151
|
Stahl E, Hilfiker O, Reymond P. Plant-arthropod interactions: who is the winner? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:703-728. [PMID: 29160609 DOI: 10.1111/tpj.13773] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 05/17/2023]
Abstract
Herbivorous arthropods have interacted with plants for millions of years. During feeding they release chemical cues that allow plants to detect the attack and mount an efficient defense response. A signaling cascade triggers the expression of hundreds of genes, which encode defensive proteins and enzymes for synthesis of toxic metabolites. This direct defense is often complemented by emission of volatiles that attract beneficial parasitoids. In return, arthropods have evolved strategies to interfere with plant defenses, either by producing effectors to inhibit detection and downstream signaling steps, or by adapting to their detrimental effect. In this review, we address the current knowledge on the molecular and chemical dialog between plants and herbivores, with an emphasis on co-evolutionary aspects.
Collapse
Affiliation(s)
- Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Olivier Hilfiker
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
152
|
Hamza R, Pérez-Hedo M, Urbaneja A, Rambla JL, Granell A, Gaddour K, Beltrán JP, Cañas LA. Expression of two barley proteinase inhibitors in tomato promotes endogenous defensive response and enhances resistance to Tuta absoluta. BMC PLANT BIOLOGY 2018; 18:24. [PMID: 29370757 PMCID: PMC5785808 DOI: 10.1186/s12870-018-1240-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/17/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Plants and insects have coexisted for million years and evolved a set of interactions which affect both organisms at different levels. Plants have developed various morphological and biochemical adaptations to cope with herbivores attacks. However, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) has become the major pest threatening tomato crops worldwide and without the appropriated management it can cause production losses between 80 to 100%. RESULTS The aim of this study was to investigate the in vivo effect of a serine proteinase inhibitor (BTI-CMe) and a cysteine proteinase inhibitor (Hv-CPI2) from barley on this insect and to examine the effect their expression has on tomato defensive responses. We found that larvae fed on tomato transgenic plants co-expressing both proteinase inhibitors showed a notable reduction in weight. Moreover, only 56% of these larvae reached the adult stage. The emerged adults showed wings deformities and reduced fertility. We also investigated the effect of proteinase inhibitors ingestion on the insect digestive enzymes. Our results showed a decrease in larval trypsin activity. Transgenes expression had no harmful effect on Nesidiocoris tenuis (Reuter) (Heteroptera: Miridae), a predator of Tuta absoluta, despite transgenic tomato plants attracted the mirid. We also found that barley cystatin expression promoted plant defense by inducing the expression of the tomato endogenous wound inducible Proteinase inhibitor 2 (Pin2) gene, increasing the production of glandular trichomes and altering the emission of volatile organic compounds. CONCLUSION Our results demonstrate the usefulness of the co-expression of different proteinase inhibitors for the enhancement of plant resistance to Tuta absoluta.
Collapse
Affiliation(s)
- Rim Hamza
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). Ciudad Politécnica de la Innovación Edf, 8E. Av. Ingeniero Fausto Elio sn, 46022, Valencia, Spain
| | - Meritxell Pérez-Hedo
- Universitat Jaume I (UJI). Departament de Ciències Agràries i del Medi Natural, Unitat Associada d'Entomologia UJI-IVIA, Campus del Riu Sec, E-12071, Castelló de la Plana, Spain
- Instituto Valenciano de Investigaciones Agrarias (IVIA). Centro de Protección Vegetal y Biotecnología, Unidad Asociada de Entomología UJI-IVIA, Carretera CV-315, Km 10,7, 46113, Moncada Valencia, Spain
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA). Centro de Protección Vegetal y Biotecnología, Unidad Asociada de Entomología UJI-IVIA, Carretera CV-315, Km 10,7, 46113, Moncada Valencia, Spain
| | - José L Rambla
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). Ciudad Politécnica de la Innovación Edf, 8E. Av. Ingeniero Fausto Elio sn, 46022, Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). Ciudad Politécnica de la Innovación Edf, 8E. Av. Ingeniero Fausto Elio sn, 46022, Valencia, Spain
| | - Kamel Gaddour
- Research Unit of Genome, Immunodiagnostics and Valorization, ISBM, University of Monastir, Monastir, Tunisia
| | - José P Beltrán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). Ciudad Politécnica de la Innovación Edf, 8E. Av. Ingeniero Fausto Elio sn, 46022, Valencia, Spain
| | - Luis A Cañas
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). Ciudad Politécnica de la Innovación Edf, 8E. Av. Ingeniero Fausto Elio sn, 46022, Valencia, Spain.
| |
Collapse
|
153
|
Seo JK, Kim MK, Kwak HR, Choi HS, Nam M, Choe J, Choi B, Han SJ, Kang JH, Jung C. Molecular dissection of distinct symptoms induced by tomato chlorosis virus and tomato yellow leaf curl virus based on comparative transcriptome analysis. Virology 2018; 516:1-20. [PMID: 29316505 DOI: 10.1016/j.virol.2018.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/06/2017] [Accepted: 01/02/2018] [Indexed: 01/26/2023]
Abstract
The viral infection of plants may cause various physiological symptoms associated with the reprogramming of plant gene expression. However, the molecular mechanisms and associated genes underlying disease symptom development in plants infected with viruses are largely unknown. In this study, we employed RNA sequencing for in-depth molecular characterization of the transcriptional changes associated with the development of distinct symptoms induced by tomato chlorosis virus (ToCV) and tomato yellow leaf curl virus (TYLCV) in tomato. Comparative analysis of differentially expressed genes revealed that ToCV and TYLCV induced distinct transcriptional changes in tomato and resulted in the identification of important genes responsible for the development of symptoms of ToCV (i.e., chlorosis and anthocyanin accumulation) and TYLCV (i.e., yellowing, stunted growth, and leaf curl). Our comprehensive transcriptome analysis can provide molecular strategies to reduce the severity of disease symptoms as well as new insights for the development of virus-resistant crops.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| | - Mi-Kyeong Kim
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Moon Nam
- SEEDERS Inc., Daejeon 34015, Republic of Korea
| | | | - Boram Choi
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Soo-Jung Han
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Jin-Ho Kang
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
154
|
Jonckheere W, Dermauw W, Khalighi M, Pavlidi N, Reubens W, Baggerman G, Tirry L, Menschaert G, Kant MR, Vanholme B, Van Leeuwen T. A Gene Family Coding for Salivary Proteins (SHOT) of the Polyphagous Spider Mite Tetranychus urticae Exhibits Fast Host-Dependent Transcriptional Plasticity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:112-124. [PMID: 29094648 DOI: 10.1094/mpmi-06-17-0139-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The salivary protein repertoire released by the herbivorous pest Tetranychus urticae is assumed to hold keys to its success on diverse crops. We report on a spider mite-specific protein family that is expanded in T. urticae. The encoding genes have an expression pattern restricted to the anterior podocephalic glands, while peptide fragments were found in the T. urticae secretome, supporting the salivary nature of these proteins. As peptide fragments were identified in a host-dependent manner, we designated this family as the SHOT (secreted host-responsive protein of Tetranychidae) family. The proteins were divided in three groups based on sequence similarity. Unlike TuSHOT3 genes, TuSHOT1 and TuSHOT2 genes were highly expressed when feeding on a subset of family Fabaceae, while expression was depleted on other hosts. TuSHOT1 and TuSHOT2 expression was induced within 24 h after certain host transfers, pointing toward transcriptional plasticity rather than selection as the cause. Transfer from an 'inducer' to a 'noninducer' plant was associated with slow yet strong downregulation of TuSHOT1 and TuSHOT2, occurring over generations rather than hours. This asymmetric on and off regulation points toward host-specific effects of SHOT proteins, which is further supported by the diversity of SHOT genes identified in Tetranychidae with a distinct host repertoire.
Collapse
Affiliation(s)
- Wim Jonckheere
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- 2 Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Wannes Dermauw
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Mousaalreza Khalighi
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Nena Pavlidi
- 2 Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Wim Reubens
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Geert Baggerman
- 3 Center for Proteomics (CFP), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- 4 Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - Luc Tirry
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Gerben Menschaert
- 5 Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University
| | - Merijn R Kant
- 6 Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam
| | - Bartel Vanholme
- 7 Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Gent, Belgium; and
- 8 Centre for Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium
| | - Thomas Van Leeuwen
- 1 Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
- 2 Department of Evolutionary Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
155
|
Saade S, Kutlu B, Draba V, Förster K, Schumann E, Tester M, Pillen K, Maurer A. A donor-specific QTL, exhibiting allelic variation for leaf sheath hairiness in a nested association mapping population, is located on barley chromosome 4H. PLoS One 2017; 12:e0189446. [PMID: 29216333 PMCID: PMC5720540 DOI: 10.1371/journal.pone.0189446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/25/2017] [Indexed: 12/02/2022] Open
Abstract
Leaf sheath hairiness is a morphological trait associated with various advantages, including tolerance to both abiotic and biotic stresses, thereby increasing yield. Understanding the genetic basis of this trait in barley can therefore improve the agronomic performance of this economically important crop. We scored leaf sheath hairiness in a two-year field trial in 1,420 BC1S3 lines from the wild barley nested association mapping (NAM) population HEB-25. Leaf sheath hairiness segregated in six out of 25 families with the reference parent Barke being glabrous. We detected the major hairy leaf sheath locus Hs (syn. Hsh) on chromosome 4H (111.3 cM) with high precision. The effects of the locus varied across the six different wild barley donors, with donor of HEB family 11 conferring the highest score of leaf sheath hairiness. Due to the high mapping resolution present in HEB-25, we were able to discuss physically linked pentatricopeptide repeat genes and subtilisin-like proteases as potential candidate genes underlying this locus. In this study, we proved that HEB-25 provides an appropriate tool to further understand the genetic control of leaf sheath hairiness in barley. Furthermore, our work represents a perfect starting position to clone the gene responsible for the 4H locus observed.
