151
|
Coffman AM, Li Q, Ju LK. Effect of Natural and Pretreated Soybean Hulls on Enzyme Production by Trichoderma reesei. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2480-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
152
|
Merlin C, Besaury L, Niepceron M, Mchergui C, Riah W, Bureau F, Gattin I, Bodilis J. Real-time PCR for quantification in soil of glycoside hydrolase family 6 cellulase genes. Lett Appl Microbiol 2014; 59:284-91. [PMID: 24738495 DOI: 10.1111/lam.12273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/29/2014] [Accepted: 04/07/2014] [Indexed: 11/27/2022]
Abstract
UNLABELLED Cellulose is the main structural component of the cell walls of higher plants, representing c. 35-50% of a plant's dry weight; after decomposition and transformation, and constituting a large part of soil organic matter. Telluric micro-organisms able to use cellulose as carbon and energy sources for growth are widely distributed in the environment, but the factors controlling the rate of cellulose degradation are not well understood. In this study, we have developed a quantitative real-time PCR (qPCR) primer set to quantify the glycoside hydrolase family 6 (GH6 family) cellulase genes in soil samples. The qPCR assays were linear over 8 orders of magnitude and sensitive down to 10 copies per assay. qPCR analysis of contrasted soil samples showed densities between 2·47 × 10(7) and 1·48 × 10(10) copies per gram of soil. Cloning and sequencing of the PCR products from environmental DNA confirmed both specific amplification (more than 96%) and the wide diversity targeted by the primer set, throughout nearly all the GH6 family, including sequences of bacteria and fungi. SIGNIFICANCE AND IMPACT OF THE STUDY Telluric micro-organisms able to use cellulose as carbon and energy sources for growth are widely distributed in the environment, but the factors controlling the rate of cellulose degradation are not well understood. The objective of our study was to develop a qPCR for rapid quantification of GH6 cellulase genes in soil. This qPCR could be applied to study the potential for cellulose degradation in different soils in order to better understand the factors controlling the stability of the soil organic matter.
Collapse
Affiliation(s)
- C Merlin
- University of Rouen, LMSM laboratory, Mont Saint Aignan, France; INRA, UMR 1347 Agroecology, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Verma AK, Goyal A. In silico structural characterization and molecular docking studies of first glucuronoxylan-xylanohydrolase (Xyn30A) from family 30 glycosyl hydrolase (GH30) from Clostridium thermocellum. Mol Biol 2014. [DOI: 10.1134/s0026893314020022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
154
|
Xiao Z, Grosse S, Bergeron H, Lau PCK. Cloning and characterization of the first GH10 and GH11 xylanases from Rhizopus oryzae. Appl Microbiol Biotechnol 2014; 98:8211-22. [PMID: 24760228 DOI: 10.1007/s00253-014-5741-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/18/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
The only available genome sequence for Rhizopus oryzae strain 99-880 was annotated to not encode any β-1,4-endoxylanase encoding genes of the glycoside hydrolase (GH) family 10 or 11. Here, we report the identification and cloning of two such members in R. oryzae strain NRRL 29086. Strain 29086 was one of several selected fungi grown on wheat or triticale bran and screened for xylanase activity among other hydrolytic actions. Its high activity (138 U/ml) in the culture supernatant led to the identification of two activity-stained proteins, designated Xyn-1 and Xyn-2 of respective molecular masses 32,000 and 22,000. These proteins were purified to electrophoretic homogeneity and characterized. The specific activities of Xyn-1 and Xyn-2 towards birchwood xylan were 605 and 7,710 U/mg, respectively. Kinetic data showed that the lower molecular weight Xyn-2 had a higher affinity (K m=3.2 ± 0.2 g/l) towards birchwood xylan than Xyn-1 by about 4-fold. The melting temperature (T m) of the two proteins, estimated to be in the range of 49.5-53.7 °C indicated that they are rather thermostable proteins. N-terminal and internal peptide sequences were obtained by chemical digestion of the purified xylanases to facilitate cloning, expression in Escherichia coli, and sequencing of the respective gene. The cloned Rhizopus xylanases were used to demonstrate release of xylose from flax shives-derived hemicellulose as model feedstock. Overall, this study expands the catalytic toolbox of GH10 and 11 family proteins that have applications in various industrial and bioproducts settings.
Collapse
Affiliation(s)
- Zhizhuang Xiao
- Aquatic and Crop Resource Development, National Research Council Canada, Montreal, Quebec, Canada, H4P 2R2
| | | | | | | |
Collapse
|
155
|
Biochemical properties and atomic resolution structure of a proteolytically processed β-mannanase from cellulolytic Streptomyces sp. SirexAA-E. PLoS One 2014; 9:e94166. [PMID: 24710170 PMCID: PMC3978015 DOI: 10.1371/journal.pone.0094166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/11/2014] [Indexed: 01/07/2023] Open
Abstract
β-Mannanase SACTE_2347 from cellulolytic Streptomyces sp. SirexAA-E is abundantly secreted into the culture medium during growth on cellulosic materials. The enzyme is composed of domains from the glycoside hydrolase family 5 (GH5), fibronectin type-III (Fn3), and carbohydrate binding module family 2 (CBM2). After secretion, the enzyme is proteolyzed into three different, catalytically active variants with masses of 53, 42 and 34 kDa corresponding to the intact protein, loss of the CBM2 domain, or loss of both the Fn3 and CBM2 domains. The three variants had identical N-termini starting with Ala51, and the positions of specific proteolytic reactions in the linker sequences separating the three domains were identified. To conduct biochemical and structural characterizations, the natural proteolytic variants were reproduced by cloning and heterologously expressed in Escherichia coli. Each SACTE_2347 variant hydrolyzed only β-1,4 mannosidic linkages, and also reacted with pure mannans containing partial galactosyl- and/or glucosyl substitutions. Examination of the X-ray crystal structure of the GH5 domain of SACTE_2347 suggests that two loops adjacent to the active site channel, which have differences in position and length relative to other closely related mannanases, play a role in producing the observed substrate selectivity.
Collapse
|
156
|
Horta MAC, Vicentini R, Delabona PDS, Laborda P, Crucello A, Freitas S, Kuroshu RM, Polikarpov I, Pradella JGDC, Souza AP. Transcriptome profile of Trichoderma harzianum IOC-3844 induced by sugarcane bagasse. PLoS One 2014; 9:e88689. [PMID: 24558413 PMCID: PMC3928278 DOI: 10.1371/journal.pone.0088689] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/09/2014] [Indexed: 12/03/2022] Open
Abstract
Profiling the transcriptome that underlies biomass degradation by the fungus Trichoderma harzianum allows the identification of gene sequences with potential application in enzymatic hydrolysis processing. In the present study, the transcriptome of T. harzianum IOC-3844 was analyzed using RNA-seq technology. The sequencing generated 14.7 Gbp for downstream analyses. De novo assembly resulted in 32,396 contigs, which were submitted for identification and classified according to their identities. This analysis allowed us to define a principal set of T. harzianum genes that are involved in the degradation of cellulose and hemicellulose and the accessory genes that are involved in the depolymerization of biomass. An additional analysis of expression levels identified a set of carbohydrate-active enzymes that are upregulated under different conditions. The present study provides valuable information for future studies on biomass degradation and contributes to a better understanding of the role of the genes that are involved in this process.
