistance. This study explores the anti quorum sensing potential of T. chebula Retz. and identification of probable compounds(s) showing anti QS activity and the mechanism of attenuation of P. aeruginosa PAO1 virulence factors. Methods and Results Methanol extract of T. chebula Retz. fruit showed anti QS activity using Agrobacterium tumefaciens A136. Bioactive fraction (F7), obtained by fractionation of methanol extract using Sephadex LH20, showed significant reduction (p<0.001) in QS regulated production of extracellular virulence factors in P. aeruginosa PAO1. Biofilm formation and alginate were significantly (p<0.05) reduced with enhanced (20%) susceptibility to tobramycin. Real Time PCR of F7 treated P. aeruginosa showed down regulation of autoinducer synthase (lasI and rhlI) and their cognate receptor (lasR and rhlR) genes by 89, 90, 90 and 93%, respectively. Electrospray Ionization Mass Spectrometry also showed 90 and 64% reduction in the production of 3-oxo-C12HSL and C4HSL after treatment. Decrease in AHLs as one of the mechanisms of quorum quenching by F7 was supported by the reversal of inhibited swarming motility in F7-treated P. aeruginosa PAO1 on addition of C4HSL. F7 also showed antagonistic activity against 3-oxo-C12HSL-dependent QS in E. coli bioreporter. C. elegans fed on F7-treated P. aeruginosa showed enhanced survival with LT50 increasing from 24 to 72 h. LC-ESI-MS of F7 revealed the presence of ellagic acid derivatives responsible for anti QS activity in T. chebula extract. Conclusions This is the first report on anti QS activity of T. chebula fruit linked to EADs which down regulate the expression of lasIR and rhlIR genes with concomitant decrease in AHLs in P. aeruginosa PAO1 causing attenuation of its virulence factors and enhanced sensitivity of its biofilm towards tobramycin.
Collapse
Affiliation(s)
- Sajal Sarabhai
- Department of Microbiology, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
170
|
Zhou L, Zheng H, Tang Y, Yu W, Gong Q. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol Lett 2012; 35:631-7. [PMID: 23264268 DOI: 10.1007/s10529-012-1126-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/07/2012] [Indexed: 11/24/2022]
Abstract
UNLABELLED In bacteria, quorum sensing (QS) is a process of chemical communication involving the production, release, and subsequent detection of signaling molecules. QS regulates the production of key virulence factors in pathogens. During the screening of herbal extracts, clove extract was found to inhibit QS-controlled gene expression in Pseudomonas aeruginosa QSIS-lasI and Chromobacterium violaceum CV026 biosensors. Using a bioautographic TLC assay, preparative TLC, and HPLC analysis, eugenol, the major constituent of clove extract, exhibited QS inhibitory activity. Eugenol at sub-inhibitory concentrations inhibited the production of virulence factors, including violacein, elastase, pyocyanin, and biofilm formation. Using two Escherichia coli biosensors, MG4/pKDT17 and pEAL08-2, we confirmed that eugenol inhibited the las and pqs QS systems. Our data identified eugenol as a novel QS inhibitor. PURPOSE OF THE WORK The purpose of this study was to track the quorum sensing inhibitor (QSI) in herbal extracts by effective screening systems and evaluate its biological activity. The QSIs from herbal extracts are potential agents for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Liman Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, People's Republic of China.
| | | | | | | | | |
Collapse
|
171
|
Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 2012; 41:1-20. [PMID: 23143271 PMCID: PMC3592444 DOI: 10.1093/nar/gks1039] [Citation(s) in RCA: 341] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a metabolically versatile bacterium that is found in a wide range of biotic and abiotic habitats. It is a major human opportunistic pathogen causing numerous acute and chronic infections. The critical traits contributing to the pathogenic potential of P. aeruginosa are the production of a myriad of virulence factors, formation of biofilms and antibiotic resistance. Expression of these traits is under stringent regulation, and it responds to largely unidentified environmental signals. This review is focused on providing a global picture of virulence gene regulation in P. aeruginosa. In addition to key regulatory pathways that control the transition from acute to chronic infection phenotypes, some regulators have been identified that modulate multiple virulence mechanisms. Despite of a propensity for chaotic behaviour, no chaotic motifs were readily observed in the P. aeruginosa virulence regulatory network. Having a ‘birds-eye’ view of the regulatory cascades provides the forum opportunities to pose questions, formulate hypotheses and evaluate theories in elucidating P. aeruginosa pathogenesis. Understanding the mechanisms involved in making P. aeruginosa a successful pathogen is essential in helping devise control strategies.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | | | | | | |
Collapse
|
172
|
Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2012; 2:2/11/a012427. [PMID: 23125205 DOI: 10.1101/cshperspect.a012427] [Citation(s) in RCA: 1205] [Impact Index Per Article: 92.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Quorum sensing is a process of cell-cell communication that allows bacteria to share information about cell density and adjust gene expression accordingly. This process enables bacteria to express energetically expensive processes as a collective only when the impact of those processes on the environment or on a host will be maximized. Among the many traits controlled by quorum sensing is the expression of virulence factors by pathogenic bacteria. Here we review the quorum-sensing circuits of Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, and Vibrio cholerae. We outline these canonical quorum-sensing mechanisms and how each uniquely controls virulence factor production. Additionally, we examine recent efforts to inhibit quorum sensing in these pathogens with the goal of designing novel antimicrobial therapeutics.
