151
|
Lenkowski JR, Qin Z, Sifuentes CJ, Thummel R, Soto CM, Moens CB, Raymond PA. Retinal regeneration in adult zebrafish requires regulation of TGFβ signaling. Glia 2013; 61:1687-97. [PMID: 23918319 PMCID: PMC4127981 DOI: 10.1002/glia.22549] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 12/16/2022]
Abstract
Müller glia are the resident radial glia in the vertebrate retina. The response of mammalian Müller glia to retinal damage often results in a glial scar and no functional replacement of lost neurons. Adult zebrafish Müller glia, in contrast, are considered tissue-specific stem cells that can self-renew and generate neurogenic progenitors to regenerate all retinal neurons after damage. Here, we demonstrate that regulation of TGFβ signaling by the corepressors Tgif1 and Six3b is critical for the proliferative response to photoreceptor destruction in the adult zebrafish retina. When function of these corepressors is disrupted, Müller glia and their progeny proliferate less, leading to a significant reduction in photoreceptor regeneration. Tgif1 expression and regulation of TGFβ signaling are implicated in the function of several types of stem cells, but this is the first demonstration that this regulatory network is necessary for regeneration of neurons.
Collapse
Affiliation(s)
- Jenny R Lenkowski
- Molecular, Cellular, and Developmental Biology, University of Michigan, 830 N University, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
152
|
In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol 2013; 15:1164-75. [PMID: 24056302 DOI: 10.1038/ncb2843] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 08/15/2013] [Indexed: 02/08/2023]
Abstract
Adult differentiated cells can be reprogrammed into pluripotent stem cells or lineage-restricted proliferating precursors in culture; however, this has not been demonstrated in vivo. Here, we show that the single transcription factor SOX2 is sufficient to reprogram resident astrocytes into proliferative neuroblasts in the adult mouse brain. These induced adult neuroblasts (iANBs) persist for months and can be generated even in aged brains. When supplied with BDNF and noggin or when the mice are treated with a histone deacetylase inhibitor, iANBs develop into electrophysiologically mature neurons, which functionally integrate into the local neural network. Our results demonstrate that adult astrocytes exhibit remarkable plasticity in vivo, a feature that might have important implications in regeneration of the central nervous system using endogenous patient-specific glial cells.
Collapse
|
153
|
Feng G, Yi P, Yang Y, Chai Y, Tian D, Zhu Z, Liu J, Zhou F, Cheng Z, Wang X, Li W, Ou G. Developmental stage-dependent transcriptional regulatory pathways control neuroblast lineage progression. Development 2013; 140:3838-47. [DOI: 10.1242/dev.098723] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuroblasts generate neurons with different functions by asymmetric cell division, cell cycle exit and differentiation. The underlying transcriptional regulatory pathways remain elusive. Here, we performed genetic screens in C. elegans and identified three evolutionarily conserved transcription factors (TFs) essential for Q neuroblast lineage progression. Through live cell imaging and genetic analysis, we showed that the storkhead TF HAM-1 regulates spindle positioning and myosin polarization during asymmetric cell division and that the PAR-1-like kinase PIG-1 is a transcriptional regulatory target of HAM-1. The TEAD TF EGL-44, in a physical association with the zinc-finger TF EGL-46, instructs cell cycle exit after the terminal division. Finally, the Sox domain TF EGL-13 is necessary and sufficient to establish the correct neuronal fate. Genetic analysis further demonstrated that HAM-1, EGL-44/EGL-46 and EGL-13 form three transcriptional regulatory pathways. We have thus identified TFs that function at distinct developmental stages to ensure appropriate neuroblast lineage progression and suggest that their vertebrate homologs might similarly regulate neural development.