Collapse
Affiliation(s)
| | - Renato Vicentini
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Priscila da Silva Delabona
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Prianda Laborda
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Aline Crucello
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sindélia Freitas
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Reginaldo Massanobu Kuroshu
- Physics Institute of São Carlos, University of São Paulo (USP), São Carlos, SP, Brazil
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Igor Polikarpov
- Physics Institute of São Carlos, University of São Paulo (USP), São Carlos, SP, Brazil
| | - José Geraldo da Cruz Pradella
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Anete Pereira Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
157
|
Zhang X, Rogowski A, Zhao L, Hahn MG, Avci U, Knox JP, Gilbert HJ. Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation. J Biol Chem 2014; 289:2002-12. [PMID: 24297170 PMCID: PMC3900950 DOI: 10.1074/jbc.m113.527770] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne, NE 4HH, United Kingdom
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Artur Rogowski
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne, NE 4HH, United Kingdom
| | - Lei Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Harry J. Gilbert
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne, NE 4HH, United Kingdom
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| |
Collapse
|
158
|
Gomes FJB, Santos FA, Colodette JL, Demuner IF, Batalha LAR. Literature Review on Biorefinery Processes Integrated to the Pulp Industry. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/nr.2014.59039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
159
|
Li M, Pattathil S, Hahn MG, Hodge DB. Identification of features associated with plant cell wall recalcitrance to pretreatment by alkaline hydrogen peroxide in diverse bioenergy feedstocks using glycome profiling. RSC Adv 2014. [DOI: 10.1039/c4ra00824c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glycome profiling was used to provide insight into the structural basis for how a mild alkaline-oxidative pretreatment may impact the composition and structural organization of the cell walls taxonomically diverse plants.
Collapse
Affiliation(s)
- Muyang Li
- Department of Biosystems and Agriculture Engineering
- Michigan State University
- East Lansing, USA
- Great Lakes Bioenergy Research Center (GLBRC)
- Michigan State University
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center
- The University of Georgia
- Athens, USA
- BioEnergy Science Center (BESC)
- Oak Ridge National Laboratory
| | - Michael G. Hahn
- Complex Carbohydrate Research Center
- The University of Georgia
- Athens, USA
- BioEnergy Science Center (BESC)
- Oak Ridge National Laboratory
| | - David B. Hodge
- Department of Biosystems and Agriculture Engineering
- Michigan State University
- East Lansing, USA
- Great Lakes Bioenergy Research Center (GLBRC)
- Michigan State University
| |
Collapse
|
160
|
Zeigler DR. The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet? Microbiology (Reading) 2014; 160:1-11. [DOI: 10.1099/mic.0.071696-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The genus Geobacillus comprises endospore-forming obligate thermophiles. These bacteria have been isolated from cool soils and even cold ocean sediments in anomalously high numbers, given that the ambient temperatures are significantly below their minimum requirement for growth. Geobacilli are active in environments such as hot plant composts, however, and examination of their genome sequences reveals that they are endowed with a battery of sensors, transporters and enzymes dedicated to hydrolysing plant polysaccharides. Although they appear to be relatively minor members of the plant biomass-degrading microbial community, Geobacillus bacteria have achieved a significant population with a worldwide distribution, probably in large part due to adaptive features of their spores. First, their morphology and resistance properties enable them to be mobilized in the atmosphere and transported long distances. Second, their longevity, which in theory may be extreme, enables them to lie quiescent but viable for long periods of time, accumulating gradually over time to achieve surprisingly high population densities.
Collapse
Affiliation(s)
- Daniel R. Zeigler
- Department of Microbiology, Ohio State University, 484 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
161
|
Blanco-Ulate B, Morales-Cruz A, Amrine KCH, Labavitch JM, Powell ALT, Cantu D. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts. FRONTIERS IN PLANT SCIENCE 2014; 5:435. [PMID: 25232357 PMCID: PMC4153048 DOI: 10.3389/fpls.2014.00435] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/15/2014] [Indexed: 05/19/2023]
Abstract
Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth), secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes) identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue.
Collapse
Affiliation(s)
- Barbara Blanco-Ulate
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
| | | | - John M. Labavitch
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Ann L. T. Powell
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
- *Correspondence: Dario Cantu, Department of Viticulture and Enology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA e-mail:
| |
Collapse
|
162
|
Yamazawa A, Iikura T, Morioka Y, Shino A, Ogata Y, Date Y, Kikuchi J. Cellulose digestion and metabolism induced biocatalytic transitions in anaerobic microbial ecosystems. Metabolites 2013; 4:36-52. [PMID: 24958386 PMCID: PMC4018678 DOI: 10.3390/metabo4010036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 01/07/2023] Open
Abstract
Anaerobic digestion of highly polymerized biomass by microbial communities present in diverse microbial ecosystems is an indispensable metabolic process for biogeochemical cycling in nature and for industrial activities required to maintain a sustainable society. Therefore, the evaluation of the complicated microbial metabolomics presents a significant challenge. We here describe a comprehensive strategy for characterizing the degradation of highly crystallized bacterial cellulose (BC) that is accompanied by metabolite production for identifying the responsible biocatalysts, including microorganisms and their metabolic functions. To this end, we employed two-dimensional solid- and one-dimensional solution-state nuclear magnetic resonance (NMR) profiling combined with a metagenomic approach using stable isotope labeling. The key components of biocatalytic reactions determined using a metagenomic approach were correlated with cellulose degradation and metabolic products. The results indicate that BC degradation was mediated by cellulases that contain carbohydrate-binding modules and that belong to structural type A. The degradation reactions induced the metabolic dynamics of the microbial community and produced organic compounds, such as acetic acid and propionic acid, mainly metabolized by clostridial species. This combinatorial, functional and structural metagenomic approach is useful for the comprehensive characterization of biomass degradation, metabolic dynamics and their key components in diverse ecosystems.
Collapse
Affiliation(s)
- Akira Yamazawa
- Research Planning and Management Group, Kajima Technical Research Institute, Kajima Corporation, 2-19-1 Tobitakyu, Chofu, Tokyo 182-0036, Japan.
| | - Tomohiro Iikura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Yusuke Morioka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Amiu Shino
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Yoshiyuki Ogata
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, Japan.
| | - Yasuhiro Date
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Jun Kikuchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
163
|
El Kaoutari A, Armougom F, Leroy Q, Vialettes B, Million M, Raoult D, Henrissat B. Development and validation of a microarray for the investigation of the CAZymes encoded by the human gut microbiome. PLoS One 2013; 8:e84033. [PMID: 24391873 PMCID: PMC3877134 DOI: 10.1371/journal.pone.0084033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/11/2013] [Indexed: 12/14/2022] Open
Abstract
Distal gut bacteria play a pivotal role in the digestion of dietary polysaccharides by producing a large number of carbohydrate-active enzymes (CAZymes) that the host otherwise does not produce. We report here the design of a custom microarray that we used to spot non-redundant DNA probes for more than 6,500 genes encoding glycoside hydrolases and lyases selected from 174 reference genomes from distal gut bacteria. The custom microarray was tested and validated by the hybridization of bacterial DNA extracted from the stool samples of lean, obese and anorexic individuals. Our results suggest that a microarray-based study can detect genes from low-abundance bacteria better than metagenomic-based studies. A striking example was the finding that a gene encoding a GH6-family cellulase was present in all subjects examined, whereas metagenomic studies have consistently failed to detect this gene in both human and animal gut microbiomes. In addition, an examination of eight stool samples allowed the identification of a corresponding CAZome core containing 46 families of glycoside hydrolases and polysaccharide lyases, which suggests the functional stability of the gut microbiota despite large taxonomical variations between individuals.
