151
|
MCENet: A database for maize conditional co-expression network and network characterization collaborated with multi-dimensional omics levels. J Genet Genomics 2018; 45:351-360. [DOI: 10.1016/j.jgg.2018.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 01/09/2023]
|
152
|
Mimura M, Kudo T, Wu S, McCarty DR, Suzuki M. Autonomous and non-autonomous functions of the maize Shohai1 gene, encoding a RWP-RK putative transcription factor, in regulation of embryo and endosperm development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:892-908. [PMID: 29901832 DOI: 10.1111/tpj.13996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 05/26/2023]
Abstract
In plants, establishment of the basic body plan during embryogenesis involves complex processes of axis formation, cell fate specification and organ differentiation. While molecular mechanisms of embryogenesis have been well studied in the eudicot Arabidopsis, only a small number of genes regulating embryogenesis has been identified in grass species. Here, we show that a RKD-type RWP-RK transcription factor encoded by Shohai1 (Shai1) is indispensable for embryo and endosperm development in maize. Loss of Shai1 function causes variable morphological defects in the embryo including small scutellum, shoot axis bifurcation and arrest during early organogenesis. Analysis of molecular markers in mutant embryos reveals disturbed patterning of gene expression and altered polar auxin transport. In contrast with typical embryo-defective (emb) mutants that expose a vacant embryo pocket in the endosperm, the endosperm of shai1 kernels conforms to the varied size and shape of the embryo. Furthermore, genetic analysis confirms that Shai1 is required for autonomous formation of the embryo pocket in endosperm of emb mutants. Analyses of genetic mosaic kernels generated by B-A translocation revealed that expression of Shai1 in the endosperm could partially rescue a shai1 mutant embryo and suggested that Shai1 is involved in non-cell autonomous signaling from endosperm that supports normal embryo growth. Taken together, we propose that the Shai1 gene functions in regulating embryonic patterning during grass embryogenesis partly by endosperm-to-embryo interaction.
Collapse
Affiliation(s)
- Manaki Mimura
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Toru Kudo
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Shan Wu
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
153
|
Transcriptome Analysis Provides Insight into the Molecular Mechanisms Underlying gametophyte factor 2-Mediated Cross-Incompatibility in Maize. Int J Mol Sci 2018; 19:ijms19061757. [PMID: 29899298 PMCID: PMC6032218 DOI: 10.3390/ijms19061757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/12/2018] [Accepted: 05/28/2018] [Indexed: 12/26/2022] Open
Abstract
In maize (Zea mays L.), unilateral cross-incompatibility (UCI) is controlled by Gametophyte factors (Ga), including Ga1, Ga2, and Tcb1; however, the molecular mechanisms underpinning this process remain unexplored. Here, we report the pollination phenotype of an inbred line, 511L, which carries a near-dominant Ga2-S allele. We performed a high-throughput RNA sequencing (RNA-Seq) analysis of the compatible and incompatible crosses between 511L and B73, to identify the transcriptomic differences associated with Ga2-mediated UCI. An in vivo kinetics analysis revealed that the growth of non-self pollen tubes was blocked at the early stages after pollination in 511L, maintaining the UCI barrier in Ga2. In total, 25,759 genes were expressed, of which, 2063 differentially expressed genes (DEGs) were induced by pollination (G_GG, G_GB, B_BB, B_BG). A gene ontology (GO) enrichment analysis revealed that these genes were specifically enriched in functions involved in cell wall strength and pectic product modification. Moreover, 1839, 4382, and 5041 genes were detected to differentially express under same pollination treatments, including B_G, BG_GG, and BB_GB, respectively. A total of 1467 DEGs were constitutively expressed between the two inbred lines following pollination treatments, which were enriched in metabolic processes, flavonoid biosynthesis, cysteine biosynthesis, and vacuole functions. Furthermore, we confirmed 14 DEGs related to cell wall modification and stress by qRT-PCR, which might be involved in Ga2-S-mediated UCI. Our results provide a comprehensive foundation for the molecular mechanisms involved in silks of UCI mediated by Ga2-S.
Collapse
|
154
|
Huang J, Zheng J, Yuan H, McGinnis K. Distinct tissue-specific transcriptional regulation revealed by gene regulatory networks in maize. BMC PLANT BIOLOGY 2018; 18:111. [PMID: 29879919 PMCID: PMC6040155 DOI: 10.1186/s12870-018-1329-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/24/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Transcription factors (TFs) are proteins that can bind to DNA sequences and regulate gene expression. Many TFs are master regulators in cells that contribute to tissue-specific and cell-type-specific gene expression patterns in eukaryotes. Maize has been a model organism for over one hundred years, but little is known about its tissue-specific gene regulation through TFs. In this study, we used a network approach to elucidate gene regulatory networks (GRNs) in four tissues (leaf, root, SAM and seed) in maize. We utilized GENIE3, a machine-learning algorithm combined with large quantity of RNA-Seq expression data to construct four tissue-specific GRNs. Unlike some other techniques, this approach is not limited by high-quality Position Weighed Matrix (PWM), and can therefore predict GRNs for over 2000 TFs in maize. RESULTS Although many TFs were expressed across multiple tissues, a multi-tiered analysis predicted tissue-specific regulatory functions for many transcription factors. Some well-studied TFs emerged within the four tissue-specific GRNs, and the GRN predictions matched expectations based upon published results for many of these examples. Our GRNs were also validated by ChIP-Seq datasets (KN1, FEA4 and O2). Key TFs were identified for each tissue and matched expectations for key regulators in each tissue, including GO enrichment and identity with known regulatory factors for that tissue. We also found functional modules in each network by clustering analysis with the MCL algorithm. CONCLUSIONS By combining publicly available genome-wide expression data and network analysis, we can uncover GRNs at tissue-level resolution in maize. Since ChIP-Seq and PWMs are still limited in several model organisms, our study provides a uniform platform that can be adapted to any species with genome-wide expression data to construct GRNs. We also present a publicly available database, maize tissue-specific GRN (mGRN, https://www.bio.fsu.edu/mcginnislab/mgrn/ ), for easy querying. All source code and data are available at Github ( https://github.com/timedreamer/maize_tissue-specific_GRN ).
Collapse
Affiliation(s)
- Ji Huang
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32306, USA
| | - Juefei Zheng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hui Yuan
- Department of Statistics, Florida State University, Tallahassee, Florida, 32306, USA
| | - Karen McGinnis
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32306, USA.
| |
Collapse
|
155
|
Wang J, Zhang Y, Du J, Pan X, Ma L, Shao M, Guo X. Combined analysis of genome-wide expression profiling of maize (Zea mays L.) leaves infected with Ustilago maydis. Genome 2018; 61:505-513. [PMID: 29800531 DOI: 10.1139/gen-2017-0226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although many gene expression profiling studies of maize leaves infected with Ustilago maydis have been published, heterogeneity of the results, caused by various data processing methods and pathogenic strains in different data sets, remains strong. Hence, we conducted a combined analysis of six genome-wide expression data sets of maize leaves infected with five different U. maydis strains by using the same pre-processing and quality control procedures. Six data sets were regrouped into five groups according to pathogenic strain used. Subsequently, each group of data set was processed by Multi-array Average for pre-processing and by pair-wise Pearson correlation for quality control. The differentially expressed genes were calculated by a standard linear mixed-effect model and then validated by various sensitivity analysis and multiple evidences. Finally, 44 unique differentially expressed genes were identified. Pathway enrichment analysis indicated that these genes related to response to fungus, oxidation-reduction, transferase activity, and several carbohydrate metabolic and catabolic processes. In addition, the hub genes within protein-protein interaction networks showed high relevance with the basic pathogenesis. We report a highly credible differentially expressed list, and the genes with multiple validations may denote a common signature of U. maydis in maize, which provides a new window for disease-resistant protection of maize plants.
Collapse
Affiliation(s)
- Jinglu Wang
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097.,Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097
| | - Ying Zhang
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097.,Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097
| | - Jianjun Du
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097.,Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097
| | - Xiaodi Pan
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097.,Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097
| | - Liming Ma
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097.,Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097
| | - Meng Shao
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097.,Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097.,Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, No. 11 Shuguang Huayuan Middle Road, Haidian District, Beijing, China, 100097
| |
Collapse
|
156
|
Yang T, Li K, Hao S, Zhang J, Song T, Tian J, Yao Y. The Use of RNA Sequencing and Correlation Network Analysis to Study Potential Regulators of Crabapple Leaf Color Transformation. PLANT & CELL PHYSIOLOGY 2018; 59:1027-1042. [PMID: 29474693 DOI: 10.1093/pcp/pcy044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/15/2018] [Indexed: 05/20/2023]
Abstract
Anthocyanins are plant pigments that contribute to the color of leaves, flowers and fruits, and that are beneficial to human health in the form of dietary antioxidants. The study of a transformable crabapple cultivar, 'India magic', which has red buds and green mature leaves, using mRNA profiling of four leaf developmental stages, allowed us to characterize molecular mechanisms regulating red color formation in early leaf development and the subsequent rapid down-regulation of anthocyanin biosynthesis. This analysis of differential gene expression during leaf development revealed that ethylene signaling-responsive genes are up-regulated during leaf pigmentation. Genes in the ethylene response factor (ERF), SPL, NAC, WRKY and MADS-box transcription factor (TF) families were identified in two weighted gene co-expression network analysis (WGCNA) modules as having a close relationship to anthocyanin accumulation. Analyses of network hub genes indicated that SPL TFs are located in central positions within anthocyanin-related modules. Furthermore, cis-motif and yeast one-hybrid assays suggested that several anthocyanin biosynthetic or regulatory genes are potential targets of SPL8 and SPL13B. Transient silencing of these two genes confirmed that they play a role in co-ordinating anthocyanin biosynthesis and crabapple leaf development. We present a high-resolution method for identifying regulatory modules associated with leaf pigmentation, which provides a platform for functional genomic studies of anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry Fruit Trees, Beijing, China
| | - Keting Li
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry Fruit Trees, Beijing, China
| | - Suxiao Hao
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, China
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jie Zhang
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry Fruit Trees, Beijing, China
| | - Tingting Song
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry Fruit Trees, Beijing, China
| | - Ji Tian
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry Fruit Trees, Beijing, China
| | - Yuncong Yao
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry Fruit Trees, Beijing, China
| |
Collapse
|
157
|
Baltussen TJH, Coolen JPM, Zoll J, Verweij PE, Melchers WJG. Gene co-expression analysis identifies gene clusters associated with isotropic and polarized growth in Aspergillus fumigatus conidia. Fungal Genet Biol 2018; 116:62-72. [PMID: 29705402 DOI: 10.1016/j.fgb.2018.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022]
Abstract
Aspergillus fumigatus is a saprophytic fungus that extensively produces conidia. These microscopic asexually reproductive structures are small enough to reach the lungs. Germination of conidia followed by hyphal growth inside human lungs is a key step in the establishment of infection in immunocompromised patients. RNA-Seq was used to analyze the transcriptome of dormant and germinating A. fumigatus conidia. Construction of a gene co-expression network revealed four gene clusters (modules) correlated with a growth phase (dormant, isotropic growth, polarized growth). Transcripts levels of genes encoding for secondary metabolites were high in dormant conidia. During isotropic growth, transcript levels of genes involved in cell wall modifications increased. Two modules encoding for growth and cell cycle/DNA processing were associated with polarized growth. In addition, the co-expression network was used to identify highly connected intermodular hub genes. These genes may have a pivotal role in the respective module and could therefore be compelling therapeutic targets. Generally, cell wall remodeling is an important process during isotropic and polarized growth, characterized by an increase of transcripts coding for hyphal growth and cell cycle/DNA processing when polarized growth is initiated.
