151
|
Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigó R, Johnson R. Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet 2018; 19:535-548. [PMID: 29795125 PMCID: PMC6451964 DOI: 10.1038/s41576-018-0017-y] [Citation(s) in RCA: 421] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Gene maps, or annotations, enable us to navigate the functional landscape of our genome. They are a resource upon which virtually all studies depend, from single-gene to genome-wide scales and from basic molecular biology to medical genetics. Yet present-day annotations suffer from trade-offs between quality and size, with serious but often unappreciated consequences for downstream studies. This is particularly true for long non-coding RNAs (lncRNAs), which are poorly characterized compared to protein-coding genes. Long-read sequencing technologies promise to improve current annotations, paving the way towards a complete annotation of lncRNAs expressed throughout a human lifetime.
Collapse
Affiliation(s)
| | - Julien Lagarde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, Bern, Switzerland.
- Department of Biomedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
152
|
Birth, coming of age and death: The intriguing life of long noncoding RNAs. Semin Cell Dev Biol 2018; 79:143-152. [DOI: 10.1016/j.semcdb.2017.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 01/27/2023]
|
153
|
Herzel L, Straube K, Neugebauer KM. Long-read sequencing of nascent RNA reveals coupling among RNA processing events. Genome Res 2018; 28:1008-1019. [PMID: 29903723 PMCID: PMC6028129 DOI: 10.1101/gr.232025.117] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Pre-mRNA splicing is accomplished by the spliceosome, a megadalton complex that assembles de novo on each intron. Because spliceosome assembly and catalysis occur cotranscriptionally, we hypothesized that introns are removed in the order of their transcription in genomes dominated by constitutive splicing. Remarkably little is known about splicing order and the regulatory potential of nascent transcript remodeling by splicing, due to the limitations of existing methods that focus on analysis of mature splicing products (mRNAs) rather than substrates and intermediates. Here, we overcome this obstacle through long-read RNA sequencing of nascent, multi-intron transcripts in the fission yeast Schizosaccharomyces pombe. Most multi-intron transcripts were fully spliced, consistent with rapid cotranscriptional splicing. However, an unexpectedly high proportion of transcripts were either fully spliced or fully unspliced, suggesting that splicing of any given intron is dependent on the splicing status of other introns in the transcript. Supporting this, mild inhibition of splicing by a temperature-sensitive mutation in prp2, the homolog of vertebrate U2AF65, increased the frequency of fully unspliced transcripts. Importantly, fully unspliced transcripts displayed transcriptional read-through at the polyA site and were degraded cotranscriptionally by the nuclear exosome. Finally, we show that cellular mRNA levels were reduced in genes with a high number of unspliced nascent transcripts during caffeine treatment, showing regulatory significance of cotranscriptional splicing. Therefore, overall splicing of individual nascent transcripts, 3′ end formation, and mRNA half-life depend on the splicing status of neighboring introns, suggesting crosstalk among spliceosomes and the polyA cleavage machinery during transcription elongation.
Collapse
Affiliation(s)
- Lydia Herzel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Korinna Straube
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
154
|
Hsiao YHE, Bahn JH, Yang Y, Lin X, Tran S, Yang EW, Quinones-Valdez G, Xiao X. RNA editing in nascent RNA affects pre-mRNA splicing. Genome Res 2018; 28:812-823. [PMID: 29724793 PMCID: PMC5991522 DOI: 10.1101/gr.231209.117] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3' acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites.
Collapse
Affiliation(s)
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Yun Yang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Xianzhi Lin
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Stephen Tran
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Ei-Wen Yang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | - Xinshu Xiao
- Department of Bioengineering
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California 90095, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, California 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
155
|
Ulitsky I. Interactions between short and long noncoding RNAs. FEBS Lett 2018; 592:2874-2883. [PMID: 29749606 DOI: 10.1002/1873-3468.13085] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
It is now evident that noncoding RNAs play key roles in regulatory networks determining cell fate and behavior, in a myriad of different conditions, and across all species. Among these noncoding RNAs are short RNAs, such as MicroRNAs, snoRNAs, and Piwi-interacting RNAs, and the functions of those are relatively well understood. Other noncoding RNAs are longer, and their modes of action and functions are also increasingly explored and deciphered. Short RNAs and long noncoding RNAs (lncRNAs) interact with each other with reciprocal consequences for their fates and functions. LncRNAs serve as precursors for many types of small RNAs and, therefore, the pathways for small RNA biogenesis can impinge upon the fate of lncRNAs. In addition, lncRNA expression can be repressed by small RNAs, and lncRNAs can affect small RNA activity and abundance through competition for binding or by triggering small RNA degradation. Here, I review the known types of interactions between small and long RNAs, discuss their outcomes, and bring representative examples from studies in mammals.
Collapse
Affiliation(s)
- Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
156
|
Re-evaluating microglia expression profiles using RiboTag and cell isolation strategies. Nat Immunol 2018; 19:636-644. [PMID: 29777220 PMCID: PMC5986066 DOI: 10.1038/s41590-018-0110-6] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 04/05/2018] [Indexed: 12/20/2022]
Abstract
Transcriptome profiling is widely used to infer functional states of specific cell types, as well as their responses to stimuli, to define contributions to physiology and pathophysiology. Focusing on microglia, the brain macrophages, we report here a side-by-side comparison of classical cell sort-based transcriptome sequencing and the ‘RiboTag’ method that avoids cell retrieval from tissue context and yields translatome sequencing information. Conventional whole cell microglia transcriptomes were found to be significantly tainted by artifacts induced by tissue-dissociation, cargo contaminations and transcripts sequestered from ribosomes. Conversely, our data highlight the added value of RiboTag profiling to assess the accuracy of Cre transgenic mice. Collectively, this study indicates method-based biases, reveals observer effects and establishes RiboTag-based translatome profiling as a valuable complement to standard sort-based profiling strategies.
Collapse
|
157
|
Wei G, Liu K, Shen T, Shi J, Liu B, Han M, Peng M, Fu H, Song Y, Zhu J, Dong A, Ni T. Position-specific intron retention is mediated by the histone methyltransferase SDG725. BMC Biol 2018; 16:44. [PMID: 29706137 PMCID: PMC5925840 DOI: 10.1186/s12915-018-0513-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Intron retention (IR), the most prevalent alternative splicing form in plants, plays a critical role in gene expression during plant development and stress response. However, the molecular mechanisms underlying IR regulation remain largely unknown. RESULTS Knockdown of SDG725, a histone H3 lysine 36 (H3K36)-specific methyltransferase in rice, leads to alterations of IR in more than 4700 genes. Surprisingly, IR events are globally increased at the 5' region but decreased at the 3' region of the gene body in the SDG725-knockdown mutant. Chromatin immunoprecipitation sequencing analyses reveal that SDG725 depletion results in a genome-wide increase of the H3K36 mono-methylation (H3K36me1) but, unexpectedly, promoter-proximal shifts of H3K36 di- and tri-methylation (H3K36me2 and H3K36me3). Consistent with the results in animals, the levels of H3K36me1/me2/me3 in rice positively correlate with gene expression levels, whereas shifts of H3K36me2/me3 coincide with position-specific alterations of IR. We find that either H3K36me2 or H3K36me3 alone contributes to the positional change of IR caused by SDG725 knockdown, although IR shift is more significant when both H3K36me2 and H3K36me3 modifications are simultaneously shifted. CONCLUSIONS Our results revealed that SDG725 modulates IR in a position-specific manner, indicating that H3K36 methylation plays a role in RNA splicing, probably by marking the retained introns in plants.
Collapse
Affiliation(s)
- Gang Wei
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, People's Republic of China
| | - Kunpeng Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Ting Shen
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, People's Republic of China
| | - Jinlei Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Bing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Miao Han
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, People's Republic of China
| | - Maolin Peng
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Haihui Fu
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yifan Song
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, People's Republic of China
| | - Jun Zhu
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
| | - Ting Ni
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
158
|
Park SK, Zhou X, Pendleton KE, Hunter OV, Kohler JJ, O'Donnell KA, Conrad NK. A Conserved Splicing Silencer Dynamically Regulates O-GlcNAc Transferase Intron Retention and O-GlcNAc Homeostasis. Cell Rep 2018; 20:1088-1099. [PMID: 28768194 PMCID: PMC5588854 DOI: 10.1016/j.celrep.2017.07.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/11/2017] [Accepted: 07/10/2017] [Indexed: 11/05/2022] Open
Abstract
Modification of nucleocytoplasmic proteins with O-GlcNAc regulates a wide variety of cellular processes and has been linked to human diseases. The enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) add and remove O-GlcNAc, but the mechanisms regulating their expression remain unclear. Here, we demonstrate that retention of the fourth intron of OGT is regulated in response to O-GlcNAc levels. We further define a conserved intronic splicing silencer (ISS) that is necessary for OGT intron retention. Deletion of the ISS in colon cancer cells leads to increases in OGT, but O-GlcNAc homeostasis is maintained by concomitant increases in OGA protein. However, the ISS-deleted cells are hypersensitive to OGA inhibition in culture and in soft agar. Moreover, growth of xenograft tumors from ISS-deleted cells is compromised in mice treated with an OGA inhibitor. Thus, ISS-mediated regulation of OGT intron retention is a key component in OGT expression and maintaining O-GlcNAc homeostasis.