Collapse
Affiliation(s)
- Guoxin Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Peishan Yi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Yihong Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Yongping Chai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Dong Tian
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Zhiwen Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Jianhong Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Fanli Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Ze Cheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Xiangming Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Wei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Guangshuo Ou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
154
|
Abstract
Identifying the exact regulatory circuits that can stably maintain tissue homeostasis is critical for our basic understanding of multicellular organisms, and equally critical for identifying how tumors circumvent this regulation, thus providing targets for treatment. Despite great strides in the understanding of the molecular components of stem-cell regulation, the overall mechanisms orchestrating tissue homeostasis are still far from being understood. Typically, tissue contains the stem cells, transit amplifying cells, and terminally differentiated cells. Each of these cell types can potentially secrete regulatory factors and/or respond to factors secreted by other types. The feedback can be positive or negative in nature. This gives rise to a bewildering array of possible mechanisms that drive tissue regulation. In this paper, we propose a novel method of studying stem cell lineage regulation, and identify possible numbers, types, and directions of control loops that are compatible with stability, keep the variance low, and possess a certain degree of robustness. For example, there are exactly two minimal (two-loop) control networks that can regulate two-compartment (stem and differentiated cell) tissues, and 20 such networks in three-compartment tissues. If division and differentiation decisions are coupled, then there must be a negative control loop regulating divisions of stem cells (e.g. by means of contact inhibition). While this mechanism is associated with the highest robustness, there could be systems that maintain stability by means of positive divisions control, coupled with specific types of differentiation control. Some of the control mechanisms that we find have been proposed before, but most of them are new, and we describe evidence for their existence in data that have been previously published. By specifying the types of feedback interactions that can maintain homeostasis, our mathematical analysis can be used as a guide to experimentally zero in on the exact molecular mechanisms in specific tissues.
Collapse
Affiliation(s)
- Natalia L. Komarova
- Department of Mathematics, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
155
|
Podda MV, Piacentini R, Barbati SA, Mastrodonato A, Puzzo D, D’Ascenzo M, Leone L, Grassi C. Role of cyclic nucleotide-gated channels in the modulation of mouse hippocampal neurogenesis. PLoS One 2013; 8:e73246. [PMID: 23991183 PMCID: PMC3750014 DOI: 10.1371/journal.pone.0073246] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/18/2013] [Indexed: 12/25/2022] Open
Abstract
Neural stem cells generate neurons in the hippocampal dentate gyrus in mammals, including humans, throughout adulthood. Adult hippocampal neurogenesis has been the focus of many studies due to its relevance in processes such as learning and memory and its documented impairment in some neurodegenerative diseases. However, we are still far from having a complete picture of the mechanism regulating this process. Our study focused on the possible role of cyclic nucleotide-gated (CNG) channels. These voltage-independent channels activated by cyclic nucleotides, first described in retinal and olfactory receptors, have been receiving increasing attention for their involvement in several brain functions. Here we show that the rod-type, CNGA1, and olfactory-type, CNGA2, subunits are expressed in hippocampal neural stem cells in culture and in situ in the hippocampal neurogenic niche of adult mice. Pharmacological blockade of CNG channels did not affect cultured neural stem cell proliferation but reduced their differentiation towards the neuronal phenotype. The membrane permeant cGMP analogue, 8-Br-cGMP, enhanced neural stem cell differentiation to neurons and this effect was prevented by CNG channel blockade. In addition, patch-clamp recording from neuron-like differentiating neural stem cells revealed cGMP-activated currents attributable to ion flow through CNG channels. The current work provides novel insights into the role of CNG channels in promoting hippocampal neurogenesis, which may prove to be relevant for stem cell-based treatment of cognitive impairment and brain damage.
