151
|
Vannozzi A, Wong DCJ, Höll J, Hmmam I, Matus JT, Bogs J, Ziegler T, Dry I, Barcaccia G, Lucchin M. Combinatorial Regulation of Stilbene Synthase Genes by WRKY and MYB Transcription Factors in Grapevine (Vitis vinifera L.). PLANT & CELL PHYSIOLOGY 2018; 59:1043-1059. [PMID: 29529275 DOI: 10.1093/pcp/pcy045] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/20/2018] [Indexed: 05/20/2023]
Abstract
Stilbene synthase (STS) is the key enzyme leading to the biosynthesis of resveratrol. Recently we reported two R2R3-MYB transcription factor (TF) genes that regulate the stilbene biosynthetic pathway in grapevine: VviMYB14 and VviMYB15. These genes are strongly co-expressed with STS genes under a range of stress and developmental conditions, in agreement with the specific activation of STS promoters by these TFs. Genome-wide gene co-expression analysis using two separate transcriptome compendia based on microarray and RNA sequencing data revealed that WRKY TFs were the top TF family correlated with STS genes. On the basis of correlation frequency, four WRKY genes, namely VviWRKY03, VviWRKY24, VviWRKY43 and VviWRKY53, were further shortlisted and functionally validated. Expression analyses under both unstressed and stressed conditions, together with promoter-luciferase reporter assays, suggested different hierarchies for these TFs in the regulation of the stilbene biosynthetic pathway. In particular, VviWRKY24 seems to act as a singular effector in the activation of the VviSTS29 promoter, while VviWRKY03 acts through a combinatorial effect with VviMYB14, suggesting that these two regulators may interact at the protein level as previously reported in other species.
Collapse
Affiliation(s)
- Alessandro Vannozzi
- Department of Agronomy, Food, Natural resources, Animals, and Environment (DAFNAE), University of Padova, Legnaro 35020, Italy
| | - Darren Chern Jan Wong
- Ecology and Evolution, Research School of Biology, Australian National University Acton, ACT 2601, Australia
| | - Janine Höll
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg D-69120, Germany
| | - Ibrahim Hmmam
- Department of Agronomy, Food, Natural resources, Animals, and Environment (DAFNAE), University of Padova, Legnaro 35020, Italy
| | - José Tomás Matus
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona 08034, Spain
| | - Jochen Bogs
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg D-69120, Germany
| | - Tobias Ziegler
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg D-69120, Germany
| | - Ian Dry
- CSIRO Agriculture & Food, Urrbrae, SA 5064, Australia
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural resources, Animals, and Environment (DAFNAE), University of Padova, Legnaro 35020, Italy
| | - Margherita Lucchin
- Department of Agronomy, Food, Natural resources, Animals, and Environment (DAFNAE), University of Padova, Legnaro 35020, Italy
| |
Collapse
|
152
|
Emery M, Willis MMS, Hao Y, Barry K, Oakgrove K, Peng Y, Schmutz J, Lyons E, Pires JC, Edger PP, Conant GC. Preferential retention of genes from one parental genome after polyploidy illustrates the nature and scope of the genomic conflicts induced by hybridization. PLoS Genet 2018; 14:e1007267. [PMID: 29590103 PMCID: PMC5891031 DOI: 10.1371/journal.pgen.1007267] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/09/2018] [Accepted: 02/21/2018] [Indexed: 11/18/2022] Open
Abstract
Polyploidy is increasingly seen as a driver of both evolutionary innovation and ecological success. One source of polyploid organisms' successes may be their origins in the merging and mixing of genomes from two different species (e.g., allopolyploidy). Using POInT (the Polyploid Orthology Inference Tool), we model the resolution of three allopolyploidy events, one from the bakers' yeast (Saccharomyces cerevisiae), one from the thale cress (Arabidopsis thaliana) and one from grasses including Sorghum bicolor. Analyzing a total of 21 genomes, we assign to every gene a probability for having come from each parental subgenome (i.e., derived from the diploid progenitor species), yielding orthologous segments across all genomes. Our model detects statistically robust evidence for the existence of biased fractionation in all three lineages, whereby genes from one of the two subgenomes were more likely to be lost than those from the other subgenome. We further find that a driver of this pattern of biased losses is the co-retention of genes from the same parental genome that share functional interactions. The pattern of biased fractionation after the Arabidopsis and grass allopolyploid events was surprisingly constant in time, with the same parental genome favored throughout the lineages' history. In strong contrast, the yeast allopolyploid event shows evidence of biased fractionation only immediately after the event, with balanced gene losses more recently. The rapid loss of functionally associated genes from a single subgenome is difficult to reconcile with the action of genetic drift and suggests that selection may favor the removal of specific duplicates. Coupled to the evidence for continuing, functionally-associated biased fractionation after the A. thaliana At-α event, we suggest that, after allopolyploidy, there are functional conflicts between interacting genes encoded in different subgenomes that are ultimately resolved through preferential duplicate loss.
Collapse
Affiliation(s)
- Marianne Emery
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - M. Madeline S. Willis
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Yue Hao
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Khouanchy Oakgrove
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Yi Peng
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - J. Chris Pires
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Bond Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Patrick P. Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan, United States of America
| | - Gavin C. Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, United States of America
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
- Program in Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
153
|
Genomic Identification and Analysis of Specialized Metabolite Biosynthetic Gene Clusters in Plants Using PlantiSMASH. Methods Mol Biol 2018; 1795:173-188. [PMID: 29846928 DOI: 10.1007/978-1-4939-7874-8_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Plants produce a vast diversity of specialized metabolites, which play important roles in the interactions with their microbiome, as well as with animals and other plants. Many such molecules have valuable biological activities that render them (potentially) useful as medicines, flavors and fragrances, nutritional ingredients, or cosmetics. Recently, plant scientists have discovered that the genes for many biosynthetic pathways for the production of such specialized metabolites are physically clustered on the chromosome within biosynthetic gene clusters (BGCs). The Plant Secondary Metabolite Analysis Shell (plantiSMASH) allows for the automated identification of such plant BGCs, facilitates comparison of BGCs across genomes, and helps users to predict the functional interactions of pairs of genes within and between BGCs based on coexpression analysis. In this chapter, we provide a detailed protocol on how to install and run plantiSMASH, and how to interpret its results to draw biological conclusions that are supported by the data.