Collapse
Affiliation(s)
- Steven T Rutherford
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|
173
|
Morkunas B, Galloway WRJD, Wright M, Ibbeson BM, Hodgkinson JT, O'Connell KMG, Bartolucci N, Della Valle M, Welch M, Spring DR. Inhibition of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells by quorum sensing autoinducer-mimics. Org Biomol Chem 2012; 10:8452-64. [PMID: 23014532 DOI: 10.1039/c2ob26501j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pseudomonas aeruginosa is a notorious human pathogen associated with a range of life-threatening nosocomial infections. There is an increasing problem of antibiotic resistance in P. aeruginosa, highlighted by the emergence of multi-drug resistant strains. Thus the exploration of new strategies for the treatment of P. aeruginosa infections is clearly warranted. P. aeruginosa is known to produce a range of virulence factors that enhance its ability to damage the host tissue and cause disease. One of the most important virulence factors is pyocyanin. P. aeruginosa regulates pyocyanin production using an intercellular communication mechanism called quorum sensing, which is mediated by small signalling molecules termed autoinducers. One native autoinducer is N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL). Herein we report the synthesis of a collection of abiotic OdDHL-mimics. A number of novel compounds capable of competing with the endogenous OdDHL and consequently, inhibiting the production of pyocyanin in cultures of wild type P. aeruginosa were identified. We present evidence suggesting that compounds of this general structural type act as direct antagonists of quorum sensing in P. aeruginosa and as such may find value as molecular tools for the study and manipulation of this signalling pathway. A direct quantitative comparison of the pyocyanin suppressive activities of the most active OdDHL-mimics with some previously-reported inhibitors (based around different general structural frameworks) of quorum sensing from the literature, was also made.
Collapse
Affiliation(s)
- Bernardas Morkunas
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Feinbaum RL, Urbach JM, Liberati NT, Djonovic S, Adonizio A, Carvunis AR, Ausubel FM. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model. PLoS Pathog 2012; 8:e1002813. [PMID: 22911607 PMCID: PMC3406104 DOI: 10.1371/journal.ppat.1002813] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/06/2012] [Indexed: 12/27/2022] Open
Abstract
Pseudomonas aeruginosa strain PA14 is an opportunistic human pathogen capable of infecting a wide range of organisms including the nematode Caenorhabditis elegans. We used a non-redundant transposon mutant library consisting of 5,850 clones corresponding to 75% of the total and approximately 80% of the non-essential PA14 ORFs to carry out a genome-wide screen for attenuation of PA14 virulence in C. elegans. We defined a functionally diverse 180 mutant set (representing 170 unique genes) necessary for normal levels of virulence that included both known and novel virulence factors. Seven previously uncharacterized virulence genes (ABC transporters PchH and PchI, aminopeptidase PepP, ATPase/molecular chaperone ClpA, cold shock domain protein PA0456, putative enoyl-CoA hydratase/isomerase PA0745, and putative transcriptional regulator PA14_27700) were characterized with respect to pigment production and motility and all but one of these mutants exhibited pleiotropic defects in addition to their avirulent phenotype. We examined the collection of genes required for normal levels of PA14 virulence with respect to occurrence in P. aeruginosa strain-specific genomic regions, location on putative and known genomic islands, and phylogenetic distribution across prokaryotes. Genes predominantly contributing to virulence in C. elegans showed neither a bias for strain-specific regions of the P. aeruginosa genome nor for putatively horizontally transferred genomic islands. Instead, within the collection of virulence-related PA14 genes, there was an overrepresentation of genes with a broad phylogenetic distribution that also occur with high frequency in many prokaryotic clades, suggesting that in aggregate the genes required for PA14 virulence in C. elegans are biased towards evolutionarily conserved genes.
Collapse
Affiliation(s)
- Rhonda L Feinbaum
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | |
Collapse
|
175
|
Genomic variation among contemporary Pseudomonas aeruginosa isolates from chronically infected cystic fibrosis patients. J Bacteriol 2012; 194:4857-66. [PMID: 22753054 DOI: 10.1128/jb.01050-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The airways of individuals with cystic fibrosis (CF) often become chronically infected with unique strains of the opportunistic pathogen Pseudomonas aeruginosa. Several lines of evidence suggest that the infecting P. aeruginosa lineage diversifies in the CF lung niche, yet so far this contemporary diversity has not been investigated at a genomic level. In this work, we sequenced the genomes of pairs of randomly selected contemporary isolates sampled from the expectorated sputum of three chronically infected adult CF patients. Each patient was infected by a distinct strain of P. aeruginosa. Single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) were identified in the DNA common to the paired isolates from different patients. The paired isolates from one patient differed due to just 1 SNP and 8 indels. The paired isolates from a second patient differed due to 54 SNPs and 38 indels. The pair of isolates from the third patient both contained a mutS mutation, which conferred a hypermutator phenotype; these isolates cumulatively differed due to 344 SNPs and 93 indels. In two of the pairs of isolates, a different accessory genome composition, specifically integrated prophage, was identified in one but not the other isolate of each pair. We conclude that contemporary isolates from a single sputum sample can differ at the SNP, indel, and accessory genome levels and that the cross-sectional genomic variation among coeval pairs of P. aeruginosa CF isolates can be comparable to the variation previously reported to differentiate between paired longitudinally sampled isolates.
Collapse
|
176
|
Antunes MB, Chi JJ, Liu Z, Goldstein-Daruech N, Palmer JN, Zhu J, Cohen NA. Molecular basis of tobacco-induced bacterial biofilms: an in vitro study. Otolaryngol Head Neck Surg 2012; 147:876-84. [PMID: 22597576 DOI: 10.1177/0194599812447263] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To evaluate changes in the expression of biofilm-related genes when exposed to tobacco smoke and oxidative stress. STUDY DESIGN Experimental, in vitro. Setting Laboratories of Rhinology and Microbiology, University of Pennsylvania. SUBJECTS AND METHODS Bacterial biofilm mass was measured using crystal violet staining and measurement of the optical density. Biofilm-related genes of the Pseudomonas aeruginosa PAO1 strain (pilF, flgK, lasI, lasB, rhlA, and algC) were studied following repetitive exposure to exogenous tobacco smoke and hydrogen peroxide. This was done using a reporter plasmid. RESULTS After 1 exposure to smoke, there was no change in biofilm formation. However, after 2 and 3 exposures, the biofilm formed had an increased mass (P < .05). With respect to oxidative stress in the form of H(2)O(2), bacterial cultures demonstrated a dose- and time-dependent induction of biofilm formation compared with control conditions. Gene expression following repetitive smoke exposure demonstrated an increase in expression of pilF, flgK, algC, and lasI genes (P < .05); a decrease in rhlA (P < .05); and no significant change in the lasB gene (P = 0.1). Gene expression following H(2)O(2) exposure demonstrated an increase in pilF (P < .05), whereas the other genes failed to demonstrate a statistical change. CONCLUSIONS Repetitive tobacco smoke exposure leads to molecular changes in biofilm-related genes, and exposure to oxidative stress in the form of H(2)O(2) induces biofilm growth in PAO1. This could represent adaptative changes due to oxidative stress or chemically mediated through any of the several chemicals encountered in tobacco smoke and may explain increased biofilm formation in microbes isolated from smokers.