Collapse
Affiliation(s)
- Abdessamad El Kaoutari
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- URMITE, UM63, CNRS 7278, L′Institut de Recherche pour le Développement 198, INSERM 1095, Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Fabrice Armougom
- URMITE, UM63, CNRS 7278, L′Institut de Recherche pour le Développement 198, INSERM 1095, Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Quentin Leroy
- URMITE, UM63, CNRS 7278, L′Institut de Recherche pour le Développement 198, INSERM 1095, Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Bernard Vialettes
- Service de Nutrition, Maladies Métaboliques et Endocrinologie, UMR-INRA U1260, CHU de la Timone, Marseille, France
| | - Matthieu Million
- URMITE, UM63, CNRS 7278, L′Institut de Recherche pour le Développement 198, INSERM 1095, Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Didier Raoult
- URMITE, UM63, CNRS 7278, L′Institut de Recherche pour le Développement 198, INSERM 1095, Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France
- Centre National de la Recherche Scientifique, CNRS UMR 7257, Marseille, France
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
164
|
Singh SK, Heng C, Braker JD, Chan VJ, Lee CC, Jordan DB, Yuan L, Wagschal K. Directed evolution of GH43 β-xylosidase XylBH43 thermal stability and L186 saturation mutagenesis. J Ind Microbiol Biotechnol 2013; 41:489-98. [PMID: 24292973 DOI: 10.1007/s10295-013-1377-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 10/24/2013] [Indexed: 11/28/2022]
Abstract
Directed evolution of β-xylosidase XylBH43 using a single round of gene shuffling identified three mutations, R45K, M69P, and L186Y, that affect thermal stability parameter K(t)⁰·⁵ by -1.8 ± 0.1, 1.7 ± 0.3, and 3.2 ± 0.4 °C, respectively. In addition, a cluster of four mutations near hairpin loop-D83 improved K(t)⁰·⁵ by ~3 °C; none of the individual amino acid changes measurably affect K(t)⁰·⁵. Saturation mutagenesis of L186 identified the variant L186K as having the most improved K(t)⁰·⁵ value, by 8.1 ± 0.3 °C. The L186Y mutation was found to be additive, resulting in K(t)⁰·⁵ increasing by up to 8.8 ± 0.3 °C when several beneficial mutations were combined. While k cat of xylobiose and 4-nitrophenyl-β-D-xylopyranoside were found to be depressed from 8 to 83 % in the thermally improved mutants, K(m), K(ss) (substrate inhibition), and K(i) (product inhibition) values generally increased, resulting in lessened substrate and xylose inhibition.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Rogowski A, Baslé A, Farinas CS, Solovyova A, Mortimer JC, Dupree P, Gilbert HJ, Bolam DN. Evidence that GH115 α-glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility. J Biol Chem 2013; 289:53-64. [PMID: 24214982 PMCID: PMC3879575 DOI: 10.1074/jbc.m113.525295] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The microbial degradation of the plant cell wall is an important biological process that is highly relevant to environmentally significant industries such as the bioenergy and biorefining sectors. A major component of the wall is glucuronoxylan, a β1,4-linked xylose polysaccharide that is decorated with α-linked glucuronic and/or methylglucuronic acid (GlcA/MeGlcA). Recently three members of a glycoside hydrolase family, GH115, were shown to hydrolyze MeGlcA side chains from the internal regions of xylan, an activity that has not previously been described. Here we show that a dominant member of the human microbiota, Bacteroides ovatus, contains a GH115 enzyme, BoAgu115A, which displays glucuronoxylan α-(4-O-methyl)-glucuronidase activity. The enzyme is significantly more active against substrates in which the xylose decorated with GlcA/MeGlcA is flanked by one or more xylose residues. The crystal structure of BoAgu115A revealed a four-domain protein in which the active site, comprising a pocket that abuts a cleft-like structure, is housed in the second domain that adopts a TIM barrel-fold. The third domain, a five-helical bundle, and the C-terminal β-sandwich domain make inter-chain contacts leading to protein dimerization. Informed by the structure of the enzyme in complex with GlcA in its open ring form, in conjunction with mutagenesis studies, the potential substrate binding and catalytically significant amino acids were identified. Based on the catalytic importance of residues located on a highly flexible loop, the enzyme is required to undergo a substantial conformational change to form a productive Michaelis complex with glucuronoxylan.
Collapse
Affiliation(s)
- Artur Rogowski
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH United Kingdom and
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Qiu X, Wu X, Huang L, Tian M, Ye J. Specifically expressed genes of the nematode Bursaphelenchus xylophilus involved with early interactions with pine trees. PLoS One 2013; 8:e78063. [PMID: 24155981 PMCID: PMC3796492 DOI: 10.1371/journal.pone.0078063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/16/2013] [Indexed: 01/08/2023] Open
Abstract
As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. However, the pathogenesis-related genes of B. xylophilus are not well characterized. Thus, DNA microarrays were used to investigate differential gene expression in PWN where Pinus thunbergii was inoculated with nematodes, compared with those cultured on Botrytis cinerea. The microarrays comprised 31121 probes, 1310 (4.2%) of which were differentially regulated (changes of >2-fold, P < 0.01) in the two growth conditions. Of these 1310 genes, 633 genes were upregulated, whereas 677 genes were downregulated. Gene Ontology (GO) categories were assigned to the classes Cellular Component, Molecular Function, and Biological Process. The comparative gene expression analysis showed that a large number of the pathogenesis-related genes of B. xylophilus, such as pectate lyase genes, cytochrome P450s, UGTs, and ABC transporter genes, were highly expressed when B. xylophilus infected P. thunbergii. Annotation analysis indicated that these genes contributed to cell wall degradation, detoxification, and the reproduction process. The microarray results were validated using quantitative RT-PCR (qRT-PCR). The microarray data confirmed the specific expression of B. xylophilus genes during infection of P. thunbergii, which provides basic information that facilitates a better understanding of the molecular mechanism of PWD.
Collapse
Affiliation(s)
- Xiuwen Qiu
- Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing, Jiangsu, China
| | - Xiaoqin Wu
- Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing, Jiangsu, China
| | - Lin Huang
- Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing, Jiangsu, China
| | - Minqi Tian
- Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing, Jiangsu, China
| | - Jianren Ye
- Institute of Forest Protection, College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing, Jiangsu, China
| |
Collapse
|
167
|
Gilbert HJ, Knox JP, Boraston AB. Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr Opin Struct Biol 2013; 23:669-77. [DOI: 10.1016/j.sbi.2013.05.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 11/25/2022]
|
168
|
Zhang M, Wang B, Xu B. Measurements of single molecular affinity interactions between carbohydrate-binding modules and crystalline cellulose fibrils. Phys Chem Chem Phys 2013; 15:6508-15. [PMID: 23532050 DOI: 10.1039/c3cp51072g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Combining atomic force microscopy (AFM) recognition imaging and single molecule dynamic force spectroscopy (SMDFS), we studied the single molecule affinity interactions between the carbohydrate-binding module (CBM) and plant cell wall cellulose using the CBM3a (from Clostridium thermocellum) and CBM2a (from Cellvibrio japonicus) functionalized AFM tips. The binding efficiencies of the CBMs to the cellulose were determined by the binding areas on the crystalline cellulose fibrils surface using the recognition imaging. Several dynamic and kinetic parameters, such as the reconstructed free energy change, energy barrier and bond lifetime constant, were also obtained based on the measured single molecule unbinding forces, which are used to illuminate the affinity of the CBMs binding to the natural and single cellulose surface from a totally different aspect. It was found that CBM3a has a little higher binding efficiency and affinity than CBM2a to both natural and extracted cellulose surfaces and both the CBMs have higher affinities to the natural cell wall cellulose compared to the extracted single cellulose. The in-depth understanding of the binding mechanisms of the CBM-cellulose interactions of this study may pave the way for more efficient plant cell wall degradation and eventually facilitate biofuel production.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
169
|
Lewis DR, Olex AL, Lundy SR, Turkett WH, Fetrow JS, Muday GK. A kinetic analysis of the auxin transcriptome reveals cell wall remodeling proteins that modulate lateral root development in Arabidopsis. THE PLANT CELL 2013; 25:3329-46. [PMID: 24045021 PMCID: PMC3809535 DOI: 10.1105/tpc.113.114868] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/14/2013] [Accepted: 08/28/2013] [Indexed: 05/18/2023]
Abstract
To identify gene products that participate in auxin-dependent lateral root formation, a high temporal resolution, genome-wide transcript abundance analysis was performed with auxin-treated Arabidopsis thaliana roots. Data analysis identified 1246 transcripts that were consistently regulated by indole-3-acetic acid (IAA), partitioning into 60 clusters with distinct response kinetics. We identified rapidly induced clusters containing auxin-response functional annotations and clusters exhibiting delayed induction linked to cell division temporally correlated with lateral root induction. Several clusters were enriched with genes encoding proteins involved in cell wall modification, opening the possibility for understanding mechanistic details of cell structural changes that result in root formation following auxin treatment. Mutants with insertions in 72 genes annotated with a cell wall remodeling function were examined for alterations in IAA-regulated root growth and development. This reverse-genetic screen yielded eight mutants with root phenotypes. Detailed characterization of seedlings with mutations in cellulase3/glycosylhydrolase9b3 and leucine rich extensin2, genes not normally linked to auxin response, revealed defects in the early and late stages of lateral root development, respectively. The genes identified here using kinetic insight into expression changes lay the foundation for mechanistic understanding of auxin-mediated cell wall remodeling as an essential feature of lateral root development.