Collapse
Affiliation(s)
- Stephanie Saade
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Burcu Kutlu
- Ege University, Department of Biotechnology, Erzene, Bornova/İzmir, Turkey
| | - Vera Draba
- Institute of Agricultural and Nutritional Sciences, Department of Plant Breeding, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Karin Förster
- Institute of Agricultural and Nutritional Sciences, Department of Agronomy and Organic Farming, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Erika Schumann
- Institute of Agricultural and Nutritional Sciences, Department of Plant Breeding, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mark Tester
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Department of Plant Breeding, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Department of Plant Breeding, Martin Luther University Halle-Wittenberg, Halle, Germany
- * E-mail:
| |
Collapse
|
156
|
Barczak-Brzyżek A, Kiełkiewicz M, Górecka M, Kot K, Karpińska B, Filipecki M. Abscisic Acid Insensitive 4 transcription factor is an important player in the response of Arabidopsis thaliana to two-spotted spider mite (Tetranychus urticae) feeding. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:317-326. [PMID: 29210003 PMCID: PMC5727149 DOI: 10.1007/s10493-017-0203-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/24/2017] [Indexed: 05/04/2023]
Abstract
Plants growing in constantly changeable environmental conditions are compelled to evolve regulatory mechanisms to cope with biotic and abiotic stresses. Effective defence to invaders is largely connected with phytohormone regulation, resulting in the production of numerous defensive proteins and specialized metabolites. In our work, we elucidated the role of the Abscisic Acid Insensitive 4 (ABI4) transcription factor in the plant response to the two-spotted spider mite (TSSM). This polyphagous mite is one of the most destructive herbivores, which sucks mesophyll cells of numerous crop and wild plants. Compared to the wild-type (Col-0) Arabidopsis thaliana plants, the abi4 mutant demonstrated increased susceptibility to TSSM, reflected as enhanced female fecundity and greater frequency of mite leaf damage after trypan blue staining. Because ABI4 is regarded as an important player in the plastid-to-nucleus retrograde signalling process, we investigated the plastid envelope membrane dynamics using stroma-associated fluorescent marker. Our results indicated a clear increase in the number of stroma-filled tubular structures deriving from the plastid membrane (stromules) in the close proximity of the site of mite leaf damage, highlighting the importance of chloroplast-derived signals in the response to TSSM feeding activity.
Collapse
Affiliation(s)
| | | | | | - Karol Kot
- Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Barbara Karpińska
- Warsaw University of Life Sciences - SGGW, Warsaw, Poland
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | |
Collapse
|
157
|
Ximénez-Embún MG, Glas JJ, Ortego F, Alba JM, Castañera P, Kant MR. Drought stress promotes the colonization success of a herbivorous mite that manipulates plant defenses. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 73:297-315. [PMID: 29188401 PMCID: PMC5727147 DOI: 10.1007/s10493-017-0200-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/23/2017] [Indexed: 05/08/2023]
Abstract
Climate change is expected to bring longer periods of drought and this may affect the plant's ability to resist pests. We assessed if water deficit affects the tomato russet mite (TRM; Aculops lycopersici), a key tomato-pest. TRM thrives on tomato by suppressing the plant's jamonate defenses while these defenses typically are modulated by drought stress. We observed that the TRM population grows faster and causes more damage on drought-stressed plants. To explain this observation we measured several nutrients, phytohormones, defense-gene expression and the activity of defensive proteins in plants with or without drought stress or TRM. TRM increased the levels of total protein and several free amino acids. It also promoted the SA-response and upregulated the accumulation of jasmonates but down-regulated the downstream marker genes while promoting the activity of cysteine-but not serine-protease inhibitors, polyphenol oxidase and of peroxidase (POD). Drought stress, in turn, retained the down regulation of JA-marker genes and reduced the activity of serine protease inhibitors and POD, and altered the levels of some free-amino acids. When combined, drought stress antagonized the accumulation of POD and JA by TRM and synergized accumulation of free sugars and SA. Our data show that drought stress interacts with pest-induced primary and secondary metabolic changes and promotes pest performance.
Collapse
Affiliation(s)
- Miguel G Ximénez-Embún
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.
| | - Joris J Glas
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Felix Ortego
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Juan M Alba
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Pedro Castañera
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Merijn R Kant
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
158
|
Rioja C, Zhurov V, Bruinsma K, Grbic M, Grbic V. Plant-Herbivore Interactions: A Case of an Extreme Generalist, the Two-Spotted Spider Mite Tetranychus urticae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:935-945. [PMID: 28857675 DOI: 10.1094/mpmi-07-17-0168-cr] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-herbivore interactions evolved over long periods of time, resulting in an elaborate arms race between interacting species. While specialist herbivores evolved specific strategies to cope with the defenses of a limited number of hosts, our understanding of how generalist herbivores deal with the defenses of a plethora of diverse host plants is largely unknown. Understanding the interaction between a plant host and a generalist herbivore requires an understanding of the plant's mechanisms aimed at defending itself and the herbivore's mechanisms intended to counteract diverse defenses. In this review, we use the two-spotted spider mite (TSSM), Tetranychus urticae (Koch) as an example of a generalist herbivore, as this chelicerate pest has a staggering number of plant hosts. We first establish that the ability of TSSM to adapt to marginal hosts underlies its polyphagy and agricultural pest status. We then highlight our understanding of direct plant defenses against spider mite herbivory and review recent advances in uncovering mechanisms of spider mite adaptations to them. Finally, we discuss the adaptation process itself, as it allows TSSM to overcome initially effective plant defenses. A high-quality genome sequence and developing genetic tools, coupled with an ease of mite experimental selection to new hosts, make TSSM an outstanding system to study the evolution of host range, mechanisms of pest xenobiotic resistance and plant-herbivore interactions. In addition, knowledge of plant defense mechanisms that affect mite fitness are of practical importance, as it can lead to development of new control strategies against this important agricultural pest. In parallel, understanding mechanisms of mite counter adaptations to these defenses is required to maintain the efficacy of these control strategies in agricultural practices.
Collapse
Affiliation(s)
- Cristina Rioja
- 1 Department of Biology, The University of Western Ontario, London, ON, N6A5B7, Canada; and
| | - Vladimir Zhurov
- 1 Department of Biology, The University of Western Ontario, London, ON, N6A5B7, Canada; and
| | - Kristie Bruinsma
- 1 Department of Biology, The University of Western Ontario, London, ON, N6A5B7, Canada; and
| | - Miodrag Grbic
- 1 Department of Biology, The University of Western Ontario, London, ON, N6A5B7, Canada; and
- 2 University of La Rioja, Logrono, 26006, Spain
| | - Vojislava Grbic
- 1 Department of Biology, The University of Western Ontario, London, ON, N6A5B7, Canada; and
| |
Collapse
|
159
|
Lee G, Joo Y, Kim SG, Baldwin IT. What happens in the pith stays in the pith: tissue-localized defense responses facilitate chemical niche differentiation between two spatially separated herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:414-425. [PMID: 28805339 DOI: 10.1111/tpj.13663] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 05/09/2023]
Abstract
Herbivore attack is known to elicit systemic defense responses that spread throughout the host plant and influence the performance of other herbivores. While these plant-mediated indirect competitive interactions are well described, and the co-existence of herbivores from different feeding guilds is common, the mechanisms of co-existence are poorly understood. In both field and glasshouse experiments with a native tobacco, Nicotiana attenuata, we found no evidence of negative interactions when plants were simultaneously attacked by two spatially separated herbivores: a leaf chewer Manduca sexta and a stem borer Trichobaris mucorea. T. mucorea attack elicited jasmonic acid (JA) and jasmonoyl-l-isoleucine bursts in the pith of attacked stems similar to those that occur in leaves when M. sexta attacks N. attenuata leaves. Pith chlorogenic acid (CGA) levels increased 1000-fold to levels 6-fold higher than leaf levels after T. mucorea attack; these increases in pith CGA levels, which did not occur in M. sexta-attacked leaves, required JA signaling. With plants silenced in CGA biosynthesis (irHQT plants), CGA, as well as other caffeic acid conjugates, was demonstrated in both glasshouse and field experiments to function as a direct defense protecting piths against T. mucorea attack, but not against leaf chewers or sucking insects. T. mucorea attack does not systemically activate JA signaling in leaves, while M. sexta leaf-attack transiently induces detectable but minor pith JA levels that are dwarfed by local responses. We conclude that tissue-localized defense responses allow tissue-specialized herbivores to share the same host and occupy different chemical defense niches in the same hostplant.
Collapse
Affiliation(s)
- Gisuk Lee
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, Jena, D-07745, Germany
| |
Collapse
|
160
|
Wasternack C, Strnad M. Jasmonates are signals in the biosynthesis of secondary metabolites - Pathways, transcription factors and applied aspects - A brief review. N Biotechnol 2017; 48:1-11. [PMID: 29017819 DOI: 10.1016/j.nbt.2017.09.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/15/2022]
Abstract
Jasmonates (JAs) are signals in plant stress responses and development. One of the first observed and prominent responses to JAs is the induction of biosynthesis of different groups of secondary compounds. Among them are nicotine, isoquinolines, glucosinolates, anthocyanins, benzophenanthridine alkaloids, artemisinin, and terpenoid indole alkaloids (TIAs), such as vinblastine. This brief review describes modes of action of JAs in the biosynthesis of anthocyanins, nicotine, TIAs, glucosinolates and artemisinin. After introducing JA biosynthesis, the central role of the SCFCOI1-JAZ co-receptor complex in JA perception and MYB-type and MYC-type transcription factors is described. Brief comments are provided on primary metabolites as precursors of secondary compounds. Pathways for the biosynthesis of anthocyanin, nicotine, TIAs, glucosinolates and artemisinin are described with an emphasis on JA-dependent transcription factors, which activate or repress the expression of essential genes encoding enzymes in the biosynthesis of these secondary compounds. Applied aspects are discussed using the biotechnological formation of artemisinin as an example of JA-induced biosynthesis of secondary compounds in plant cell factories.
Collapse
Affiliation(s)
- Claus Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale) Germany; Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
161
|
Song S, Huang H, Wang J, Liu B, Qi T, Xie D. MYC5 is Involved in Jasmonate-Regulated Plant Growth, Leaf Senescence and Defense Responses. PLANT & CELL PHYSIOLOGY 2017; 58:1752-1763. [PMID: 29017003 DOI: 10.1093/pcp/pcx112] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Jasmonates (JAs), lipid-derived phytohormones, regulate plant growth, development and defenses against biotic stresses. CORONATINE INSENSITIVE1 perceives bioactive JA and recruits JASMONATE ZIM-DOMAIN (JAZ) proteins for ubiquitination and subsequent degradation via the 26S proteasome, which de-represses JAZ-targeted transcription factors that regulate diverse JA responses. Recent studies showed that the Arabidopsis basic helix-loop-helix transcription factor MYC5 interacts with JAZs and regulates stamen development. However, whether MYC5 mediates other JA responses is unclear. Here, we show that MYC5 functions redundantly with MYC2, MYC3 and MYC4 to modulate JA-regulated root growth inhibition and plant defenses against insect attack and pathogen infection, and that it positively regulates JA-induced leaf senescence. Our findings define MYC5 as an important regulator that is essential for diverse JA responses.
Collapse
Affiliation(s)
- Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Huang Huang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaojiao Wang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Tiancong Qi
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Daoxin Xie
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
162
|
Kersch-Becker MF, Kessler A, Thaler JS. Plant defences limit herbivore population growth by changing predator-prey interactions. Proc Biol Sci 2017; 284:20171120. [PMID: 28878062 PMCID: PMC5597831 DOI: 10.1098/rspb.2017.1120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/28/2017] [Indexed: 11/12/2022] Open
Abstract
Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators.