Collapse
Affiliation(s)
- Tim J H Baltussen
- (a)Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands; (b)Centre of Expertise in Mycology, Radboudumc/CWZ, Nijmegen, The Netherlands.
| | - Jordy P M Coolen
- (a)Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands; (b)Centre of Expertise in Mycology, Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Jan Zoll
- (a)Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands; (b)Centre of Expertise in Mycology, Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Paul E Verweij
- (a)Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands; (b)Centre of Expertise in Mycology, Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Willem J G Melchers
- (a)Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands; (b)Centre of Expertise in Mycology, Radboudumc/CWZ, Nijmegen, The Netherlands
| |
Collapse
|
158
|
Abstract
Network-based systems biology has become an important method for analyzing high-throughput gene expression data and gene function mining. Escherichia coli (E. coli) has long been a popular model organism for basic biological research. In this paper, weighted gene co-expression network analysis (WGCNA) algorithm was applied to construct gene co-expression networks in E. coli. Thirty-one gene co-expression modules were detected from 1391 microarrays of E. coli data. Further characterization of these modules with the database for annotation, visualization, and integrated discovery (DAVID) tool showed that these modules are associated with several kinds of biological processes, such as carbohydrate catabolism, fatty acid metabolism, amino acid metabolism, transportation, translation, and ncRNA metabolism. Hub genes were also screened by intra-modular connectivity. Genes with unknown functions were annotated by guilt-by-association. Comparison with a previous prediction tool, EcoliNet, suggests that our dataset can expand gene predictions. In summary, 31 functional modules were identified in E. coli, 24 of which were functionally annotated. The analysis provides a resource for future gene discovery.
Collapse
|
159
|
Meng D, Zhao J, Zhao C, Luo H, Xie M, Liu R, Lai J, Zhang X, Jin W. Sequential gene activation and gene imprinting during early embryo development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:445-459. [PMID: 29172230 DOI: 10.1111/tpj.13786] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 05/05/2023]
Abstract
Gene imprinting is a widely observed epigenetic phenomenon in maize endosperm; however, whether it also occurs in the maize embryo remains controversial. Here, we used high-throughput RNA sequencing on laser capture microdissected and manually dissected maize embryos from reciprocal crosses between inbred lines B73 and Mo17 at six time points (3-13 days after pollination, DAP) to analyze allelic gene expression patterns. Co-expression analysis revealed sequential gene activation during maize embryo development. Gene imprinting was observed in maize embryos, and a greater number of imprinted genes were identified at early embryo stages. Sixty-four strongly imprinted genes were identified (at the threshold of 9:1) on manually dissected embryos 5-13 DAP (more imprinted genes at 5 DAP). Forty-one strongly imprinted genes were identified from laser capture microdissected embryos at 3 and 5 DAP (more imprinted genes at 3 DAP). Furthermore, of the 56 genes that were completely imprinted (at the threshold of 99:1), 36 were not previously identified as imprinted genes in endosperm or embryos. In situ hybridization demonstrated that most of the imprinted genes were expressed abundantly in maize embryonic tissue. Our results shed lights on early maize embryo development and provide evidence to support that gene imprinting occurs in maize embryos.
Collapse
Affiliation(s)
- Dexuan Meng
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Cheng Zhao
- Shanghai Centre for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haishan Luo
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Mujiao Xie
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Renyi Liu
- Shanghai Centre for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jinsheng Lai
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), China Agricultural University, Beijing, 100193, China
| |
Collapse
|
160
|
Feng F, Qi W, Lv Y, Yan S, Xu L, Yang W, Yuan Y, Chen Y, Zhao H, Song R. OPAQUE11 Is a Central Hub of the Regulatory Network for Maize Endosperm Development and Nutrient Metabolism. THE PLANT CELL 2018; 30:375-396. [PMID: 29436476 PMCID: PMC5868688 DOI: 10.1105/tpc.17.00616] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) endosperm is a primary tissue for nutrient storage and is highly differentiated during development. However, the regulatory networks of endosperm development and nutrient metabolism remain largely unknown. Maize opaque11 (o11) is a classic seed mutant with a small and opaque endosperm showing decreased starch and protein accumulation. We cloned O11 and found that it encodes an endosperm-specific bHLH transcription factor (TF). Loss of function of O11 significantly affected transcription of carbohydrate/amino acid metabolism and stress response genes. Genome-wide binding site analysis revealed 9885 O11 binding sites distributed over 6033 genes. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 259 O11-modulated target genes. O11 was found to directly regulate key TFs in endosperm development (NKD2 and ZmDOF3) and nutrient metabolism (O2 and PBF). Moreover, O11 directly regulates cyPPDKs and multiple carbohydrate metabolic enzymes. O11 is an activator of ZmYoda, suggesting its regulatory function through the MAPK pathway in endosperm development. Many stress-response genes are also direct targets of O11. In addition, 11 O11-interacting proteins were identified, including ZmIce1, which coregulates stress response targets and ZmYoda with O11. Therefore, this study reveals an endosperm regulatory network centered around O11, which coordinates endosperm development, metabolism and stress responses.
Collapse
Affiliation(s)
- Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuanda Lv
- Institute of Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shumei Yan
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Liming Xu
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wenyao Yang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yue Yuan
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yihan Chen
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Han Zhao
- Institute of Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
- National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
| |
Collapse
|
161
|
Abstract
Spatiotemporal patterning throughout the plant body depends to a large degree on cell- and tissue-specific expression of genes. Subsequently, for a better understanding of cell and tissue differentiation processes during plant development it is important to conduct transcript analyses in individual cells or tissue types rather than in bulk tissues. Laser capture microdissection (LCM) provides a useful method for isolating specific cell types from complex tissue structures for downstream applications. Contrasting to mammalian cells, the texture of plant cells is more critical due to hard, cellulose-rich cell walls, large vacuoles, and air spaces which complicates tissue preparation and extraction of macromolecules, like DNA and RNA. In particular, developing barley seeds (i.e. grains) depict cell types with differences in osmomolarity (meristematic, differentiating and degenerating tissues) and contain high amounts of the main storage product starch. In this study, we report about methods allowing tissue-specific transcriptome profiling by RNA-seq of developing barley grain tissues from low-input RNA amounts. Details on tissue preparation, laser capture microdissection, RNA isolation, and linear mRNA amplification to produce high-quality samples for Illumina sequencing are provided. Particular emphasis was placed on the influence of the mRNA amplification step on the transcriptome data and the fidelity of deduced expression levels obtained by the developed methods. Analysis of RNA-seq data confirmed sample processing as a highly reliable and reproducible procedure that was also used for transcriptome analyses of different tissue types from barley plants.
Collapse
Affiliation(s)
- Ronny Brandt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, OT Gatersleben, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, OT Gatersleben, Germany
| | - Johannes Thiel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, OT Gatersleben, Germany.
| |
Collapse
|
162
|
Roux B, Rodde N, Moreau S, Jardinaud MF, Gamas P. Laser Capture Micro-Dissection Coupled to RNA Sequencing: A Powerful Approach Applied to the Model Legume Medicago truncatula in Interaction with Sinorhizobium meliloti. Methods Mol Biol 2018; 1830:191-224. [PMID: 30043372 DOI: 10.1007/978-1-4939-8657-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Understanding the development of multicellular organisms requires the identification of regulators, notably transcription factors, and specific transcript populations associated with tissue differentiation. Laser capture microdissection (LCM) is one of the techniques that enable the analysis of distinct tissues or cells within an organ. Coupling this technique with RNA sequencing (RNAseq) makes it extremely powerful to obtain a genome-wide and dynamic view of gene expression. Moreover, RNA sequencing allows two or potentially more interacting organisms to be analyzed simultaneously. In this chapter, a LCM-RNAseq protocol optimized for root and symbiotic root nodule analysis is presented, using the model legume Medicago truncatula (in interaction with Sinorhizobium meliloti in the nodule samples). This includes the description of procedures for plant material fixation, embedding, and micro-dissection; it is followed by a presentation of techniques for RNA extraction and amplification, adapted for the simultaneous analysis of plant and bacterial cells in interaction or, more generally, polyadenylated and non-polyadenylated RNAs. Finally, step-by-step statistical analyses of RNAseq data are described. Those are critical for quality assessment of the whole procedure and for the identification of differentially expressed genes.