Collapse
Affiliation(s)
- Marcelo B Antunes
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
177
|
Hodgkinson JT, Galloway WRJD, Wright M, Mati IK, Nicholson RL, Welch M, Spring DR. Design, synthesis and biological evaluation of non-natural modulators of quorum sensing in Pseudomonas aeruginosa. Org Biomol Chem 2012; 10:6032-44. [PMID: 22499353 DOI: 10.1039/c2ob25198a] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many species of bacteria employ a mechanism of intercellular communication known as quorum sensing which is mediated by small diffusible signalling molecules termed autoinducers. The most common class of autoinducer used by Gram-negative bacteria are N-acylated-L-homoserine lactones (AHLs). Pseudomonas aeruginosa is a clinically important bacterium which is known to use AHL-mediated quorum sensing systems to regulate a variety of processes associated with virulence. Thus the selective disruption of AHL-based quorum sensing represents a strategy to attenuate the pathogenicity of this bacterium. Herein we describe the design, synthesis and biological evaluation of a collection of structurally novel AHL mimics. A number of new compounds capable of modulating the LasR-dependent quorum sensing system of P. aeruginosa were identified, which could have value as molecular tools to study and manipulate this signalling pathway. Worthy of particular note, this research has delivered novel potent quorum sensing antagonists, which strongly inhibit the production of virulence factors in a wild type strain of this pathogenic bacterium.
Collapse
Affiliation(s)
- James T Hodgkinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
178
|
Quorum quenching revisited--from signal decays to signalling confusion. SENSORS 2012; 12:4661-96. [PMID: 22666051 PMCID: PMC3355433 DOI: 10.3390/s120404661] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 12/12/2022]
Abstract
In a polymicrobial community, while some bacteria are communicating with neighboring cells (quorum sensing), others are interrupting the communication (quorum quenching), thus creating a constant arms race between intercellular communication. In the past decade, numerous quorum quenching enzymes have been found and initially thought to inactivate the signalling molecules. Though this is widely accepted, the actual roles of these quorum quenching enzymes are now being uncovered. Recent evidence extends the role of quorum quenching to detoxification or metabolism of signalling molecules as food and energy source; this includes “signalling confusion”, a term coined in this paper to refer to the phenomenon of non-destructive modification of signalling molecules. While quorum quenching has been explored as a novel anti-infective therapy targeting, quorum sensing evidence begins to show the development of resistance against quorum quenching.
Collapse
|
179
|
Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model. Proc Natl Acad Sci U S A 2011; 108:17378-83. [PMID: 21987808 DOI: 10.1073/pnas.1114907108] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
An in-depth mechanistic understanding of microbial infection necessitates a molecular dissection of host-pathogen relationships. Both Drosophila melanogaster and Pseudomonas aeruginosa have been intensively studied. Here, we analyze the infection of D. melanogaster by P. aeruginosa by using mutants in both host and pathogen. We show that orally ingested P. aeruginosa crosses the intestinal barrier and then proliferates in the hemolymph, thereby causing the infected flies to die of bacteremia. Host defenses against ingested P. aeruginosa included an immune deficiency (IMD) response in the intestinal epithelium, systemic Toll and IMD pathway responses, and a cellular immune response controlling bacteria in the hemocoel. Although the observed cellular and intestinal immune responses appeared to act throughout the course of the infection, there was a late onset of the systemic IMD and Toll responses. In this oral infection model, P. aeruginosa PA14 did not require its type III secretion system or other well-studied virulence factors such as the two-component response regulator GacA or the protease AprA for virulence. In contrast, the quorum-sensing transcription factor RhlR, but surprisingly not LasR, played a key role in counteracting the cellular immune response against PA14, possibly at an early stage when only a few bacteria are present in the hemocoel. These results illustrate the power of studying infection from the dual perspective of host and pathogen by revealing that RhlR plays a more complex role during pathogenesis than previously appreciated.
Collapse
|
180
|
Malladi VLA, Sobczak AJ, Maricic N, Murugapiran SK, Schneper L, Makemson J, Mathee K, Wnuk SF. Substituted lactam and cyclic azahemiacetals modulate Pseudomonas aeruginosa quorum sensing. Bioorg Med Chem 2011; 19:5500-6. [PMID: 21855349 PMCID: PMC3171587 DOI: 10.1016/j.bmc.2011.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 07/12/2011] [Accepted: 07/22/2011] [Indexed: 11/23/2022]
Abstract
Quorum sensing (QS) is a population-dependent signaling process bacteria use to control multiple processes including virulence that is critical for establishing infection. The most common QS signaling molecule used by Gram-negative bacteria are acylhomoserine lactones. The development of non-native acylhomoserine lactone (AHL) ligands has emerged as a promising new strategy to inhibit QS in Gram-negative bacteria. In this work, we have synthesized a set of optically pure γ-lactams and their reduced cyclic azahemiacetal analogues, bearing the additional alkylthiomethyl substituent, and evaluated their effect on the AHL-dependent Pseudomonas aeruginosa las and rhl QS pathways. The concentration of these ligands and the simple structural modification such as the length of the alkylthio substituent has notable effect on activity. The γ-lactam derivatives with nonylthio or dodecylthio chains acted as inhibitors of las signaling with moderate potency. The cyclic azahemiacetal with shorter propylthio or hexylthio substituent was found to strongly inhibit both las and rhl signaling at higher concentrations while the propylthio analogue strongly stimulated the las QS system at lower concentrations.