Collapse
Affiliation(s)
- Mônica F Kersch-Becker
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Animal Biology, University of Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer S Thaler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
163
|
Huchelmann A, Boutry M, Hachez C. Plant Glandular Trichomes: Natural Cell Factories of High Biotechnological Interest. PLANT PHYSIOLOGY 2017; 175:6-22. [PMID: 28724619 PMCID: PMC5580781 DOI: 10.1104/pp.17.00727] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/17/2017] [Indexed: 05/18/2023]
Abstract
Multicellular glandular trichomes are epidermal outgrowths characterized by the presence of a head made of cells that have the ability to secrete or store large quantities of specialized metabolites. Our understanding of the transcriptional control of glandular trichome initiation and development is still in its infancy. This review points to some central questions that need to be addressed to better understand how such specialized cell structures arise from the plant protodermis. A key and unique feature of glandular trichomes is their ability to synthesize and secrete large amounts, relative to their size, of a limited number of metabolites. As such, they qualify as true cell factories, making them interesting targets for metabolic engineering. In this review, recent advances regarding terpene metabolic engineering are highlighted, with a special focus on tobacco (Nicotiana tabacum). In particular, the choice of transcriptional promoters to drive transgene expression and the best ways to sink existing pools of terpene precursors are discussed. The bioavailability of existing pools of natural precursor molecules is a key parameter and is controlled by so-called cross talk between different biosynthetic pathways. As highlighted in this review, the exact nature and extent of such cross talk are only partially understood at present. In the future, awareness of, and detailed knowledge on, the biology of plant glandular trichome development and metabolism will generate new leads to tap the largely unexploited potential of glandular trichomes in plant resistance to pests and lead to the improved production of specialized metabolites with high industrial or pharmacological value.
Collapse
Affiliation(s)
- Alexandre Huchelmann
- Life Sciences Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Marc Boutry
- Life Sciences Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Charles Hachez
- Life Sciences Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
164
|
Gao S, Gao Y, Xiong C, Yu G, Chang J, Yang Q, Yang C, Ye Z. The tomato B-type cyclin gene, SlCycB2, plays key roles in reproductive organ development, trichome initiation, terpenoids biosynthesis and Prodenia litura defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:103-114. [PMID: 28716406 DOI: 10.1016/j.plantsci.2017.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 05/10/2023]
Abstract
Cyclins exist extensively in various plant species. Among them, B-type cyclins play important roles in the transition of G2-to-M. However, few B-type cyclins have been reported to participate in reproductive organ development and trichome formation. In this study, transgene analysis showed that SlCycB2 overexpression caused abnormal flower with the unclosed stamen, shortened style and aberrant pollen. In addition, nearly all non-glandular trichomes, as well as the glandular ones were disappeared. On the contrary, suppression of SlCycB2 could promote type III and type V trichomes formation. Detection of secondary metabolites indicated that the production of monoterpene and sesquiterpene were significantly decreased in SlCycB2-OE plants, which thus resulted in the reduction of the defense against Prodenia litura. Transcriptome profile demonstrated that the differentially expressed genes mainly participate in the biosynthesis of terpenes, cutin, suberine and wax. Furthermore, we identified several homologs of SlCycB2, SlCycB3, NtCycB2, AtCycB2, which have similar regulatory functions in trichome formation. These results indicate that SlCycB2 plays a critical role in reproductive organ development, multicellular trichome initiation, secondary metabolite biosynthesis and Prodenia litura defense in tomato. The similar roles of its homologs in multicellular trichome formation suggest that Solanaceous species may share common regulatory pathway.
Collapse
Affiliation(s)
- Shenghua Gao
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanna Gao
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Cheng Xiong
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Gang Yu
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jiang Chang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qihong Yang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
165
|
Du M, Zhao J, Tzeng DTW, Liu Y, Deng L, Yang T, Zhai Q, Wu F, Huang Z, Zhou M, Wang Q, Chen Q, Zhong S, Li CB, Li C. MYC2 Orchestrates a Hierarchical Transcriptional Cascade That Regulates Jasmonate-Mediated Plant Immunity in Tomato. THE PLANT CELL 2017; 29:1883-1906. [PMID: 28733419 PMCID: PMC5590496 DOI: 10.1105/tpc.16.00953] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 05/19/2023]
Abstract
The hormone jasmonate (JA), which functions in plant immunity, regulates resistance to pathogen infection and insect attack through triggering genome-wide transcriptional reprogramming in plants. We show that the basic helix-loop-helix transcription factor (TF) MYC2 in tomato (Solanum lycopersicum) acts downstream of the JA receptor to orchestrate JA-mediated activation of both the wounding and pathogen responses. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 655 MYC2-targeted JA-responsive genes. These genes are highly enriched in Gene Ontology categories related to TFs and the early response to JA, indicating that MYC2 functions at a high hierarchical level to regulate JA-mediated gene transcription. We also identified a group of MYC2-targeted TFs (MTFs) that may directly regulate the JA-induced transcription of late defense genes. Our findings suggest that MYC2 and its downstream MTFs form a hierarchical transcriptional cascade during JA-mediated plant immunity that initiates and amplifies transcriptional output. As proof of concept, we showed that during plant resistance to the necrotrophic pathogen Botrytis cinerea, MYC2 and the MTF JA2-Like form a transcription module that preferentially regulates wounding-responsive genes, whereas MYC2 and the MTF ETHYLENE RESPONSE FACTOR.C3 form a transcription module that preferentially regulates pathogen-responsive genes.
Collapse
Affiliation(s)
- Minmin Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiuhai Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - David T W Tzeng
- Partner State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yuanyuan Liu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianxia Yang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuo Huang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Silin Zhong
- Partner State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chuanyou Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong Province, China
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
166
|
Mao Y, Liu W, Chen X, Xu Y, Lu W, Hou J, Ni J, Wang Y, Wu L. Flower Development and Sex Determination between Male and Female Flowers in Vernicia fordii. FRONTIERS IN PLANT SCIENCE 2017; 8:1291. [PMID: 28775735 PMCID: PMC5517574 DOI: 10.3389/fpls.2017.01291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/07/2017] [Indexed: 05/30/2023]
Abstract
Vernicia fordii is a monoecious and diclinous species with male and female flowers on the same inflorescence. Low female to male flower ratio is one of the main reasons for low yield in this species. However, little is known of its floral development and sex determination. Here, according to the results of scanning electron microscopy and histological analysis, the floral development of V. fordii was divided into 12 stages and the first morphological divergence between the male and female flowers was found to occur at stage 7. The male flowers are always unisexual, but the female flowers present bisexual characteristics, with sterile stamen (staminode) restricted to pre-meiosis of mother sporogenous cells and cell death occurring at later development stages. To further elucidate the molecular mechanism underling sex determination at the divergence stage for male and female flowers, comparative transcriptome analysis was performed. In total, 56,065 unigenes were generated and 608 genes were differentially expressed between male and female flowers, among which 310 and 298 DEGs (differentially expressed genes) showed high expression levels in males and females, respectively. The transcriptome data showed that the sexual dimorphism of female flowers was affected by jasmonic acid, transcription factors, and some genes related to the floral meristem activity. Ten candidate genes showed consistent expression in the qRT-PCR validation and DEGs data. In this study, we provide developmental characterization and transcriptomic information for better understanding of the development of unisexual flowers and the regulatory networks underlying the mechanism of sex determination in V. fordii, which would be helpful in the molecular breeding of V. fordii to improve the yield output.
Collapse
Affiliation(s)
- Yingji Mao
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of SciencesHefei, China
- School of Life Science, University of Science and Technology of ChinaHefei, China
| | - Wenbo Liu
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of SciencesHefei, China
- School of Life Science, University of Science and Technology of ChinaHefei, China
| | - Xue Chen
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of SciencesHefei, China
- School of Life Science, University of Science and Technology of ChinaHefei, China
| | - Yang Xu
- Biotechnology Center, Anhui Agriculture UniversityHefei, China
| | - Weili Lu
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of SciencesHefei, China
- School of Life Science, University of Science and Technology of ChinaHefei, China
- School of Pharmacy, Anhui Medical UniversityHefei, China
| | - Jinyan Hou
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of SciencesHefei, China
| | - Jun Ni
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of SciencesHefei, China
| | - Yuting Wang
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of SciencesHefei, China
- School of Life Science, University of Science and Technology of ChinaHefei, China
- The Sericultural Research Institute, Anhui Academy of Agricultural ScienceHefei, China
| | - Lifang Wu
- Key Laboratory of Ion Beam Bioengineering, Institute of Technical biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of SciencesHefei, China
- School of Life Science, University of Science and Technology of ChinaHefei, China
| |
Collapse
|
167
|
Zhang M, Chen Y, Nie L, Jin X, Fu C, Yu L. Molecular, structural, and phylogenetic analyses of Taxus chinensis JAZs. Gene 2017; 620:66-74. [DOI: 10.1016/j.gene.2017.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/27/2017] [Accepted: 04/04/2017] [Indexed: 01/12/2023]
|
168
|
Sathuvalli V, Mehlenbacher SA, Smith DC. High-Resolution Genetic and Physical Mapping of the Eastern Filbert Blight Resistance Region in 'Jefferson' Hazelnut ( Corylus avellana L.). THE PLANT GENOME 2017; 10. [PMID: 28724074 DOI: 10.3835/plantgenome2016.12.0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Eastern filbert blight (EFB), caused by the pyrenomycete (Peck) E. Müller, is a devastating disease of European hazelnut ( L) in the US Pacific Northwest. A dominant allele at a single locus from the obsolete pollenizer 'Gasaway' confers a high level of resistance to EFB. To identify the gene responsible for resistance, we initiated map-based cloning efforts in a population of 1488 seedlings that segregated for resistance. Chromosome walking was initiated using primers designed from eight previously identified random amplified polymorphic DNA markers linked to resistance. The bacterial artificial chromosome (BAC) library was screened using the primer pairs in a polymerase chain reaction-based pooling and subpooling strategy. Here, we report construction of a high-resolution genetic map and a physical map of the resistance region. Further, we sequenced BACs in the resistance region and identified and annotated the coding sequences. In seven contigs <1 cM from the resistance locus, 233 genes were predicted. The putative genes were compared with sequences in GenBank using a BLASTP search. Fifty-one markers were placed on the high-resolution genetic map, including markers newly developed from the BACs. Segregation in the mapping population placed the resistance locus in a single contig of three BACs (43F13, 66C22, and 85B7). Two of the putative genes are in the p-loop NTPase and F-box super-families localized in a 135-kb BAC, which have previously been shown to have disease-resistance properties. Further mapping, complementation, and expression tests of the genes in these BACs is essential to confirm which confer resistance to EFB.