Collapse
Affiliation(s)
- Brice Roux
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
- BIAM, Université Aix-Marseille, CNRS, CEA, Saint-Paul-lez-Durance, France
| | - Nathalie Rodde
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
- CNRGV, INRA, Castanet-Tolosan, France
| | - Sandra Moreau
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Marie-Françoise Jardinaud
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
- INPT-Université de Toulouse, ENSAT, Castanet-Tolosan, France
| | - Pascal Gamas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
163
|
Takahagi K, Inoue K, Mochida K. Gene Co-expression Network Analysis Suggests the Existence of Transcriptional Modules Containing a High Proportion of Transcriptionally Differentiated Homoeologs in Hexaploid Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:1163. [PMID: 30135697 PMCID: PMC6092485 DOI: 10.3389/fpls.2018.01163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/23/2018] [Indexed: 05/20/2023]
Abstract
Genome duplications aid in the formation of novel molecular networks through regulatory differentiation of the duplicated genes and facilitate adaptation to environmental change. Hexaploid wheat, Triticum aestivum, contains three homoeologous chromosome sets, the A-, B-, and D-subgenomes, which evolved through interspecific hybridization and subsequent whole-genome duplication. The divergent expression patterns of the homoeologs in hexaploid wheat suggest that they have undergone transcriptional and/or functional differentiation during wheat evolution. However, the distribution of transcriptionally differentiated homoeologs in gene regulatory networks and their related biological functions in hexaploid wheat are still largely unexplored. Therefore, we retrieved 727 publicly available wheat RNA-sequencing (RNA-seq) datasets from various tissues, developmental stages, and conditions, and identified 10,415 expressed homoeologous triplets. Examining the co-expression modules in the wheat transcriptome, we found that 66% of the expressed homoeologous triplets possess all three homoeologs grouped in the same co-expression modules. Among these, 15 triplets contain co-expressed homoeologs with differential expression levels between homoeoalleles across ≥ 95% of the 727 RNA-seq datasets, suggesting a consistent trend of homoeolog expression bias. In addition, we identified 2,831 differentiated homoeologs that showed gene expression patterns that deviated from those of the other two homoeologs. We found that seven co-expression modules contained a high proportion of such differentiated homoeologs, which accounted for ≥ 20% of the genes in each module. We also found that five of the co-expression modules are abundantly composed of genes involved in biological processes such as chloroplast biogenesis, RNA metabolism, putative defense response, putative posttranscriptional modification, and lipid metabolism, thereby suggesting that, the differentiated homoeologs might highly contribute to these biological functions in the gene network of hexaploid wheat.
Collapse
Affiliation(s)
- Kotaro Takahagi
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Komaki Inoue
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- *Correspondence: Keiichi Mochida,
| |
Collapse
|
164
|
Xiong W, Wang C, Zhang X, Yang Q, Shao R, Lai J, Du C. Highly interwoven communities of a gene regulatory network unveil topologically important genes for maize seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1143-1156. [PMID: 29072883 DOI: 10.1111/tpj.13750] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
The complex interactions between transcription factors (TFs) and their target genes in a spatially and temporally specific manner are crucial to all cellular processes. Reconstruction of gene regulatory networks (GRNs) from gene expression profiles can help to decipher TF-gene regulations in a variety of contexts; however, the inevitable prediction errors of GRNs hinder optimal data mining of RNA-Seq transcriptome profiles. Here we perform an integrative study of Zea mays (maize) seed development in order to identify key genes in a complex developmental process. First, we reverse engineered a GRN from 78 maize seed transcriptome profiles. Then, we studied collective gene interaction patterns and uncovered highly interwoven network communities as the building blocks of the GRN. One community, composed of mostly unknown genes interacting with opaque2, brittle endosperm1 and shrunken2, contributes to seed phenotypes. Another community, composed mostly of genes expressed in the basal endosperm transfer layer, is responsible for nutrient transport. We further integrated our inferred GRN with gene expression patterns in different seed compartments and at various developmental stages and pathways. The integration facilitated a biological interpretation of the GRN. Our yeast one-hybrid assays verified six out of eight TF-promoter bindings in the reconstructed GRN. This study identified topologically important genes in interwoven network communities that may be crucial to maize seed development.
Collapse
Affiliation(s)
- Wenwei Xiong
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| | - Chunlei Wang
- National Maize Improvement Center, China Agricultural University, Beijing, 100083, China
| | - Xiangbo Zhang
- National Maize Improvement Center, China Agricultural University, Beijing, 100083, China
| | - Qinghua Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruixin Shao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinsheng Lai
- National Maize Improvement Center, China Agricultural University, Beijing, 100083, China
| | - Chunguang Du
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| |
Collapse
|
165
|
Zhang HM, Wheeler SL, Xia X, Colyvas K, Offler CE, Patrick JW. Transcript Profiling Identifies Gene Cohorts Controlled by Each Signal Regulating Trans-Differentiation of Epidermal Cells of Vicia faba Cotyledons to a Transfer Cell Phenotype. FRONTIERS IN PLANT SCIENCE 2017; 8:2021. [PMID: 29234338 PMCID: PMC5712318 DOI: 10.3389/fpls.2017.02021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
Transfer cells (TCs) support high rates of membrane transport of nutrients conferred by a plasma membrane area amplified by lining a wall labyrinth comprised of an uniform wall layer (UWL) upon which intricate wall ingrowth (WI) papillae are deposited. A signal cascade of auxin, ethylene, extracellular hydrogen peroxide (H2O2) and cytosolic Ca2+ regulates wall labyrinth assembly. To identify gene cohorts regulated by each signal, a RNA- sequencing study was undertaken using Vicia faba cotyledons. When cotyledons are placed in culture, their adaxial epidermal cells spontaneously undergo trans-differentiation to epidermal TCs (ETCs). Expressed genes encoding proteins central to wall labyrinth formation (signaling, intracellular organization, cell wall) and TC function of nutrient transport were assembled. Transcriptional profiles identified 9,742 annotated ETC-specific differentially expressed genes (DEGs; Log2fold change > 1; FDR p ≤ 0.05) of which 1,371 belonged to signaling (50%), intracellular organization (27%), cell wall (15%) and nutrient transporters (9%) functional categories. Expression levels of 941 ETC-specific DEGs were found to be sensitive to the known signals regulating ETC trans-differentiation. Significantly, signals acting alone, or in various combinations, impacted similar numbers of ETC-specific DEGs across the four functional gene categories. Amongst the signals acting alone, H2O2 exerted most influence affecting expression levels of 56% of the ETC-specific DEGs followed by Ca2+ (21%), auxin (18%) and ethylene (5%). The dominance by H2O2 was evident across all functional categories, but became more attenuated once trans-differentiation transitioned into WI papillae formation. Amongst the eleven signal combinations, H2O2/Ca2+ elicited the greatest impact across all functional categories accounting for 20% of the ETC-specific DEG cohort. The relative influence of the other signals acting alone, or in various combinations, varied across the four functional categories and two phases of wall labyrinth construction. These transcriptome data provide a powerful information platform from which to examine signal transduction pathways and how these regulate expression of genes encoding proteins engaged in intracellular organization, cell wall construction and nutrient transport.
Collapse
Affiliation(s)
- Hui-Ming Zhang
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Simon L. Wheeler
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Xue Xia
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Kim Colyvas
- School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Christina E. Offler
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - John W. Patrick
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
166
|
Celedon JM, Yuen MMS, Chiang A, Henderson H, Reid KE, Bohlmann J. Cell-type- and tissue-specific transcriptomes of the white spruce (Picea glauca) bark unmask fine-scale spatial patterns of constitutive and induced conifer defense. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:710-726. [PMID: 28857307 DOI: 10.1111/tpj.13673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 05/09/2023]
Abstract
Plant defenses often involve specialized cells and tissues. In conifers, specialized cells of the bark are important for defense against insects and pathogens. Using laser microdissection, we characterized the transcriptomes of cortical resin duct cells, phenolic cells and phloem of white spruce (Picea glauca) bark under constitutive and methyl jasmonate (MeJa)-induced conditions, and we compared these transcriptomes with the transcriptome of the bark tissue complex. Overall, ~3700 bark transcripts were differentially expressed in response to MeJa. Approximately 25% of transcripts were expressed in only one cell type, revealing cell specialization at the transcriptome level. MeJa caused cell-type-specific transcriptome responses and changed the overall patterns of cell-type-specific transcript accumulation. Comparison of transcriptomes of the conifer bark tissue complex and specialized cells resolved a masking effect inherent to transcriptome analysis of complex tissues, and showed the actual cell-type-specific transcriptome signatures. Characterization of cell-type-specific transcriptomes is critical to reveal the dynamic patterns of spatial and temporal display of constitutive and induced defense systems in a complex plant tissue or organ. This was demonstrated with the improved resolution of spatially restricted expression of sets of genes of secondary metabolism in the specialized cell types.
Collapse
Affiliation(s)
- Jose M Celedon
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Macaire M S Yuen
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Angela Chiang
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Hannah Henderson
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Karen E Reid
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
167
|
Zhu M, Zhang M, Xing L, Li W, Jiang H, Wang L, Xu M. Transcriptomic Analysis of Long Non-Coding RNAs and Coding Genes Uncovers a Complex Regulatory Network That Is Involved in Maize Seed Development. Genes (Basel) 2017; 8:genes8100274. [PMID: 29039813 PMCID: PMC5664124 DOI: 10.3390/genes8100274] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to be involved in the development of maize plant. However, few focused on seed development of maize. Here, we identified 753 lncRNA candidates in maize genome from six seed samples. Similar to the mRNAs, lncRNAs showed tissue developmental stage specific and differential expression, indicating their putative role in seed development. Increasing evidence shows that crosstalk among RNAs mediated by shared microRNAs (miRNAs) represents a novel layer of gene regulation, which plays important roles in plant development. Functional roles and regulatory mechanisms of lncRNAs as competing endogenous RNAs (ceRNA) in plants, particularly in maize seed development, are unclear. We combined analyses of consistently altered 17 lncRNAs, 840 mRNAs and known miRNA to genome-wide investigate potential lncRNA-mediated ceRNA based on “ceRNA hypothesis”. The results uncovered seven novel lncRNAs as potential functional ceRNAs. Functional analyses based on their competitive coding-gene partners by Gene Ontology (GO) and KEGG biological pathway demonstrated that combined effects of multiple ceRNAs can have major impacts on general developmental and metabolic processes in maize seed. These findings provided a useful platform for uncovering novel mechanisms of maize seed development and may provide opportunities for the functional characterization of individual lncRNA in future studies.
Collapse
Affiliation(s)
- Ming Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230000, China.