Collapse
Affiliation(s)
- Venkata L. A. Malladi
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Adam J. Sobczak
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Natalie Maricic
- Department of Molecular Microbiology and Infectious Diseases, Florida International University, Miami, FL 33199, USA
| | - Senthil Kumar Murugapiran
- Department of Molecular Microbiology and Infectious Diseases, Florida International University, Miami, FL 33199, USA
| | - Lisa Schneper
- Department of Molecular Microbiology and Infectious Diseases, Florida International University, Miami, FL 33199, USA
| | - John Makemson
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Kalai Mathee
- Department of Molecular Microbiology and Infectious Diseases, Florida International University, Miami, FL 33199, USA
| | - Stanislaw F. Wnuk
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
181
|
Holcombe LJ, O’Gara F, Morrissey JP. Implications of interspecies signaling for virulence of bacterial and fungal pathogens. Future Microbiol 2011; 6:799-817. [DOI: 10.2217/fmb.11.60] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite the broad armory of vaccines, antibiotics and other weapons at our disposal, pathogenic bacteria and fungi continue to present a serious threat to human health. These pathogens have proved very versatile and many are associated with infections of vulnerable individuals, often in hospital settings. Evidence is accumulating that certain infections, for example, of medical devices, the cystic fibrosis lung, the oral cavity, the GI tract and wounds, are in fact polymicrobial, with more than one microbe involved. To understand diseases and formulate intervention strategies, it is necessary to know the extent of contact and communication between microbes in these mixed infections. It is now emerging that the signals that microbes use to coordinate expression of viruence factors within a species may also be perceived by other microbes in the community. This article addresses such interspecies signaling and examines the consequences of such signaling between bacterial and fungal pathogens for expression of virulence traits.
Collapse
Affiliation(s)
- Lucy J Holcombe
- Microbiology Department, University College Cork, Cork, Ireland
| | - Fergal O’Gara
- BIOMERIT Research Centre, Microbiology Department, University College Cork, Cork, Ireland
| | | |
Collapse
|
182
|
Reis RS, Pereira AG, Neves BC, Freire DMG. Gene regulation of rhamnolipid production in Pseudomonas aeruginosa--a review. BIORESOURCE TECHNOLOGY 2011; 102:6377-84. [PMID: 21498076 DOI: 10.1016/j.biortech.2011.03.074] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 05/09/2023]
Abstract
Pseudomonas aeruginosa produces abundant levels of rhamnolipid biosurfactants which exhibit remarkable chemical and physical characteristics, making these compounds attractive targets for biotechnology research. The complex gene regulation network involved in rhamnolipids' biosynthesis represents a challenge to industrial production, which has been the object of a growing number of studies. This article provides a comprehensive review of the known gene regulatory factors involved in rhamnolipid production within P. aeruginosa. The regulatory factors include quorum sensing systems proteins and environmental response, and global regulatory systems within basal bacterial physiology, acting either at transcriptional or post-transcriptional level. The multilayer gene regulation responds to a wide variety of environmental and physiologic signals, and is capable of combining different signals in unique and specific responses.
Collapse
Affiliation(s)
- Rodrigo S Reis
- University of Sydney, School of Molecular Biology, NSW 2006, Australia.
| | | | | | | |
Collapse
|
183
|
Anaerobiosis-induced loss of cytotoxicity is due to inactivation of quorum sensing in Pseudomonas aeruginosa. Infect Immun 2011; 79:2792-800. [PMID: 21555402 DOI: 10.1128/iai.01361-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen of clinical importance, causes chronic airway infections in patients with cystic fibrosis (CF). Current literature suggests that pockets with reduced oxygen tension exist in the CF airway mucus. However, virulence features of this opportunistic pathogen under such conditions are largely unknown. Cell-free supernatant of the standard laboratory P. aeruginosa strain PAO1 obtained from anaerobic culture, but not aerobic culture, failed to kill A549 human airway epithelial cells. Further investigation revealed that this reduced cytotoxicity upon anaerobiosis was due to the suppressed secretion of elastase, a virulence factor controlled by P. aeruginosa quorum sensing (QS). Both a lacZ-reporter fusion assay and quantitative real-time PCR (RT-PCR) analysis demonstrated that transcription of the elastase-encoding lasB gene was substantially decreased during anaerobic growth compared with aerobic growth. Moreover, transcription of other genes controlled by the LasI/R QS system, such as rhlR, vqsR, mvfR, and rsaL, was also repressed under the same anaerobic growth conditions. Importantly, synthesis of 3-oxo-C(12)-HSL (PAI-1), an autoinducer molecule that mediates induction of the LasI/R QS system, was >22-fold decreased during anaerobic growth while C(4)-HSL (PAI-2), which mediates RhlI/R QS, was nondetectable under the same growth conditions. Transcription of the lasB gene was restored by exogenous supplementation with autoinducers, with PAI-2 more effective than PAI-1 or Pseudomonas quinolone signal (PQS) at restoring transcription of the lasB gene. Together, these results suggest that anaerobiosis deprives P. aeruginosa of the ability to regulate its virulence via QS and this misregulation attenuates the pathogenic potential of this important pathogen.
Collapse
|
184
|
Seet Q, Zhang LH. Anti-activator QslA defines the quorum sensing threshold and response in Pseudomonas aeruginosa. Mol Microbiol 2011; 80:951-65. [PMID: 21392132 DOI: 10.1111/j.1365-2958.2011.07622.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Quorum sensing (QS) in a bacterial population is activated when extracellular concentration of QS signal reaches a threshold, but how this threshold is determined remains largely unknown. In this study, we report the identification and characterization of a novel anti-activator encoded by qslA in Pseudomonas aeruginosa. The null mutation of qslA elevated AHL-dependent QS and PQS signalling, increased the expression of QS-dependent genes, and enhanced the virulence factor production and pathogenicity. We further present evidence that modulation of QS by QslA is due to protein-protein interaction with LasR, which prevents LasR from binding to its target promoter. QslA also influences the threshold concentration of QS signal needed for QS activation; in the absence of qslA, QS is activated by nine times less N-3-oxo-dodecanoyl-homoserine lactone (3-oxo-C12-HSL) than that in wild type. The findings from this study depict a new mechanism that governs the QS threshold in P. aeruginosa.