Collapse
Affiliation(s)
- Sung-Kyun Park
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaorong Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathryn E Pendleton
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Olga V Hunter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathryn A O'Donnell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas K Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
159
|
Suess B, Kemmerer K, Weigand JE. Splicing and Alternative Splicing Impact on Gene Design. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Beatrix Suess
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Katrin Kemmerer
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| | - Julia E. Weigand
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstraße 10 64287 Darmstadt Germany
| |
Collapse
|
160
|
Abstract
Long-read sequencing, coupled to cDNA capture, provides an unrivaled view of the transcriptome of chromosome 21, revealing surprises about the splicing of long noncoding RNAs.
Collapse
Affiliation(s)
- Julien Lagarde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, University Hospital and University of Bern, 3010 Bern, Switzerland; Department of Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland.
| |
Collapse
|
161
|
Tirado-Magallanes R, Rebbani K, Lim R, Pradhan S, Benoukraf T. Whole genome DNA methylation: beyond genes silencing. Oncotarget 2018; 8:5629-5637. [PMID: 27895318 PMCID: PMC5354935 DOI: 10.18632/oncotarget.13562] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022] Open
Abstract
The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the major biological consequences of DNA methylation recently discovered. We also discuss the necessity of tuning DNA methylation resolution into an adequate scale to ease the integration of the methylome information with other chromatin features and transcription events such as gene expression, nucleosome positioning, transcription factors binding dynamic, gene splicing and genomic imprinting. Finally, our review sheds light on DNA methylation heterogeneity in cell population and the different approaches used for its assessment, including the contribution of single cell DNA analysis technology.
Collapse
Affiliation(s)
- Roberto Tirado-Magallanes
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore, Singapore.,Computational Systems Biology Team, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), INSERM, Ecole Normale Supérieure, PSL Research University, 75005 Paris, France
| | - Khadija Rebbani
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore, Singapore
| | - Ricky Lim
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore, Singapore
| | | | - Touati Benoukraf
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore, Singapore
| |
Collapse
|
162
|
Deveson IW, Brunck ME, Blackburn J, Tseng E, Hon T, Clark TA, Clark MB, Crawford J, Dinger ME, Nielsen LK, Mattick JS, Mercer TR. Universal Alternative Splicing of Noncoding Exons. Cell Syst 2018; 6:245-255.e5. [DOI: 10.1016/j.cels.2017.12.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 10/18/2017] [Accepted: 12/08/2017] [Indexed: 01/31/2023]
|
163
|
Lubelsky Y, Ulitsky I. Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature 2018; 555:107-111. [PMID: 29466324 PMCID: PMC6047738 DOI: 10.1038/nature25757] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as key parts of multiple cellular pathways, but their modes of action and how these are dictated by sequence remain unclear. lncRNAs tend to be enriched in the nuclear fraction, whereas most mRNAs are overtly cytoplasmic, although several studies have found that hundreds of mRNAs in various cell types are retained in the nucleus. It is thus conceivable that some mechanisms that promote nuclear enrichment are shared between lncRNAs and mRNAs. Here, to identify elements in lncRNAs and mRNAs that can force nuclear localization, we screened libraries of short fragments tiled across nuclear RNAs, which were cloned into the untranslated regions of an efficiently exported mRNA. The screen identified a short sequence derived from Alu elements and bound by HNRNPK that increased nuclear accumulation. Binding of HNRNPK to C-rich motifs outside Alu elements is also associated with nuclear enrichment in both lncRNAs and mRNAs, and this mechanism is conserved across species. Our results thus identify a pathway for regulation of RNA accumulation and subcellular localization that has been co-opted to regulate the fate of transcripts with integrated Alu elements.
Collapse
Affiliation(s)
- Yoav Lubelsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
164
|
Abstract
We developed a predictive, stable, and interpretable tool: the iterative random forest algorithm (iRF). iRF discovers high-order interactions among biomolecules with the same order of computational cost as random forests. We demonstrate the efficacy of iRF by finding known and promising interactions among biomolecules, of up to fifth and sixth order, in two data examples in transcriptional regulation and alternative splicing. Genomics has revolutionized biology, enabling the interrogation of whole transcriptomes, genome-wide binding sites for proteins, and many other molecular processes. However, individual genomic assays measure elements that interact in vivo as components of larger molecular machines. Understanding how these high-order interactions drive gene expression presents a substantial statistical challenge. Building on random forests (RFs) and random intersection trees (RITs) and through extensive, biologically inspired simulations, we developed the iterative random forest algorithm (iRF). iRF trains a feature-weighted ensemble of decision trees to detect stable, high-order interactions with the same order of computational cost as the RF. We demonstrate the utility of iRF for high-order interaction discovery in two prediction problems: enhancer activity in the early Drosophila embryo and alternative splicing of primary transcripts in human-derived cell lines. In Drosophila, among the 20 pairwise transcription factor interactions iRF identifies as stable (returned in more than half of bootstrap replicates), 80% have been previously reported as physical interactions. Moreover, third-order interactions, e.g., between Zelda (Zld), Giant (Gt), and Twist (Twi), suggest high-order relationships that are candidates for follow-up experiments. In human-derived cells, iRF rediscovered a central role of H3K36me3 in chromatin-mediated splicing regulation and identified interesting fifth- and sixth-order interactions, indicative of multivalent nucleosomes with specific roles in splicing regulation. By decoupling the order of interactions from the computational cost of identification, iRF opens additional avenues of inquiry into the molecular mechanisms underlying genome biology.
Collapse
|
165
|
Park E, Pan Z, Zhang Z, Lin L, Xing Y. The Expanding Landscape of Alternative Splicing Variation in Human Populations. Am J Hum Genet 2018; 102:11-26. [PMID: 29304370 PMCID: PMC5777382 DOI: 10.1016/j.ajhg.2017.11.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
Alternative splicing is a tightly regulated biological process by which the number of gene products for any given gene can be greatly expanded. Genomic variants in splicing regulatory sequences can disrupt splicing and cause disease. Recent developments in sequencing technologies and computational biology have allowed researchers to investigate alternative splicing at an unprecedented scale and resolution. Population-scale transcriptome studies have revealed many naturally occurring genetic variants that modulate alternative splicing and consequently influence phenotypic variability and disease susceptibility in human populations. Innovations in experimental and computational tools such as massively parallel reporter assays and deep learning have enabled the rapid screening of genomic variants for their causal impacts on splicing. In this review, we describe technological advances that have greatly increased the speed and scale at which discoveries are made about the genetic variation of alternative splicing. We summarize major findings from population transcriptomic studies of alternative splicing and discuss the implications of these findings for human genetics and medicine.
Collapse
Affiliation(s)
- Eddie Park
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhicheng Pan
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zijun Zhang
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lan Lin
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Xing
- Department of Microbiology, Immunology, & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
166
|
Li YI, Knowles DA, Humphrey J, Barbeira AN, Dickinson SP, Im HK, Pritchard JK. Annotation-free quantification of RNA splicing using LeafCutter. Nat Genet 2018; 50:151-158. [PMID: 29229983 PMCID: PMC5742080 DOI: 10.1038/s41588-017-0004-9] [Citation(s) in RCA: 443] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/08/2017] [Indexed: 01/15/2023]
Abstract
The excision of introns from pre-mRNA is an essential step in mRNA processing. We developed LeafCutter to study sample and population variation in intron splicing. LeafCutter identifies variable splicing events from short-read RNA-seq data and finds events of high complexity. Our approach obviates the need for transcript annotations and circumvents the challenges in estimating relative isoform or exon usage in complex splicing events. LeafCutter can be used both to detect differential splicing between sample groups and to map splicing quantitative trait loci (sQTLs). Compared with contemporary methods, our approach identified 1.4-2.1 times more sQTLs, many of which helped us ascribe molecular effects to disease-associated variants. Transcriptome-wide associations between LeafCutter intron quantifications and 40 complex traits increased the number of associated disease genes at a 5% false discovery rate by an average of 2.1-fold compared with that detected through the use of gene expression levels alone. LeafCutter is fast, scalable, easy to use, and available online.