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Min Zhang
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lijuan Xing
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wenzong Li
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Haiyang Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei 230000, China.
| | - Lei Wang
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Miaoyun Xu
- Biotechnology Research Institute/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
168
|
Zhang S, Thakare D, Yadegari R. Laser-Capture Microdissection of Maize Kernel Compartments for RNA-Seq-Based Expression Analysis. Methods Mol Biol 2017; 1676:153-163. [PMID: 28986909 DOI: 10.1007/978-1-4939-7315-6_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Laser-capture microdissection (LCM) enables isolation of single cells or groups of cells for a variety of downstream applications including transcriptome profiling. Recently, this methodology has found a more widespread use particularly with the advent of next-generation sequencing techniques that enable deep profiling of the limited amounts of RNA obtained from fixed or frozen sections. When used with fixed tissues, a major experimental challenge is to balance the tissue integrity needed for microscopic visualization of the cell types of interest with that of the RNA quality necessary for deep profiling. Complex biological structures such as seeds or kernels pose an especially difficult case in this context as in many instances the key internal structures such as the embryo and the endosperm are relatively inaccessible. Here, we present an optimized LCM protocol for maize kernel that has been developed specifically to enable profiling of the early stages of endosperm development using RNA-Seq.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721-0036, USA
| | - Dhiraj Thakare
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721-0036, USA
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, Arizona, 85721-0036, USA.
| |
Collapse
|
169
|
Cañas RA, Li Z, Pascual MB, Castro-Rodríguez V, Ávila C, Sterck L, Van de Peer Y, Cánovas FM. The gene expression landscape of pine seedling tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:1064-1087. [PMID: 28635135 DOI: 10.1111/tpj.13617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/13/2017] [Accepted: 05/31/2017] [Indexed: 05/20/2023]
Abstract
Conifers dominate vast regions of the Northern hemisphere. They are the main source of raw materials for timber industry as well as a wide range of biomaterials. Despite their inherent difficulties as experimental models for classical plant biology research, the technological advances in genomics research are enabling fundamental studies on these plants. The use of laser capture microdissection followed by transcriptomic analysis is a powerful tool for unravelling the molecular and functional organization of conifer tissues and specialized cells. In the present work, 14 different tissues from 1-month-old maritime pine (Pinus pinaster) seedlings have been isolated and their transcriptomes analysed. The results increased the sequence information and number of full-length transcripts from a previous reference transcriptome and added 39 841 new transcripts. In total, 2376 transcripts were ubiquitously expressed in all of the examined tissues. These transcripts could be considered the core 'housekeeping genes' in pine. The genes have been clustered in function to their expression profiles. This analysis reduced the number of profiles to 38, most of these defined by their expression in a unique tissue that is much higher than in the other tissues. The expression and localization data are accessible at ConGenIE.org (http://v22.popgenie.org/microdisection/). This study presents an overview of the gene expression distribution in different pine tissues, specifically highlighting the relationships between tissue gene expression and function. This transcriptome atlas is a valuable resource for functional genomics research in conifers.
Collapse
Affiliation(s)
- Rafael A Cañas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - M Belén Pascual
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Vanessa Castro-Rodríguez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Concepción Ávila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos s/n, 29071, Málaga, Spain
| |
Collapse
|
170
|
Garg R, Singh VK, Rajkumar MS, Kumar V, Jain M. Global transcriptome and coexpression network analyses reveal cultivar-specific molecular signatures associated with seed development and seed size/weight determination in chickpea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:1088-1107. [PMID: 28640939 DOI: 10.1111/tpj.13621] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/02/2017] [Accepted: 06/09/2017] [Indexed: 05/22/2023]
Abstract
Seed development is an intricate process regulated via a complex transcriptional regulatory network. To understand the molecular mechanisms governing seed development and seed size/weight in chickpea, we performed a comprehensive analysis of transcriptome dynamics during seed development in two cultivars with contrasting seed size/weight (small-seeded, Himchana 1 and large-seeded, JGK 3). Our analysis identified stage-specific expression for a significant proportion (>13%) of the genes in each cultivar. About one half of the total genes exhibited significant differential expression in JGK 3 as compared with Himchana 1. We found that different seed development stages can be delineated by modules of coexpressed genes. A comparative analysis revealed differential developmental stage specificity of some modules between the two cultivars. Furthermore, we constructed transcriptional regulatory networks and identified key components determining seed size/weight. The results suggested that extended period of cell division during embryogenesis and higher level of endoreduplication along with more accumulation of storage compounds during maturation determine large seed size/weight. Further, we identified quantitative trait loci-associated candidate genes harboring single nucleotide polymorphisms in the promoter sequences that differentiate small- and large-seeded chickpea cultivars. The results provide a valuable resource to dissect the role of candidate genes governing seed development and seed size/weight in chickpea.
Collapse
Affiliation(s)
- Rohini Garg
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Vikash K Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohan Singh Rajkumar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vinay Kumar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Jain
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
171
|
Betts NS, Berkowitz O, Liu R, Collins HM, Skadhauge B, Dockter C, Burton RA, Whelan J, Fincher GB. Isolation of tissues and preservation of RNA from intact, germinated barley grain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:754-765. [PMID: 28509349 DOI: 10.1111/tpj.13600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 05/11/2023]
Abstract
Isolated barley (Hordeum vulgare L.) aleurone layers have been widely used as a model system for studying gene expression and hormonal regulation in germinating cereal grains. A serious technological limitation of this approach has been the inability to confidently extrapolate conclusions obtained from isolated tissues back to the whole grain, where the co-location of several living and non-living tissues results in complex tissue-tissue interactions and regulatory pathways coordinated across the multiple tissues. Here we have developed methods for isolating fragments of aleurone, starchy endosperm, embryo, scutellum, pericarp-testa, husk and crushed cell layers from germinated grain. An important step in the procedure involves the rapid fixation of the intact grain to freeze the transcriptional activity of individual tissues while dissection is effected for subsequent transcriptomic analyses. The developmental profiles of 19 611 gene transcripts were precisely defined in the purified tissues and in whole grain during the first 24 h of germination by RNA sequencing. Spatial and temporal patterns of transcription were validated against well-defined data on enzyme activities in both whole grain and isolated tissues. Transcript profiles of genes involved in mitochondrial assembly and function were used to validate the very early stages of germination, while the profiles of genes involved in starch and cell wall mobilisation matched existing data on activities of corresponding enzymes. The data will be broadly applicable for the interrogation of co-expression and differential expression patterns and for the identification of transcription factors that are important in the early stages of grain and seed germination.
Collapse
Affiliation(s)
- Natalie S Betts
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Oliver Berkowitz
- School of Life Science and ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia
| | - Ruijie Liu
- School of Life Science and ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia
| | - Helen M Collins
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Birgitte Skadhauge
- Carlsberg Research Laboratory, J. C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Christoph Dockter
- Carlsberg Research Laboratory, J. C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - James Whelan
- School of Life Science and ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia
| | - Geoffrey B Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
172
|
Ma S, Ding Z, Li P. Maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response. BMC PLANT BIOLOGY 2017; 17:131. [PMID: 28764653 PMCID: PMC5540570 DOI: 10.1186/s12870-017-1077-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The advent of big data in biology offers opportunities while poses challenges to derive biological insights. For maize, a large amount of publicly available transcriptome datasets have been generated but a comprehensive analysis is lacking. RESULTS We constructed a maize gene co-expression network based on the graphical Gaussian model, using massive RNA-seq data. The network, containing 20,269 genes, assembles into 964 gene modules that function in a variety of plant processes, such as cell organization, the development of inflorescences, ligules and kernels, the uptake and utilization of nutrients (e.g. nitrogen and phosphate), the metabolism of benzoxazionids, oxylipins, flavonoids, and wax, and the response to stresses. Among them, the inflorescences development module is enriched with domestication genes (like ra1, ba1, gt1, tb1, tga1) that control plant architecture and kernel structure, while multiple other modules relate to diverse agronomic traits. Contained within these modules are transcription factors acting as known or potential expression regulators for the genes within the same modules, suggesting them as candidate regulators for related biological processes. A comparison with an established Arabidopsis network revealed conserved gene association patterns for specific modules involved in cell organization, nutrients uptake & utilization, and metabolism. The analysis also identified significant divergences between the two species for modules that orchestrate developmental pathways. CONCLUSIONS This network sheds light on how gene modules are organized between different species in the context of evolutionary divergence and highlights modules whose structure and gene content can provide important resources for maize gene functional studies with application potential.
Collapse
Affiliation(s)
- Shisong Ma
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui China
| | - Zehong Ding
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong China
| |
Collapse
|
173
|
Miao Z, Han Z, Zhang T, Chen S, Ma C. A systems approach to a spatio-temporal understanding of the drought stress response in maize. Sci Rep 2017; 7:6590. [PMID: 28747711 PMCID: PMC5529502 DOI: 10.1038/s41598-017-06929-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022] Open
Abstract
Crops are often subjected to periods of drought stress during their life cycle. However, how stress response mechanisms contribute to the crosstalk between stress signaling pathways and developmental signaling pathways is still unknown. We built a gene co-expression network from a spatio-temporal transcriptomic map of the drought stress response in maize (Zea mays), profiled from three tissues and four developmental stages and characterized hub genes associated with duplication events, selection, and regulatory networks. Co-expression analysis grouped drought-response genes into ten modules, covering 844 highly connected genes (hub genes). Of these, 15.4% hub genes had diverged by whole-genome duplication events and 2.5% might then have been selected during natural domestication and artificial improvement processes, successively. We identified key transcription factor hubs in a transcriptional regulatory network, which may function as a crosstalk mechanism between drought stress and developmental signalling pathways in maize. Understanding the evolutionary biases that have evolved to enhance drought adaptation lays the foundation for further dissection of crosstalk between stress signalling pathways and developmental signalling pathways in maize, towards molecular design of new cultivars with desirable yield and greater stress tolerance.
Collapse
Affiliation(s)
- Zhenyan Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhaoxue Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Siyuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
174
|
Liu W, Li L, Ye H, Chen H, Shen W, Zhong Y, Tian T, He H. From Saccharomyces cerevisiae to human: The important gene co-expression modules. Biomed Rep 2017; 7:153-158. [PMID: 28804628 DOI: 10.3892/br.2017.941] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/18/2017] [Indexed: 02/05/2023] Open
Abstract
Network-based systems biology has become an important method for analyzing high-throughput gene expression data and gene function mining. Yeast has long been a popular model organism for biomedical research. In the current study, a weighted gene co-expression network analysis algorithm was applied to construct a gene co-expression network in Saccharomyces cerevisiae. Seventeen stable gene co-expression modules were detected from 2,814 S. cerevisiae microarray data. Further characterization of these modules with the Database for Annotation, Visualization and Integrated Discovery tool indicated that these modules were associated with certain biological processes, such as heat response, cell cycle, translational regulation, mitochondrion oxidative phosphorylation, amino acid metabolism and autophagy. Hub genes were also screened by intra-modular connectivity. Finally, the module conservation was evaluated in a human disease microarray dataset. Functional modules were identified in budding yeast, some of which are associated with patient survival. The current study provided a paradigm for single cell microorganisms and potentially other organisms.