Collapse
Affiliation(s)
- Maria Vittoria Podda
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Roberto Piacentini
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | | | - Alessia Mastrodonato
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Daniela Puzzo
- Section of Physiology, Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Marcello D’Ascenzo
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Lucia Leone
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| |
Collapse
|
156
|
Martynoga B, Mateo JL, Zhou B, Andersen J, Achimastou A, Urbán N, van den Berg D, Georgopoulou D, Hadjur S, Wittbrodt J, Ettwiller L, Piper M, Gronostajski RM, Guillemot F. Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence. Genes Dev 2013; 27:1769-86. [PMID: 23964093 PMCID: PMC3759694 DOI: 10.1101/gad.216804.113] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/24/2013] [Indexed: 01/03/2023]
Abstract
The majority of neural stem cells (NSCs) in the adult brain are quiescent, and this fraction increases with aging. Although signaling pathways that promote NSC quiescence have been identified, the transcriptional mechanisms involved are mostly unknown, largely due to lack of a cell culture model. In this study, we first demonstrate that NSC cultures (NS cells) exposed to BMP4 acquire cellular and transcriptional characteristics of quiescent cells. We then use epigenomic profiling to identify enhancers associated with the quiescent NS cell state. Motif enrichment analysis of these enhancers predicts a major role for the nuclear factor one (NFI) family in the gene regulatory network controlling NS cell quiescence. Interestingly, we found that the family member NFIX is robustly induced when NS cells enter quiescence. Using genome-wide location analysis and overexpression and silencing experiments, we demonstrate that NFIX has a major role in the induction of quiescence in cultured NSCs. Transcript profiling of NS cells overexpressing or silenced for Nfix and the phenotypic analysis of the hippocampus of Nfix mutant mice suggest that NFIX controls the quiescent state by regulating the interactions of NSCs with their microenvironment.
Collapse
Affiliation(s)
- Ben Martynoga
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Juan L. Mateo
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Bo Zhou
- Department of Biochemistry, Developmental Genomics Group, Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York, 14203, USA
| | - Jimena Andersen
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Angeliki Achimastou
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Noelia Urbán
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Debbie van den Berg
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Dimitra Georgopoulou
- Research Department of Cancer Biology, University College London, Cancer Institute, London WC1E 6BT, United Kingdom
| | - Suzana Hadjur
- Research Department of Cancer Biology, University College London, Cancer Institute, London WC1E 6BT, United Kingdom
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Laurence Ettwiller
- Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael Piper
- The School of Biomedical Sciences, The Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Richard M. Gronostajski
- Department of Biochemistry, Developmental Genomics Group, Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York, 14203, USA
| | - François Guillemot
- Division of Molecular Neurobiology, MRC-National Institute for Medical Research, London NW7 1AA, United Kingdom
| |
Collapse
|
157
|
Pan YW, Storm DR, Xia Z. Role of adult neurogenesis in hippocampus-dependent memory, contextual fear extinction and remote contextual memory: new insights from ERK5 MAP kinase. Neurobiol Learn Mem 2013; 105:81-92. [PMID: 23871742 DOI: 10.1016/j.nlm.2013.07.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022]
Abstract
Adult neurogenesis occurs in two discrete regions of the adult mammalian brain, the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ) along the lateral ventricles. Signaling mechanisms regulating adult neurogenesis in the SGZ are currently an active area of investigation. Adult-born neurons in the DG functionally integrate into the hippocampal circuitry and form functional synapses, suggesting a role for these neurons in hippocampus-dependent memory formation. Although results from earlier behavioral studies addressing this issue were inconsistent, recent advances in conditional gene targeting technology, viral injection and optogenetic approaches have provided convincing evidence supporting a role for adult-born neurons in the more challenging forms of hippocampus-dependent learning and memory. Here, we briefly summarize these recent studies with a focus on extra signal-regulated kinase (ERK) 5, a MAP kinase whose expression in the adult brain is restricted to the neurogenic regions including the SGZ and SVZ. We review evidence identifying ERK5 as a novel endogenous signaling pathway that regulates the pro-neural transcription factor Neurogenin 2, is activated by neurotrophins and is critical for adult neurogenesis. We discuss studies demonstrating that specific deletion of ERK5 in the adult neurogenic regions impairs several forms of hippocampus-dependent memory formation in mice. These include contextual fear memory extinction, the establishment and maintenance of remote contextual fear memory, and several other challenging forms of hippocampus-dependent memory formation including 48h memory for novel object recognition, contextual fear memory established by a weak foot shock, pattern separation, and reversal of spatial learning and memory. We also briefly discuss current evidence that increasing adult neurogenesis, by small molecules or genetic manipulation, improves memory formation and long-term memory.