Collapse
|
169
|
Campos-Rivero G, Osorio-Montalvo P, Sánchez-Borges R, Us-Camas R, Duarte-Aké F, De-la-Peña C. Plant hormone signaling in flowering: An epigenetic point of view. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:16-27. [PMID: 28419906 DOI: 10.1016/j.jplph.2017.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/06/2017] [Accepted: 03/29/2017] [Indexed: 05/19/2023]
Abstract
Reproduction is one of the most important phases in an organism's lifecycle. In the case of angiosperm plants, flowering provides the major developmental transition from the vegetative to the reproductive stage, and requires genetic and epigenetic reprogramming to ensure the success of seed production. Flowering is regulated by a complex network of genes that integrate multiple environmental cues and endogenous signals so that flowering occurs at the right time; hormone regulation, signaling and homeostasis are very important in this process. Working alone or in combination, hormones are able to promote flowering by epigenetic regulation. Some plant hormones, such as gibberellins, jasmonic acid, abscisic acid and auxins, have important effects on chromatin compaction mediated by DNA methylation and histone posttranslational modifications, which hints at the role that epigenetic regulation may play in flowering through hormone action. miRNAs have been viewed as acting independently from DNA methylation and histone modification, ignoring their potential to interact with hormone signaling - including the signaling of auxins, gibberellins, ethylene, jasmonic acid, salicylic acid and others - to regulate flowering. Therefore, in this review we examine new findings about interactions between epigenetic mechanisms and key players in hormone signaling to coordinate flowering.
Collapse
Affiliation(s)
| | | | | | - Rosa Us-Camas
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mexico.
| | - Fátima Duarte-Aké
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mexico.
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mexico.
| |
Collapse
|
170
|
Jasmonate-induced biosynthesis of steroidal glycoalkaloids depends on COI1 proteins in tomato. Biochem Biophys Res Commun 2017; 489:206-210. [DOI: 10.1016/j.bbrc.2017.05.132] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 11/18/2022]
|
171
|
Vendemiatti E, Zsögön A, Silva GFFE, de Jesus FA, Cutri L, Figueiredo CRF, Tanaka FAO, Nogueira FTS, Peres LEP. Loss of type-IV glandular trichomes is a heterochronic trait in tomato and can be reverted by promoting juvenility. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:35-47. [PMID: 28483052 DOI: 10.1016/j.plantsci.2017.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 05/27/2023]
Abstract
Glandular trichomes are structures with widespread distribution and deep ecological significance. In the Solanum genus, type-IV glandular trichomes provide resistance to insect pests. The occurrence of these structures is, however, poorly described and controversial in cultivated tomato (Solanum lycopersicum). Optical and scanning electron microscopy were used to screen a series of well-known commercial tomato cultivars, revealing the presence of type-IV trichomes on embryonic (cotyledons) and juvenile leaves. A tomato line overexpressing the microRNA miR156, known to promote heterochronic development, and mutants affecting KNOX and CLAVATA3 genes possessed type-IV trichomes in adult leaves. A re-analysis of the Woolly (Wo) mutant, previously described as enhancing glandular trichome density, showed that this effect only occurs at the juvenile phase of vegetative development. Our results suggest the existence of at least two levels of regulation of multicellular trichome formation in tomato: one enhancing different types of trichomes, such as that controlled by the WOOLLY gene, and another dependent on developmental stage, which is fundamental for type-IV trichome formation. Their combined manipulation could represent an avenue for biotechnological engineering of trichome development in plants.
Collapse
Affiliation(s)
- Eloisa Vendemiatti
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Agustin Zsögön
- Departament of Plant Biology, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs s/n, 36570-900, Viçosa, MG, Brazil
| | - Geraldo Felipe Ferreira E Silva
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Frederico Almeida de Jesus
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Lucas Cutri
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Cassia Regina Fernandes Figueiredo
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Francisco André Ossamu Tanaka
- Departament of Phytopathology, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP),Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Fábio Tebaldi Silveira Nogueira
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Lázaro Eustáquio Pereira Peres
- Departament of Biological Sciences, Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
172
|
Escobar-Bravo R, Klinkhamer PG, Leiss KA. Induction of Jasmonic Acid-Associated Defenses by Thrips Alters Host Suitability for Conspecifics and Correlates with Increased Trichome Densities in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:622-634. [PMID: 28158865 PMCID: PMC5444573 DOI: 10.1093/pcp/pcx014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/20/2017] [Indexed: 05/04/2023]
Abstract
Plant defenses inducible by herbivorous arthropods can determine performance of subsequent feeding herbivores. We investigated how infestation of tomato (Solanum lycopersicum) plants with the Western flower thrips (Frankliniella occidentalis) alters host plant suitability and foraging decisions of their conspecifics. We explored the role of delayed-induced jasmonic acid (JA)-mediated plant defense responses in thrips preference by using the tomato mutant def-1, impaired in JA biosynthesis. In particular, we investigated the effect of thrips infestation on trichome-associated tomato defenses. The results showed that when offered a choice, thrips preferred non-infested plants over infested wild-type plants, while no differences were observed in def-1. Exogenous application of methyl jasmonate restored the repellency effect in def-1. Gene expression analysis showed induction of the JA defense signaling pathway in wild-type plants, while activating the ethylene signaling pathway in both genotypes. Activation of JA defenses led to increases in type-VI leaf glandular trichome densities in the wild type, augmenting the production of trichome-associated volatiles, i.e. terpenes. Our study revealed that plant-mediated intraspecific interactions between thrips are determined by JA-mediated defenses in tomato. We report that insects can alter not only trichome densities but also the allelochemicals produced therein, and that this response might depend on the magnitude and/or type of the induction.
Collapse
|
173
|
Huang H, Liu B, Liu L, Song S. Jasmonate action in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1349-1359. [PMID: 28158849 DOI: 10.1093/jxb/erw495] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phytohormones, including jasmonates (JAs), gibberellin, ethylene, abscisic acid, and auxin, integrate endogenous developmental cues with environmental signals to regulate plant growth, development, and defense. JAs are well- recognized lipid-derived stress hormones that regulate plant adaptations to biotic stresses, including herbivore attack and pathogen infection, as well as abiotic stresses, including wounding, ozone, and ultraviolet radiation. An increasing number of studies have shown that JAs also have functions in a remarkable number of plant developmental events, including primary root growth, reproductive development, and leaf senescence. Since the 1980s, details of the JA biosynthesis pathway, signaling pathway, and crosstalk during plant growth and development have been elucidated. Here, we summarize recent advances and give an updated overview of JA action and crosstalk in plant growth and development.
Collapse
Affiliation(s)
- Huang Huang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bei Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Liangyu Liu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
174
|
Genome-wide characterization of JASMONATE-ZIM DOMAIN transcription repressors in wheat (Triticum aestivum L.). BMC Genomics 2017; 18:152. [PMID: 28193162 PMCID: PMC5307646 DOI: 10.1186/s12864-017-3582-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The JASMONATE-ZIM DOMAIN (JAZ) repressor family proteins are jasmonate co-receptors and transcriptional repressor in jasmonic acid (JA) signaling pathway, and they play important roles in regulating the growth and development of plants. Recently, more and more researches on JAZ gene family are reported in many plants. Although the genome sequencing of common wheat (Triticum aestivum L.) and its relatives is complete, our knowledge about this gene family remains vacant. RESULTS Fourteen JAZ genes were identified in the wheat genome. Structural analysis revealed that the TaJAZ proteins in wheat were as conserved as those in other plants, but had structural characteristics. By phylogenetic analysis, all JAZ proteins from wheat and other plants were clustered into 11 sub-groups (G1-G11), and TaJAZ proteins shared a high degree of similarity with some JAZ proteins from Aegliops tauschii, Brachypodium distachyon and Oryza sativa. The Ka/Ks ratios of TaJAZ genes ranged from 0.0016 to 0.6973, suggesting that the TaJAZ family had undergone purifying selection in wheat. Gene expression patterns obtained by quantitative real-time PCR (qRT-PCR) revealed differential temporal and spatial regulation of TaJAZ genes under multifarious abiotic stress treatments of high salinity, drought, cold and phytohormone. Among these, TaJAZ7, 8 and 12 were specifically expressed in the anther tissues of the thermosensitive genic male sterile (TGMS) wheat line BS366 and normal control wheat line Jing411. Compared with the gene expression patterns in the normal wheat line Jing411, TaJAZ7, 8 and 12 had different expression patterns in abnormally dehiscent anthers of BS366 at the heading stage 6, suggesting that specific up- or down-regulation of these genes might be associated with the abnormal anther dehiscence in TGMS wheat line. CONCLUSION This study analyzed the size and composition of the JAZ gene family in wheat, and investigated stress responsive and differential tissue-specific expression profiles of each TaJAZ gene in TGMS wheat line BS366. In addition, we isolated 3 TaJAZ genes that would be more likely to be involved in the regulation of abnormal anther dehiscence in TGMS wheat line. In conclusion, the results of this study contributed some novel and detailed information about JAZ gene family in wheat, and also provided 3 potential candidate genes for improving the TGMS wheat line.
Collapse
|
175
|
Yan T, Chen M, Shen Q, Li L, Fu X, Pan Q, Tang Y, Shi P, Lv Z, Jiang W, Ma YN, Hao X, Sun X, Tang K. HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua. THE NEW PHYTOLOGIST 2017; 213:1145-1155. [PMID: 27659595 DOI: 10.1111/nph.14205] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/15/2016] [Indexed: 05/19/2023]
Abstract
Glandular trichomes are generally considered biofactories that produce valuable chemicals. Increasing glandular trichome density is a very suitable way to improve the productivity of these valuable metabolites, but little is known about the regulation of glandular trichome formation. Phytohormone jasmonate (JA) promotes glandular trichome initiation in various plants, but its mechanism is also unknown. By searching transcription factors regulated by JA in Artemisia annua, we identified a novel homeodomain-leucine zipper transcription factor, HOMEODOMAIN PROTEIN 1 (AaHD1), which positively controls both glandular and nonglandular trichome initiations. Overexpression of AaHD1 in A. annua significantly increased glandular trichome density without harming plant growth. Consequently, the artemisinin content was improved. AaHD1 interacts with A. annua jasmonate ZIM-domain 8 (AaJAZ8), which is a repressor of JA, thereby resulting in decreased transcriptional activity. AaHD1 knockdown lines show decreased sensitivity to JA on glandular trichome initiation, which indicates that AaHD1 plays an important role in JA-mediated glandular trichome initiation. We identified a new transcription factor that promotes A. annua glandular trichome initiation and revealed a novel molecular mechanism by which a homeodomain protein transduces JA signal to promote glandular trichome initiation. Our results also suggested a connection between glandular and nonglandular trichome formations.