Collapse
Affiliation(s)
- Yang I Li
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA.
| | - David A Knowles
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Computer Science, Stanford University, Stanford, CA, USA.
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Jack Humphrey
- UCL Genetics Institute, Gower Street, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Alvaro N Barbeira
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Scott P Dickinson
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
167
|
Benoit Bouvrette LP, Cody NAL, Bergalet J, Lefebvre FA, Diot C, Wang X, Blanchette M, Lécuyer E. CeFra-seq reveals broad asymmetric mRNA and noncoding RNA distribution profiles in Drosophila and human cells. RNA (NEW YORK, N.Y.) 2018; 24:98-113. [PMID: 29079635 PMCID: PMC5733575 DOI: 10.1261/rna.063172.117] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/13/2017] [Indexed: 05/26/2023]
Abstract
Cells are highly asymmetrical, a feature that relies on the sorting of molecular constituents, including proteins, lipids, and nucleic acids, to distinct subcellular locales. The localization of RNA molecules is an important layer of gene regulation required to modulate localized cellular activities, although its global prevalence remains unclear. We combine biochemical cell fractionation with RNA-sequencing (CeFra-seq) analysis to assess the prevalence and conservation of RNA asymmetric distribution on a transcriptome-wide scale in Drosophila and human cells. This approach reveals that the majority (∼80%) of cellular RNA species are asymmetrically distributed, whether considering coding or noncoding transcript populations, in patterns that are broadly conserved evolutionarily. Notably, a large number of Drosophila and human long noncoding RNAs and circular RNAs display enriched levels within specific cytoplasmic compartments, suggesting that these RNAs fulfill extra-nuclear functions. Moreover, fraction-specific mRNA populations exhibit distinctive sequence characteristics. Comparative analysis of mRNA fractionation profiles with that of their encoded proteins reveals a general lack of correlation in subcellular distribution, marked by strong cases of asymmetry. However, coincident distribution profiles are observed for mRNA/protein pairs related to a variety of functional protein modules, suggesting complex regulatory inputs of RNA localization to cellular organization.
Collapse
Affiliation(s)
- Louis Philip Benoit Bouvrette
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
- Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada
| | - Neal A L Cody
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
| | - Julie Bergalet
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
| | - Fabio Alexis Lefebvre
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
- Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada
| | - Cédric Diot
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
- Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada
| | - Xiaofeng Wang
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
| | - Mathieu Blanchette
- McGill School of Computer Science, McGill University, Montréal H3A 0E9, Canada
| | - Eric Lécuyer
- Institut de Recherches Clinique de Montréal (IRCM), Montréal H2W 1R7, Canada
- Département de Biochimie, Université de Montréal, Montréal H3C 3J7, Canada
- Division of Experimental Medicine, McGill University, Montréal H4A 3J1, Canada
| |
Collapse
|
168
|
Frías-Lasserre D, Villagra CA. The Importance of ncRNAs as Epigenetic Mechanisms in Phenotypic Variation and Organic Evolution. Front Microbiol 2017; 8:2483. [PMID: 29312192 PMCID: PMC5744636 DOI: 10.3389/fmicb.2017.02483] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Neo-Darwinian explanations of organic evolution have settled on mutation as the principal factor in producing evolutionary novelty. Mechanistic characterizations have been also biased by the classic dogma of molecular biology, where only proteins regulate gene expression. This together with the rearrangement of genetic information, in terms of genes and chromosomes, was considered the cornerstone of evolution at the level of natural populations. This predominant view excluded both alternative explanations and phenomenologies that did not fit its paradigm. With the discovery of non-coding RNAs (ncRNAs) and their role in the control of genetic expression, new mechanisms arose providing heuristic power to complementary explanations to evolutionary processes overwhelmed by mainstream genocentric views. Viruses, epimutation, paramutation, splicing, and RNA editing have been revealed as paramount functions in genetic variations, phenotypic plasticity, and diversity. This article discusses how current epigenetic advances on ncRNAs have changed the vision of the mechanisms that generate variation, how organism-environment interaction can no longer be underestimated as a driver of organic evolution, and how it is now part of the transgenerational inheritance and evolution of species.
Collapse
Affiliation(s)
- Daniel Frías-Lasserre
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | |
Collapse
|
169
|
Cemel IA, Ha N, Schermann G, Yonekawa S, Brunner M. The coding and noncoding transcriptome of Neurospora crassa. BMC Genomics 2017; 18:978. [PMID: 29258423 PMCID: PMC5738166 DOI: 10.1186/s12864-017-4360-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022] Open
Abstract
Background Long non protein coding RNAs (lncRNAs) have been identified in many different organisms and cell types. Emerging examples emphasize the biological importance of these RNA species but their regulation and functions remain poorly understood. In the filamentous fungus Neurospora crassa, the annotation and characterization of lncRNAs is incomplete. Results We have performed a comprehensive transcriptome analysis of Neurospora crassa by using ChIP-seq, RNA-seq and polysome fractionation datasets. We have annotated and characterized 1478 long intergenic noncoding RNAs (lincRNAs) and 1056 natural antisense transcripts, indicating that 20% of the RNA Polymerase II transcripts of Neurospora are not coding for protein. Both classes of lncRNAs accumulate at lower levels than protein-coding mRNAs and they are considerably shorter. Our analysis showed that the vast majority of lincRNAs and antisense transcripts do not contain introns and carry less H3K4me2 modifications than similarly expressed protein coding genes. In contrast, H3K27me3 modifications inversely correlate with transcription of protein coding and lincRNA genes. We show furthermore most lincRNA sequences evolve rapidly, even between phylogenetically close species. Conclusions Our transcriptome analyses revealed distinct features of Neurospora lincRNAs and antisense transcripts in comparison to mRNAs and showed that the prevalence of noncoding transcripts in this organism is higher than previously anticipated. The study provides a broad repertoire and a resource for further studies of lncRNAs. Electronic supplementary material The online version of this article (10.1186/s12864-017-4360-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ibrahim Avi Cemel
- Heidelberg University Biochemistry Center, 69120, Heidelberg, Germany
| | - Nati Ha
- Heidelberg University Biochemistry Center, 69120, Heidelberg, Germany.,present address: Cellzome GmbH, 69117, Heidelberg, Germany
| | - Geza Schermann
- Heidelberg University Biochemistry Center, 69120, Heidelberg, Germany
| | - Shusuke Yonekawa
- Heidelberg University Biochemistry Center, 69120, Heidelberg, Germany.,present address: Yoshida & Co., Ltd., Tokyo, 151-8580, Japan
| | - Michael Brunner
- Heidelberg University Biochemistry Center, 69120, Heidelberg, Germany.
| |
Collapse
|
170
|
Nanan KK, Ocheltree C, Sturgill D, Mandler MD, Prigge M, Varma G, Oberdoerffer S. Independence between pre-mRNA splicing and DNA methylation in an isogenic minigene resource. Nucleic Acids Res 2017; 45:12780-12797. [PMID: 29244186 PMCID: PMC5727405 DOI: 10.1093/nar/gkx900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/13/2017] [Accepted: 09/25/2017] [Indexed: 12/27/2022] Open
Abstract
Actively transcribed genes adopt a unique chromatin environment with characteristic patterns of enrichment. Within gene bodies, H3K36me3 and cytosine DNA methylation are elevated at exons of spliced genes and have been implicated in the regulation of pre-mRNA splicing. H3K36me3 is further responsive to splicing, wherein splicing inhibition led to a redistribution and general reduction over gene bodies. In contrast, little is known of the mechanisms supporting elevated DNA methylation at actively spliced genic locations. Recent evidence associating the de novo DNA methyltransferase Dnmt3b with H3K36me3-rich chromatin raises the possibility that genic DNA methylation is influenced by splicing-associated H3K36me3. Here, we report the generation of an isogenic resource to test the direct impact of splicing on chromatin. A panel of minigenes of varying splicing potential were integrated into a single FRT site for inducible expression. Profiling of H3K36me3 confirmed the established relationship to splicing, wherein levels were directly correlated with splicing efficiency. In contrast, DNA methylation was equivalently detected across the minigene panel, irrespective of splicing and H3K36me3 status. In addition to revealing a degree of independence between genic H3K36me3 and DNA methylation, these findings highlight the generated minigene panel as a flexible platform for the query of splicing-dependent chromatin modifications.