Collapse
Affiliation(s)
- Qihui Seet
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | | |
Collapse
|
185
|
Cooperation and cheating in Pseudomonas aeruginosa: the roles of the las, rhl and pqs quorum-sensing systems. ISME JOURNAL 2011; 5:1332-43. [PMID: 21368905 DOI: 10.1038/ismej.2011.13] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pseudomonas aeruginosa coordinates the transcription of hundreds of genes, including many virulence genes, through three hierarchically arranged quorum-sensing (QS) systems, namely las, rhl and pqs. Each system consists of genes involved in autoinducer synthesis, lasI, rhlI and pqsABCDH, as well as cognate-regulatory genes, lasR, rhlR and pqsR. In this study, we analyzed the social behavior of signal-blind (ΔlasR, ΔrhlR, ΔpqsR) and signal-negative (ΔlasI, ΔrhlI, ΔpqsA) mutants from each QS system. As each system controls extracellular common goods but differs in the extent of regulatory control, we hypothesized that all signal-blind mutants can behave as cheaters that vary in their ability to invade a QS-proficient population. We found that lasR and pqsR, but not rhlR, mutants evolve from a wild-type ancestor in vitro under conditions that favor QS. Accordingly, defined lasR and pqsR mutants enriched in wild-type co-culture, whereas rhlR and all signal-negative mutants did not. Both lasR and pqsR mutants enriched with negative frequency dependence, suggesting social interactions with the wild type, although the pqsR mutant also grew well on its own. Taken together, the lasR mutant behaved as a typical cheater, as reported previously. However, the pqsR and rhlR mutants exhibited more complex behaviors, which can be sufficiently explained by positive and negative pleiotropic effects through differential regulation of pqs gene expression in the interconnected QS network. The evolutionary approach adopted here may account for the prevalence of naturally occurring QS mutants.
Collapse
|
186
|
Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 2011; 35:247-74. [PMID: 20738404 PMCID: PMC3053476 DOI: 10.1111/j.1574-6976.2010.00247.x] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 06/25/2010] [Accepted: 07/16/2010] [Indexed: 01/28/2023] Open
Abstract
Since quinine was first isolated, animals, plants and microorganisms producing a wide variety of quinolone compounds have been discovered, several of which possess medicinally interesting properties ranging from antiallergenic and anticancer to antimicrobial activities. Over the years, these have served in the development of many synthetic drugs, including the successful fluoroquinolone antibiotics. Pseudomonas aeruginosa and related bacteria produce a number of 2-alkyl-4(1H)-quinolones, some of which exhibit antimicrobial activity. However, quinolones such as the Pseudomonas quinolone signal and 2-heptyl-4-hydroxyquinoline act as quorum-sensing signal molecules, controlling the expression of many virulence genes as a function of cell population density. Here, we review selectively this extensive family of bicyclic compounds, from natural and synthetic antimicrobials to signalling molecules, with a special emphasis on the biology of P. aeruginosa. In particular, we review their nomenclature and biochemistry, their multiple properties as membrane-interacting compounds, inhibitors of the cytochrome bc(1) complex and iron chelators, as well as the regulation of their biosynthesis and their integration into the intricate quorum-sensing regulatory networks governing virulence and secondary metabolite gene expression.
Collapse
Affiliation(s)
- Stephan Heeb
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
187
|
Fito-Boncompte L, Chapalain A, Bouffartigues E, Chaker H, Lesouhaitier O, Gicquel G, Bazire A, Madi A, Connil N, Véron W, Taupin L, Toussaint B, Cornelis P, Wei Q, Shioya K, Déziel E, Feuilloley MGJ, Orange N, Dufour A, Chevalier S. Full virulence of Pseudomonas aeruginosa requires OprF. Infect Immun 2011; 79:1176-86. [PMID: 21189321 PMCID: PMC3067511 DOI: 10.1128/iai.00850-10] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/10/2010] [Accepted: 12/02/2010] [Indexed: 01/26/2023] Open
Abstract
OprF is a general outer membrane porin of Pseudomonas aeruginosa, a well-known human opportunistic pathogen associated with severe hospital-acquired sepsis and chronic lung infections of cystic fibrosis patients. A multiphenotypic approach, based on the comparative study of a wild-type strain of P. aeruginosa, its isogenic oprF mutant, and an oprF-complemented strain, showed that OprF is required for P. aeruginosa virulence. The absence of OprF results in impaired adhesion to animal cells, secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and production of the quorum-sensing-dependent virulence factors pyocyanin, elastase, lectin PA-1L, and exotoxin A. Accordingly, in the oprF mutant, production of the signal molecules N-(3-oxododecanoyl)-l-homoserine lactone and N-butanoyl-l-homoserine lactone was found to be reduced and delayed, respectively. Pseudomonas quinolone signal (PQS) production was decreased, while its precursor, 4-hydroxy-2-heptylquinoline (HHQ), accumulated in the cells. Taken together, these results show the involvement of OprF in P. aeruginosa virulence, at least partly through modulation of the quorum-sensing network. This is the first study showing a link between OprF, PQS synthesis, T3SS, and virulence factor production, providing novel insights into virulence expression.
Collapse
Affiliation(s)
- Laurène Fito-Boncompte
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Annelise Chapalain
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Emeline Bouffartigues
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Hichem Chaker
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Gwendoline Gicquel
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Alexis Bazire
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Amar Madi
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Nathalie Connil
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Wilfried Véron
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Laure Taupin
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Bertrand Toussaint
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Qing Wei
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Koki Shioya
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Eric Déziel
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Nicole Orange
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Alain Dufour
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| |
Collapse
|
188
|
Lee B, Schjerling CK, Kirkby N, Hoffmann N, Borup R, Molin S, Høiby N, Ciofu O. Mucoid Pseudomonas aeruginosa isolates maintain the biofilm formation capacity and the gene expression profiles during the chronic lung infection of CF patients. APMIS 2011; 119:263-74. [PMID: 21492226 DOI: 10.1111/j.1600-0463.2011.02726.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phenotypic and genotypic diversifications of Pseudomonas aeruginosa in the airways of patients with cystic fibrosis (CF) promote long-term survival of bacteria during chronic lung infection. Twelve clonally related, sequential mucoid and non-mucoid paired P. aeruginosa isolates obtained from three Danish CF patients were investigated. The in vitro biofilm formation capacity was studied under static and flow through conditions and the global gene expression profiles were investigated by Affymetrix GeneChip. Regulatory genes of alginate production and quorum sensing (QS) system were sequenced and measurements of the alginate production and the detection of the QS signal molecules were performed. Comparisons of mucoid and non-mucoid isolates from early and late stages of the infection showed that the mucoid phenotype maintained over a decade the capacity to form in vitro biofilm and showed an unaltered transcriptional profile, whereas substantial alterations in the transcriptional profiles and loss of the capacity to form in vitro biofilms were observed in corresponding isolates of the non-mucoid phenotype. The conserved gene expression pattern in the mucoid isolates vs the diversity of changes in non-mucoid isolates observed in this particular P. aeruginosa clone reflects different adaptation strategies used by these two phenotypes in the different niches of the CF lung environment.