Collapse
Affiliation(s)
- Yung-Wei Pan
- Department of Pharmacology, University of Washington, Seattle, WA 98195, United States
| | | | | |
Collapse
|
158
|
Konefal S, Elliot M, Crespi B. The adaptive significance of adult neurogenesis: an integrative approach. Front Neuroanat 2013; 7:21. [PMID: 23882188 PMCID: PMC3712125 DOI: 10.3389/fnana.2013.00021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/18/2013] [Indexed: 01/15/2023] Open
Abstract
Adult neurogenesis in mammals is predominantly restricted to two brain regions, the dentate gyrus (DG) of the hippocampus and the olfactory bulb (OB), suggesting that these two brain regions uniquely share functions that mediate its adaptive significance. Benefits of adult neurogenesis across these two regions appear to converge on increased neuronal and structural plasticity that subserves coding of novel, complex, and fine-grained information, usually with contextual components that include spatial positioning. By contrast, costs of adult neurogenesis appear to center on potential for dysregulation resulting in higher risk of brain cancer or psychological dysfunctions, but such costs have yet to be quantified directly. The three main hypotheses for the proximate functions and adaptive significance of adult neurogenesis, pattern separation, memory consolidation, and olfactory spatial, are not mutually exclusive and can be reconciled into a simple general model amenable to targeted experimental and comparative tests. Comparative analysis of brain region sizes across two major social-ecological groups of primates, gregarious (mainly diurnal haplorhines, visually-oriented, and in large social groups) and solitary (mainly noctural, territorial, and highly reliant on olfaction, as in most rodents) suggest that solitary species, but not gregarious species, show positive associations of population densities and home range sizes with sizes of both the hippocampus and OB, implicating their functions in social-territorial systems mediated by olfactory cues. Integrated analyses of the adaptive significance of adult neurogenesis will benefit from experimental studies motivated and structured by ecologically and socially relevant selective contexts.
Collapse
Affiliation(s)
- Sarah Konefal
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General HospitalMontreal, QC, Canada
| | - Mick Elliot
- Department of Biological Sciences, Simon Fraser UniversityBurnaby, BC, Canada
| | - Bernard Crespi
- Department of Biological Sciences, Simon Fraser UniversityBurnaby, BC, Canada
| |
Collapse
|
159
|
Varela-Nallar L, Inestrosa NC. Wnt signaling in the regulation of adult hippocampal neurogenesis. Front Cell Neurosci 2013; 7:100. [PMID: 23805076 PMCID: PMC3693081 DOI: 10.3389/fncel.2013.00100] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/07/2013] [Indexed: 01/06/2023] Open
Abstract
In the adult brain new neurons are continuously generated mainly in two regions, the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) in the hippocampal dentate gyrus. In the SGZ, radial neural stem cells (NSCs) give rise to granule cells that integrate into the hippocampal circuitry and are relevant for the plasticity of the hippocampus. Loss of neurogenesis impairs learning and memory, suggesting that this process is important for adult hippocampal function. Adult neurogenesis is tightly regulated by multiple signaling pathways, including the canonical Wnt/β-catenin pathway. This pathway plays important roles during the development of neuronal circuits and in the adult brain it modulates synaptic transmission and plasticity. Here, we review current knowledge on the regulation of adult hippocampal neurogenesis by the Wnt/β-catenin signaling cascade and the potential mechanisms involved in this regulation. Also we discuss the evidence supporting that the canonical Wnt pathway is part of the signaling mechanisms involved in the regulation of neurogenesis in different physiological conditions. Finally, some unsolved questions regarding the Wnt-mediated regulation of neurogenesis are discussed.