Collapse
Affiliation(s)
- Kyster K. Nanan
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cody Ocheltree
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Sturgill
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mariana D. Mandler
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Prigge
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Garima Varma
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
171
|
Hatje K, Rahman RU, Vidal RO, Simm D, Hammesfahr B, Bansal V, Rajput A, Mickael ME, Sun T, Bonn S, Kollmar M. The landscape of human mutually exclusive splicing. Mol Syst Biol 2017; 13:959. [PMID: 29242366 PMCID: PMC5740500 DOI: 10.15252/msb.20177728] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Mutually exclusive splicing of exons is a mechanism of functional gene and protein diversification with pivotal roles in organismal development and diseases such as Timothy syndrome, cardiomyopathy and cancer in humans. In order to obtain a first genomewide estimate of the extent and biological role of mutually exclusive splicing in humans, we predicted and subsequently validated mutually exclusive exons (MXEs) using 515 publically available RNA‐Seq datasets. Here, we provide evidence for the expression of over 855 MXEs, 42% of which represent novel exons, increasing the annotated human mutually exclusive exome more than fivefold. The data provide strong evidence for the existence of large and multi‐cluster MXEs in higher vertebrates and offer new insights into MXE evolution. More than 82% of the MXE clusters are conserved in mammals, and five clusters have homologous clusters in Drosophila. Finally, MXEs are significantly enriched in pathogenic mutations and their spatio‐temporal expression might predict human disease pathology.
Collapse
Affiliation(s)
- Klas Hatje
- Group Systems Biology of Motor Proteins Department of NMR-Based Structural Biology Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Raza-Ur Rahman
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Ramon O Vidal
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Dominic Simm
- Group Systems Biology of Motor Proteins Department of NMR-Based Structural Biology Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science Georg-August-University, Göttingen, Germany
| | - Björn Hammesfahr
- Group Systems Biology of Motor Proteins Department of NMR-Based Structural Biology Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Vikas Bansal
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Ashish Rajput
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Michel Edwar Mickael
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Ting Sun
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany .,Center for Molecular Neurobiology, Institute of Medical Systems Biology University Clinic Hamburg-Eppendorf, Hamburg, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Martin Kollmar
- Group Systems Biology of Motor Proteins Department of NMR-Based Structural Biology Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
172
|
Rengasamy M, Zhang F, Vashisht A, Song WM, Aguilo F, Sun Y, Li S, Zhang W, Zhang B, Wohlschlegel JA, Walsh MJ. The PRMT5/WDR77 complex regulates alternative splicing through ZNF326 in breast cancer. Nucleic Acids Res 2017; 45:11106-11120. [PMID: 28977470 PMCID: PMC5737218 DOI: 10.1093/nar/gkx727] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/11/2017] [Indexed: 12/22/2022] Open
Abstract
We observed overexpression and increased intra-nuclear accumulation of the PRMT5/WDR77 in breast cancer cell lines relative to immortalized breast epithelial cells. Utilizing mass spectrometry and biochemistry approaches we identified the Zn-finger protein ZNF326, as a novel interaction partner and substrate of the nuclear PRMT5/WDR77 complex. ZNF326 is symmetrically dimethylated at arginine 175 (R175) and this modification is lost in a PRMT5 and WDR77-dependent manner. Loss of PRMT5 or WDR77 in MDA-MB-231 cells leads to defects in alternative splicing, including inclusion of A-T rich exons in target genes, a phenomenon that has previously been observed upon loss of ZNF326. We observed that the alternatively spliced transcripts of a subset of these genes, involved in proliferation and tumor cell migration like REPIN1/AP4, ST3GAL6, TRNAU1AP and PFKM are degraded upon loss of PRMT5. In summary, we have identified a novel mechanism through which the PRMT5/WDR77 complex maintains the balance between splicing and mRNA stability through methylation of ZNF326.
Collapse
Affiliation(s)
- Madhumitha Rengasamy
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fan Zhang
- Department of Medicine, Division of Nephrology, Bioinformatics Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Center for Life Sciences, School of Life Sciences and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Ajay Vashisht
- Departmentof Biological Chemistry and the Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francesca Aguilo
- Wallenberg Centre for Molecular Medicine, Department of Medical Biosciences, University of Umeå, Försörjningsvägen 19073, Umeå, Sweden
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mount Sinai Center for RNA Biology and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - SiDe Li
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mount Sinai Center for RNA Biology and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weijia Zhang
- Department of Medicine, Division of Nephrology, Bioinformatics Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James A Wohlschlegel
- Departmentof Biological Chemistry and the Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,The Mount Sinai Center for RNA Biology and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
173
|
Tilgner H, Jahanbani F, Gupta I, Collier P, Wei E, Rasmussen M, Snyder M. Microfluidic isoform sequencing shows widespread splicing coordination in the human transcriptome. Genome Res 2017; 28:231-242. [PMID: 29196558 PMCID: PMC5793787 DOI: 10.1101/gr.230516.117] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
Understanding transcriptome complexity is crucial for understanding human biology and disease. Technologies such as Synthetic long-read RNA sequencing (SLR-RNA-seq) delivered 5 million isoforms and allowed assessing splicing coordination. Pacific Biosciences and Oxford Nanopore increase throughput also but require high input amounts or amplification. Our new droplet-based method, sparse isoform sequencing (spISO-seq), sequences 100k–200k partitions of 10–200 molecules at a time, enabling analysis of 10–100 million RNA molecules. SpISO-seq requires less than 1 ng of input cDNA, limiting or removing the need for prior amplification with its associated biases. Adjusting the number of reads devoted to each molecule reduces sequencing lanes and cost, with little loss in detection power. The increased number of molecules expands our understanding of isoform complexity. In addition to confirming our previously published cases of splicing coordination (e.g., BIN1), the greater depth reveals many new cases, such as MAPT. Coordination of internal exons is found to be extensive among protein coding genes: 23.5%–59.3% (95% confidence interval) of highly expressed genes with distant alternative exons exhibit coordination, showcasing the need for long-read transcriptomics. However, coordination is less frequent for noncoding sequences, suggesting a larger role of splicing coordination in shaping proteins. Groups of genes with coordination are involved in protein–protein interactions with each other, raising the possibility that coordination facilitates complex formation and/or function. We also find new splicing coordination types, involving initial and terminal exons. Our results provide a more comprehensive understanding of the human transcriptome and a general, cost-effective method to analyze it.
Collapse
Affiliation(s)
- Hagen Tilgner
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021, USA
| | - Fereshteh Jahanbani
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| | - Ishaan Gupta
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021, USA
| | - Paul Collier
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021, USA
| | - Eric Wei
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| | | | - Michael Snyder
- Department of Genetics, Stanford University, Stanford, California 94304, USA
| |
Collapse
|
174
|
Transcription start site-associated small RNAs in the PTEN gene. Proc Natl Acad Sci U S A 2017; 114:E10510-E10511. [PMID: 29138324 DOI: 10.1073/pnas.1718027114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
175
|
Brugiolo M, Botti V, Liu N, Müller-McNicoll M, Neugebauer KM. Fractionation iCLIP detects persistent SR protein binding to conserved, retained introns in chromatin, nucleoplasm and cytoplasm. Nucleic Acids Res 2017; 45:10452-10465. [PMID: 28977534 PMCID: PMC5737842 DOI: 10.1093/nar/gkx671] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 07/20/2017] [Indexed: 01/25/2023] Open
Abstract
RNA binding proteins (RBPs) regulate the lives of all RNAs from transcription, processing, and function to decay. How RNA-protein interactions change over time and space to support these roles is poorly understood. Towards this end, we sought to determine how two SR proteins-SRSF3 and SRSF7, regulators of pre-mRNA splicing, nuclear export and translation-interact with RNA in different cellular compartments. To do so, we developed Fractionation iCLIP (Fr-iCLIP), in which chromatin, nucleoplasmic and cytoplasmic fractions are prepared from UV-crosslinked cells and then subjected to iCLIP. As expected, SRSF3 and SRSF7 targets were detected in all fractions, with intron, snoRNA and lncRNA interactions enriched in the nucleus. Cytoplasmically-bound mRNAs reflected distinct functional groupings, suggesting coordinated translation regulation. Surprisingly, hundreds of cytoplasmic intron targets were detected. These cytoplasmic introns were found to be highly conserved and introduced premature termination codons into coding regions. However, many intron-retained mRNAs were not substrates for nonsense-mediated decay (NMD), even though they were detected in polysomes. These findings suggest that intron-retained mRNAs in the cytoplasm have previously uncharacterized functions and/or escape surveillance. Hence, Fr-iCLIP detects the cellular location of RNA-protein interactions and provides insight into co-transcriptional, post-transcriptional and cytoplasmic RBP functions for coding and non-coding RNAs.