Collapse
Affiliation(s)
- Wei Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Li Li
- Institute of Health Service and Medical Information, Academy of Military Medical Sciences, Beijing 100850, P.R. China
| | - Hua Ye
- Department of Gastroenterology, Ningbo Medical Center, Lihuili Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Haiwei Chen
- Department of Cardiology, First Affiliated Hospital of General Hospital of PLA, Beijing 100048, P.R. China
| | - Weibiao Shen
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Yuexian Zhong
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Tian Tian
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| | - Huaqin He
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
175
|
Abstract
The maize endosperm consists of three major compartmentalized cell types: the starchy endosperm (SE), the basal endosperm transfer cell layer (BETL), and the aleurone cell layer (AL). Differential genetic programs are activated in each cell type to construct functionally and structurally distinct cells. To compare gene expression patterns involved in maize endosperm cell differentiation, we isolated transcripts from cryo-dissected endosperm specimens enriched with BETL, AL, or SE at 8, 12, and 16 days after pollination (DAP). We performed transcriptome profiling of coding and long noncoding transcripts in the three cell types during differentiation and identified clusters of the transcripts exhibiting spatio-temporal specificities. Our analysis uncovered that the BETL at 12 DAP undergoes the most dynamic transcriptional regulation for both coding and long noncoding transcripts. In addition, our transcriptome analysis revealed spatio-temporal regulatory networks of transcription factors, imprinted genes, and loci marked with histone H3 trimethylated at lysine 27. Our study suggests that various regulatory mechanisms contribute to the genetic networks specific to the functions and structures of the cell types of the endosperm.
Collapse
|
176
|
Musseau C, Just D, Jorly J, Gévaudant F, Moing A, Chevalier C, Lemaire-Chamley M, Rothan C, Fernandez L. Identification of Two New Mechanisms That Regulate Fruit Growth by Cell Expansion in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:988. [PMID: 28659942 PMCID: PMC5467581 DOI: 10.3389/fpls.2017.00988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/24/2017] [Indexed: 05/25/2023]
Abstract
Key mechanisms controlling fruit weight and shape at the levels of meristem, ovary or very young fruit have already been identified using natural tomato diversity. We reasoned that new developmental modules prominent at later stages of fruit growth could be discovered by using new genetic and phenotypic diversity generated by saturated mutagenesis. Twelve fruit weight and tissue morphology mutants likely affected in late fruit growth were selected among thousands of fruit size and shape EMS mutants available in our tomato EMS mutant collection. Their thorough characterization at organ, tissue and cellular levels revealed two major clusters controlling fruit growth and tissue morphogenesis either through (i) the growth of all fruit tissues through isotropic cell expansion or (ii) only the growth of the pericarp through anisotropic cell expansion. These likely correspond to new cell expansion modules controlling fruit growth and tissue morphogenesis in tomato. Our study therefore opens the way for the identification of new gene regulatory networks controlling tomato fruit growth and morphology.
Collapse
|
177
|
Li H, Peng T, Wang Q, Wu Y, Chang J, Zhang M, Tang G, Li C. Development of Incompletely Fused Carpels in Maize Ovary Revealed by miRNA, Target Gene and Phytohormone Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:463. [PMID: 28421097 PMCID: PMC5376576 DOI: 10.3389/fpls.2017.00463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 03/16/2017] [Indexed: 05/29/2023]
Abstract
Although the molecular basis of carpel fusion in maize ovary development remains largely unknown, increasing evidence suggests a critical role of microRNAs (miRNAs). In this study, a combination of miRNA sequencing, degradome and physiological analyses was used to characterize carpel fusion development in maize ovaries showing incompletely (IFC) and completely fused carpels (CFC). A total of 162 known miRNAs distributed across 33 families were identified, of which 20 were differentially expressed. In addition, 53 miRNA candidates were identified, of which 10 were differentially expressed in the IFC and CFC ovaries. In degradome analysis, a total of 113 and 11 target genes were predicted for the known and novel miRNAs, respectively. Moreover, 24 (60%) target genes of the differentially expressed known miRNAs were found to code transcription factors, including auxin response factor (ARF), TB1-CYC-PCFs (TCP), APETALA2 (AP2), growth regulating factor (GRF), MYB, NAC, and NF-YA, all of which have been shown to play a role in carpel fusion development. Correlation analysis of these differentially expressed known miRNAs and their targets with phytohormone signals revealed significant correlations with at least one phytohormone signal, the main regulator of carpel fusion development. These results suggest that incomplete carpel fusion is partly the result of differential expression of certain miRNAs and their targets. Overall, these findings improve our knowledge of the effect of miRNA regulation on target expression, providing a useful resource for further analysis of the interactions between miRNAs, target genes and phytohormones during carpel fusion development in maize.
Collapse
Affiliation(s)
- Hongping Li
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural UniversityZhengzhou, China
| | - Ting Peng
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural UniversityZhengzhou, China
| | - Qun Wang
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural UniversityZhengzhou, China
| | - Yufeng Wu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural UniversityNanjing, China
| | - Jianfeng Chang
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural UniversityZhengzhou, China
| | - Moubiao Zhang
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural UniversityZhengzhou, China
| | - Guiliang Tang
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural UniversityZhengzhou, China
| | - Chaohai Li
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
178
|
Doll NM, Depège-Fargeix N, Rogowsky PM, Widiez T. Signaling in Early Maize Kernel Development. MOLECULAR PLANT 2017; 10:375-388. [PMID: 28267956 DOI: 10.1016/j.molp.2017.01.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 05/26/2023]
Abstract
Developing the next plant generation within the seed requires the coordination of complex programs driving pattern formation, growth, and differentiation of the three main seed compartments: the embryo (future plant), the endosperm (storage compartment), representing the two filial tissues, and the surrounding maternal tissues. This review focuses on the signaling pathways and molecular players involved in early maize kernel development. In the 2 weeks following pollination, functional tissues are shaped from single cells, readying the kernel for filling with storage compounds. Although the overall picture of the signaling pathways regulating embryo and endosperm development remains fragmentary, several types of molecular actors, such as hormones, sugars, or peptides, have been shown to be involved in particular aspects of these developmental processes. These molecular actors are likely to be components of signaling pathways that lead to transcriptional programming mediated by transcriptional factors. Through the integrated action of these components, multiple types of information received by cells or tissues lead to the correct differentiation and patterning of kernel compartments. In this review, recent advances regarding the four types of molecular actors (hormones, sugars, peptides/receptors, and transcription factors) involved in early maize development are presented.
Collapse
Affiliation(s)
- Nicolas M Doll
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Nathalie Depège-Fargeix
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Peter M Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France.
| |
Collapse
|
179
|
Dong X, Zhang M, Chen J, Peng L, Zhang N, Wang X, Lai J. Dynamic and Antagonistic Allele-Specific Epigenetic Modifications Controlling the Expression of Imprinted Genes in Maize Endosperm. MOLECULAR PLANT 2017; 10:442-455. [PMID: 27793787 DOI: 10.1016/j.molp.2016.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 05/22/2023]
Abstract
Genomic imprinting is often associated with allele-specific epigenetic modifications. Although many reports suggested potential roles of DNA methylation and H3K27me3 in regulating genomic imprinting, the contributions of allele-specific active histone modifications to imprinting remain still unclear in plants. Here, we report the identification of 337 high-stringency allele-specific H3K4me3 and H3K36me3 peaks in maize endosperm. Paternally preferred H3K4me3 and H3K36me3 peaks mostly co-localized with paternally expressed genes (PEGs), while endosperm-specific maternally expressed genes (endo-MEGs) were associated with maternally preferred H3K4me3 and H3K36me3 peaks. A unique signature for PEGs was observed, where the active H3K4me4 and H3K36me3 as well as repressive H3K27me3 appeared together. At the gene body of con-PEGs (constitutively expressed PEG), H3K27me3 and H3K36me3 were specifically deposited on hypomethylated maternal alleles and hypermethylated paternal alleles, respectively. Around the transcription start sites of endo-MEGs, DNA methylation and H3K4me3 specifically marked paternal and maternal alleles, respectively. In addition, 35 maternally expressed non-coding RNAs exhibited the same allele-specific epigenetic features as endo-MEGs, indicating similar mechanisms for the regulation of imprinted genes and non-coding RNAs. Taken together, our results uncover the complex patterns of mutually exclusive epigenetic modifications deposited at different alleles of imprinted genes that are required for genomic imprinting in maize endosperm.
Collapse
Affiliation(s)
- Xiaomei Dong
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Mei Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Lizeng Peng
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Nan Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Xin Wang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R. China.
| |
Collapse
|
180
|
López M, Gómez E, Faye C, Gerentes D, Paul W, Royo J, Hueros G, Muñiz LM. zmsbt1 and zmsbt2, two new subtilisin-like serine proteases genes expressed in early maize kernel development. PLANTA 2017; 245:409-424. [PMID: 27830397 DOI: 10.1007/s00425-016-2615-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Two subtilisin-like proteases show highly specific and complementary expression patterns in developing grains. These genes label the complete surface of the filial-maternal interface, suggesting a role in filial epithelial differentiation. The cereal endosperm is the most important source of nutrition and raw materials for mankind, as well as the storage compartment enabling initial growth of the germinating plantlets. The development of the different cell types in this tissue is regulated environmentally, genetically and epigenetically, resulting in the formation of top-bottom, adaxial-abaxial and surface-central axes. However, the mechanisms governing the interactions among the different inputs are mostly unknown. We have screened a kernel cDNA library for tissue-specific transcripts as initial step to identify genes relevant in cell differentiation. We report here on the isolation of two maize subtilisin-related genes that show grain-specific, surficial expression. zmsbt1 (Zea mays Subtilisin1) is expressed at the developing aleurone in a time-regulated manner, while zmsbt2 concentrates at the pedicel in front of the endosperm basal transfer layer. We have shown that their presence, early in the maize caryopsis development, is dependent on proper initial tissue determination, and have isolated their promoters to produce transgenic reporter lines that assist in the study of their regulation.