Collapse
Affiliation(s)
- Lorena Varela-Nallar
- Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile
| | | |
Collapse
|
160
|
Gámez B, Rodriguez-Carballo E, Ventura F. BMP signaling in telencephalic neural cell specification and maturation. Front Cell Neurosci 2013; 7:87. [PMID: 23761735 PMCID: PMC3671186 DOI: 10.3389/fncel.2013.00087] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/21/2013] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) make up a family of morphogens that are critical for patterning, development, and function of the central and peripheral nervous system. Their effects on neural cells are pleiotropic and highly dynamic depending on the stage of development and the local niche. Neural cells display a broad expression profile of BMP ligands, receptors, and transducer molecules. Moreover, interactions of BMP signaling with other incoming morphogens and signaling pathways are crucial for most of these processes. The key role of BMP signaling suggests that it includes many regulatory mechanisms that restrict BMP activity both temporally and spatially. BMPs affect neural cell fate specification in a dynamic fashion. Initially they inhibit proliferation of neural precursors and promote the first steps in neuronal differentiation. Later on, BMP signaling effects switch from neuronal induction to promotion of astroglial identity and inhibition of neuronal or oligodendroglial lineage commitment. Furthermore, in postmitotic cells, BMPs regulate cell survival and death, to modulate neuronal subtype specification, promote dendritic and axonal growth and induce synapse formation and stabilization. In this review, we examine the canonical and non-canonical mechanisms of BMP signal transduction. Moreover, we focus on the specific role of BMPs in the nervous system including their ability to regulate neural stem cell proliferation, self-renewal, lineage specification, and neuronal function.
Collapse
Affiliation(s)
- Beatriz Gámez
- Departament de Ciències Fisiològiques II, Institut d'Investigació Biomèdica de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat Spain
| | | | | |
Collapse
|
161
|
Li T, Pan YW, Wang W, Abel G, Zou J, Xu L, Storm DR, Xia Z. Targeted deletion of the ERK5 MAP kinase impairs neuronal differentiation, migration, and survival during adult neurogenesis in the olfactory bulb. PLoS One 2013; 8:e61948. [PMID: 23630619 PMCID: PMC3632513 DOI: 10.1371/journal.pone.0061948] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/15/2013] [Indexed: 01/13/2023] Open
Abstract
Recent studies have led to the exciting idea that adult-born neurons in the olfactory bulb (OB) may be critical for complex forms of olfactory behavior in mice. However, signaling mechanisms regulating adult OB neurogenesis are not well defined. We recently reported that extracellular signal-regulated kinase (ERK) 5, a MAP kinase, is specifically expressed in neurogenic regions within the adult brain. This pattern of expression suggests a role for ERK5 in the regulation of adult OB neurogenesis. Indeed, we previously reported that conditional deletion of erk5 in adult neurogenic regions impairs several forms of olfactory behavior in mice. Thus, it is important to understand how ERK5 regulates adult neurogenesis in the OB. Here we present evidence that shRNA suppression of ERK5 in adult neural stem/progenitor cells isolated from the subventricular zone (SVZ) reduces neurogenesis in culture. By contrast, ectopic activation of endogenous ERK5 signaling via expression of constitutive active MEK5, an upstream activating kinase for ERK5, stimulates neurogenesis. Furthermore, inducible and conditional deletion of erk5 specifically in the neurogenic regions of the adult mouse brain interferes with cell cycle exit of neuroblasts, impairs chain migration along the rostral migratory stream and radial migration into the OB. It also inhibits neuronal differentiation and survival. These data suggest that ERK5 regulates multiple aspects of adult OB neurogenesis and provide new insights concerning signaling mechanisms governing adult neurogenesis in the SVZ-OB axis.