Collapse
Affiliation(s)
- Mattia Brugiolo
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Valentina Botti
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Na Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe-University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar St., New Haven, CT 06520, USA
| |
Collapse
|
176
|
Bedoya-Reina OC, Ponting CP. Functional RNA classes: a matter of time? Nat Struct Mol Biol 2017; 24:7-8. [PMID: 28054565 DOI: 10.1038/nsmb.3354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oscar C Bedoya-Reina
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Chris P Ponting
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| |
Collapse
|
177
|
Kim SW, Taggart AJ, Heintzelman C, Cygan KJ, Hull CG, Wang J, Shrestha B, Fairbrother WG. Widespread intra-dependencies in the removal of introns from human transcripts. Nucleic Acids Res 2017; 45:9503-9513. [PMID: 28934498 PMCID: PMC5766209 DOI: 10.1093/nar/gkx661] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/24/2017] [Indexed: 01/19/2023] Open
Abstract
Research into the problem of splice site selection has followed a reductionist approach focused on how individual splice sites are recognized. Early applications of information theory uncovered an inconsistency. Human splice signals do not contain enough information to explain the observed fidelity of splicing. Here, we conclude that introns do not necessarily contain ‘missing’ information but rather may require definition from neighboring processing events. For example, there are known cases where an intronic mutation disrupts the splicing of not only the local intron but also adjacent introns. We present a genome-wide measurement of the order of splicing within human transcripts. The observed order of splicing cannot be explained by a simple kinetic model. Simulations reveal a bias toward a particular, transcript-specific order of intron removal in human genes. We validate an extreme class of intron that can only splice in a multi-intron context. Special categories of splicing such as exon circularization, first and last intron processing, alternative 5 and 3′ss usage and exon skipping are marked by distinct patterns of ordered intron removal. Excessive intronic length and silencer density tend to delay splicing. Shorter introns that contain enhancers splice early.
Collapse
Affiliation(s)
- Seong Won Kim
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02903, USA
| | - Allison J Taggart
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02903, USA
| | - Claire Heintzelman
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02903, USA
| | - Kamil J Cygan
- Center for Computational Molecular Biology, Brown University, Providence, RI 02903, USA
| | - Caitlin G Hull
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02903, USA
| | - Jing Wang
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02903, USA
| | - Barsha Shrestha
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02903, USA
| | - William G Fairbrother
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02903, USA.,Center for Computational Molecular Biology, Brown University, Providence, RI 02903, USA
| |
Collapse
|
178
|
Mayer A, Churchman LS. A Detailed Protocol for Subcellular RNA Sequencing (subRNA-seq). ACTA ACUST UNITED AC 2017; 120:4.29.1-4.29.18. [PMID: 28967997 DOI: 10.1002/cpmb.44] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In eukaryotic cells, RNAs at various maturation and processing levels are distributed across cellular compartments. The standard approach to determine transcript abundance and identity in vivo is RNA sequencing (RNA-seq). RNA-seq relies on RNA isolation from whole-cell lysates and thus mainly captures fully processed, stable, and more abundant cytoplasmic RNAs over nascent, unstable, and nuclear RNAs. Here, we provide a step-by-step protocol for subcellular RNA-seq (subRNA-seq). subRNA-seq allows the quantitative measurement of RNA polymerase II-generated RNAs from the chromatin, nucleoplasm, and cytoplasm of mammalian cells. This approach relies on cell fractionation prior to RNA isolation and sequencing library preparation. High-throughput sequencing of the subcellular RNAs can then be used to reveal the identity, abundance, and subcellular distribution of transcripts, thus providing insights into RNA processing and maturation. Deep sequencing of the chromatin-associated RNAs further offers the opportunity to study nascent RNAs. Subcellular RNA-seq libraries are obtained within 5 days. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Andreas Mayer
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | |
Collapse
|
179
|
Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood 2017; 130:1965-1975. [PMID: 28928124 DOI: 10.1182/blood-2017-06-788695] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/15/2017] [Indexed: 12/22/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are increasingly recognized as vital components of gene programs controlling cell differentiation and function. Central to their functions is an ability to act as scaffolds or as decoys that recruit or sequester effector proteins from their DNA, RNA, or protein targets. lncRNA-modulated effectors include regulators of transcription, chromatin organization, RNA processing, and translation, such that lncRNAs can influence gene expression at multiple levels. Here we review the current understanding of how lncRNAs help coordinate gene expression to modulate cell fate in the hematopoietic system. We focus on a growing number of mechanistic studies to synthesize emerging principles of lncRNA function, emphasizing how they facilitate diversification of gene programming during development. We also survey how disrupted lncRNA function can contribute to malignant transformation, highlighting opportunities for therapeutic intervention in specific myeloid and lymphoid cancers. Finally, we discuss challenges and prospects for further elucidation of lncRNA mechanisms.
Collapse
|
180
|
Kornblihtt AR. Epigenetics at the base of alternative splicing changes that promote colorectal cancer. J Clin Invest 2017; 127:3281-3283. [PMID: 28825597 DOI: 10.1172/jci96497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chromatin modification influences gene expression by either repressing or activating genes, depending on the specific histone mark. Chromatin structure can also influence alternative splicing of transcripts; however, the mechanisms by which epigenetic marks influence splicing are poorly understood. A report in the current issue of the JCI highlights the biological importance of the coordinated control of alternative pre-mRNA splicing by chromatin structure and transcriptional elongation. Yuan et al. found that mutation of the histone methyl transferase SEDT2 affects alternative splicing fates of several key regulatory genes, including those involved in Wnt signaling. As a consequence, loss of SEDT2 in the intestine aggravated Wnt/β-catenin signaling effects, thereby leading to colorectal cancer.
Collapse
|
181
|
Pirnie SP, Osman A, Zhu Y, Carmichael GG. An Ultraconserved Element (UCE) controls homeostatic splicing of ARGLU1 mRNA. Nucleic Acids Res 2017; 45:3473-3486. [PMID: 27899669 PMCID: PMC5389617 DOI: 10.1093/nar/gkw1140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 10/31/2016] [Indexed: 11/13/2022] Open
Abstract
Arginine and Glutamate-Rich protein 1 (ARGLU1) is a protein whose function is poorly understood, but may act in both transcription and pre-mRNA splicing. We demonstrate that the ARGLU1 gene expresses at least three distinct RNA splice isoforms – a fully spliced isoform coding for the protein, an isoform containing a retained intron that is detained in the nucleus, and an isoform containing an alternative exon that targets the transcript for nonsense mediated decay. Furthermore, ARGLU1 contains a long, highly evolutionarily conserved sequence known as an Ultraconserved Element (UCE) that is within the retained intron and overlaps the alternative exon. Manipulation of the UCE, in a reporter minigene or via random mutations in the genomic context using CRISPR/Cas9, changed the splicing pattern. Further, overexpression of the ARGLU1 protein shifted the splicing of endogenous ARGLU1 mRNA, resulting in an increase in the retained intron isoform and nonsense mediated decay susceptible isoform and a decrease in the fully spliced isoform. Taken together with data showing that functional protein knockout shifts splicing toward the fully spliced isoform, our data are consistent with a model in which unproductive splicing complexes assembled at the alternative exon lead to inefficient splicing and intron retention.
Collapse
Affiliation(s)
- Stephan P Pirnie
- Department of Genetics and Genome Sciences, UCONN Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Ahmad Osman
- Department of Genetics and Genome Sciences, UCONN Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Yinzhou Zhu
- Department of Genetics and Genome Sciences, UCONN Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | - Gordon G Carmichael
- Department of Genetics and Genome Sciences, UCONN Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
182
|
Lefebvre FA, Cody NA, Bouvrette LPB, Bergalet J, Wang X, Lécuyer E. CeFra-seq: Systematic mapping of RNA subcellular distribution properties through cell fractionation coupled to deep-sequencing. Methods 2017; 126:138-148. [DOI: 10.1016/j.ymeth.2017.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 12/18/2022] Open
|
183
|
Mauger O, Lemoine F, Scheiffele P. Targeted Intron Retention and Excision for Rapid Gene Regulation in Response to Neuronal Activity. Neuron 2017; 92:1266-1278. [PMID: 28009274 DOI: 10.1016/j.neuron.2016.11.032] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 10/14/2016] [Accepted: 11/18/2016] [Indexed: 01/03/2023]
Abstract
Activity-dependent transcription has emerged as a major source of gene products that regulate neuronal excitability, connectivity, and synaptic properties. However, the elongation rate of RNA polymerases imposes a significant temporal constraint for transcript synthesis, in particular for long genes where new synthesis requires hours. Here we reveal a novel, transcription-independent mechanism that releases transcripts within minutes of neuronal stimulation. We found that, in the mouse neocortex, polyadenylated transcripts retain select introns and are stably accumulated in the cell nucleus. A subset of these intron retention transcripts undergoes activity-dependent splicing, cytoplasmic export, and ribosome loading, thus acutely releasing mRNAs in response to stimulation. This process requires NMDA receptor- and calmodulin-dependent kinase pathways, and it is particularly prevalent for long transcripts. We conclude that regulated intron retention in fully transcribed RNAs represents a mechanism to rapidly mobilize a pool of mRNAs in response to neuronal activity.