Collapse
Affiliation(s)
- Tingxiang Yan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Minghui Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qifang Pan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yueli Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pu Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zongyou Lv
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weimin Jiang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya-Nan Ma
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolong Hao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofen Sun
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
176
|
Liu J, Legarrea S, Kant MR. Tomato Reproductive Success Is Equally Affected by Herbivores That Induce or That Suppress Defenses. FRONTIERS IN PLANT SCIENCE 2017; 8:2128. [PMID: 29326739 PMCID: PMC5733352 DOI: 10.3389/fpls.2017.02128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/30/2017] [Indexed: 05/08/2023]
Abstract
Herbivory induces plant defenses. These responses are often costly, yet enable plants under attack to reach a higher fitness than they would have reached without these defenses. Spider mites (Tetranychus ssp.) are polyphagous plant-pests. While most strains of the species Tetranychus urticae induce defenses at the expense of their performance, the species Tetranychus evansi suppresses plant defenses and thereby maintains a high performance. Most data indicate that suppression is a mite-adaptive trait. Suppression is characterized by a massive down-regulation of plant gene-expression compared to plants infested with defense-inducing mites as well as compared to control plants, albeit to a lesser extent. Therefore, we hypothesized that suppression may also benefit a plant since the resources saved during down-regulation could be used to increase reproduction. To test this hypothesis, we compared fruit and viable seed production of uninfested tomato plants with that of plants infested with defense-inducing or defense-suppressing mites. Mite-infested plants produced fruits faster than control plants albeit in lower total amounts. The T. evansi-infested plants produced the lowest number of fruits. However, the number of viable seeds was equal across treatments at the end of the experiment. Nonetheless, at this stage control plants were still alive and productive and therefore reach a higher lifetime fitness than mite-infested plants. Our results indicate that plants have plastic control over reproduction and can speed up fruit- and seed production when conditions are unfavorable. Moreover, we showed that although suppressed plants are less productive in terms of fruit production than induced plants, their lifetime fitness was equal under laboratory conditions. However, under natural conditions the fitness of plants such as tomato will also depend on the efficiency of seed dispersal by animals. Hence, we argue that the fitness of induced plants in the field may be promoted more by their higher fruit production relative to that of their suppressed counterparts.
Collapse
|
177
|
Santamaría ME, Martinez M, Arnaiz A, Ortego F, Grbic V, Diaz I. MATI, a Novel Protein Involved in the Regulation of Herbivore-Associated Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2017; 8:975. [PMID: 28649257 PMCID: PMC5466143 DOI: 10.3389/fpls.2017.00975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The defense response of the plants against herbivores relies on a complex network of interconnected signaling pathways. In this work, we characterized a new key player in the response of Arabidopsis against the two-spotted spider mite Tetranychus urticae, the MATI (Mite Attack Triggered Immunity) gene. This gene was differentially induced in resistant Bla-2 strain relative to susceptible Kon Arabidopsis accessions after mite attack, suggesting a potential role in the control of spider mites. To study the MATI gene function, it has been performed a deep molecular characterization of the gene combined with feeding bioassays using modified Arabidopsis lines and phytophagous arthropods. The MATI gene belongs to a new gene family that had not been previously characterized. Biotic assays showed that it confers a high tolerance not only to T. urticae, but also to the chewing lepidopteran Spodoptera exigua. Biochemical analyses suggest that MATI encodes a protein involved in the accumulation of reducing agents upon herbivore attack to control plant redox homeostasis avoiding oxidative damage and cell death. Besides, molecular analyses demonstrated that MATI is involved in the modulation of different hormonal signaling pathways, affecting the expression of genes involved in biosynthesis and signaling of the jasmonic acid and salicylic acid hormones. The fact that MATI is also involved in defense through the modulation of the levels of photosynthetic pigments highlights the potential of MATI proteins to be exploited as biotechnological tools for pest control.
Collapse
Affiliation(s)
- M. Estrella Santamaría
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- Department of Biology, The University of Western Ontario, LondonON, Canada
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Ana Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Félix Ortego
- Departamento de Biología Medioambiental, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Vojislava Grbic
- Department of Biology, The University of Western Ontario, LondonON, Canada
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
- *Correspondence: Isabel Diaz,
| |
Collapse
|
178
|
Lee S, An R, Grewal P, Yu Z, Borherova Z, Lee J. High-Performing Windowfarm Hydroponic System: Transcriptomes of Fresh Produce and Microbial Communities in Response to Beneficial Bacterial Treatment. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:965-976. [PMID: 28035839 DOI: 10.1094/mpmi-08-16-0162-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Beneficial microorganisms play an important role in enhancing plant health, especially by promoting resistance to plant pathogen infection. The purpose of this study was to gain an understanding of such protection by i) examining the responses of fresh produce (lettuce) to beneficial treatments in their transcriptomes, ii) comparing biological (bacteria, fungi, and oomycete) communities and their diversity when treated with Pseudomonas chlororaphis (beneficial bacterium) in windowfarm hydroponic systems, and iii) identifying the microorganisms in root areas and water. P. chlororaphis treatment was for increasing plant growth and fighting for Pythium ultimum infection. In addition, two more treatments were conducted: i) adding supporting media for increasing bacterial colonizing areas around roots and ii) UV irradiation in water for controlling nuisance biofilm buildup. Changes in gene regulation and expression in lettuce in response to these treatments were investigated. Comparisons of microbial profiles among the treatments and microbial identification were conducted using samples of supporting media (around roots) and water. The results demonstrated that i) P. chlororaphis enhanced lettuce growth, ii) P. chlororaphis-treated lettuce showed dominantly expressed genes for membrane, catalytic activity, cellular process, and metabolic process categories, iii) P. chlororaphis treatment induced genes related to growth promotion and defense pathways, and iv) the microbial community of the root area was affected significantly by P. chlororaphis treatment and microbial diversity in water was significantly changed by UV irradiation. This study provided insight into how beneficial treatments affects the fresh produce growth in root areas and water in a vertical hydroponic system.
Collapse
Affiliation(s)
- Seungjun Lee
- 1 Environmental Sciences Graduate Program, The Ohio State University, Columbus, U.S.A
| | - Ruisheng An
- 2 Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, U.S.A
| | - Parwinder Grewal
- 2 Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, U.S.A
| | - Zhongtang Yu
- 1 Environmental Sciences Graduate Program, The Ohio State University, Columbus, U.S.A
- 3 Department of Animal Sciences
| | | | - Jiyoung Lee
- 1 Environmental Sciences Graduate Program, The Ohio State University, Columbus, U.S.A
- 5 Department of Food Science and Technology, and
- 6 College of Public Health, Division of Environmental Health Sciences, The Ohio State University
| |
Collapse
|
179
|
Cao J, Li M, Chen J, Liu P, Li Z. Effects of MeJA on Arabidopsis metabolome under endogenous JA deficiency. Sci Rep 2016; 6:37674. [PMID: 27883040 PMCID: PMC5121592 DOI: 10.1038/srep37674] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022] Open
Abstract
Jasmonates (JAs) play important roles in plant growth, development and defense. Comprehensive metabolomics profiling of plants under JA treatment provides insights into the interaction and regulation network of plant hormones. Here we applied high resolution mass spectrometry based metabolomics approach on Arabidopsis wild type and JA synthesis deficiency mutant opr3. The effects of exogenous MeJA treatment on the metabolites of opr3 were investigated. More than 10000 ion signals were detected and more than 2000 signals showed significant variation in different genotypes and treatment groups. Multivariate statistic analyses (PCA and PLS-DA) were performed and a differential compound library containing 174 metabolites with high resolution precursor ion-product ions pairs was obtained. Classification and pathway analysis of 109 identified compounds in this library showed that glucosinolates and tryptophan metabolism, amino acids and small peptides metabolism, lipid metabolism, especially fatty acyls metabolism, were impacted by endogenous JA deficiency and exogenous MeJA treatment. These results were further verified by quantitative reverse transcription PCR (RT-qPCR) analysis of 21 related genes involved in the metabolism of glucosinolates, tryptophan and α-linolenic acid pathways. The results would greatly enhance our understanding of the biological functions of JA.
Collapse
Affiliation(s)
- Jingjing Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Mengya Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jian Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Pei Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
180
|
Poyatos-Pertíñez S, Quinet M, Ortíz-Atienza A, Yuste-Lisbona FJ, Pons C, Giménez E, Angosto T, Granell A, Capel J, Lozano R. A Factor Linking Floral Organ Identity and Growth Revealed by Characterization of the Tomato Mutant unfinished flower development ( ufd). FRONTIERS IN PLANT SCIENCE 2016; 7:1648. [PMID: 27872633 PMCID: PMC5098122 DOI: 10.3389/fpls.2016.01648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/19/2016] [Indexed: 05/29/2023]
Abstract
Floral organogenesis requires coordinated interactions between genes specifying floral organ identity and those regulating growth and size of developing floral organs. With the aim to isolate regulatory genes linking both developmental processes (i.e., floral organ identity and growth) in the tomato model species, a novel mutant altered in the formation of floral organs was further characterized. Under normal growth conditions, floral organ primordia of mutant plants were correctly initiated, however, they were unable to complete their development impeding the formation of mature and fertile flowers. Thus, the growth of floral buds was blocked at an early stage of development; therefore, we named this mutant as unfinished flower development (ufd). Genetic analysis performed in a segregating population of 543 plants showed that the abnormal phenotype was controlled by a single recessive mutation. Global gene expression analysis confirmed that several MADS-box genes regulating floral identity as well as other genes participating in cell division and different hormonal pathways were affected in their expression patterns in ufd mutant plants. Moreover, ufd mutant inflorescences showed higher hormone contents, particularly ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and strigol compared to wild type. Such results indicate that UFD may have a key function as positive regulator of the development of floral primordia once they have been initiated in the four floral whorls. This function should be performed by affecting the expression of floral organ identity and growth genes, together with hormonal signaling pathways.
Collapse
Affiliation(s)
- Sandra Poyatos-Pertíñez
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Muriel Quinet
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Ana Ortíz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | | | - Clara Pons
- Laboratorio de Genómica de Plantas y Biotecnología, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| | - Estela Giménez
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Antonio Granell
- Laboratorio de Genómica de Plantas y Biotecnología, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| |
Collapse
|
181
|
Naithani S, Preece J, D'Eustachio P, Gupta P, Amarasinghe V, Dharmawardhana PD, Wu G, Fabregat A, Elser JL, Weiser J, Keays M, Fuentes AMP, Petryszak R, Stein LD, Ware D, Jaiswal P. Plant Reactome: a resource for plant pathways and comparative analysis. Nucleic Acids Res 2016; 45:D1029-D1039. [PMID: 27799469 PMCID: PMC5210633 DOI: 10.1093/nar/gkw932] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022] Open
Abstract
Plant Reactome (http://plantreactome.gramene.org/) is a free, open-source, curated plant pathway database portal, provided as part of the Gramene project. The database provides intuitive bioinformatics tools for the visualization, analysis and interpretation of pathway knowledge to support genome annotation, genome analysis, modeling, systems biology, basic research and education. Plant Reactome employs the structural framework of a plant cell to show metabolic, transport, genetic, developmental and signaling pathways. We manually curate molecular details of pathways in these domains for reference species Oryza sativa (rice) supported by published literature and annotation of well-characterized genes. Two hundred twenty-two rice pathways, 1025 reactions associated with 1173 proteins, 907 small molecules and 256 literature references have been curated to date. These reference annotations were used to project pathways for 62 model, crop and evolutionarily significant plant species based on gene homology. Database users can search and browse various components of the database, visualize curated baseline expression of pathway-associated genes provided by the Expression Atlas and upload and analyze their Omics datasets. The database also offers data access via Application Programming Interfaces (APIs) and in various standardized pathway formats, such as SBML and BioPAX.