Collapse
Affiliation(s)
- Tan Li
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry and Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yung-Wei Pan
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
| | - Wenbin Wang
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Glen Abel
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Junhui Zou
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Lihong Xu
- Department of Biochemistry and Genetics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Daniel R. Storm
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | - Zhengui Xia
- Toxicology Program in the Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
162
|
Ramos AD, Diaz A, Nellore A, Delgado RN, Park KY, Gonzales-Roybal G, Oldham MC, Song JS, Lim DA. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell 2013; 12:616-28. [PMID: 23583100 DOI: 10.1016/j.stem.2013.03.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/04/2012] [Accepted: 03/04/2013] [Indexed: 01/12/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been described in cell lines and various whole tissues, but lncRNA analysis of development in vivo is limited. Here, we comprehensively analyze lncRNA expression for the adult mouse subventricular zone neural stem cell lineage. We utilize complementary genome-wide techniques including RNA-seq, RNA CaptureSeq, and ChIP-seq to associate specific lncRNAs with neural cell types, developmental processes, and human disease states. By integrating data from chromatin state maps, custom microarrays, and FACS purification of the subventricular zone lineage, we stringently identify lncRNAs with potential roles in adult neurogenesis. shRNA-mediated knockdown of two such lncRNAs, Six3os and Dlx1as, indicate roles for lncRNAs in the glial-neuronal lineage specification of multipotent adult stem cells. Our data and workflow thus provide a uniquely coherent in vivo lncRNA analysis and form the foundation of a user-friendly online resource for the study of lncRNAs in development and disease.
Collapse
Affiliation(s)
- Alexander D Ramos
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Ramos AD, Diaz A, Nellore A, Delgado RN, Park KY, Gonzales-Roybal G, Oldham MC, Song JS, Lim DA. Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell 2013. [PMID: 23583100 DOI: 10.1016/j.stem.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been described in cell lines and various whole tissues, but lncRNA analysis of development in vivo is limited. Here, we comprehensively analyze lncRNA expression for the adult mouse subventricular zone neural stem cell lineage. We utilize complementary genome-wide techniques including RNA-seq, RNA CaptureSeq, and ChIP-seq to associate specific lncRNAs with neural cell types, developmental processes, and human disease states. By integrating data from chromatin state maps, custom microarrays, and FACS purification of the subventricular zone lineage, we stringently identify lncRNAs with potential roles in adult neurogenesis. shRNA-mediated knockdown of two such lncRNAs, Six3os and Dlx1as, indicate roles for lncRNAs in the glial-neuronal lineage specification of multipotent adult stem cells. Our data and workflow thus provide a uniquely coherent in vivo lncRNA analysis and form the foundation of a user-friendly online resource for the study of lncRNAs in development and disease.
Collapse
Affiliation(s)
- Alexander D Ramos
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Weber S, Fernández-Cachón ML, Nascimento JM, Knauer S, Offermann B, Murphy RF, Boerries M, Busch H. Label-free detection of neuronal differentiation in cell populations using high-throughput live-cell imaging of PC12 cells. PLoS One 2013; 8:e56690. [PMID: 23451069 PMCID: PMC3579923 DOI: 10.1371/journal.pone.0056690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/14/2013] [Indexed: 12/25/2022] Open
Abstract
Detection of neuronal cell differentiation is essential to study cell fate decisions under various stimuli and/or environmental conditions. Many tools exist that quantify differentiation by neurite length measurements of single cells. However, quantification of differentiation in whole cell populations remains elusive so far. Because such populations can consist of both proliferating and differentiating cells, the task to assess the overall differentiation status is not trivial and requires a high-throughput, fully automated approach to analyze sufficient data for a statistically significant discrimination to determine cell differentiation. We address the problem of detecting differentiation in a mixed population of proliferating and differentiating cells over time by supervised classification. Using nerve growth factor induced differentiation of PC12 cells, we monitor the changes in cell morphology over days by phase-contrast live-cell imaging. For general applicability, the classification procedure starts out with many features to identify those that maximize discrimination of differentiated and undifferentiated cells and to eliminate features sensitive to systematic measurement artifacts. The resulting image analysis determines the optimal post treatment day for training and achieves a near perfect classification of differentiation, which we confirmed in technically and biologically independent as well as differently designed experiments. Our approach allows to monitor neuronal cell populations repeatedly over days without any interference. It requires only an initial calibration and training step and is thereafter capable to discriminate further experiments. In conclusion, this enables long-term, large-scale studies of cell populations with minimized costs and efforts for detecting effects of external manipulation of neuronal cell differentiation.