Collapse
Affiliation(s)
- Daniel R. Lewis
- Department of Biology, Wake Forest University, Winston Salem, North Carolina 27109
| | - Amy L. Olex
- Department of Computer Science, Wake Forest University, Winston Salem, North Carolina 27109
| | - Stacey R. Lundy
- Department of Biology, Wake Forest University, Winston Salem, North Carolina 27109
| | - William H. Turkett
- Department of Computer Science, Wake Forest University, Winston Salem, North Carolina 27109
| | - Jacquelyn S. Fetrow
- Department of Computer Science, Wake Forest University, Winston Salem, North Carolina 27109
- Department of Physics, Wake Forest University, Winston Salem, North Carolina 27109
| | - Gloria K. Muday
- Department of Biology, Wake Forest University, Winston Salem, North Carolina 27109
- Address correspondence to
| |
Collapse
|
170
|
Kim MK, An YJ, Jeong CS, Song JM, Kang MH, Lee YH, Cha SS. Expression at 279 K, purification, crystallization and preliminary X-ray crystallographic analysis of a novel cold-active β-1,4-D-mannanase from the Antarctic springtail Cryptopygus antarcticus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1007-10. [PMID: 23989150 DOI: 10.1107/s1744309113020538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/24/2013] [Indexed: 12/21/2022]
Abstract
The CaMan gene product from Cryptopygus antarcticus, which belongs to the glycoside hydrolase family 5 type β-1,4-D-mannanases, has been crystallized using a precipitant solution consisting of 0.1 M Tris-HCl pH 8.5, 25%(w/v) polyethylene glycol 3350 by the microbatch crystallization method at 295 K. The CaMan protein crystal belonged to space group P212121, with unit-cell parameters a = 73.40, b = 83.81, c = 163.55 Å. Assuming the presence of two molecules in the asymmetric unit, the solvent content was estimated to be about 61.29%. CaMan-mannopentaose (M5) complex crystals that were isomorphous to the CaMan crystals were obtained using the same mother liquor containing 1 mM M5.
Collapse
Affiliation(s)
- Min-Kyu Kim
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
171
|
Bae J, Morisaka H, Kuroda K, Ueda M. Cellulosome complexes: natural biocatalysts as arming microcompartments of enzymes. J Mol Microbiol Biotechnol 2013; 23:370-8. [PMID: 23920499 DOI: 10.1159/000351358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cellulose, a primary component of lignocellulosic biomass, is the most abundant carbohydrate polymer in nature. Only a limited number of microorganisms are known to degrade cellulose, which is highly recalcitrant due to its crystal structure. Anaerobic bacteria efficiently degrade cellulose by producing cellulosomes, which are complexes of cellulases bound to scaffoldins. The underlying mechanisms that are responsible for the assembly and efficiency of cellulosomes are not yet fully understood. The cohesin-dockerin specificity has been extensively studied to understand cellulosome assembly. Moreover, the recent progress in proteomics has enabled integral analyses of the growth-substrate-dependent variations in cellulosomal systems. Furthermore, the proximity and targeting effects of cellulosomal synergistic actions have been investigated using designed minicellulosomes. The recent findings about cellulosome assembly, strategies for optimal cellulosome production, and beneficial features of cellulosomes as an arming microcompartment on the microbial cell surface are summarized here.
Collapse
Affiliation(s)
- Jungu Bae
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
172
|
Microbial brokers of insect-plant interactions revisited. J Chem Ecol 2013; 39:952-61. [PMID: 23793897 DOI: 10.1007/s10886-013-0308-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/01/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022]
Abstract
Recent advances in sequencing methods have transformed the field of microbial ecology, making it possible to determine the composition and functional capabilities of uncultured microorganisms. These technologies have been instrumental in the recognition that resident microorganisms can have profound effects on the phenotype and fitness of their animal hosts by modulating the animal signaling networks that regulate growth, development, behavior, etc. Against this backdrop, this review assesses the impact of microorganisms on insect-plant interactions, in the context of the hypothesis that microorganisms are biochemical brokers of plant utilization by insects. There is now overwhelming evidence for a microbial role in insect utilization of certain plant diets with an extremely low or unbalanced nutrient content. Specifically, microorganisms enable insect utilization of plant sap by synthesizing essential amino acids. They also can broker insect utilization of plant products of extremely high lignocellulose content, by enzymatic breakdown of complex plant polysaccharides, nitrogen fixation, and sterol synthesis. However, the experimental evidence for microbial-mediated detoxification of plant allelochemicals is limited. The significance of microorganisms as brokers of plant utilization by insects is predicted to vary, possibly widely, as a result of potentially complex interactions between the composition of the microbiota and the diet and insect developmental age or genotype. For every insect species feeding on plant material, the role of resident microbiota as biochemical brokers of plant utilization is a testable hypothesis.
Collapse
|
173
|
Vanholme B, Desmet T, Ronsse F, Rabaey K, Breusegem FV, Mey MD, Soetaert W, Boerjan W. Towards a carbon-negative sustainable bio-based economy. FRONTIERS IN PLANT SCIENCE 2013; 4:174. [PMID: 23761802 PMCID: PMC3669761 DOI: 10.3389/fpls.2013.00174] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/16/2013] [Indexed: 05/17/2023]
Abstract
The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.
Collapse
Affiliation(s)
- Bartel Vanholme
- Department of Plant Systems Biology, Flanders Institute for BiotechnologyGent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Tom Desmet
- Department of Biochemical and Microbial Technology, Centre of Expertise – Industrial Biotechnology and Biocatalysis, Ghent UniversityGent, Belgium
| | - Frederik Ronsse
- Department of Biosystems Engineering, Ghent UniversityGent, Belgium
| | - Korneel Rabaey
- Laboratory of Microbial Ecology and Technology, Ghent UniversityGent, Belgium
- Centre for Microbial Electrosynthesis, The University of QueenslandBrisbane, Australia
- Advanced Water Management Centre, The University of QueenslandBrisbane, Australia
| | - Frank Van Breusegem
- Department of Plant Systems Biology, Flanders Institute for BiotechnologyGent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Marjan De Mey
- Department of Biochemical and Microbial Technology, Centre of Expertise – Industrial Biotechnology and Biocatalysis, Ghent UniversityGent, Belgium
| | - Wim Soetaert
- Department of Biochemical and Microbial Technology, Centre of Expertise – Industrial Biotechnology and Biocatalysis, Ghent UniversityGent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, Flanders Institute for BiotechnologyGent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| |
Collapse
|
174
|
Lansky S, Salama R, Solomon VH, Belrhali H, Shoham Y, Shoham G. Crystallization and preliminary crystallographic analysis of Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:695-9. [PMID: 23722857 DOI: 10.1107/s1744309113013705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/17/2013] [Indexed: 11/11/2022]
Abstract
Geobacillus stearothermophilus T-6 is a thermophilic soil bacterium that possesses an extensive system for the utilization of hemicellulose. The bacterium produces a small number of endo-acting extracellular enzymes that cleave high-molecular-weight hemicellulolytic polymers into short decorated oligosaccharides, which are further hydrolysed into the respective sugar monomers by a battery of intracellular glycoside hydrolases. One of these intracellular processing enzymes is β-L-arabinopyranosidase (Abp), which is capable of removing β-L-arabinopyranose residues from naturally occurring arabino-polysaccharides. As arabino-polymers constitute a significant part of the hemicellulolytic content of plant biomass, their efficient enzymatic degradation presents an important challenge for many potential biotechnological applications. This aspect has led to an increasing interest in the biochemical characterization and structural analysis of this and related hemicellulases. Abp from G. stearothermophilus T-6 has recently been cloned, overexpressed, purified, biochemically characterized and crystallized in our laboratory, as part of its complete structure-function study. The best crystals obtained for this enzyme belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with average unit-cell parameters a = 107.7, b = 202.2, c = 287.3 Å. Full diffraction data sets to 2.3 Å resolution have been collected for both the wild-type enzyme and its D197A catalytic mutant from flash-cooled crystals at 100 K, using synchrotron radiation. These data are currently being used for a high-resolution three-dimensional structure determination of Abp.