Collapse
Affiliation(s)
- Oriane Mauger
- Biozentrum of the University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Frédéric Lemoine
- GenoSplice Technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Peter Scheiffele
- Biozentrum of the University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland.
| |
Collapse
|
184
|
Ramanouskaya TV, Grinev VV. The determinants of alternative RNA splicing in human cells. Mol Genet Genomics 2017; 292:1175-1195. [PMID: 28707092 DOI: 10.1007/s00438-017-1350-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/06/2017] [Indexed: 12/29/2022]
Abstract
Alternative splicing represents an important level of the regulation of gene function in eukaryotic organisms. It plays a critical role in virtually every biological process within an organism, including regulation of cell division and cell death, differentiation of tissues in the embryo and the adult organism, as well as in cellular response to diverse environmental factors. In turn, studies of the last decade have shown that alternative splicing itself is controlled by different mechanisms. Unfortunately, there is no clear understanding of how these diverse mechanisms, or determinants, regulate and constrain the set of alternative RNA species produced from any particular gene in every cell of the human body. Here, we provide a consolidated overview of alternative splicing determinants including RNA-protein interactions, epigenetic regulation via chromatin remodeling, coupling of transcription-to-alternative splicing, effect of secondary structures in pre-RNA, and function of the RNA quality control systems. We also extensively and critically discuss some mechanistic insights on coordinated inclusion/exclusion of exons during the formation of mature RNA molecules. We conclude that the final structure of RNA is pre-determined by a complex interplay between cis- and trans-acting factors. Altogether, currently available empirical data significantly expand our understanding of the functioning of the alternative splicing machinery of cells in normal and pathological conditions. On the other hand, there are still many blind spots that require further deep investigations.
Collapse
|
185
|
Identification of long non-coding RNA in the horse transcriptome. BMC Genomics 2017; 18:511. [PMID: 28676104 PMCID: PMC5496257 DOI: 10.1186/s12864-017-3884-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022] Open
Abstract
Background Efforts to resolve the transcribed sequences in the equine genome have focused on protein-coding RNA. The transcription of the intergenic regions, although detected via total RNA sequencing (RNA-seq), has yet to be characterized in the horse. The most recent equine transcriptome based on RNA-seq from several tissues was a prime opportunity to obtain a concurrent long non-coding RNA (lncRNA) database. Results This lncRNA database has a breadth of eight tissues and a depth of over 20 million reads for select tissues, providing the deepest and most expansive equine lncRNA database. Utilizing the intergenic reads and three categories of novel genes from a previously published equine transcriptome pipeline, we better describe these groups by annotating the lncRNA candidates. These lncRNA candidates were filtered using an approach adapted from human lncRNA annotation, which removes transcripts based on size, expression, protein-coding capability and distance to the start or stop of annotated protein-coding transcripts. Conclusion Our equine lncRNA database has 20,800 transcripts that demonstrate characteristics unique to lncRNA including low expression, low exon diversity and low levels of sequence conservation. These candidate lncRNA will serve as a baseline lncRNA annotation and begin to describe the RNA-seq reads assigned to the intergenic space in the horse. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3884-2) contains supplementary material, which is available to authorized users.
Collapse
|
186
|
Liu H, Smith TPL, Nonneman DJ, Dekkers JCM, Tuggle CK. A high-quality annotated transcriptome of swine peripheral blood. BMC Genomics 2017. [PMID: 28646867 PMCID: PMC5483264 DOI: 10.1186/s12864-017-3863-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background High throughput gene expression profiling assays of peripheral blood are widely used in biomedicine, as well as in animal genetics and physiology research. Accurate, comprehensive, and precise interpretation of such high throughput assays relies on well-characterized reference genomes and/or transcriptomes. However, neither the reference genome nor the peripheral blood transcriptome of the pig have been sufficiently assembled and annotated to support such profiling assays in this emerging biomedical model organism. We aimed to assemble published and novel RNA-seq data to provide a comprehensive, well-annotated blood transcriptome for pigs by integrating a de novo assembly with a genome-guided assembly. Results A de novo and a genome-guided transcriptome of porcine whole peripheral blood was assembled with ~162 million pairs of paired-end and ~183 million single-end, trimmed and normalized Illumina RNA-seq reads (~6 billion initial reads from 146 RNA-seq libraries) from five independent studies by using the Trinity and Cufflinks software, respectively. We then removed putative transcripts (PTs) of low confidence from both assemblies and merged the remaining PTs into an integrated transcriptome consisting of 132,928 PTs, with 126,225 (~95%) PTs from the de novo assembly and more than 91% of PTs spliced. In the integrated transcriptome, ~90% and 63% of PTs had significant sequence similarity to sequences in the NCBI NT and NR databases, respectively; 68,754 (~52%) PTs were annotated with 15,965 unique gene ontology (GO) terms; and 7618 PTs annotated with Enzyme Commission codes were assigned to 134 pathways curated by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Full exon-intron junctions of 17,528 PTs were validated by PacBio IsoSeq full-length cDNA reads from 3 other porcine tissues, NCBI pig RefSeq mRNAs and transcripts from Ensembl Sscrofa10.2 annotation. Completeness of the 5’ termini of 37,569 PTs was validated by public cap analysis of gene expression (CAGE) data. By comparison to the Ensembl transcripts, we found that (1) the deduced precursors of 54,402 PTs shared at least one intron or exon with those of 18,437 Ensembl transcripts; (2) 12,262 PTs had both longer 5’ and 3’ termini than their maximally overlapping Ensembl transcripts; and (3) 41,838 spliced PTs were totally missing from the Sscrofa10.2 annotation. Similar results were obtained when the PTs were compared to the pig NCBI RefSeq mRNA collection. Conclusions We built, validated and annotated a comprehensive porcine blood transcriptome with significant improvement over the annotation of Ensembl Sscrofa10.2 and the pig NCBI RefSeq mRNAs, and laid a foundation for blood-based high throughput transcriptomic assays in pigs and for advancing annotation of the pig genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3863-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haibo Liu
- Bioinformatics and Computational Biology Program, Department of Animal Science, Iowa State University, 2258 Kildee Hall, Ames, IA, 50011, USA
| | - Timothy P L Smith
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Dan J Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, 239 Kildee Hall, Ames, IA, 50011, USA
| | - Christopher K Tuggle
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA, 50011, USA.
| |
Collapse
|
187
|
Normal and altered pre-mRNA processing in the DMD gene. Hum Genet 2017; 136:1155-1172. [DOI: 10.1007/s00439-017-1820-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
|
188
|
Neuronal activity-regulated alternative mRNA splicing. Int J Biochem Cell Biol 2017; 91:184-193. [PMID: 28591617 DOI: 10.1016/j.biocel.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 11/20/2022]
Abstract
Activity-regulated gene transcription underlies plasticity-dependent changes in the molecular composition and structure of neurons. Numerous genes whose expression is induced by different neuronal plasticity inducing pathways have been identified, but the alteration of gene expression levels represents only part of the complexity of the activity-regulated transcriptional program. Alternative splicing of precursor mRNA is an additional mechanism that modulates the activity-dependent transcriptional signature. Recently developed splicing sensitive transcriptome wide analyses improve our understanding of the underlying mechanisms and demonstrate to what extend the activity regulated transcriptome is alternatively spliced. So far, only for a small group of differentially spliced mRNAs of synaptic proteins, the functional implications have been studied in detail. These include examples in which differential exon usage can result in the expression of alternative proteins which interfere with or alter the function of preexisting proteins and cause a dominant negative functional block of constitutively expressed variants. Such altered proteins contribute to the structural and functional reorganization of pre- and postsynaptic terminals and to the maintenance and formation of synapses. In addition, activity-induced alternative splicing can affect the untranslated regions (UTRs) and generates mRNAs harboring different cis-regulatory elements. Such differential UTRs can influence mRNA stability, translation, and can change the targeting of mRNAs to subcellular compartments. Here, we summarize different categories of alternative splicing which are thought to contribute to synaptic remodeling, give an overview of activity-regulated alternatively spliced mRNAs of synaptic proteins that impact synaptic functions, and discuss splicing factors and epigenetic modifications as regulatory determinants.