Collapse
Affiliation(s)
- Baoleri Lee
- Department of International Health, Immunology and Microbiology, Panum Institute, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Construction of an effective screening system for detection of Pseudomonas aeruginosa quorum sensing inhibitors and its application in bioautographic thin-layer chromatography. Biotechnol Lett 2011; 33:1381-7. [PMID: 21344206 DOI: 10.1007/s10529-011-0563-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
In Pseudomonas aeruginosa, quorum sensing (QS) regulates dozens of genes and proteins, many of which contribute to the virulence of this pathogen. QS inhibitory (QSI) compounds have been proposed as potential agents for treatment of bacterial infections. To search for Ps. aeruginosa QS inhibitors, we constructed an effective screening system, QSIS-lasI selector, based on the PlasI-sacB reporter, in which QS could be induced with 20 nM 3-oxo-N-[(3S)-tetrahydro-2-oxo-3-furanyl]-dodecanamide (3-oxo-C(12)-HSL). During screening of the crude extracts from 65 marine fungi, an isolate of Penicillium atramentosum was found to have QSI activity. Thin-layer chromatography assay of the fungal extracts for bioautographic identification of QSIS-lasI indicated that this fungus produced several QSI compounds, including QS inhibitors other than penicillic acid or patulin.
Collapse
|
190
|
Ng FSW, Wright DM, Seah SYK. Characterization of a phosphotriesterase-like lactonase from Sulfolobus solfataricus and its immobilization for disruption of quorum sensing. Appl Environ Microbiol 2011; 77:1181-6. [PMID: 21183649 PMCID: PMC3067241 DOI: 10.1128/aem.01642-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 12/13/2010] [Indexed: 11/20/2022] Open
Abstract
SsoPox, a bifunctional enzyme with organophosphate hydrolase and N-acyl homoserine lactonase activities from the hyperthermophilic archaeon Sulfolobus solfataricus, was overexpressed and purified from recombinant Pseudomonas putida KT2440 with a yield of 9.4 mg of protein per liter of culture. The enzyme has a preference for N-acyl homoserine lactones (AHLs) with acyl chain lengths of at least 8 carbon atoms, mainly due to lower K(m) values for these substrates. The highest specificity constant obtained was for N-3-oxo-decanoyl homoserine lactone (k(cat)/K(m) = 5.5 × 10(3) M(-1)·s(-1)), but SsoPox can also degrade N-butyryl homoserine lactone (C(4)-HSL) and N-oxo-dodecanoyl homoserine lactone (oxo-C(12)-HSL), which are important for quorum sensing in our Pseudomonas aeruginosa model system. When P. aeruginosa PAO1 cultures were grown in the presence of SsoPox-immobilized membranes, the production of C(4)-HSL- and oxo-C(12)-HSL-regulated virulence factors, elastase, protease, and pyocyanin were significantly reduced. This is the first demonstration that immobilized quorum-quenching enzymes can be used to attenuate the production of virulence factors controlled by quorum-sensing signals.
Collapse
Affiliation(s)
- Filomena S W Ng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | |
Collapse
|
191
|
Abdel-Mawgoud AM, Hausmann R, Lépine F, Müller MM, Déziel E. Rhamnolipids: Detection, Analysis, Biosynthesis, Genetic Regulation, and Bioengineering of Production. MICROBIOLOGY MONOGRAPHS 2011. [DOI: 10.1007/978-3-642-14490-5_2] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
192
|
Hogardt M, Heesemann J. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. Curr Top Microbiol Immunol 2011; 358:91-118. [PMID: 22311171 DOI: 10.1007/82_2011_199] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudomonas aeruginosa is the leading pathogen of chronic cystic fibrosis (CF) lung infection. Life-long persistance of P. aeruginosa in the CF lung requires a sophisticated habitat-specific adaptation of this pathogen to the heterogeneous and fluctuating lung environment. Due to the high selective pressure of inflamed CF lungs, P. aeruginosa increasingly experiences complex physiological and morphological changes. Pulmonary adaptation of P. aeruginosa is mediated by genetic variations that are fixed by the repeating interplay of mutation and selection. In this context, the emergence of hypermutable phenotypes (mutator strains) obviously improves the microevolution of P. aeruginosa to the diverse microenvironments of the CF lung. Mutator phenotypes are amplified during CF lung disease and accelerate the intraclonal diversification of P. aeruginosa. The resulting generation of numerous subclonal variants is advantegous to prepare P. aeruginosa population for unpredictable stresses (insurance hypothesis) and thus supports long-term survival of this pathogen. Oxygen restriction within CF lung environment further promotes persistence of P. aeruginosa due to increased antibiotic tolerance, alginate production and biofilm formation. Finally, P. aeruginosa shifts from an acute virulent pathogen of early infection to a host-adapted chronic virulent pathogen of end-stage infection of the CF lung. Common changes that are observed among chronic P. aeruginosa CF isolates include alterations in surface antigens, loss of virulence-associated traits, increasing antibiotic resistances, the overproduction of the exopolysaccharide alginate and the modulation of intermediary and micro-aerobic metabolic pathways (Hogardt and Heesemann, Int J Med Microbiol 300(8):557-562, 2010). Loss-of-function mutations in mucA and lasR genes determine the transition to mucoidity and loss of quorum sensing, which are hallmarks of the chronic virulence potential of P. aeruginosa. Metabolic factors that are positively selected in response to the specific environment of CF lung include the outer membrane protein OprF, the microaerophilic oxidase Cbb3-2, the blue copper protein azurin, the cytochrome c peroxidase c551 and the enzymes of the arginine deiminase pathway ArcA-ArcD. These metabolic adaptations probably support the growth of P. aeruginosa within oxygen-depleted CF mucus. The deeper understanding of the physiological mechanisms of niche specialization of P. aeruginosa during CF lung infection will help to identify new targets for future anti-pseudomonal treatment strategies to prevent the selection of mutator isolates and the establishment of chronic CF lung infection.