Collapse
Affiliation(s)
- Sushma Naithani
- 2082 Cordley Hall, Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Justin Preece
- 2082 Cordley Hall, Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Peter D'Eustachio
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Parul Gupta
- 2082 Cordley Hall, Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Vindhya Amarasinghe
- 2082 Cordley Hall, Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Palitha D Dharmawardhana
- 2082 Cordley Hall, Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Guanming Wu
- Ontario Institute of Cancer Research, Toronto, ON M5G 0A3, Canada.,Oregon Health & Science University, Portland, OR 97239, USA
| | - Antonio Fabregat
- European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Justin L Elser
- 2082 Cordley Hall, Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Joel Weiser
- Ontario Institute of Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Maria Keays
- European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | | | - Robert Petryszak
- European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Lincoln D Stein
- Ontario Institute of Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,United States Department of Agriculture - Agriculture Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Pankaj Jaiswal
- 2082 Cordley Hall, Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
182
|
Smith AR, Zhao D. Sterility Caused by Floral Organ Degeneration and Abiotic Stresses in Arabidopsis and Cereal Grains. FRONTIERS IN PLANT SCIENCE 2016; 7:1503. [PMID: 27790226 PMCID: PMC5064672 DOI: 10.3389/fpls.2016.01503] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/21/2016] [Indexed: 05/18/2023]
Abstract
Natural floral organ degeneration or abortion results in unisexual or fully sterile flowers, while abiotic stresses lead to sterility after initiation of floral reproductive organs. Since normal flower development is essential for plant sexual reproduction and crop yield, it is imperative to have a better understanding of plant sterility under regular and stress conditions. Here, we review the functions of ABC genes together with their downstream genes in floral organ degeneration and the formation of unisexual flowers in Arabidopsis and several agriculturally significant cereal grains. We further explore the roles of hormones, including auxin, brassinosteroids, jasmonic acid, gibberellic acid, and ethylene, in floral organ formation and fertility. We show that alterations in genes affecting hormone biosynthesis, hormone transport and perception cause loss of stamens/carpels, abnormal floral organ development, poor pollen production, which consequently result in unisexual flowers and male/female sterility. Moreover, abiotic stresses, such as heat, cold, and drought, commonly affect floral organ development and fertility. Sterility is induced by abiotic stresses mostly in male floral organ development, particularly during meiosis, tapetum development, anthesis, dehiscence, and fertilization. A variety of genes including those involved in heat shock, hormone signaling, cold tolerance, metabolisms of starch and sucrose, meiosis, and tapetum development are essential for plants to maintain normal fertility under abiotic stress conditions. Further elucidation of cellular, biochemical, and molecular mechanisms about regulation of fertility will improve yield and quality for many agriculturally valuable crops.
Collapse
Affiliation(s)
| | - Dazhong Zhao
- Department of Biological Sciences, University of Wisconsin-Milwaukee, MilwaukeeWI, USA
| |
Collapse
|
183
|
Kang JH, Campos ML, Zemelis-Durfee S, Al-Haddad JM, Jones AD, Telewski FW, Brandizzi F, Howe GA. Molecular cloning of the tomato Hairless gene implicates actin dynamics in trichome-mediated defense and mechanical properties of stem tissue. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5313-5324. [PMID: 27481446 PMCID: PMC5049383 DOI: 10.1093/jxb/erw292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Trichomes are epidermal structures that provide a first line of defense against arthropod herbivores. The recessive hairless (hl) mutation in tomato (Solanum lycopersicum L.) causes severe distortion of trichomes on all aerial tissues, impairs the accumulation of sesquiterpene and polyphenolic compounds in glandular trichomes, and compromises resistance to the specialist herbivore Manduca sexta Here, we demonstrate that the tomato Hl gene encodes a subunit (SRA1) of the highly conserved WAVE regulatory complex that controls nucleation of actin filaments in a wide range of eukaryotic cells. The tomato SRA1 gene spans a 42-kb region containing both Solyc11g013280 and Solyc11g013290 The hl mutation corresponds to a complex 3-kb deletion that removes the last exon of the gene. Expression of a wild-type SRA1 cDNA in the hl mutant background restored normal trichome development, accumulation of glandular trichome-derived metabolites, and resistance to insect herbivory. These findings establish a role for SRA1 in the development of tomato trichomes and also implicate the actin-cytoskeleton network in cytosolic control of specialized metabolism for plant defense. We also show that the brittleness of hl mutant stems is associated with altered mechanical and cell morphological properties of stem tissue, and demonstrate that this defect is directly linked to the mutation in SRA1.
Collapse
Affiliation(s)
- Jin-Ho Kang
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Marcelo L Campos
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Starla Zemelis-Durfee
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jameel M Al-Haddad
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - A Daniel Jones
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Frank W Telewski
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
184
|
Stratmann JW, Bequette CJ. Hairless but no longer clueless: understanding glandular trichome development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5285-5287. [PMID: 27703083 PMCID: PMC5049401 DOI: 10.1093/jxb/erw339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Johannes W Stratmann
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Carlton J Bequette
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
185
|
Simm S, Scharf KD, Jegadeesan S, Chiusano ML, Firon N, Schleiff E. Survey of Genes Involved in Biosynthesis, Transport, and Signaling of Phytohormones with Focus on Solanum lycopersicum. Bioinform Biol Insights 2016; 10:185-207. [PMID: 27695302 PMCID: PMC5038615 DOI: 10.4137/bbi.s38425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022] Open
Abstract
Phytohormones control the development and growth of plants, as well as their response to biotic and abiotic stress. The seven most well-studied phytohormone classes defined today are as follows: auxins, ethylene, cytokinin, abscisic acid, jasmonic acid, gibberellins, and brassinosteroids. The basic principle of hormone regulation is conserved in all plants, but recent results suggest adaptations of synthesis, transport, or signaling pathways to the architecture and growth environment of different plant species. Thus, we aimed to define the extent to which information from the model plant Arabidopsis thaliana is transferable to other plants such as Solanum lycopersicum. We extracted the co-orthologues of genes coding for major pathway enzymes in A. thaliana from the translated genomes of 12 species from the clade Viridiplantae. Based on predicted domain architecture and localization of the identified proteins from all 13 species, we inspected the conservation of phytohormone pathways. The comparison was complemented by expression analysis of (co-) orthologous genes in S. lycopersicum. Altogether, this information allowed the assignment of putative functional equivalents between A. thaliana and S. lycopersicum but also pointed to some variations between the pathways in eudicots, monocots, mosses, and green algae. These results provide first insights into the conservation of the various phytohormone pathways between the model system A. thaliana and crop plants such as tomato. We conclude that orthologue prediction in combination with analysis of functional domain architecture and intracellular localization and expression studies are sufficient tools to transfer information from model plants to other plant species. Our results support the notion that hormone synthesis, transport, and response for most part of the pathways are conserved, and species-specific variations can be found.
Collapse
Affiliation(s)
- Stefan Simm
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| | - Sridharan Jegadeesan
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel.; The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maria Luisa Chiusano
- Department of Soil, Plants Environmental and Animal Production Sciences, Laboratory of Computer Aided Biosciences, University of Studies of Naples Federico II, Portici, Naples, Italy
| | - Nurit Firon
- Department of Vegetable Research, Institute for Plant Sciences, Agricultural Research Organization, Volcani Centre, Bet Dagan, Israel
| | - Enrico Schleiff
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.; Cluster of Excellence Macromolecular Complexes, Institute for Molecular Cell Biology of Plants, Frankfurt am Main, Germany
| |
Collapse
|
186
|
Machado RAR, McClure M, Hervé MR, Baldwin IT, Erb M. Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature. eLife 2016; 5:e13720. [PMID: 27352734 PMCID: PMC4927296 DOI: 10.7554/elife.13720] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Endogenous jasmonates are important regulators of plant defenses. If and how they enable plants to maintain their reproductive output when facing community-level herbivory under natural conditions, however, remains unknown. We demonstrate that jasmonate-deficient Nicotiana attenuata plants suffer more damage by arthropod and vertebrate herbivores than jasmonate-producing plants in nature. However, only damage by vertebrate herbivores translates into a significant reduction in flower production. Vertebrate stem peeling has the strongest negative impact on plant flower production. Stems are defended by jasmonate-dependent nicotine, and the native cottontail rabbit Sylvilagus nuttallii avoids jasmonate-producing N. attenuata shoots because of their high levels of nicotine. Thus, endogenous jasmonates enable plants to resist different types of herbivores in nature, and jasmonate-dependent defenses are important for plants to maintain their reproductive potential when facing vertebrate herbivory. Ecological and evolutionary models on plant defense signaling should aim at integrating arthropod and vertebrate herbivory at the community level.
Collapse
Affiliation(s)
- Ricardo AR Machado
- Root-Herbivore Interactions Group, Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Mark McClure
- School of the Environment, Washington State University, Washington, United States
| | - Maxime R Hervé
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Institut de Génétique, Environment et Protection des Plantes, Le Rheu, France
| | - Ian T Baldwin
- Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Matthias Erb
- Root-Herbivore Interactions Group, Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
187
|
Shwartz I, Levy M, Ori N, Bar M. Hormones in tomato leaf development. Dev Biol 2016; 419:132-142. [PMID: 27339291 DOI: 10.1016/j.ydbio.2016.06.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/16/2016] [Accepted: 06/17/2016] [Indexed: 11/19/2022]
Abstract
Leaf development serves as a model for plant developmental flexibility. Flexible balancing of morphogenesis and differentiation during leaf development results in a large diversity of leaf forms, both between different species and within the same species. This diversity is particularly evident in compound leaves. Hormones are prominent regulators of leaf development. Here we discuss some of the roles of plant hormones and the cross-talk between different hormones in tomato compound-leaf development.