Collapse
Affiliation(s)
- Shifra Lansky
- Institute of Chemistry and the Laboratory for Structural Chemistry and Biology, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
175
|
Solution structure, dynamics and binding studies of a family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11). Biochem J 2013; 451:289-300. [PMID: 23356867 DOI: 10.1042/bj20120627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Non-catalytic cellulosomal CBMs (carbohydrate-binding modules) are responsible for increasing the catalytic efficiency of cellulosic enzymes by selectively putting the substrate (a wide range of poly- and oligo-saccharides) and enzyme into close contact. In the present study we carried out an atomistic rationalization of the molecular determinants of ligand specificity for a family 11 CBM from thermophilic Clostridium thermocellum [CtCBM11 (C. thermocellum CBM11)], based on a NMR and molecular modelling approach. We have determined the NMR solution structure of CtCBM11 at 25°C and 50°C and derived information on the residues of the protein that are involved in ligand recognition and on the influence of the length of the saccharide chain on binding. We obtained models of the CtCBM11-cellohexaose and CtCBM11-cellotetraose complexes by docking in accordance with the NMR experimental data. Specific ligand-protein CH-π and Van der Waals interactions were found to be determinant for the stability of the complexes and for defining specificity. Using the order parameters derived from backbone dynamics analysis in the presence and absence of ligand and at 25°C and 50°C, we determined that the protein's backbone conformational entropy is slightly positive. This data in combination with the negative binding entropy calculated from ITC (isothermal titration calorimetry) studies supports a selection mechanism where a rigid protein selects a defined oligosaccharide conformation.
Collapse
|
176
|
Rashamuse K, Ronneburg T, Sanyika W, Mathiba K, Mmutlane E, Brady D. Metagenomic mining of feruloyl esterases from termite enteric flora. Appl Microbiol Biotechnol 2013; 98:727-37. [DOI: 10.1007/s00253-013-4909-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/20/2013] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
|
177
|
Metz B, Mojzita D, Herold S, Kubicek CP, Richard P, Seiboth B. A novel L-xylulose reductase essential for L-arabinose catabolism in Trichoderma reesei. Biochemistry 2013; 52:2453-60. [PMID: 23506391 PMCID: PMC3623455 DOI: 10.1021/bi301583u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
l-Xylulose reductases belong
to the superfamily of short
chain dehydrogenases and reductases (SDRs) and catalyze the NAD(P)H-dependent
reduction of l-xylulose to xylitol in l-arabinose
and glucuronic acid catabolism. Here we report the identification
of a novel l-xylulose reductase LXR3 in the fungus Trichoderma reesei by a bioinformatic approach in combination
with a functional analysis. LXR3, a 31 kDa protein, catalyzes the
reduction of l-xylulose to xylitol via NADPH and is also
able to convert d-xylulose, d-ribulose, l-sorbose, and d-fructose to their corresponding polyols.
Transcription of lxr3 is specifically induced by l-arabinose and l-arabitol. Deletion of lxr3 affects growth on l-arabinose and l-arabitol and
reduces total NADPH-dependent LXR activity in cell free extracts.
A phylogenetic analysis of known l-xylulose reductases shows
that LXR3 is phylogenetically different from the Aspergillus
nigerl-xylulose reductase LxrA and, moreover, that
all identified true l-xylulose reductases belong to different
clades within the superfamily of SDRs. This indicates that the enzymes
responsible for the reduction of l-xylulose in l-arabinose and glucuronic acid catabolic pathways have evolved independently
and that even the fungal LXRs of the l-arabinose catabolic
pathway have evolved in different clades of the superfamily of SDRs.
Collapse
Affiliation(s)
- Benjamin Metz
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
178
|
Blifernez-Klassen O, Klassen V, Doebbe A, Kersting K, Grimm P, Wobbe L, Kruse O. Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii. Nat Commun 2013; 3:1214. [PMID: 23169055 DOI: 10.1038/ncomms2210] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/15/2012] [Indexed: 12/29/2022] Open
Abstract
Plants convert sunlight to biomass, which is primarily composed of lignocellulose, the most abundant natural biopolymer and a potential feedstock for fuel and chemical production. Cellulose assimilation has so far only been described for heterotrophic organisms that rely on photosynthetically active primary producers of organic compounds. Among phototrophs, the unicellular green microalga Chlamydomonas reinhardtii is widely known as one of the best established model organisms. It occupies many habitats, including aquatic and soil ecosystems. This ubiquity underscores the versatile metabolic properties of this microorganism. Here we present yet another paradigm of adaptation for C. reinhardtii, highlighting its photoheterotrophic ability to utilize cellulose for growth in the absence of other carbon sources. When grown under CO(2)-limiting conditions in the light, secretion of endo-β-1,4-glucanases by the cell causes digestion of exogenous cellulose, followed by cellobiose uptake and assimilation. Phototrophic microbes like C. reinhardtii may thus serve as biocatalysts for cellulosic biofuel production.
Collapse
Affiliation(s)
- Olga Blifernez-Klassen
- Department of Biology, Algae Biotechnology and Bioenergy-Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|
179
|
Kubicek CP. Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol 2013; 163:133-42. [PMID: 22750088 PMCID: PMC3568919 DOI: 10.1016/j.jbiotec.2012.05.020] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 01/07/2023]
Abstract
Recent progress and improvement in "-omics" technologies has made it possible to study the physiology of organisms by integrated and genome-wide approaches. This bears the advantage that the global response, rather than isolated pathways and circuits within an organism, can be investigated ("systems biology"). The sequencing of the genome of Trichoderma reesei (teleomorph Hypocrea jecorina), a fungus that serves as a major producer of biomass-degrading enzymes for the use of renewable lignocellulosic material towards production of biofuels and biorefineries, has offered the possibility to study this organism and its enzyme production on a genome wide scale. In this review, I will highlight the use of genomics, transcriptomics, proteomics and metabolomics towards an improved and novel understanding of the biochemical processes that involve in the massive overproduction of secreted proteins.
Collapse
|
180
|
Abstract
Many microorganisms contain cellulases that are important for plant cell wall degradation and overall soil ecosystem functioning. At present, we have extensive biochemical knowledge of cellulases but little is known about the phylogenetic distribution of these enzymes. To address this, we analyzed the distribution of 21,985 genes encoding proteins related to cellulose utilization in 5,123 sequenced bacterial genomes. First, we identified the distribution of glycoside hydrolases involved in cellulose utilization and synthesis at different taxonomic levels, from the phylum to the strain. Cellulose degradation/utilization capabilities appeared in nearly all major groups and resulted in strains displaying various enzyme gene combinations. Potential cellulose degraders, having both cellulases and β-glucosidases, constituted 24% of all genomes whereas potential opportunistic strains, having β-glucosidases only, accounted for 56%. Finally, 20% of the bacteria have no relevant enzymes and do not rely on cellulose utilization. The latter group was primarily connected to specific bacterial lifestyles like autotrophy and parasitism. Cellulose degraders, as well as opportunists, have multiple enzymes with similar functions. However, the potential degraders systematically harbor about twice more β-glucosidases than their potential opportunistic relatives. Although scattered, the distribution of functional types, in bacterial lineages, is not random but mostly follows a Brownian motion evolution model. Degraders form clusters of relatives at the species level, whereas opportunists are clustered at the genus level. This information can form a mechanistic basis for the linking of changes in microbial community composition to soil ecosystem processes.
Collapse
|
181
|
Abstract
Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high-throughput analysis of nucleotides, proteins, and increasingly carbohydrates. Using microarrays, the abundance of and interactions between hundreds and thousands of molecules can be assessed simultaneously using very small amounts of analytes. Here we show that carbohydrate microarrays are multifunctional tools for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities.