Collapse
|
189
|
Deveson IW, Hardwick SA, Mercer TR, Mattick JS. The Dimensions, Dynamics, and Relevance of the Mammalian Noncoding Transcriptome. Trends Genet 2017; 33:464-478. [PMID: 28535931 DOI: 10.1016/j.tig.2017.04.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/24/2017] [Indexed: 01/02/2023]
Abstract
The combination of pervasive transcription and prolific alternative splicing produces a mammalian transcriptome of great breadth and diversity. The majority of transcribed genomic bases are intronic, antisense, or intergenic to protein-coding genes, yielding a plethora of short and long non-protein-coding regulatory RNAs. Long noncoding RNAs (lncRNAs) share most aspects of their biogenesis, processing, and regulation with mRNAs. However, lncRNAs are typically expressed in more restricted patterns, frequently from enhancers, and exhibit almost universal alternative splicing. These features are consistent with their role as modular epigenetic regulators. We describe here the key studies and technological advances that have shaped our understanding of the dimensions, dynamics, and biological relevance of the mammalian noncoding transcriptome.
Collapse
Affiliation(s)
- Ira W Deveson
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Simon A Hardwick
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Tim R Mercer
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - John S Mattick
- Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
190
|
Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 2017; 18:437-451. [PMID: 28488700 DOI: 10.1038/nrm.2017.27] [Citation(s) in RCA: 879] [Impact Index Per Article: 109.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alternative splicing of eukaryotic transcripts is a mechanism that enables cells to generate vast protein diversity from a limited number of genes. The mechanisms and outcomes of alternative splicing of individual transcripts are relatively well understood, and recent efforts have been directed towards studying splicing networks. It has become apparent that coordinated splicing networks regulate tissue and organ development, and that alternative splicing has important physiological functions in different developmental processes in humans.
Collapse
|
191
|
Hyun K, Jeon J, Park K, Kim J. Writing, erasing and reading histone lysine methylations. Exp Mol Med 2017; 49:e324. [PMID: 28450737 PMCID: PMC6130214 DOI: 10.1038/emm.2017.11] [Citation(s) in RCA: 801] [Impact Index Per Article: 100.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 02/08/2023] Open
Abstract
Histone modifications are key epigenetic regulatory features that have important roles in many cellular events. Lysine methylations mark various sites on the tail and globular domains of histones and their levels are precisely balanced by the action of methyltransferases ('writers') and demethylases ('erasers'). In addition, distinct effector proteins ('readers') recognize specific methyl-lysines in a manner that depends on the neighboring amino-acid sequence and methylation state. Misregulation of histone lysine methylation has been implicated in several cancers and developmental defects. Therefore, histone lysine methylation has been considered a potential therapeutic target, and clinical trials of several inhibitors of this process have shown promising results. A more detailed understanding of histone lysine methylation is necessary for elucidating complex biological processes and, ultimately, for developing and improving disease treatments. This review summarizes enzymes responsible for histone lysine methylation and demethylation and how histone lysine methylation contributes to various biological processes.
Collapse
Affiliation(s)
- Kwangbeom Hyun
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jongcheol Jeon
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kihyun Park
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jaehoon Kim
- Laboratory of Eukaryotic Transcription, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
192
|
Jacob AG, Smith CWJ. Intron retention as a component of regulated gene expression programs. Hum Genet 2017; 136:1043-1057. [PMID: 28391524 PMCID: PMC5602073 DOI: 10.1007/s00439-017-1791-x] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
Intron retention has long been an exemplar of regulated splicing with case studies of individual events serving as models that provided key mechanistic insights into the process of splicing control. In organisms such as plants and budding yeast, intron retention is well understood as a major mechanism of gene expression regulation. In contrast, in mammalian systems, the extent and functional significance of intron retention have, until recently, remained greatly underappreciated. Technical challenges to the global detection and quantitation of transcripts with retained introns have often led to intron retention being overlooked or dismissed as “noise”. Now, however, with the wealth of information available from high-throughput deep sequencing, combined with focused computational and statistical analyses, we are able to distinguish clear intron retention patterns in various physiological and pathological contexts. Several recent studies have demonstrated intron retention as a central component of gene expression programs during normal development as well as in response to stress and disease. Furthermore, these studies revealed various ways in which intron retention regulates protein isoform production, RNA stability and translation efficiency, and rapid induction of expression via post-transcriptional splicing of retained introns. In this review, we highlight critical findings from these transcriptomic studies and discuss commonalties in the patterns prevalent in intron retention networks at the functional and regulatory levels.
Collapse
Affiliation(s)
- Aishwarya G Jacob
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Christopher W J Smith
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
193
|
Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci 2017; 74:2875-2897. [PMID: 28314893 PMCID: PMC5501912 DOI: 10.1007/s00018-017-2503-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA–protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
194
|
Skalska L, Beltran-Nebot M, Ule J, Jenner RG. Regulatory feedback from nascent RNA to chromatin and transcription. Nat Rev Mol Cell Biol 2017; 18:331-337. [PMID: 28270684 DOI: 10.1038/nrm.2017.12] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transcription and chromatin function are regulated by proteins that bind to DNA, nucleosomes or RNA polymerase II, with specific non-coding RNAs (ncRNAs) functioning to modulate their recruitment or activity. Unlike ncRNAs, nascent pre-mRNA was considered to be primarily a passive player in these processes. In this Opinion article, we describe recently identified interactions between nascent pre-mRNAs and regulatory proteins, highlight commonalities between the functions of nascent pre-mRNA and nascent ncRNA, and propose that both types of RNA have an active role in transcription and chromatin regulation.
Collapse
Affiliation(s)
- Lenka Skalska
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Manuel Beltran-Nebot
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Jernej Ule
- Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; and The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard G Jenner
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| |
Collapse
|
195
|
Comprehensive analysis of long non-coding RNAs highlights their spatio-temporal expression patterns and evolutional conservation in Sus scrofa. Sci Rep 2017; 7:43166. [PMID: 28233874 PMCID: PMC5324117 DOI: 10.1038/srep43166] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/10/2017] [Indexed: 01/19/2023] Open
Abstract
Despite modest sequence conservation and rapid evolution, long non-coding RNAs (lncRNAs) appear to be conserved in expression pattern and function. However, analysis of lncRNAs across tissues and developmental stages remains largely uncharacterized in mammals. Here, we systematically investigated the lncRNAs of the Guizhou miniature pig (Sus scrofa), which was widely used as biomedical model. We performed RNA sequencing across 9 organs and 3 developmental skeletal muscle, and developed a filtering pipeline to identify 10,813 lncRNAs (9,075 novel). Conservation patterns analysis revealed that 57% of pig lncRNAs showed homology to humans and mice based on genome alignment. 5,455 lncRNAs exhibited typical hallmarks of regulatory molecules, such as high spatio-temporal specificity. Notably, conserved lncRNAs exhibited higher tissue specificity than pig-specific lncRNAs and were significantly enriched in testis and ovary. Weighted co-expression network analysis revealed a set of conserved lncRNAs that are likely involved in postnatal muscle development. Based on the high degree of similarity in the structure, organization, and dynamic expression of pig lncRNAs compared with human and mouse lncRNAs, we propose that these lncRNAs play an important role in organ physiology and development in mammals. Our results provide a resource for studying animal evolution, morphological complexity, breeding, and biomedical research.
Collapse
|
196
|
Lima L, Sinaimeri B, Sacomoto G, Lopez-Maestre H, Marchet C, Miele V, Sagot MF, Lacroix V. Playing hide and seek with repeats in local and global de novo transcriptome assembly of short RNA-seq reads. Algorithms Mol Biol 2017; 12:2. [PMID: 28250805 PMCID: PMC5322684 DOI: 10.1186/s13015-017-0091-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/27/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The main challenge in de novo genome assembly of DNA-seq data is certainly to deal with repeats that are longer than the reads. In de novo transcriptome assembly of RNA-seq reads, on the other hand, this problem has been underestimated so far. Even though we have fewer and shorter repeated sequences in transcriptomics, they do create ambiguities and confuse assemblers if not addressed properly. Most transcriptome assemblers of short reads are based on de Bruijn graphs (DBG) and have no clear and explicit model for repeats in RNA-seq data, relying instead on heuristics to deal with them. RESULTS The results of this work are threefold. First, we introduce a formal model for representing high copy-number and low-divergence repeats in RNA-seq data and exploit its properties to infer a combinatorial characteristic of repeat-associated subgraphs. We show that the problem of identifying such subgraphs in a DBG is NP-complete. Second, we show that in the specific case of local assembly of alternative splicing (AS) events, we can implicitly avoid such subgraphs, and we present an efficient algorithm to enumerate AS events that are not included in repeats. Using simulated data, we show that this strategy is significantly more sensitive and precise than the previous version of KisSplice (Sacomoto et al. in WABI, pp 99-111, 1), Trinity (Grabherr et al. in Nat Biotechnol 29(7):644-652, 2), and Oases (Schulz et al. in Bioinformatics 28(8):1086-1092, 3), for the specific task of calling AS events. Third, we turn our focus to full-length transcriptome assembly, and we show that exploring the topology of DBGs can improve de novo transcriptome evaluation methods. Based on the observation that repeats create complicated regions in a DBG, and when assemblers try to traverse these regions, they can infer erroneous transcripts, we propose a measure to flag transcripts traversing such troublesome regions, thereby giving a confidence level for each transcript. The originality of our work when compared to other transcriptome evaluation methods is that we use only the topology of the DBG, and not read nor coverage information. We show that our simple method gives better results than Rsem-Eval (Li et al. in Genome Biol 15(12):553, 4) and TransRate (Smith-Unna et al. in Genome Res 26(8):1134-1144, 5) on both real and simulated datasets for detecting chimeras, and therefore is able to capture assembly errors missed by these methods.