Collapse
Affiliation(s)
- Michael Hogardt
- Department of Infectiology, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany.
| | | |
Collapse
|
193
|
McKeon SA, Nguyen DT, Viteri DF, Zlosnik JEA, Sokol PA. Functional quorum sensing systems are maintained during chronic Burkholderia cepacia complex infections in patients with cystic fibrosis. J Infect Dis 2010; 203:383-92. [PMID: 21208930 DOI: 10.1093/infdis/jiq054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Quorum sensing (QS) contributes to the virulence of Pseudomonas aeruginosa and Burkholderia cepacia complex lung infections. P. aeruginosa QS mutants are frequently isolated from patients with cystic fibrosis. The objective of this study was to determine whether similar adaptations occur over time in B. cepacia complex isolates. Forty-five Burkholderia multivorans and Burkholderia cenocepacia sequential isolates from patients with cystic fibrosis were analyzed for N-acyl-homoserine lactone activity. All but one isolate produced N-acyl-homoserine lactones. The B. cenocepacia N-acyl-homoserine lactone-negative isolate contained mutations in cepR and cciR. Growth competition assays were performed that compared B. cenocepacia clinical and laboratory defined wild-type and QS mutants. Survival of the laboratory wild-type and QS mutants varied, dependent on the mutation. The clinical wild-type isolate demonstrated a growth advantage over its QS mutant. These data suggest that there is a selective advantage for strains with QS systems and that QS mutations do not occur at a high frequency in B. cepacia complex isolates.
Collapse
Affiliation(s)
- Suzanne A McKeon
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
194
|
Mattmann ME, Blackwell HE. Small molecules that modulate quorum sensing and control virulence in Pseudomonas aeruginosa. J Org Chem 2010; 75:6737-46. [PMID: 20672805 PMCID: PMC2952040 DOI: 10.1021/jo101237e] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bacteria use small molecule signals to access their local population densities in a process called quorum sensing (QS). Once a threshold signal concentration is reached, and therefore a certain number of bacteria have assembled, bacteria use QS to change gene expression levels and initiate behaviors that benefit the group. These group processes play central roles in both bacterial virulence and symbiosis and can have significant impacts on human health, agriculture, and the environment. The dependence of QS on small molecule signals has inspired organic chemists to design non-native molecules that can intercept these signals and thereby perturb bacterial group behaviors. The opportunistic pathogen Pseudomonas aeruginosa has been the target of many of these efforts due to its prevalence in human infections. P. aeruginosa uses at least two N-acyl l-homoserine lactone signals and three homologous LuxR-type receptors to initiate a range of pathogenic behaviors at high cell densities, including biofilm formation and the production of an arsenal of virulence factors. This perspective highlights recent chemical efforts to modulate LuxR-type receptor activity in P. aeruginosa and offers insight into the development of receptor-specific ligands as potential antivirulence strategies.
Collapse
Affiliation(s)
- Margrith E. Mattmann
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706-1322
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706-1322
| |
Collapse
|
195
|
Costa CS, Pezzoni M, Fernández RO, Pizarro RA. Role of the Quorum Sensing Mechanism in the Response of Pseudomonas aeruginosa to Lethal and Sublethal UVA Irradiation. Photochem Photobiol 2010; 86:1334-42. [DOI: 10.1111/j.1751-1097.2010.00800.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
196
|
Cugini C, Morales DK, Hogan DA. Candida albicans-produced farnesol stimulates Pseudomonas quinolone signal production in LasR-defective Pseudomonas aeruginosa strains. MICROBIOLOGY-SGM 2010; 156:3096-3107. [PMID: 20656785 PMCID: PMC3068698 DOI: 10.1099/mic.0.037911-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Candida albicans has been previously shown to stimulate the production of Pseudomonas aeruginosa phenazine toxins in dual-species colony biofilms. Here, we report that P. aeruginosa lasR mutants, which lack the master quorum sensing system regulator, regain the ability to produce quorum-sensing-regulated phenazines when cultured with C. albicans. Farnesol, a signalling molecule produced by C. albicans, was sufficient to stimulate phenazine production in LasR(-) laboratory strains and clinical isolates. P. aeruginosa ΔlasR mutants are defective in production of the Pseudomonas quinolone signal (PQS) due to their inability to properly induce pqsH, which encodes the enzyme necessary for the last step in PQS biosynthesis. We show that expression of pqsH in a ΔlasR strain was sufficient to restore PQS production, and that farnesol restored pqsH expression in ΔlasR mutants. The farnesol-mediated increase in pqsH required RhlR, a transcriptional regulator downstream of LasR, and farnesol led to higher levels of N-butyryl-homoserine lactone, the small molecule activator of RhlR. Farnesol promotes the production of reactive oxygen species (ROS) in a variety of species. Because the antioxidant N-acetylcysteine suppressed farnesol-induced RhlR activity in LasR(-) strains, and hydrogen peroxide was sufficient to restore PQS production in las mutants, we propose that ROS are responsible for the activation of downstream portions of this quorum sensing pathway. LasR mutants frequently arise in the lungs of patients chronically infected with P. aeruginosa. The finding that C. albicans, farnesol or ROS stimulate virulence factor production in lasR strains provides new insight into the virulence potential of these strains.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Diana K Morales
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
197
|
Secretion of Pseudomonas aeruginosa type III cytotoxins is dependent on pseudomonas quinolone signal concentration. Microb Pathog 2010; 49:196-203. [PMID: 20570614 DOI: 10.1016/j.micpath.2010.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 05/20/2010] [Accepted: 05/22/2010] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can, like other bacterial species, exist in antimicrobial resistant sessile biofilms and as free-swimming, planktonic cells. Specific virulence factors are typically associated with each lifestyle and several two component response regulators have been shown to reciprocally regulate transition between biofilm-associated chronic, and free-swimming acute infections. Quorum sensing (QS) signal molecules belonging to the las and rhl systems are known to regulate virulence gene expression by P. aeruginosa. However the impact of a recently described family of novel quorum sensing signals produced by the Pseudomonas Quinolone Signal (PQS) biosynthetic pathway, on the transition between these modes of infection is less clear. Using clonal isolates from a patient developing ventilator-associated pneumonia, we demonstrated that clinical observations were mirrored by an in vitro temporal shift in isolate phenotype from a non-secreting, to a Type III cytotoxin secreting (TTSS) phenotype and further, that this phenotypic change was PQS-dependent. While intracellular type III cytotoxin levels were unaffected by PQS concentration, cytotoxin secretion was dependent on this signal molecule. Elevated PQS concentrations were associated with inhibition of cytotoxin secretion coincident with expression of virulence factors such as elastase and pyoverdin. In contrast, low concentrations or the inability to biosynthesize PQS resulted in a reversal of this phenotype. These data suggest that expression of specific P. aeruginosa virulence factors appears to be reciprocally regulated and that an additional level of PQS-dependent post-translational control, specifically governing type III cytotoxin secretion, exists in this species.