Collapse
Affiliation(s)
- Maribel López
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| | - Elisa Gómez
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| | - Christian Faye
- GM Trait Discovery, Biogemma, Centre de Recherche de Chappes, Chappes, France
| | - Denise Gerentes
- GM Trait Discovery, Biogemma, Centre de Recherche de Chappes, Chappes, France
| | - Wyatt Paul
- GM Trait Discovery, Biogemma, Centre de Recherche de Chappes, Chappes, France
| | - Joaquín Royo
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| | - Gregorio Hueros
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain.
| | - Luis M Muñiz
- Departamento Biomedicina and Biotecnología (Genética), Universidad de Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
181
|
Li DD, Xue JS, Zhu J, Yang ZN. Gene Regulatory Network for Tapetum Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1559. [PMID: 28955355 PMCID: PMC5601042 DOI: 10.3389/fpls.2017.01559] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/28/2017] [Indexed: 05/19/2023]
Abstract
In flowering plants, male gametophyte development occurs in the anther. Tapetum, the innermost of the four anther somatic layers, surrounds the developing reproductive cells to provide materials for pollen development. A genetic pathway of DYT1-TDF1-AMS-MS188 in regulating tapetum development has been proven. Here we used laser microdissection and pressure catapulting to capture and analyze the transcriptome data for the Arabidopsis tapetum at two stages. With a comprehensive analysis by the microarray data of dyt1, tdf1, ams, and ms188 mutants, we identified possible downstream genes for each transcription factor. These transcription factors regulate many biological processes in addition to activating the expression of the other transcription factor. Briefly, DYT1 may also regulate early tapetum development via E3 ubiquitin ligases and many other transcription factors. TDF1 is likely involved in redox and cell degradation. AMS probably regulates lipid transfer proteins, which are involved in pollen wall formation, and other E3 ubiquitin ligases, functioning in degradating proteins produced in previous processes. MS188 is responsible for most cell wall-related genes, functioning both in tapetum cell wall degradation and pollen wall formation. These results propose a more complex gene regulatory network for tapetum development and function.
Collapse
|
182
|
Schaefer RJ, Michno JM, Myers CL. Unraveling gene function in agricultural species using gene co-expression networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:53-63. [DOI: 10.1016/j.bbagrm.2016.07.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
|
183
|
Galland M, He D, Lounifi I, Arc E, Clément G, Balzergue S, Huguet S, Cueff G, Godin B, Collet B, Granier F, Morin H, Tran J, Valot B, Rajjou L. An Integrated "Multi-Omics" Comparison of Embryo and Endosperm Tissue-Specific Features and Their Impact on Rice Seed Quality. FRONTIERS IN PLANT SCIENCE 2017; 8:1984. [PMID: 29213276 PMCID: PMC5702907 DOI: 10.3389/fpls.2017.01984] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/03/2017] [Indexed: 05/20/2023]
Abstract
Although rice is a key crop species, few studies have addressed both rice seed physiological and nutritional quality, especially at the tissue level. In this study, an exhaustive "multi-omics" dataset on the mature rice seed was obtained by combining transcriptomics, label-free shotgun proteomics and metabolomics from embryo and endosperm, independently. These high-throughput analyses provide a new insight on the tissue-specificity related to rice seed quality. Foremost, we pinpointed that extensive post-transcriptional regulations occur at the end of rice seed development such that the embryo proteome becomes much more diversified than the endosperm proteome. Secondly, we observed that survival in the dry state in each seed compartment depends on contrasted metabolic and enzymatic apparatus in the embryo and the endosperm, respectively. Thirdly, it was remarkable to identify two different sets of starch biosynthesis enzymes as well as seed storage proteins (glutelins) in both embryo and endosperm consistently with the supernumerary embryo hypothesis origin of the endosperm. The presence of a putative new glutelin with a possible embryonic favored abundance is described here for the first time. Finally, we quantified the rate of mRNA translation into proteins. Consistently, the embryonic panel of protein translation initiation factors is much more diverse than that of the endosperm. This work emphasizes the value of tissue-specificity-centered "multi-omics" study in the seed to highlight new features even from well-characterized pathways. It paves the way for future studies of critical genetic determinants of rice seed physiological and nutritional quality.
Collapse
Affiliation(s)
- Marc Galland
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Dongli He
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Imen Lounifi
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Erwann Arc
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Gilles Clément
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Sandrine Balzergue
- IPS2, Institute of Plant Sciences Paris-Saclay (INRA, CNRS, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay), POPS-Transcriptomic Platform, Saclay Plant Sciences (SPS), Orsay, France
| | - Stéphanie Huguet
- IPS2, Institute of Plant Sciences Paris-Saclay (INRA, CNRS, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay), POPS-Transcriptomic Platform, Saclay Plant Sciences (SPS), Orsay, France
| | - Gwendal Cueff
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Béatrice Godin
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Boris Collet
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Fabienne Granier
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Halima Morin
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Joseph Tran
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
| | - Benoit Valot
- GQE-Le Moulon, Génétique Quantitative et Evolution (INRA Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay), PAPPSO-Plateforme d'Analyse Protéomique de Paris Sud-Ouest, Saclay Plant Sciences (SPS), Gif-sur-Yvette, France
| | - Loïc Rajjou
- IJPB, Institut Jean-Pierre Bourgin (INRA, AgroParisTech, CNRS, Université Paris-Saclay), Saclay Plant Sciences (SPS), Versailles, France
- *Correspondence: Loïc Rajjou
| |
Collapse
|
184
|
Gontarek BC, Neelakandan AK, Wu H, Becraft PW. NKD Transcription Factors Are Central Regulators of Maize Endosperm Development. THE PLANT CELL 2016; 28:2916-2936. [PMID: 27895224 PMCID: PMC5240740 DOI: 10.1105/tpc.16.00609] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/26/2016] [Accepted: 11/23/2016] [Indexed: 05/18/2023]
Abstract
NAKED ENDOSPERM1 (NKD1) and NKD2 are duplicate INDETERMINATE DOMAIN (IDD) transcription factors important for maize (Zea mays) endosperm development. RNA-seq analysis of the nkd1 nkd2 mutant endosperm revealed that NKD1 and NKD2 influence 6.4% of the transcriptome in developing aleurone and 6.7% in starchy endosperm. Processes regulated by NKD1 and NKD2 include gene expression, epigenetic functions, cell growth and division, hormone pathways, and resource reserve deposition. The NKD1 and NKD2 proteins bind a consensus DNA sequence of TTGTCGT with slightly different properties. This motif was enriched in the promoters of gene transcripts differentially expressed (DE) in mutant endosperm. DE genes with a NKD binding motif in the 5' promoter region were considered as likely direct targets of NKD1 and NKD2 regulation, and these putative direct target genes were notably enriched for storage proteins. Transcription assays demonstrate that NKD1 and NKD2 can directly regulate gene transcription, including activation of opaque2 and viviparous1 promoters. NKD2 functions as a negative regulator of nkd1 transcription, consistent with previously reported feedback regulation. NKD1 and NKD2 can homo- and heterodimerize through their ID domains. These analyses implicate NKD1 and NKD2 as central regulators of gene expression in developing maize endosperm.
Collapse
Affiliation(s)
- Bryan C Gontarek
- Plant Biology Program, Iowa State University, Ames, Iowa 50011
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, Iowa 50011
| | | | - Hao Wu
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, Iowa 50011
| | - Philip W Becraft
- Plant Biology Program, Iowa State University, Ames, Iowa 50011
- Genetics, Development, and Cell Biology Department, Iowa State University, Ames, Iowa 50011
- Agronomy Department, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
185
|
Transcriptome Dynamics during Maize Endosperm Development. PLoS One 2016; 11:e0163814. [PMID: 27695101 PMCID: PMC5047526 DOI: 10.1371/journal.pone.0163814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022] Open
Abstract
The endosperm is a major organ of the seed that plays vital roles in determining seed weight and quality. However, genome-wide transcriptome patterns throughout maize endosperm development have not been comprehensively investigated to date. Accordingly, we performed a high-throughput RNA sequencing (RNA-seq) analysis of the maize endosperm transcriptome at 5, 10, 15 and 20 days after pollination (DAP). We found that more than 11,000 protein-coding genes underwent alternative splicing (AS) events during the four developmental stages studied. These genes were mainly involved in intracellular protein transport, signal transmission, cellular carbohydrate metabolism, cellular lipid metabolism, lipid biosynthesis, protein modification, histone modification, cellular amino acid metabolism, and DNA repair. Additionally, 7,633 genes, including 473 transcription factors (TFs), were differentially expressed among the four developmental stages. The differentially expressed TFs were from 50 families, including the bZIP, WRKY, GeBP and ARF families. Further analysis of the stage-specific TFs showed that binding, nucleus and ligand-dependent nuclear receptor activities might be important at 5 DAP, that immune responses, signalling, binding and lumen development are involved at 10 DAP, that protein metabolic processes and the cytoplasm might be important at 15 DAP, and that the responses to various stimuli are different at 20 DAP compared with the other developmental stages. This RNA-seq analysis provides novel, comprehensive insights into the transcriptome dynamics during early endosperm development in maize.
Collapse
|
186
|
Li H, Wu Y, Zhao Y, Hu X, Chang J, Wang Q, Dong P, Zhang M, Li C. Differential morphology and transcriptome profile between the incompletely fused carpels ovary and its wild-type in maize. Sci Rep 2016; 6:32652. [PMID: 27587343 PMCID: PMC5009309 DOI: 10.1038/srep32652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/11/2016] [Indexed: 12/02/2022] Open
Abstract
We have isolated a new mutation in maize, incompletely fused carpels (ifc), which results in an open stylar canal on the ovary and an incomplete pericarp at the top of the kernel. The maize ovary derives from the fusion of three carpels; however, the molecular networks regulating maize carpel fusion remain largely unclear. In this study, RNA sequencing (RNA-seq) was performed on wild-type (WT) and ifc ovaries that were collected after carpel fusion defects could be morphologically distinguished. In total, 877 differentially expressed genes were identified. Functional analysis revealed overexpression of genes related to “DNA binding”, “transcription regulation”, “hormones”, and “stress responses”. Among the 88 differentially expressed transcription factor (TF) genes, five showed a high degree of conservation (77.7–88.0% amino acid identity) of their conserved domains with genes associated with carpel fusion deficiency in Arabidopsis thaliana, suggesting that these five genes might control carpel fusion in maize. In addition, 30 genes encoding components of hormone synthesis and signaling pathways were differentially expressed between ifc and WT ovaries, indicating complex hormonal regulation during carpel fusion. These results help elucidate the underlying mechanisms that regulate carpel fusion, supporting the functional analysis of genes involved in producing this phenotype.