Collapse
|
182
|
Luís AS, Venditto I, Temple MJ, Rogowski A, Baslé A, Xue J, Knox JP, Prates JAM, Ferreira LMA, Fontes CMGA, Najmudin S, Gilbert HJ. Understanding how noncatalytic carbohydrate binding modules can display specificity for xyloglucan. J Biol Chem 2012; 288:4799-809. [PMID: 23229556 PMCID: PMC3576085 DOI: 10.1074/jbc.m112.432781] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Plant biomass is central to the carbon cycle and to environmentally sustainable industries exemplified by the biofuel sector. Plant cell wall degrading enzymes generally contain noncatalytic carbohydrate binding modules (CBMs) that fulfil a targeting function, which enhances catalysis. CBMs that bind β-glucan chains often display broad specificity recognizing β1,4-glucans (cellulose), β1,3-β1,4-mixed linked glucans and xyloglucan, a β1,4-glucan decorated with α1,6-xylose residues, by targeting structures common to the three polysaccharides. Thus, CBMs that recognize xyloglucan target the β1,4-glucan backbone and only accommodate the xylose decorations. Here we show that two closely related CBMs, CBM65A and CBM65B, derived from EcCel5A, a Eubacterium cellulosolvens endoglucanase, bind to a range of β-glucans but, uniquely, display significant preference for xyloglucan. The structures of the two CBMs reveal a β-sandwich fold. The ligand binding site comprises the β-sheet that forms the concave surface of the proteins. Binding to the backbone chains of β-glucans is mediated primarily by five aromatic residues that also make hydrophobic interactions with the xylose side chains of xyloglucan, conferring the distinctive specificity of the CBMs for the decorated polysaccharide. Significantly, and in contrast to other CBMs that recognize β-glucans, CBM65A utilizes different polar residues to bind cellulose and mixed linked glucans. Thus, Gln106 is central to cellulose recognition, but is not required for binding to mixed linked glucans. This report reveals the mechanism by which β-glucan-specific CBMs can distinguish between linear and mixed linked glucans, and show how these CBMs can exploit an extensive hydrophobic platform to target the side chains of decorated β-glucans.
Collapse
Affiliation(s)
- Ana S Luís
- CIISA, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity. Proc Natl Acad Sci U S A 2012; 109:20889-94. [PMID: 23213210 DOI: 10.1073/pnas.1212034109] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Noncatalytic carbohydrate binding modules (CBMs) are components of glycoside hydrolases that attack generally inaccessible substrates. CBMs mediate a two- to fivefold elevation in the activity of endo-acting enzymes, likely through increasing the concentration of the appended enzymes in the vicinity of the substrate. The function of CBMs appended to exo-acting glycoside hydrolases is unclear because their typical endo-binding mode would not fulfill a targeting role. Here we show that the Bacillus subtilis exo-acting β-fructosidase SacC, which specifically hydrolyses levan, contains the founding member of CBM family 66 (CBM66). The SacC-derived CBM66 (BsCBM66) targets the terminal fructosides of the major fructans found in nature. The crystal structure of BsCBM66 in complex with ligands reveals extensive interactions with the terminal fructose moiety (Fru-3) of levantriose but only limited hydrophobic contacts with Fru-2, explaining why the CBM displays broad specificity. Removal of BsCBM66 from SacC results in a ~100-fold reduction in activity against levan. The truncated enzyme functions as a nonspecific β-fructosidase displaying similar activity against β-2,1- and β-2,6-linked fructans and their respective fructooligosaccharides. Conversely, appending BsCBM66 to BT3082, a nonspecific β-fructosidase from Bacteroides thetaiotaomicron, confers exolevanase activity on the enzyme. We propose that BsCBM66 confers specificity for levan, a branched fructan, through an "avidity" mechanism in which the CBM and the catalytic module target the termini of different branches of the same polysaccharide molecule. This report identifies a unique mechanism by which CBMs modulate enzyme function, and shows how specificity can be tailored by integrating nonspecific catalytic and binding modules into a single enzyme.
Collapse
|
184
|
Calderón-Cortés N, Quesada M, Watanabe H, Cano-Camacho H, Oyama K. Endogenous Plant Cell Wall Digestion: A Key Mechanism in Insect Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2012. [DOI: 10.1146/annurev-ecolsys-110411-160312] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prevailing view that insects lack endogenous enzymes for plant cell wall (PCW) digestion had led to the hypothesis that PCW digestion evolved independently in different insect taxa through the establishment of symbiotic relationships with microorganisms. However, recent studies reporting endogenous PCW-degrading genes and enzymes for several insects, including phylogenetically basal insects and closely related arthropod groups, challenge this hypothesis. Here, we summarize the molecular and biochemical evidence on the mechanisms of PCW digestion in insects to analyze its evolutionary pathways. The evidence reveals that the symbiotic-independent mechanism may be the ancestral mechanism for PCW digestion. We discuss the implications of this alternative hypothesis in the evolution of plant-insect interactions and suggest that changes in the composition of lignocellulolytic complexes were involved in the evolution of feeding habits and diet specializations in insects, playing important roles in the evolution of plant-insect interactions and in the diversification of insects.
Collapse
Affiliation(s)
- Nancy Calderón-Cortés
- Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), 58190, Michoacán, México;, ,
| | - Mauricio Quesada
- Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), 58190, Michoacán, México;, ,
| | - Hirofumi Watanabe
- Insect-Microbe Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Horacio Cano-Camacho
- Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, 58262, Michoacán, México
| | - Ken Oyama
- Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México (UNAM), 58190, Michoacán, México;, ,
| |
Collapse
|
185
|
Pedersen HL, Fangel JU, McCleary B, Ruzanski C, Rydahl MG, Ralet MC, Farkas V, von Schantz L, Marcus SE, Andersen MCF, Field R, Ohlin M, Knox JP, Clausen MH, Willats WGT. Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research. J Biol Chem 2012; 287:39429-38. [PMID: 22988248 PMCID: PMC3501085 DOI: 10.1074/jbc.m112.396598] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/10/2012] [Indexed: 12/13/2022] Open
Abstract
Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.
Collapse
Affiliation(s)
- Henriette L. Pedersen
- From the Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Jonatan U. Fangel
- From the Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Barry McCleary
- Megazyme International Ireland Ltd., Bray Business Park, Bray, County Wicklow, Ireland
| | - Christian Ruzanski
- the John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | - Maja G. Rydahl
- From the Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark
| | | | - Vladimir Farkas
- the Institute of Chemistry, Centre for Glycobiology, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Laura von Schantz
- the Department of Immunotechnology, Lund University, BMC D13, S-22184 Lund, Sweden
| | - Susan E. Marcus
- the Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom, and
| | - Mathias C. F. Andersen
- the Center for Nanomedicine and Theranostics and Department of Chemistry, Technical University of Denmark, Building 201, 2800 Kongens Lyngby, Denmark
| | - Rob Field
- the John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | - Mats Ohlin
- the Department of Immunotechnology, Lund University, BMC D13, S-22184 Lund, Sweden
| | - J. Paul Knox
- the Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom, and
| | - Mads H. Clausen
- the Center for Nanomedicine and Theranostics and Department of Chemistry, Technical University of Denmark, Building 201, 2800 Kongens Lyngby, Denmark
| | - William G. T. Willats
- From the Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark
| |
Collapse
|
186
|
Abstract
The recalcitrance of the cell wall to enzymatic hydrolysis represents one of the greatest challenges for using biomass to replace the petroleum as a feedstock for fuels and chemicals. Cell walls are complex in architecture and composition, posing a biochemical challenge for the development of efficient enzymes to release the sugars from the polysaccharide components. The complex composition of the polymers that constitute the cell wall requires a mixture of enzymes to hydrolyze the different glycosidic bonds present in biomass. The improvement of the properties of biomass, in turn, requires the screening of large populations of plants in order to identify markers associated with saccharification potential or pinpoint the genes that regulate recalcitrance. The improvement of both, enzymes and biomass together, requires the capacity to deal with large numbers of variables in a combinatorial approach. We have developed a high-throughput system that allows the determination of cellulolytic activity in a 96-well plate format by automatically handling biomass materials, carrying out hydrolytic reactions, and determining the release of reducing sugars. This platform consists of a purpose-made robot that grinds, formats, and dispenses precise amounts of solids into 96-well plates, and a liquid-handling station specifically designed to carry out pretreatments, hydrolysis, and the determination of released reducing sugar equivalents using a colorimetric assay. These modules can be used individually or in combination according to the function needed. Here we show some examples of the capabilities of the platforms in terms of enzyme and biomass evaluation, as well as combining the robot with off-line analytical tools.