Collapse
Affiliation(s)
- Ido Shwartz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| | - Matan Levy
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel.
| | - Maya Bar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel.
| |
Collapse
|
188
|
Zhang M, Koh J, Liu L, Shao Z, Liu H, Hu S, Zhu N, Dufresne CP, Chen S, Wang Q. Critical Role of COI1-Dependent Jasmonate Pathway in AAL toxin induced PCD in Tomato Revealed by Comparative Proteomics. Sci Rep 2016; 6:28451. [PMID: 27324416 PMCID: PMC4914994 DOI: 10.1038/srep28451] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/31/2016] [Indexed: 12/24/2022] Open
Abstract
Alternaria alternata f.sp. Lycopersici (AAL) toxin induces programmed cell death (PCD) in susceptible tomato (Solanum lycopersicum) leaves. Jasmonate (JA) promotes AAL toxin induced PCD in a COI1 (coronatine insensitive 1, JA receptor)-dependent manner by enhancement of reactive oxygen species (ROS) production. To further elucidate the underlying mechanisms of this process, we performed a comparative proteomic analysis using tomato jasmonic acid insensitive1 ( jai1), the receptor mutant of JA, and its wild type (WT) after AAL toxin treatment with or without JA treatment. A total of 10367 proteins were identified in tomato leaves using isobaric tags for relative and absolute quantitation (iTRAQ) quantitative proteomics approach. 2670 proteins were determined to be differentially expressed in response to AAL toxin and JA. Comparison between AAL toxin treated jai1 and its WT revealed the COI1-dependent JA pathway regulated proteins, including pathways related to redox response, ceramide synthesis, JA, ethylene (ET), salicylic acid (SA) and abscisic acid (ABA) signaling. Autophagy, PCD and DNA damage related proteins were also identified. Our data suggest that COI1-dependent JA pathway enhances AAL toxin induced PCD through regulating the redox status of the leaves, other phytohormone pathways and/or important PCD components.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Zhiyong Shao
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Haoran Liu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Songshen Hu
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Ning Zhu
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
189
|
Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S. Jasmonates: Multifunctional Roles in Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:813. [PMID: 27379115 PMCID: PMC4908892 DOI: 10.3389/fpls.2016.00813] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/25/2016] [Indexed: 05/18/2023]
Abstract
Jasmonates (JAs) [Jasmonic acid (JA) and methyl jasmonates (MeJAs)] are known to take part in various physiological processes. Exogenous application of JAs so far tested on different plants under abiotic stresses particularly salinity, drought, and temperature (low/high) conditions have proved effective in improving plant stress tolerance. However, its extent of effectiveness entirely depends on the type of plant species tested or its concentration. The effects of introgression or silencing of different JA- and Me-JA-related genes have been summarized in this review, which have shown a substantial role in improving crop yield and quality in different plants under stress or non-stress conditions. Regulation of JAs synthesis is impaired in stressed as well as unstressed plant cells/tissues, which is believed to be associated with a variety of metabolic events including signal transduction. Although, mitogen activated protein kinases (MAPKs) are important components of JA signaling and biosynthesis pathways, nitric oxide, ROS, calcium, ABA, ethylene, and salicylic acid are also important mediators of plant growth and development during JA signal transduction and synthesis. The exploration of other signaling molecules can be beneficial to examine the details of underlying molecular mechanisms of JA signal transduction. Much work is to be done in near future to find the proper answers of the questions like action of JA related metabolites, and identification of universal JA receptors etc. Complete signaling pathways involving MAPKs, CDPK, TGA, SIPK, WIPK, and WRKY transcription factors are yet to be investigated to understand the complete mechanism of action of JAs.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, S.P. CollegeSrinagar, India
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Management, Faculty of Forestry, Universiti Putra MalaysiaSelangor, Malaysia
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and TechnologyIslamabad, Pakistan
| | - Subzar A. Sheikh
- Department of Botany, Govt. Degree College (Boys), AnantnagAnantnag, India
| | - Nudrat A. Akram
- Department of Botany, GC University FaisalabadFaisalabad, Pakistan
| | - Muhammad Ashraf
- Department of Botany and Microbiology, College of Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Pakistan Science FoundationIslamabad, Pakistan
| | - A. M. Kazi
- Department of Botany, University of SargodhaSargodha, Pakistan
| | - Salih Gucel
- Centre for Environmental Research, Near East UniversityNicosia, Cyprus
| |
Collapse
|
190
|
Mosquera T, Alvarez MF, Jiménez-Gómez JM, Muktar MS, Paulo MJ, Steinemann S, Li J, Draffehn A, Hofmann A, Lübeck J, Strahwald J, Tacke E, Hofferbert HR, Walkemeier B, Gebhardt C. Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease. PLoS One 2016; 11:e0156254. [PMID: 27281327 PMCID: PMC4900573 DOI: 10.1371/journal.pone.0156254] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/08/2016] [Indexed: 11/18/2022] Open
Abstract
The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis), a transcription factor and a homolog of a major gene for resistance to P. infestans from the wild potato species Solanum venturii. The candidate gene approach and GWAS complemented each other as they identified different genes. The results of this study provide new insight in the molecular genetic basis of quantitative resistance in potato and a toolbox of diagnostic SNP markers for breeding applications.
Collapse
Affiliation(s)
- Teresa Mosquera
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Maria Fernanda Alvarez
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - José M. Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Institute Jean-Pierre Bourgin, INRA, AgroParis Tech, CNRS, Université Paris-Saclay, Versailles, France
| | - Meki Shehabu Muktar
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Sebastian Steinemann
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jinquan Li
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Astrid Draffehn
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Hofmann
- Department of Genomics, Life & Brain Center, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Jens Lübeck
- SaKa-Pflanzenzucht GmbH & Co. KG, 24340, Windeby, Germany
| | | | | | | | - Birgit Walkemeier
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Christiane Gebhardt
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
191
|
Methyl Jasmonate: An Alternative for Improving the Quality and Health Properties of Fresh Fruits. Molecules 2016; 21:molecules21060567. [PMID: 27258240 PMCID: PMC6273056 DOI: 10.3390/molecules21060567] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/11/2022] Open
Abstract
Methyl jasmonate (MeJA) is a plant growth regulator belonging to the jasmonate family. It plays an important role as a possible airborne signaling molecule mediating intra- and inter-plant communications and modulating plant defense responses, including antioxidant systems. Most assessments of this compound have dealt with post-harvest fruit applications, demonstrating induced plant resistance against the detrimental impacts of storage (chilling injuries and pathogen attacks), enhancing secondary metabolites and antioxidant activity. On the other hand, the interactions between MeJA and other compounds or technological tools for enhancing antioxidant capacity and quality of fruits were also reviewed. The pleiotropic effects of MeJA have raisen numerous as-yet unanswered questions about its mode of action. The aim of this review was endeavored to clarify the role of MeJA on improving pre- and post-harvest fresh fruit quality and health properties. Interestingly, the influence of MeJA on human health will be also discussed.
Collapse
|
192
|
Villarroel CA, Jonckheere W, Alba JM, Glas JJ, Dermauw W, Haring MA, Van Leeuwen T, Schuurink RC, Kant MR. Salivary proteins of spider mites suppress defenses in Nicotiana benthamiana and promote mite reproduction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:119-31. [PMID: 26946468 DOI: 10.1111/tpj.13152] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/29/2016] [Accepted: 02/19/2016] [Indexed: 05/03/2023]
Abstract
Spider mites (Tetranychidae sp.) are widely occurring arthropod pests on cultivated plants. Feeding by the two-spotted spider mite T. urticae, a generalist herbivore, induces a defense response in plants that mainly depends on the phytohormones jasmonic acid and salicylic acid (SA). On tomato (Solanum lycopersicum), however, certain genotypes of T. urticae and the specialist species T. evansi were found to suppress these defenses. This phenomenon occurs downstream of phytohormone accumulation via an unknown mechanism. We investigated if spider mites possess effector-like proteins in their saliva that can account for this defense suppression. First we performed an in silico prediction of the T. urticae and the T. evansi secretomes, and subsequently generated a short list of candidate effectors based on additional selection criteria such as life stage-specific expression and salivary gland expression via whole mount in situ hybridization. We picked the top five most promising protein families and then expressed representatives in Nicotiana benthamiana using Agrobacterium tumefaciens transient expression assays to assess their effect on plant defenses. Four proteins from two families suppressed defenses downstream of the phytohormone SA. Furthermore, T. urticae performance on N. benthamiana improved in response to transient expression of three of these proteins and this improvement was similar to that of mites feeding on the tomato SA accumulation mutant nahG. Our results suggest that both generalist and specialist plant-eating mite species are sensitive to SA defenses but secrete proteins via their saliva to reduce the negative effects of these defenses.
Collapse
Affiliation(s)
- Carlos A Villarroel
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE, Amsterdam, The Netherlands
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Wim Jonckheere
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Juan M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Joris J Glas
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Wannes Dermauw
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Michel A Haring
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE, Amsterdam, The Netherlands
| | - Thomas Van Leeuwen
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium
| | - Robert C Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, P.O. Box 94215, 1090 GE, Amsterdam, The Netherlands
| | - Merijn R Kant
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
193
|
Abstract
Terpenoids are a large and diverse class of plant metabolites including mono-, sesqui-, and diterpenes. They have numerous functions in basic physiological processes as well as the interaction of plants with their biotic and abiotic environment. Due to the tight regulation of biosynthetic pathways and the resulting limited natural availability of terpenes, there is a strong interest in increasing their production in plants by metabolic engineering for agricultural, pharmaceutical, and industrial applications. The tomato fruit system was developed as a platform for metabolic engineering of terpenes to overcome detrimental effects on overall plant growth and photosynthesis traits, which are affected when terpenoid engineering is performed in vegetative tissues. Here we describe how the use of fruit-specific promoters for transgene expression can avoid these unwanted effects. In addition, targeting the expression of the introduced terpene biosynthetic gene to fruit tissue can take advantage of the large precursor pool provided by the methylerythritol-phosphate (MEP) pathway, which is highly active during tomato fruit ripening to facilitate the accumulation of carotenoids. We also discuss how the production of high levels of target terpene compounds can be achieved in fruits by the expression of individual or a combination of (i) the MEP or mevalonic acid pathway enzymes, (ii) prenyltransferases, and/or (iii) terpene synthases. Finally, we provide a brief outline of how the emitted as well as internal pools of terpenes can be analyzed in transgenic tomato fruits.
Collapse
Affiliation(s)
- M Gutensohn
- Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV, United States
| | - N Dudareva
- Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
194
|
Zebelo S, Song Y, Kloepper JW, Fadamiro H. Rhizobacteria activates (+)-δ-cadinene synthase genes and induces systemic resistance in cotton against beet armyworm (Spodoptera exigua). PLANT, CELL & ENVIRONMENT 2016; 39:935-43. [PMID: 26715260 DOI: 10.1111/pce.12704] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 05/18/2023]
Abstract
Gossypol is an important allelochemical produced by the subepidermal glands of some cotton varieties and important for their ability to respond to changing biotic stress by exhibiting antibiosis against some cotton pests. Plant growth-promoting rhizobacteria (PGPR) are root-colonizing bacteria that increase plant growth and often elicit defence against plant pathogens and insect pests. Little is known about the effect of PGPR on cotton plant-insect interactions and the potential biochemical and molecular mechanisms by which PGPR enhance cotton plant defence. Here, we report that PGPR (Bacillus spp.) treated cotton plants showed significantly higher levels of gossypol compared with untreated plants. Similarly, the transcript levels of the genes (i.e. (+)-δ-cadinene synthase gene family) involved in the biosynthesis of gossypol were higher in PGPR-treated plants than in untreated plants. Furthermore, the levels of jasmonic acid, an octadecanoid-derived defence-related phytohormone and the transcript level of jasmonic acid responsive genes were higher in PGPR-treated plants than in untreated plants. Most intriguingly, Spodoptera exigua showed reduced larval feeding and development on PGPR-treated plants. These findings demonstrate that treatment of plants with rhizobacteria may induce significant biochemical and molecular changes with potential ramifications for plant-insect interactions.