Collapse
Affiliation(s)
- Hongping Li
- Agronomy College, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Yufeng Wu
- Bioinformatics Center, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yali Zhao
- Agronomy College, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Xiuli Hu
- Agronomy College, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Jianfeng Chang
- Agronomy College, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Qun Wang
- Agronomy College, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Pengfei Dong
- Agronomy College, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Moubiao Zhang
- Agronomy College, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Chaohai Li
- Agronomy College, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, P. R. China
| |
Collapse
|
187
|
Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156. Sci Rep 2016; 6:27590. [PMID: 27282997 PMCID: PMC4901336 DOI: 10.1038/srep27590] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/23/2016] [Indexed: 12/21/2022] Open
Abstract
Sucrose is not only the carbon source for starch synthesis, but also a signal molecule. Alone or in coordination with ABA, it can regulate the expression of genes involved in starch synthesis. To investigate the molecular mechanisms underlying this effect, maize endosperms were collected from Zea mays L. B73 inbred line 10 d after pollination and treated with sucrose, ABA, or sucrose plus ABA at 28 °C in the dark for 24 h. RNA-sequence analysis of the maize endosperm transcriptome revealed 47 candidate transcription factors among the differentially expressed genes. We therefore speculate that starch synthetic gene expression is regulated by transcription factors induced by the combination of sucrose and ABA. ZmEREB156, a candidate transcription factor, is induced by sucrose plus ABA and is involved in starch biosynthesis. The ZmEREB156-GFP-fused protein was localized in the nuclei of onion epidermal cells, and ZmEREB156 protein possessed strong transcriptional activation activity. Promoter activity of the starch-related genes Zmsh2 and ZmSSIIIa increased after overexpression of ZmEREB156 in maize endosperm. ZmEREB156 could bind to the ZmSSIIIa promoter but not the Zmsh2 promoter in a yeast one-hybrid system. Thus, ZmEREB156 positively modulates starch biosynthetic gene ZmSSIIIa via the synergistic effect of sucrose and ABA.
Collapse
|
188
|
Chen L, Li YX, Li C, Wu X, Qin W, Li X, Jiao F, Zhang X, Zhang D, Shi Y, Song Y, Li Y, Wang T. Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize. BMC PLANT BIOLOGY 2016; 16:81. [PMID: 27068015 PMCID: PMC4828868 DOI: 10.1186/s12870-016-0768-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/06/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Kernel weight and size are important components of grain yield in cereals. Although some information is available concerning the map positions of quantitative trait loci (QTL) for kernel weight and size in maize, little is known about the molecular mechanisms of these QTLs. qGW4.05 is a major QTL that is associated with kernel weight and size in maize. We combined linkage analysis and association mapping to fine-map and identify candidate gene(s) at qGW4.05. RESULTS QTL qGW4.05 was fine-mapped to a 279.6-kb interval in a segregating population derived from a cross of Huangzaosi with LV28. By combining the results of regional association mapping and linkage analysis, we identified GRMZM2G039934 as a candidate gene responsible for qGW4.05. Candidate gene-based association mapping was conducted using a panel of 184 inbred lines with variable kernel weights and kernel sizes. Six polymorphic sites in the gene GRMZM2G039934 were significantly associated with kernel weight and kernel size. CONCLUSION The results of linkage analysis and association mapping revealed that GRMZM2G039934 is the most likely candidate gene for qGW4.05. These results will improve our understanding of the genetic architecture and molecular mechanisms underlying kernel development in maize.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081 China
| | - Yong-xiang Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081 China
| | - Chunhui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081 China
| | - Xun Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081 China
| | - Weiwei Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081 China
| | - Xin Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081 China
| | - Fuchao Jiao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081 China
| | - Xiaojing Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081 China
| | - Dengfeng Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081 China
| | - Yunsu Shi
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081 China
| | - Yanchun Song
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081 China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081 China
| | - Tianyu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Beijing, 100081 China
| |
Collapse
|
189
|
Zhu G, Wu A, Xu XJ, Xiao PP, Lu L, Liu J, Cao Y, Chen L, Wu J, Zhao XM. PPIM: A Protein-Protein Interaction Database for Maize. PLANT PHYSIOLOGY 2016; 170:618-26. [PMID: 26620522 PMCID: PMC4734591 DOI: 10.1104/pp.15.01821] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) is one of the most important crops worldwide. To understand the biological processes underlying various traits of the crop (e.g. yield and response to stress), a detailed protein-protein interaction (PPI) network is highly demanded. Unfortunately, there are very few such PPIs available in the literature. Therefore, in this work, we present the Protein-Protein Interaction Database for Maize (PPIM), which covers 2,762,560 interactions among 14,000 proteins. The PPIM contains not only accurately predicted PPIs but also those molecular interactions collected from the literature. The database is freely available at http://comp-sysbio.org/ppim with a user-friendly powerful interface. We believe that the PPIM resource can help biologists better understand the maize crop.
Collapse
Affiliation(s)
- Guanghui Zhu
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China (G.Z., P.-P.X., J.W., X.-M.Z.);Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (A.W.), and Key Laboratory of Systems Biology (L.C.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;Department of Mathematics, Shanghai University, Shanghai 200444, China (X.-J.X.); andMonsanto Company, St. Louis, Missouri 63167 (L.L., J.L., Y.C.)
| | - Aibo Wu
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China (G.Z., P.-P.X., J.W., X.-M.Z.);Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (A.W.), and Key Laboratory of Systems Biology (L.C.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;Department of Mathematics, Shanghai University, Shanghai 200444, China (X.-J.X.); andMonsanto Company, St. Louis, Missouri 63167 (L.L., J.L., Y.C.)
| | - Xin-Jian Xu
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China (G.Z., P.-P.X., J.W., X.-M.Z.);Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (A.W.), and Key Laboratory of Systems Biology (L.C.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;Department of Mathematics, Shanghai University, Shanghai 200444, China (X.-J.X.); andMonsanto Company, St. Louis, Missouri 63167 (L.L., J.L., Y.C.)
| | - Pei-Pei Xiao
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China (G.Z., P.-P.X., J.W., X.-M.Z.);Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (A.W.), and Key Laboratory of Systems Biology (L.C.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;Department of Mathematics, Shanghai University, Shanghai 200444, China (X.-J.X.); andMonsanto Company, St. Louis, Missouri 63167 (L.L., J.L., Y.C.)
| | - Le Lu
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China (G.Z., P.-P.X., J.W., X.-M.Z.);Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (A.W.), and Key Laboratory of Systems Biology (L.C.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;Department of Mathematics, Shanghai University, Shanghai 200444, China (X.-J.X.); andMonsanto Company, St. Louis, Missouri 63167 (L.L., J.L., Y.C.)
| | - Jingdong Liu
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China (G.Z., P.-P.X., J.W., X.-M.Z.);Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (A.W.), and Key Laboratory of Systems Biology (L.C.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;Department of Mathematics, Shanghai University, Shanghai 200444, China (X.-J.X.); andMonsanto Company, St. Louis, Missouri 63167 (L.L., J.L., Y.C.)
| | - Yongwei Cao
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China (G.Z., P.-P.X., J.W., X.-M.Z.);Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (A.W.), and Key Laboratory of Systems Biology (L.C.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;Department of Mathematics, Shanghai University, Shanghai 200444, China (X.-J.X.); andMonsanto Company, St. Louis, Missouri 63167 (L.L., J.L., Y.C.)
| | - Luonan Chen
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China (G.Z., P.-P.X., J.W., X.-M.Z.);Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (A.W.), and Key Laboratory of Systems Biology (L.C.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;Department of Mathematics, Shanghai University, Shanghai 200444, China (X.-J.X.); andMonsanto Company, St. Louis, Missouri 63167 (L.L., J.L., Y.C.)
| | - Jun Wu
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China (G.Z., P.-P.X., J.W., X.-M.Z.);Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (A.W.), and Key Laboratory of Systems Biology (L.C.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;Department of Mathematics, Shanghai University, Shanghai 200444, China (X.-J.X.); andMonsanto Company, St. Louis, Missouri 63167 (L.L., J.L., Y.C.)
| | - Xing-Ming Zhao
- Department of Computer Science and Technology, Tongji University, Shanghai 201804, China (G.Z., P.-P.X., J.W., X.-M.Z.);Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (A.W.), and Key Laboratory of Systems Biology (L.C.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;Department of Mathematics, Shanghai University, Shanghai 200444, China (X.-J.X.); andMonsanto Company, St. Louis, Missouri 63167 (L.L., J.L., Y.C.)
| |
Collapse
|
190
|
Zhang C, Yang H, Yang H. Evolutionary Character of Alternative Splicing in Plants. Bioinform Biol Insights 2016; 9:47-52. [PMID: 26819552 PMCID: PMC4721685 DOI: 10.4137/bbi.s33716] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 10/24/2015] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing (AS) is one of the most important ways to enhance the functional diversity of genes. Huge amounts of data have been produced by microarray, expressed sequence tag, and RNA-seq, and plenty of methods have been developed specifically for this task. The most frequently asked questions in previous research were as follows. What is the content rate of AS genes among the whole gene set? How many AS types are presented in the genome, and which type is dominant? How about the conservation ability of AS among different species? Which kinds of isoforms from some genes have the environmental response to help individual adaptation? Based on this background, we collected analysis results from 17 species to try to map out the landscape of AS studies in plants. We have noted the shortages of previous results, and we appeal to all scientists working in the AS field to make a standard protocol so that analyses between different projects are comparable.