Collapse
|
187
|
Zhang M, Wu SC, Zhou W, Xu B. Imaging and Measuring Single-Molecule Interaction between a Carbohydrate-Binding Module and Natural Plant Cell Wall Cellulose. J Phys Chem B 2012; 116:9949-56. [DOI: 10.1021/jp304686q] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mengmeng Zhang
- Single Molecule Study Laboratory,
Faculty of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia 30602, United
States
| | - Sheng-Cheng Wu
- Complex Carbohydrate
Research
Center and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Wen Zhou
- Department of Chemical Engineering, Michigan Tech University, Houghton, Michigan 49931,
United States
| | - Bingqian Xu
- Single Molecule Study Laboratory,
Faculty of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia 30602, United
States
| |
Collapse
|
188
|
Kaur H, Shaker K, Heinzel N, Ralph J, Gális I, Baldwin IT. Environmental stresses of field growth allow cinnamyl alcohol dehydrogenase-deficient Nicotiana attenuata plants to compensate for their structural deficiencies. PLANT PHYSIOLOGY 2012; 159:1545-70. [PMID: 22645069 PMCID: PMC3425196 DOI: 10.1104/pp.112.196717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 05/03/2012] [Indexed: 05/02/2023]
Abstract
The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants.
Collapse
Affiliation(s)
| | | | | | - John Ralph
- Department of Molecular Ecology (H.K., N.H., I.G., I.T.B.) and Department of Biosynthesis/Nuclear Magnetic Resonance (K.S.), Max-Planck Institute for Chemical Ecology, Jena 07745, Germany; Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706 (J.R.); and Institute of Plant Science and Resources, Okayama University, Okayama 710–0046, Japan (I.G.)
| | - Ivan Gális
- Department of Molecular Ecology (H.K., N.H., I.G., I.T.B.) and Department of Biosynthesis/Nuclear Magnetic Resonance (K.S.), Max-Planck Institute for Chemical Ecology, Jena 07745, Germany; Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706 (J.R.); and Institute of Plant Science and Resources, Okayama University, Okayama 710–0046, Japan (I.G.)
| | - Ian T. Baldwin
- Department of Molecular Ecology (H.K., N.H., I.G., I.T.B.) and Department of Biosynthesis/Nuclear Magnetic Resonance (K.S.), Max-Planck Institute for Chemical Ecology, Jena 07745, Germany; Department of Biochemistry and Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706 (J.R.); and Institute of Plant Science and Resources, Okayama University, Okayama 710–0046, Japan (I.G.)
| |
Collapse
|
189
|
Cantarel BL, Lombard V, Henrissat B. Complex carbohydrate utilization by the healthy human microbiome. PLoS One 2012; 7:e28742. [PMID: 22719820 PMCID: PMC3374616 DOI: 10.1371/journal.pone.0028742] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/14/2011] [Indexed: 12/13/2022] Open
Abstract
The various ecological habitats in the human body provide microbes a wide array of nutrient sources and survival challenges. Advances in technology such as DNA sequencing have allowed a deeper perspective into the molecular function of the human microbiota than has been achievable in the past. Here we aimed to examine the enzymes that cleave complex carbohydrates (CAZymes) in the human microbiome in order to determine (i) whether the CAZyme profiles of bacterial genomes are more similar within body sites or bacterial families and (ii) the sugar degradation and utilization capabilities of microbial communities inhabiting various human habitats. Upon examination of 493 bacterial references genomes from 12 human habitats, we found that sugar degradation capabilities of taxa are more similar to others in the same bacterial family than to those inhabiting the same habitat. Yet, the analysis of 520 metagenomic samples from five major body sites show that even when the community composition varies the CAZyme profiles are very similar within a body site, suggesting that the observed functional profile and microbial habitation have adapted to the local carbohydrate composition. When broad sugar utilization was compared within the five major body sites, the gastrointestinal track contained the highest potential for total sugar degradation, while dextran and peptidoglycan degradation were highest in oral and vaginal sites respectively. Our analysis suggests that the carbohydrate composition of each body site has a profound influence and probably constitutes one of the major driving forces that shapes the community composition and therefore the CAZyme profile of the local microbial communities, which in turn reflects the microbiome fitness to a body site.
Collapse
Affiliation(s)
- Brandi L Cantarel
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America.
| | | | | |
Collapse
|
190
|
Salama R, Alalouf O, Tabachnikov O, Zolotnitsky G, Shoham G, Shoham Y. The abp gene in Geobacillus stearothermophilus T-6 encodes a GH27 β-L-arabinopyranosidase. FEBS Lett 2012; 586:2436-42. [PMID: 22687242 DOI: 10.1016/j.febslet.2012.05.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/24/2012] [Accepted: 05/30/2012] [Indexed: 11/24/2022]
Abstract
In this study we demonstrate that the abp gene in Geobacillus stearothermophilus T-6 encodes a family 27 glycoside hydrolase β-L-arabinopyranosidase. The catalytic constants towards the chromogenic substrate pNP-β-L-arabinopyranoside were 0.8±0.1 mM, 6.6±0.3 s(-1), and 8.2±0.3 s(-1) mM(-1) for K(m), k(cat) and k(cat)/K(m), respectively. (13)C NMR spectroscopy unequivocally showed that Abp is capable of removing β-L-arabinopyranose residues from the natural arabino-polysaccharide, larch arabinogalactan. Most family 27 enzymes are active on galactose and contain a conserved Asp residue, whereas in Abp this residue is Ile67, which shifts the specificity of the enzyme towards arabinopyranoside.
Collapse
Affiliation(s)
- Rachel Salama
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | |
Collapse
|
191
|
Seiboth B, Karimi RA, Phatale PA, Linke R, Hartl L, Sauer DG, Smith KM, Baker SE, Freitag M, Kubicek CP. The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol 2012; 84:1150-64. [PMID: 22554051 PMCID: PMC3370264 DOI: 10.1111/j.1365-2958.2012.08083.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Trichoderma reesei is an industrial producer of enzymes that degrade lignocellulosic polysaccharides to soluble monomers, which can be fermented to biofuels. Here we show that the expression of genes for lignocellulose degradation are controlled by the orthologous T. reesei protein methyltransferase LAE1. In a lae1 deletion mutant we observed a complete loss of expression of all seven cellulases, auxiliary factors for cellulose degradation, β-glucosidases and xylanases were no longer expressed. Conversely, enhanced expression of lae1 resulted in significantly increased cellulase gene transcription. Lae1-modulated cellulase gene expression was dependent on the function of the general cellulase regulator XYR1, but also xyr1 expression was LAE1-dependent. LAE1 was also essential for conidiation of T. reesei. Chromatin immunoprecipitation followed by high-throughput sequencing ('ChIP-seq') showed that lae1 expression was not obviously correlated with H3K4 di- or trimethylation (indicative of active transcription) or H3K9 trimethylation (typical for heterochromatin regions) in CAZyme coding regions, suggesting that LAE1 does not affect CAZyme gene expression by directly modulating H3K4 or H3K9 methylation. Our data demonstrate that the putative protein methyltransferase LAE1 is essential for cellulase gene expression in T. reesei through mechanisms that remain to be identified.