Collapse
|
198
|
Antunes LCM, Ferreira RBR, Buckner MMC, Finlay BB. Quorum sensing in bacterial virulence. MICROBIOLOGY-SGM 2010; 156:2271-2282. [PMID: 20488878 DOI: 10.1099/mic.0.038794-0] [Citation(s) in RCA: 338] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacteria communicate through the production of diffusible signal molecules termed autoinducers. The molecules are produced at basal levels and accumulate during growth. Once a critical concentration has been reached, autoinducers can activate or repress a number of target genes. Because the control of gene expression by autoinducers is cell-density-dependent, this phenomenon has been called quorum sensing. Quorum sensing controls virulence gene expression in numerous micro-organisms. In some cases, this phenomenon has proven relevant for bacterial virulence in vivo. In this article, we provide a few examples to illustrate how quorum sensing can act to control bacterial virulence in a multitude of ways. Several classes of autoinducers have been described to date and we present examples of how each of the major types of autoinducer can be involved in bacterial virulence. As quorum sensing controls virulence, it has been considered an attractive target for the development of new therapeutic strategies. We discuss some of the new strategies to combat bacterial virulence based on the inhibition of bacterial quorum sensing systems.
Collapse
Affiliation(s)
- L Caetano M Antunes
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Rosana B R Ferreira
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Michelle M C Buckner
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada.,Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - B Brett Finlay
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada.,Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
199
|
Bjarnsholt T, Jensen PØ, Jakobsen TH, Phipps R, Nielsen AK, Rybtke MT, Tolker-Nielsen T, Givskov M, Høiby N, Ciofu O. Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS One 2010; 5:e10115. [PMID: 20404933 PMCID: PMC2853559 DOI: 10.1371/journal.pone.0010115] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 03/09/2010] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is the predominant microorganism in chronic lung infection of cystic fibrosis patients. The chronic lung infection is preceded by intermittent colonization. When the chronic infection becomes established, it is well accepted that the isolated strains differ phenotypically from the intermittent strains. Dominating changes are the switch to mucoidity (alginate overproduction) and loss of epigenetic regulation of virulence such as the Quorum Sensing (QS). To elucidate the dynamics of P. aeruginosa QS systems during long term infection of the CF lung, we have investigated 238 isolates obtained from 152 CF patients at different stages of infection ranging from intermittent to late chronic. Isolates were characterized with regard to QS signal molecules, alginate, rhamnolipid and elastase production and mutant frequency. The genetic basis for change in QS regulation were investigated and identified by sequence analysis of lasR, rhlR, lasI and rhlI. The first QS system to be lost was the one encoded by las system 12 years (median value) after the onset of the lung infection with subsequent loss of the rhl encoded system after 17 years (median value) shown as deficiencies in production of the 3-oxo-C12-HSL and C4-HSL QS signal molecules respectively. The concomitant development of QS malfunction significantly correlated with the reduced production of rhamnolipids and elastase and with the occurrence of mutations in the regulatory genes lasR and rhlR. Accumulation of mutations in both lasR and rhlR correlated with development of hypermutability. Interestingly, a higher number of mucoid isolates were found to produce C4-HSL signal molecules and rhamnolipids compared to the non-mucoid isolates. As seen from the present data, we can conclude that P. aeruginosa and particularly the mucoid strains do not lose the QS regulation or the ability to produce rhamnolipids until the late stage of the chronic infection.
Collapse
Affiliation(s)
- Thomas Bjarnsholt
- Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Tim Holm Jakobsen
- Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Richard Phipps
- BioSys, Technical University of Denmark, Lyngby, Denmark
| | - Anne Kirstine Nielsen
- Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Theil Rybtke
- Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Givskov
- Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Oana Ciofu
- Institute for International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | | |
Collapse
|
200
|
Sriramulu DD. Amino Acids Enhance Adaptive Behaviour ofPseudomonas Aeruginosain the Cystic Fibrosis Lung Environment. Microbiol Insights 2010. [DOI: 10.4137/mbi.s4694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Sputum of cystic fibrosis (CF) patients is a nutrient-rich environment. Higher amino acid content of CF sputum compared to normal sputum plays a major role in the CF-specific phenotype of P. aeruginosa. Presence of amino acids in the sputum-like environment influenced P. aeruginosa quorum-sensing activity and the formation of an unknown exopolysaccharide in the biofilm. Lipopolysaccharides isolated from P. aeruginosa grown in the presence of amino acids enhanced the release of cytokine IL-8 by human kidney and lung epithelial cells. The results of this study provide additional evidence on the role of amino acids towards adaptation of P. aeruginosa to the CF lung environment.
Collapse
Affiliation(s)
- Dinesh Diraviam Sriramulu
- Division of Cell and Immune Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|