Collapse
Affiliation(s)
- Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Hong Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Huizhao Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
191
|
Yue H, Wang L, Liu H, Yue W, Du X, Song W, Nie X. De novo Assembly and Characterization of the Transcriptome of Broomcorn Millet (Panicum miliaceum L.) for Gene Discovery and Marker Development. FRONTIERS IN PLANT SCIENCE 2016; 7:1083. [PMID: 27493657 PMCID: PMC4955294 DOI: 10.3389/fpls.2016.01083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/08/2016] [Indexed: 05/04/2023]
Abstract
Broomcorn millet (Panicum miliaceum L.) is one of the world's oldest cultivated cereals, which is well-adapted to extreme environments such as drought, heat, and salinity with an efficient C4 carbon fixation. Discovery and identification of genes involved in these processes will provide valuable information to improve the crop for meeting the challenge of global climate change. However, the lack of genetic resources and genomic information make gene discovery and molecular mechanism studies very difficult. Here, we sequenced and assembled the transcriptome of broomcorn millet using Illumina sequencing technology. After sequencing, a total of 45,406,730 and 51,160,820 clean paired-end reads were obtained for two genotypes Yumi No. 2 and Yumi No. 3. These reads were mixed and then assembled into 113,643 unigenes, with the length ranging from 351 to 15,691 bp, of which 62,543 contings could be assigned to 315 gene ontology (GO) categories. Cluster of orthologous groups and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses assigned could map 15,514 unigenes into 202 KEGG pathways and 51,020 unigenes to 25 COG categories, respectively. Furthermore, 35,216 simple sequence repeats (SSRs) were identified in 27,055 unigene sequences, of which trinucleotides were the most abundant repeat unit, accounting for 66.72% of SSRs. In addition, 292 differentially expressed genes were identified between the two genotypes, which were significantly enriched in 88 GO terms and 12 KEGG pathways. Finally, the expression patterns of four selected transcripts were validated through quantitative reverse transcription polymerase chain reaction analysis. Our study for the first time sequenced and assembled the transcriptome of broomcorn millet, which not only provided a rich sequence resource for gene discovery and marker development in this important crop, but will also facilitate the further investigation of the molecular mechanism of its favored agronomic traits and beyond.
Collapse
Affiliation(s)
- Hong Yue
- College of Agronomy, Northwest A&F UniversityYangling, China
| | - Le Wang
- College of Agronomy, Northwest A&F UniversityYangling, China
| | - Hui Liu
- College of Agronomy, Northwest A&F UniversityYangling, China
| | - Wenjie Yue
- College of Agronomy, Northwest A&F UniversityYangling, China
| | - Xianghong Du
- College of Agronomy, Northwest A&F UniversityYangling, China
| | - Weining Song
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
- Australia-China Joint Research Centre for Abiotic and Biotic Stress Management in Agriculture, Horticulture and Forestry, Northwest A&F UniversityYangling, China
- *Correspondence: Weining Song, Xiaojun Nie,
| | - Xiaojun Nie
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F UniversityYangling, China
- *Correspondence: Weining Song, Xiaojun Nie,
| |
Collapse
|
192
|
Serin EAR, Nijveen H, Hilhorst HWM, Ligterink W. Learning from Co-expression Networks: Possibilities and Challenges. FRONTIERS IN PLANT SCIENCE 2016; 7:444. [PMID: 27092161 PMCID: PMC4825623 DOI: 10.3389/fpls.2016.00444] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/21/2016] [Indexed: 05/18/2023]
Abstract
Plants are fascinating and complex organisms. A comprehensive understanding of the organization, function and evolution of plant genes is essential to disentangle important biological processes and to advance crop engineering and breeding strategies. The ultimate aim in deciphering complex biological processes is the discovery of causal genes and regulatory mechanisms controlling these processes. The recent surge of omics data has opened the door to a system-wide understanding of the flow of biological information underlying complex traits. However, dealing with the corresponding large data sets represents a challenging endeavor that calls for the development of powerful bioinformatics methods. A popular approach is the construction and analysis of gene networks. Such networks are often used for genome-wide representation of the complex functional organization of biological systems. Network based on similarity in gene expression are called (gene) co-expression networks. One of the major application of gene co-expression networks is the functional annotation of unknown genes. Constructing co-expression networks is generally straightforward. In contrast, the resulting network of connected genes can become very complex, which limits its biological interpretation. Several strategies can be employed to enhance the interpretation of the networks. A strategy in coherence with the biological question addressed needs to be established to infer reliable networks. Additional benefits can be gained from network-based strategies using prior knowledge and data integration to further enhance the elucidation of gene regulatory relationships. As a result, biological networks provide many more applications beyond the simple visualization of co-expressed genes. In this study we review the different approaches for co-expression network inference in plants. We analyse integrative genomics strategies used in recent studies that successfully identified candidate genes taking advantage of gene co-expression networks. Additionally, we discuss promising bioinformatics approaches that predict networks for specific purposes.
Collapse
Affiliation(s)
- Elise A. R. Serin
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen UniversityWageningen, Netherlands
| | - Harm Nijveen
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen UniversityWageningen, Netherlands
- Laboratory of Bioinformatics, Wageningen UniversityWageningen, Netherlands
| | - Henk W. M. Hilhorst
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen UniversityWageningen, Netherlands
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen UniversityWageningen, Netherlands
- *Correspondence: Wilco Ligterink
| |
Collapse
|
193
|
Schmid MW, Schmidt A, Grossniklaus U. The female gametophyte: an emerging model for cell type-specific systems biology in plant development. FRONTIERS IN PLANT SCIENCE 2015; 6:907. [PMID: 26579157 PMCID: PMC4630298 DOI: 10.3389/fpls.2015.00907] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/10/2015] [Indexed: 05/03/2023]
Abstract
Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods ("omics") now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis). Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes.
Collapse
Affiliation(s)
| | | | - Ueli Grossniklaus
- Department of Plant & Microbial Biology and Zurich-Basel Plant Science Center, University of ZurichZurich, Switzerland
| |
Collapse
|
194
|
Grimault A, Gendrot G, Chamot S, Widiez T, Rabillé H, Gérentes MF, Creff A, Thévenin J, Dubreucq B, Ingram GC, Rogowsky PM, Depège-Fargeix N. ZmZHOUPI, an endosperm-specific basic helix-loop-helix transcription factor involved in maize seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:574-86. [PMID: 26361885 DOI: 10.1111/tpj.13024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 05/05/2023]
Abstract
In angiosperm seeds the embryo is embedded within the endosperm, which is in turn enveloped by the seed coat, making inter-compartmental communication essential for coordinated seed growth. In this context the basic helix-loop-helix domain transcription factor AtZHOUPI (AtZOU) fulfils a key role in both the lysis of the transient endosperm and in embryo cuticle formation in Arabidopsis thaliana. In maize (Zea mays), a cereal with a persistent endosperm, a single gene, ZmZOU, falls into the same phylogenetic clade as AtZOU. Its expression is limited to the endosperm where it peaks during the filling stage. In ZmZOU-RNA interference knock-down lines embryo size is slightly reduced and the embryonic suspensor and the adjacent embryo surrounding region show retarded breakdown. Ectopic expression of ZmZOU reduces stomatal number, possibly due to inappropriate protein interactions. ZmZOU forms functional heterodimers with AtICE/AtSCREAM and the closely related maize proteins ZmICEb and ZmICEc, but its interaction is more efficient with the ZmICEa protein, which shows sequence divergence and only has close homologues in other monocotyledonous species. Consistent with the observation that these complexes can trans-activate target gene promoters from Arabidopsis, ZmZOU partially complements the Atzou-4 mutant. However, structural, trans-activation and gene expression data support the hypothesis that ZmZOU and ZmICEa may have coevolved to form a functional complex unique to monocot seeds. This divergence may explain the reduced functionality of ZmZOU in Arabidopsis, and reflect functional specificities which are unique to the monocotyledon lineage.
Collapse
Affiliation(s)
- Aurélie Grimault
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364, Lyon, France
- INRA, UMR879 Reproduction et Développement des Plantes, F-69364, Lyon, France
- CNRS, UMR5667 Reproduction et Développement des Plantes, F-69364, Lyon, France
| | - Ghislaine Gendrot
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364, Lyon, France
- INRA, UMR879 Reproduction et Développement des Plantes, F-69364, Lyon, France
- CNRS, UMR5667 Reproduction et Développement des Plantes, F-69364, Lyon, France
| | - Sophy Chamot
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364, Lyon, France
- INRA, UMR879 Reproduction et Développement des Plantes, F-69364, Lyon, France
- CNRS, UMR5667 Reproduction et Développement des Plantes, F-69364, Lyon, France
| | - Thomas Widiez
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364, Lyon, France
- INRA, UMR879 Reproduction et Développement des Plantes, F-69364, Lyon, France
- CNRS, UMR5667 Reproduction et Développement des Plantes, F-69364, Lyon, France
| | - Hervé Rabillé
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364, Lyon, France
- INRA, UMR879 Reproduction et Développement des Plantes, F-69364, Lyon, France
- CNRS, UMR5667 Reproduction et Développement des Plantes, F-69364, Lyon, France
| | - Marie-France Gérentes
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364, Lyon, France
- INRA, UMR879 Reproduction et Développement des Plantes, F-69364, Lyon, France
- CNRS, UMR5667 Reproduction et Développement des Plantes, F-69364, Lyon, France
| | - Audrey Creff
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364, Lyon, France
- INRA, UMR879 Reproduction et Développement des Plantes, F-69364, Lyon, France
- CNRS, UMR5667 Reproduction et Développement des Plantes, F-69364, Lyon, France
| | - Johanne Thévenin
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Bertrand Dubreucq
- INRA, UMR1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Gwyneth C Ingram
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364, Lyon, France
- INRA, UMR879 Reproduction et Développement des Plantes, F-69364, Lyon, France
- CNRS, UMR5667 Reproduction et Développement des Plantes, F-69364, Lyon, France
| | - Peter M Rogowsky
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364, Lyon, France
- INRA, UMR879 Reproduction et Développement des Plantes, F-69364, Lyon, France
- CNRS, UMR5667 Reproduction et Développement des Plantes, F-69364, Lyon, France
| | - Nathalie Depège-Fargeix
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364, Lyon, France
- INRA, UMR879 Reproduction et Développement des Plantes, F-69364, Lyon, France
- CNRS, UMR5667 Reproduction et Développement des Plantes, F-69364, Lyon, France
| |
Collapse
|
195
|
Ingram G, Gutierrez-Marcos J. Peptide signalling during angiosperm seed development. JOURNAL OF EXPERIMENTAL BOTANY 2015. [PMID: 26195729 DOI: 10.1093/jxb/erv336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cell-cell communication is pivotal for the coordination of various features of plant development. Recent studies in plants have revealed that, as in animals, secreted signal peptides play critical roles during reproduction. However, the precise signalling mechanisms in plants are not well understood. In this review, we discuss the known and putative roles of secreted peptides present in the seeds of angiosperms as key signalling factors involved in coordinating different aspects of seed development.
Collapse
Affiliation(s)
- Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, UMR 5667 CNRS/UMR 0879 INRA, ENS de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | |
Collapse
|