Collapse
Affiliation(s)
- Bernhard Seiboth
- Institute of Chemical Engineering, University of Technology of ViennaGumpendorferstrasse 1a, A-1060 Vienna, Austria
| | - Razieh Aghcheh Karimi
- Institute of Chemical Engineering, University of Technology of ViennaGumpendorferstrasse 1a, A-1060 Vienna, Austria
| | - Pallavi A Phatale
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR 97331, USA
| | - Rita Linke
- Institute of Chemical Engineering, University of Technology of ViennaGumpendorferstrasse 1a, A-1060 Vienna, Austria,Austrian Center of Industrial Biotechnology (ACIB), c/o Institute of Chemical Engineering, University of Technology of ViennaGumpendorferstrasse 1a, A-1060 Vienna, Austria
| | - Lukas Hartl
- Institute of Chemical Engineering, University of Technology of ViennaGumpendorferstrasse 1a, A-1060 Vienna, Austria
| | - Dominik G Sauer
- Institute of Chemical Engineering, University of Technology of ViennaGumpendorferstrasse 1a, A-1060 Vienna, Austria
| | - Kristina M Smith
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR 97331, USA
| | - Scott E Baker
- Fungal Biotechnology Team, Chemical and Biological Process Development Group, Pacific Northwest National Laboratory902 Battelle Blvd., Richland, WA 99352, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR 97331, USA
| | - Christian P Kubicek
- Institute of Chemical Engineering, University of Technology of ViennaGumpendorferstrasse 1a, A-1060 Vienna, Austria,*For correspondence. E-mail ; Tel. (+43) 1 58801 166500; Fax (+43) 15880 117299
| |
Collapse
|
192
|
Effects of inflorescence stem structure and cell wall components on the mechanical strength of inflorescence stem in herbaceous peony. Int J Mol Sci 2012; 13:4993-5009. [PMID: 22606025 PMCID: PMC3344261 DOI: 10.3390/ijms13044993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 03/31/2012] [Accepted: 04/05/2012] [Indexed: 11/29/2022] Open
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is a traditional famous flower, but its poor inflorescence stem quality seriously constrains the development of the cut flower. Mechanical strength is an important characteristic of stems, which not only affects plant lodging, but also plays an important role in stem bend or break. In this paper, the mechanical strength, morphological indices and microstructure of P. lactiflora development inflorescence stems were measured and observed. The results showed that the mechanical strength of inflorescence stems gradually increased, and that the diameter of inflorescence stem was a direct indicator in estimating mechanical strength. Simultaneously, with the development of inflorescence stem, the number of vascular bundles increased, the vascular bundle was arranged more densely, the sclerenchyma cell wall thickened, and the proportion of vascular bundle and pith also increased. On this basis, cellulose and lignin contents were determined, PlCesA3, PlCesA6 and PlCCoAOMT were isolated and their expression patterns were examined including PlPAL. The results showed that cellulose was not strictly correlated with the mechanical strength of inflorescence stem, and lignin had a significant impact on it. In addition, PlCesA3 and PlCesA6 were not key members in cellulose synthesis of P. lactiflora and their functions were also different, but PlPAL and PlCCoAOMT regulated the lignin synthesis of P. lactiflora. These data indicated that PlPAL and PlCCoAOMT could be applied to improve the mechanical strength of P. lactiflora inflorescence stem in genetic engineering.
Collapse
|
193
|
Thomas F, Barbeyron T, Tonon T, Génicot S, Czjzek M, Michel G. Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ Microbiol 2012; 14:2379-94. [DOI: 10.1111/j.1462-2920.2012.02751.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
194
|
Biomass Converting Enzymes as Industrial Biocatalysts for Fuels and Chemicals: Recent Developments. Catalysts 2012. [DOI: 10.3390/catal2020244] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
195
|
Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains. Proc Natl Acad Sci U S A 2012; 109:6537-42. [PMID: 22492980 DOI: 10.1073/pnas.1117686109] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The degradation of the plant cell wall by glycoside hydrolases is central to environmentally sustainable industries. The major polysaccharides of the plant cell wall are cellulose and xylan, a highly decorated β-1,4-xylopyranose polymer. Glycoside hydrolases displaying multiple catalytic functions may simplify the enzymes required to degrade plant cell walls, increasing the industrial potential of these composite structures. Here we test the hypothesis that glycoside hydrolase family 43 (GH43) provides a suitable scaffold for introducing additional catalytic functions into enzymes that target complex structures in the plant cell wall. We report the crystal structure of Humicola insolens AXHd3 (HiAXHd3), a GH43 arabinofuranosidase that hydrolyses O3-linked arabinose of doubly substituted xylans, a feature of the polysaccharide that is recalcitrant to degradation. HiAXHd3 displays an N-terminal five-bladed β-propeller domain and a C-terminal β-sandwich domain. The interface between the domains comprises a xylan binding cleft that houses the active site pocket. Substrate specificity is conferred by a shallow arabinose binding pocket adjacent to the deep active site pocket, and through the orientation of the xylan backbone. Modification of the rim of the active site introduces endo-xylanase activity, whereas the resultant enzyme variant, Y166A, retains arabinofuranosidase activity. These data show that the active site of HiAXHd3 is tuned to hydrolyse arabinofuranosyl or xylosyl linkages, and it is the topology of the distal regions of the substrate binding surface that confers specificity. This report demonstrates that GH43 provides a platform for generating bespoke multifunctional enzymes that target industrially significant complex substrates, exemplified by the plant cell wall.
Collapse
|
196
|
Van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes--factors affecting enzymes, conversion and synergy. Biotechnol Adv 2012; 30:1458-80. [PMID: 22445788 DOI: 10.1016/j.biotechadv.2012.03.002] [Citation(s) in RCA: 490] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/10/2012] [Accepted: 03/06/2012] [Indexed: 02/04/2023]
Abstract
Lignocellulose is a complex substrate which requires a variety of enzymes, acting in synergy, for its complete hydrolysis. These synergistic interactions between different enzymes have been investigated in order to design optimal combinations and ratios of enzymes for different lignocellulosic substrates that have been subjected to different pretreatments. This review examines the enzymes required to degrade various components of lignocellulose and the impact of pretreatments on the lignocellulose components and the enzymes required for degradation. Many factors affect the enzymes and the optimisation of the hydrolysis process, such as enzyme ratios, substrate loadings, enzyme loadings, inhibitors, adsorption and surfactants. Consideration is also given to the calculation of degrees of synergy and yield. A model is further proposed for the optimisation of enzyme combinations based on a selection of individual or commercial enzyme mixtures. The main area for further study is the effect of and interaction between different hemicellulases on complex substrates.
Collapse
Affiliation(s)
- J S Van Dyk
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa
| | | |
Collapse
|
197
|
Chauhan PS, Puri N, Sharma P, Gupta N. Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol 2012; 93:1817-30. [DOI: 10.1007/s00253-012-3887-5] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 11/28/2022]
|
198
|
Peña MJ, Tuomivaara ST, Urbanowicz BR, O'Neill MA, York WS. Methods for Structural Characterization of the Products of Cellulose- and Xyloglucan-Hydrolyzing Enzymes. Methods Enzymol 2012; 510:121-39. [DOI: 10.1016/b978-0-12-415931-0.00007-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
199
|
Gardner JG, Keating DH. Genetic and Functional Genomic Approaches for the Study of Plant Cell Wall Degradation in Cellvibrio japonicus. Methods Enzymol 2012; 510:331-47. [DOI: 10.1016/b978-0-12-415931-0.00018-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
200
|
Moraïs S, Lamed R, Bayer EA. Affinity electrophoresis as a method for determining substrate-binding specificity of carbohydrate-active enzymes for soluble polysaccharides. Methods Mol Biol 2012; 908:119-127. [PMID: 22843395 DOI: 10.1007/978-1-61779-956-3_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Affinity electrophoresis is a simple and rapid tool for the analysis of protein-binding affinities to soluble polysaccharides. This approach is particularly suitable for the characterization of the carbohydrate-active enzymes that contain a carbohydrate-binding module and for their mutants and chimeras. Knowledge of the binding characteristics of these enzymes can be the first step to elucidate the enzymatic activity of a putative enzyme; moreover in some cases, enzymes are able to bind polysaccharides targets other than their specified substrate, and this knowledge can be essential to understand the basics of the intrinsic mechanism of these enzymes in their natural environment.
Collapse
Affiliation(s)
- Sarah Moraïs
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|