Collapse
Affiliation(s)
- Simon Zebelo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA
| | - Yuanyuan Song
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Joseph W Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Henry Fadamiro
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
195
|
Overexpression of SlUPA-like induces cell enlargement, aberrant development and low stress tolerance through phytohormonal pathway in tomato. Sci Rep 2016; 6:23818. [PMID: 27025226 PMCID: PMC4812305 DOI: 10.1038/srep23818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/15/2016] [Indexed: 11/24/2022] Open
Abstract
upa20 induces cell enlargement and hypertrophy development. In our research, overexpression of SlUPA-like, orthologous to upa20, severely affected the growth of vegetative and reproductive tissues. Wilted leaves curled upwardly and sterile flowers were found in transgenic lines. Through anatomical analysis, palisade and spongy tissues showed fluffy and hypertrophic development in transgenic plants. Gene expression analysis showed that GA responsive, biosynthetic and signal transduction genes (e.g. GAST1, SlGA20OXs, SlGA3OXs, SlGID1s, and SlPREs) were significantly upregulated, indicating that GA response is stimulated by overproduction of SlUPA-like. Furthermore, SlUPA-like was strongly induced by exogenous JA and wounding. Decreased expression of PI-I and induced expression of SlJAZs (including SlJAZ2, SlJAZ10 and SlJAZ11) were observed in transgenic plants, suggesting that JA response is repressed. In addition, SlUPA-like overexpressed plant exhibited more opened stoma and higher water loss than the control when treated with dehydration stress, which was related to decreased ABA biosynthesis, signal transduction and response. Particularly, abnormal developments of transgenic plants promote the plant susceptibility to Xanthomonas campestris pv. campestris. Therefore, it is deduced from these results that SlUPA-like plays vital role in regulation of plant development and stress tolerance through GA, JA and ABA pathways.
Collapse
|
196
|
Li D, Baldwin IT, Gaquerel E. Beyond the Canon: Within-Plant and Population-Level Heterogeneity in Jasmonate Signaling Engaged by Plant-Insect Interactions. PLANTS 2016; 5:plants5010014. [PMID: 27135234 PMCID: PMC4844416 DOI: 10.3390/plants5010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 11/16/2022]
Abstract
Plants have evolved sophisticated communication and defense systems with which they interact with insects. Jasmonates are synthesized from the oxylipin pathway and act as pivotal cellular orchestrators of many of the metabolic and physiological processes that mediate these interactions. Many of these jasmonate-dependent responses are tissue-specific and translate from modulations of the canonical jasmonate signaling pathway. Here we provide a short overview of within-plant heterogeneities in jasmonate signaling and dependent responses in the context of plant-insect interactions as illuminated by examples from recent work with the ecological model, Nicotiana attenuata. We then discuss means of manipulating jasmonate signaling by creating tissue-specific jasmonate sinks, and the micrografting of different transgenic plants. The metabolic phenotyping of these manipulations provides an integrative understanding of the functional significance of deviations from the canonical model of this hormonal pathway. Additionally, natural variation in jasmonate biosynthesis and signaling both among and within species can explain polymorphisms in resistance to insects in nature. In this respect, insect-guided explorations of population-level variations in jasmonate metabolism have revealed more complexity than previously realized and we discuss how different "omic" techniques can be used to exploit the natural variation that occurs in this important signaling pathway.
Collapse
Affiliation(s)
- Dapeng Li
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany.
| | - Emmanuel Gaquerel
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, Heidelberg 69120, Germany.
| |
Collapse
|
197
|
Thatcher LF, Gao LL, Singh KB. Jasmonate Signalling and Defence Responses in the Model Legume Medicago truncatula-A Focus on Responses to Fusarium Wilt Disease. PLANTS (BASEL, SWITZERLAND) 2016; 5:E11. [PMID: 27135231 PMCID: PMC4844425 DOI: 10.3390/plants5010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/05/2022]
Abstract
Jasmonate (JA)-mediated defences play important roles in host responses to pathogen attack, in particular to necrotrophic fungal pathogens that kill host cells in order to extract nutrients and live off the dead plant tissue. The root-infecting fungal pathogen Fusarium oxysporum initiates a necrotrophic growth phase towards the later stages of its lifecycle and is responsible for devastating Fusarium wilt disease on numerous legume crops worldwide. Here we describe the use of the model legume Medicago truncatula to study legume-F. oxysporum interactions and compare and contrast this against knowledge from other model pathosystems, in particular Arabidopsis thaliana-F. oxysporum interactions. We describe publically-available genomic, transcriptomic and genetic (mutant) resources developed in M. truncatula that enable dissection of host jasmonate responses and apply aspects of these herein during the M. truncatula--F. oxysporum interaction. Our initial results suggest not all components of JA-responses observed in M. truncatula are shared with Arabidopsis in response to F. oxysporum infection.
Collapse
Affiliation(s)
- Louise F Thatcher
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, Western Australia 6913, Australia.
| | - Ling-Ling Gao
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, Western Australia 6913, Australia.
| | - Karam B Singh
- CSIRO Agriculture, Centre for Environment and Life Sciences, Wembley, Western Australia 6913, Australia.
- The Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
198
|
Floková K, Feussner K, Herrfurth C, Miersch O, Mik V, Tarkowská D, Strnad M, Feussner I, Wasternack C, Novák O. A previously undescribed jasmonate compound in flowering Arabidopsis thaliana - The identification of cis-(+)-OPDA-Ile. PHYTOCHEMISTRY 2016; 122:230-237. [PMID: 26675361 DOI: 10.1016/j.phytochem.2015.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/12/2015] [Accepted: 11/24/2015] [Indexed: 05/21/2023]
Abstract
Jasmonates (JAs) are plant hormones that integrate external stress stimuli with physiological responses. (+)-7-iso-JA-L-Ile is the natural JA ligand of COI1, a component of a known JA receptor. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-(+)-OPDA) has been reported to act independently of COI1 as an essential signal in several stress-induced and developmental processes. Wound-induced increases in the endogenous levels of JA/JA-Ile are accompanied by two to tenfold increases in the concentration of OPDA, but its means of perception and metabolism are unknown. To screen for putative OPDA metabolites, vegetative tissues of flowering Arabidopsis thaliana were extracted with 25% aqueous methanol (v/v), purified by single-step reversed-phase polymer-based solid-phase extraction, and analyzed by high throughput mass spectrometry. This enabled the detection and quantitation of a low abundant OPDA analog of the biologically active (+)-7-iso-JA-L-Ile in plant tissue samples. Levels of the newly identified compound and the related phytohormones JA, JA-Ile and cis-(+)-OPDA were monitored in wounded leaves of flowering Arabidopsis lines (Col-0 and Ws) and compared to the levels observed in Arabidopsis mutants deficient in the biosynthesis of JA (dde2-2, opr3) and JA-Ile (jar1). The observed cis-(+)-OPDA-Ile levels varied widely, raising questions concerning its role in Arabidopsis stress responses.
Collapse
Affiliation(s)
- Kristýna Floková
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Otto Miersch
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Václav Mik
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
| |
Collapse
|
199
|
Havko NE, Major IT, Jewell JB, Attaran E, Browse J, Howe GA. Control of Carbon Assimilation and Partitioning by Jasmonate: An Accounting of Growth-Defense Tradeoffs. PLANTS 2016; 5:plants5010007. [PMID: 27135227 PMCID: PMC4844420 DOI: 10.3390/plants5010007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 12/02/2022]
Abstract
Plant growth is often constrained by the limited availability of resources in the microenvironment. Despite the continuous threat of attack from insect herbivores and pathogens, investment in defense represents a lost opportunity to expand photosynthetic capacity in leaves and absorption of nutrients and water by roots. To mitigate the metabolic expenditure on defense, plants have evolved inducible defense strategies. The plant hormone jasmonate (JA) is a key regulator of many inducible defenses. Synthesis of JA in response to perceived danger leads to the deployment of a variety of defensive structures and compounds, along with a potent inhibition of growth. Genetic studies have established an important role for JA in mediating tradeoffs between growth and defense. However, several gaps remain in understanding of how JA signaling inhibits growth, either through direct transcriptional control of JA-response genes or crosstalk with other signaling pathways. Here, we highlight recent progress in uncovering the role of JA in controlling growth-defense balance and its relationship to resource acquisition and allocation. We also discuss tradeoffs in the context of the ability of JA to promote increased leaf mass per area (LMA), which is a key indicator of leaf construction costs and leaf life span.
Collapse
Affiliation(s)
- Nathan E Havko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Ian T Major
- Department of Energy-Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Jeremy B Jewell
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Elham Attaran
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
200
|
Widemann E, Smirnova E, Aubert Y, Miesch L, Heitz T. Dynamics of Jasmonate Metabolism upon Flowering and across Leaf Stress Responses in Arabidopsis thaliana. PLANTS 2016; 5:plants5010004. [PMID: 27135224 PMCID: PMC4844418 DOI: 10.3390/plants5010004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 11/16/2022]
Abstract
The jasmonic acid (JA) signaling pathway plays important roles in adaptation of plants to environmental cues and in specific steps of their development, particularly in reproduction. Recent advances in metabolic studies have highlighted intricate mechanisms that govern enzymatic conversions within the jasmonate family. Here we analyzed jasmonate profile changes upon Arabidopsis thaliana flower development and investigated the contribution of catabolic pathways that were known to turnover the active hormonal compound jasmonoyl-isoleucine (JA-Ile) upon leaf stress. We report a rapid decline of JA-Ile upon flower opening, concomitant with the massive accumulation of its most oxidized catabolite, 12COOH-JA-Ile. Detailed genetic analysis identified CYP94C1 as the major player in this process. CYP94C1 is one out of three characterized cytochrome P450 enzymes that define an oxidative JA-Ile turnover pathway, besides a second, hydrolytic pathway represented by the amido-hydrolases IAR3 and ILL6. Expression studies combined with reporter gene analysis revealed the dominant expression of CYP94C1 in mature anthers, consistent with the established role of JA signaling in male fertility. Significant CYP94B1 expression was also evidenced in stamen filaments, but surprisingly, CYP94B1 deficiency was not associated with significant changes in JA profiles. Finally, we compared global flower JA profiles with those previously reported in leaves reacting to mechanical wounding or submitted to infection by the necrotrophic fungus Botrytis cinerea. These comparisons revealed distinct dynamics of JA accumulation and conversions in these three biological systems. Leaf injury boosts a strong and transient JA and JA-Ile accumulation that evolves rapidly into a profile dominated by ω-oxidized and/or Ile-conjugated derivatives. In contrast, B. cinerea-infected leaves contain mostly unconjugated jasmonates, about half of this content being ω-oxidized. Finally, developing flowers present an intermediate situation where young flower buds show detectable jasmonate oxidation (probably originating from stamen metabolism) which becomes exacerbated upon flower opening. Our data illustrate that in spite conserved enzymatic routes, the jasmonate metabolic grid shows considerable flexibility and dynamically equilibrates into specific blends in different physiological situations.
Collapse
Affiliation(s)
- Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| | - Ekaterina Smirnova
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| | - Yann Aubert
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| | - Laurence Miesch
- Laboratoire de Chimie Organique Synthétique, Unité Mixte de Recherche 7177, Université de Strasbourg, 67008 Strasbourg Cedex, France.
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes, CNRS-UPR2357, associée à l'Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| |
Collapse
|