Collapse
Affiliation(s)
- Sebastian Weber
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - María L. Fernández-Cachón
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Juliana M. Nascimento
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Steffen Knauer
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Barbara Offermann
- Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Robert F. Murphy
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Lane Center for Computational Biology and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Melanie Boerries
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- * E-mail: (MB); (HB)
| | - Hauke Busch
- Freiburg Institute for Advanced Studies (FRIAS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- * E-mail: (MB); (HB)
| |
Collapse
|
165
|
Wisniewska MB. Physiological role of β-catenin/TCF signaling in neurons of the adult brain. Neurochem Res 2013; 38:1144-55. [PMID: 23377854 PMCID: PMC3653035 DOI: 10.1007/s11064-013-0980-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/21/2012] [Accepted: 01/19/2013] [Indexed: 12/21/2022]
Abstract
Wnt/β-catenin pathway, the effectors of which are transcription factors of the LEF1/TCF family, is primarily associated with development. Strikingly, however, some of the genes of the pathway are schizophrenia susceptibility genes, and the proteins that are often mutated in neurodegenerative diseases have the ability to regulate β-catenin levels. If impairment of this pathway indeed leads to these pathologies, then it likely plays a physiological role in the adult brain. This review provides an overview of the current knowledge on this subject. The involvement of β-catenin and LEF1/TCF factors in adult neurogenesis, synaptic plasticity, and the function of thalamic neurons are discussed. The data are still very preliminary and often based on circumstantial or indirect evidence. Further research might help to understand the etiology of the aforementioned pathologies.
Collapse
Affiliation(s)
- Marta B Wisniewska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
166
|
Sarlak G, Jenwitheesuk A, Chetsawang B, Govitrapong P. Effects of Melatonin on Nervous System Aging: Neurogenesis and Neurodegeneration. J Pharmacol Sci 2013; 123:9-24. [DOI: 10.1254/jphs.13r01sr] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
167
|
Machida M, Fujimaki S, Hidaka R, Asashima M, Kuwabara T. The insulin regulatory network in adult hippocampus and pancreatic endocrine system. Stem Cells Int 2012; 2012:959737. [PMID: 22988465 PMCID: PMC3440949 DOI: 10.1155/2012/959737] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/06/2012] [Accepted: 08/09/2012] [Indexed: 12/19/2022] Open
Abstract
There is a very strong correlation between the insulin-mediated regulatory system of the central nervous system and the pancreatic endocrine system. There are many examples of the same transcriptional factors being expressed in both regions in their embryonic development stages. Hormonal signals from the pancreatic islets influence the regulation of energy homeostasis by the brain, and the brain in turn influences the secretions of the islets. Diabetes induces neuronal death in different regions of the brain especially hippocampus, causes alterations on the neuronal circuits and therefore impairs learning and memory, for which the hippocampus is responsible. The hippocampus is a region of the brain where steady neurogenesis continues throughout life. Adult neurogenesis from undifferentiated neural stem cells is greatly decreased in diabetic patients, and as a result their learning and memory functions decline. Might it be possible to reactivate stem cells whose functions have deteriorated and that are present in the tissues in which the lesions occur in diabetes, a lifestyle disease, which plagues modern humans and develops as a result of the behavior of insulin-related factor? In this paper we summarize research in regard to these matters based on examples in recent years.
Collapse
Affiliation(s)
| | | | | | | | - Tomoko Kuwabara
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-4 Higashi, Tsukuba Science City 305-8562, Japan
| |
Collapse
|