Collapse
Affiliation(s)
- Leandro Lima
- Inria Grenoble, 655, Avenue de l’Europe, 38334 Montbonnot, France
- CNRS, UMR5558, Université Claude Bernard Lyon 1, 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Blerina Sinaimeri
- Inria Grenoble, 655, Avenue de l’Europe, 38334 Montbonnot, France
- CNRS, UMR5558, Université Claude Bernard Lyon 1, 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Gustavo Sacomoto
- Inria Grenoble, 655, Avenue de l’Europe, 38334 Montbonnot, France
- CNRS, UMR5558, Université Claude Bernard Lyon 1, 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Helene Lopez-Maestre
- Inria Grenoble, 655, Avenue de l’Europe, 38334 Montbonnot, France
- CNRS, UMR5558, Université Claude Bernard Lyon 1, 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Camille Marchet
- IRISA Inria Rennes Bretagne Atlantique; GenScale Team, Université Rennes 1, 263, Avenue Général Leclerc, 35042 Rennes, France
| | - Vincent Miele
- CNRS, UMR5558, Université Claude Bernard Lyon 1, 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Marie-France Sagot
- Inria Grenoble, 655, Avenue de l’Europe, 38334 Montbonnot, France
- CNRS, UMR5558, Université Claude Bernard Lyon 1, 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Vincent Lacroix
- Inria Grenoble, 655, Avenue de l’Europe, 38334 Montbonnot, France
- CNRS, UMR5558, Université Claude Bernard Lyon 1, 43, Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| |
Collapse
|
197
|
Pastro L, Smircich P, Di Paolo A, Becco L, Duhagon MA, Sotelo-Silveira J, Garat B. Nuclear Compartmentalization Contributes to Stage-Specific Gene Expression Control in Trypanosoma cruzi. Front Cell Dev Biol 2017; 5:8. [PMID: 28243589 PMCID: PMC5303743 DOI: 10.3389/fcell.2017.00008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/25/2017] [Indexed: 12/24/2022] Open
Abstract
In the protozoan parasite Trypanosoma cruzi, as in other trypanosomatids, transcription of protein coding genes occurs in a constitutive fashion, producing large polycistronic transcription units. These units are composed of non-functionally related genes which are pervasively processed to yield each mRNA. Therefore, post-transcriptional processes are crucial to regulate gene expression. Considering that nuclear compartmentalization could contribute to gene expression regulation, we comparatively studied the nuclear, cytoplasmic and whole cell transcriptomes of the non-infective epimastigote stage of T. cruzi, using RNA-Seq. We found that the cytoplasmic transcriptome tightly correlates with the whole cell transcriptome and both equally correlate with the proteome. Nonetheless, 1,200 transcripts showed differential abundance between the nuclear and cytoplasmic fractions. For the genes with transcript content augmented in the nucleus, significant structural and compositional differences were found. The analysis of the reported epimastigote translatome and proteome, revealed scarce ribosome footprints and encoded proteins for them. Ontology analyses unveiled that many of these genes are distinctive of other parasite life-cycle stages. Finally, the relocalization of transcript abundance in the metacyclic trypomastigote infective stage was confirmed for specific genes. While gene expression is strongly dependent on transcript steady-state level, we here highlight the importance of the distribution of transcripts abundance between compartments in T. cruzi. Particularly, we show that nuclear compartmentation is playing an active role in the developmental stage determination preventing off-stage expression.
Collapse
Affiliation(s)
- Lucía Pastro
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la RepúblicaMontevideo, Uruguay; Departamento de Genética, Facultad de Medicina, Universidad de la RepúblicaMontevideo, Uruguay
| | - Pablo Smircich
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la RepúblicaMontevideo, Uruguay; Departamento de Genética, Facultad de Medicina, Universidad de la RepúblicaMontevideo, Uruguay
| | - Andrés Di Paolo
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Lorena Becco
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| | - María A Duhagon
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la RepúblicaMontevideo, Uruguay; Departamento de Genética, Facultad de Medicina, Universidad de la RepúblicaMontevideo, Uruguay
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Beatriz Garat
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República Montevideo, Uruguay
| |
Collapse
|
198
|
Reddy AS, O'Brien D, Pisat N, Weichselbaum CT, Sakers K, Lisci M, Dalal JS, Dougherty JD. A Comprehensive Analysis of Cell Type-Specific Nuclear RNA From Neurons and Glia of the Brain. Biol Psychiatry 2017; 81:252-264. [PMID: 27113499 PMCID: PMC4996761 DOI: 10.1016/j.biopsych.2016.02.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Studies in psychiatric genetics have identified >100 loci associated with disease risk, yet many of these loci are distant from protein coding genes. Recent characterization of the transcriptional landscape of cell lines and whole tissues has suggested widespread transcription in both coding and noncoding regions of the genome, including differential expression from loci that produce regulatory noncoding RNAs that function within the nucleus; however, the nuclear transcriptome of specific cell types in the brain has not been previously investigated. METHODS We defined the nuclear transcriptional landscape of the three major cellular divisions of the nervous system using flow sorting of genetically labeled nuclei from bacTRAP mouse lines. Next, we characterized the unique expression of coding, noncoding, and intergenic RNAs in the mature mouse brain with RNA-Seq and validation with independent methods. RESULTS We found diverse expression across the cell types of all classes of RNAs, including long noncoding RNAs, several of which were confirmed as highly enriched in the nuclei of specific cell types using anatomic methods. We also discovered several examples of cell type-specific expression of tandem gene fusions, and we report the first cell type-specific expression of circular RNAs-a neuron-specific and nuclear-enriched RNA arising from the gene Hnrnpu. CONCLUSIONS These data provide an important resource for studies evaluating the function of various noncoding RNAs in the brain, including noncoding RNAs that may play a role in psychiatric disease.
Collapse
Affiliation(s)
- Adarsh S Reddy
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - David O'Brien
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri.
| | - Nilambari Pisat
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Claire T Weichselbaum
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Kristina Sakers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Miriam Lisci
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Jasbir S Dalal
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
199
|
LOX-1 and Its Splice Variants: A New Challenge for Atherosclerosis and Cancer-Targeted Therapies. Int J Mol Sci 2017; 18:ijms18020290. [PMID: 28146073 PMCID: PMC5343826 DOI: 10.3390/ijms18020290] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing (AS) is a process in which precursor messenger RNA (pre-mRNA) splicing sites are differentially selected to diversify the protein isoform population. Changes in AS patterns have an essential role in normal development, differentiation and response to physiological stimuli. It is documented that AS can generate both “risk” and “protective” splice variants that can contribute to the pathogenesis of several diseases including atherosclerosis. The main endothelial receptor for oxidized low-density lipoprotein (ox-LDLs) is LOX-1 receptor protein encoded by the OLR1 gene. When OLR1 undergoes AS events, it generates three variants: OLR1, OLR1D4 and LOXIN. The latter lacks exon 5 and two-thirds of the functional domain. Literature data demonstrate a protective role of LOXIN in pathologies correlated with LOX-1 overexpression such as atherosclerosis and tumors. In this review, we summarize recent developments in understanding of OLR1 AS while also highlighting data warranting further investigation of this process as a novel therapeutic target.
Collapse
|
200
|
Abstract
Fully grown oocytes arrest meiosis at prophase I and deposit maternal RNAs. A subset of maternal transcripts is stored in a dormant state in the oocyte, and the timely driven translation of specific mRNAs guides meiotic progression, the oocyte-embryo transition, and early embryo development. In the absence of transcription, the regulation of gene expression in oocytes is controlled almost exclusively at the level of transcriptome and proteome stabilization and at the level of protein synthesis.This chapter focuses on the recent findings on RNA distribution related to the temporal and spatial translational control of the meiotic cycle progression in mammalian oocytes. We discuss the most relevant mechanisms involved in the organization of the oocyte's maternal transcriptome storage and localization, and the regulation of translation, in correlation with the regulation of oocyte meiotic progression.
Collapse
|