Collapse
|
154
|
Tsai WC, Dievart A, Hsu CC, Hsiao YY, Chiou SY, Huang H, Chen HH. Post genomics era for orchid research. BOTANICAL STUDIES 2017; 58:61. [PMID: 29234904 PMCID: PMC5727007 DOI: 10.1186/s40529-017-0213-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/01/2017] [Indexed: 05/05/2023]
Abstract
Among 300,000 species in angiosperms, Orchidaceae containing 30,000 species is one of the largest families. Almost every habitats on earth have orchid plants successfully colonized, and it indicates that orchids are among the plants with significant ecological and evolutionary importance. So far, four orchid genomes have been sequenced, including Phalaenopsis equestris, Dendrobium catenatum, Dendrobium officinale, and Apostaceae shengen. Here, we review the current progress and the direction of orchid research in the post genomics era. These include the orchid genome evolution, genome mapping (genome-wide association analysis, genetic map, physical map), comparative genomics (especially receptor-like kinase and terpene synthase), secondary metabolomics, and genome editing.
Collapse
Affiliation(s)
- Wen-Chieh Tsai
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, 701 Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Anne Dievart
- CIRAD, UMR AGAP, TA A 108/03, Avenue Agropolis, 34398 Montpellier, France
- Present Address: School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Life Sciences Building, Room 3-117, Shanghai, 200240 People’s Republic of China
| | - Chia-Chi Hsu
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Yu-Yun Hsiao
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Shang-Yi Chiou
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Hsin Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| | - Hong-Hwa Chen
- Institute of Tropical Plant Sciences, National Cheng Kung University, Tainan, 701 Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701 Taiwan
- Department of Life Sciences, National Cheng Kung University, Tainan, 701 Taiwan
| |
Collapse
|
155
|
Cheng X, Etalo DW, van de Mortel JE, Dekkers E, Nguyen L, Medema MH, Raaijmakers JM. Genome-wide analysis of bacterial determinants of plant growth promotion and induced systemic resistance by Pseudomonas fluorescens. Environ Microbiol 2017; 19:4638-4656. [PMID: 28892231 DOI: 10.1111/1462-2920.13927] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/04/2017] [Indexed: 11/28/2022]
Abstract
Pseudomonas fluorescens strain SS101 (Pf.SS101) promotes growth of Arabidopsis thaliana, enhances greening and lateral root formation, and induces systemic resistance (ISR) against the bacterial pathogen Pseudomonas syringae pv. tomato (Pst). Here, targeted and untargeted approaches were adopted to identify bacterial determinants and underlying mechanisms involved in plant growth promotion and ISR by Pf.SS101. Based on targeted analyses, no evidence was found for volatiles, lipopeptides and siderophores in plant growth promotion by Pf.SS101. Untargeted, genome-wide analyses of 7488 random transposon mutants of Pf.SS101 led to the identification of 21 mutants defective in both plant growth promotion and ISR. Many of these mutants, however, were auxotrophic and impaired in root colonization. Genetic analysis of three mutants followed by site-directed mutagenesis, genetic complementation and plant bioassays revealed the involvement of the phosphogluconate dehydratase gene edd, the response regulator gene colR and the adenylsulfate reductase gene cysH in both plant growth promotion and ISR. Subsequent comparative plant transcriptomics analyses strongly suggest that modulation of sulfur assimilation, auxin biosynthesis and transport, steroid biosynthesis and carbohydrate metabolism in Arabidopsis are key mechanisms linked to growth promotion and ISR by Pf.SS101.
Collapse
Affiliation(s)
- Xu Cheng
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.,Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Desalegn W Etalo
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708 PB, The Netherlands
| | - Judith E van de Mortel
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.,HAS University of Applied Sciences, Spoorstraat 61, Venlo 5911 KJ, The Netherlands
| | - Ester Dekkers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Linh Nguyen
- Bioinformatics Group Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen 6708 PB, The Netherlands.,Institute of Biology (IBL) Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| |
Collapse
|
156
|
Abstract
Metabolic gene clusters (MGCs) have provided some of the earliest glimpses at the biochemical machinery of yeast and filamentous fungi. MGCs encode diverse genetic mechanisms for nutrient acquisition and the synthesis/degradation of essential and adaptive metabolites. Beyond encoding the enzymes performing these discrete anabolic or catabolic processes, MGCs may encode a range of mechanisms that enable their persistence as genetic consortia; these include enzymatic mechanisms to protect their host fungi from their inherent toxicities, and integrated regulatory machinery. This modular, self-contained nature of MGCs contributes to the metabolic and ecological adaptability of fungi. The phylogenetic and ecological patterns of MGC distribution reflect the broad diversity of fungal life cycles and nutritional modes. While the origins of most gene clusters are enigmatic, MGCs are thought to be born into a genome through gene duplication, relocation, or horizontal transfer, and analyzing the death and decay of gene clusters provides clues about the mechanisms selecting for their assembly. Gene clustering may provide inherent fitness advantages through metabolic efficiency and specialization, but experimental evidence for this is currently limited. The identification and characterization of gene clusters will continue to be powerful tools for elucidating fungal metabolism as well as understanding the physiology and ecology of fungi.
Collapse
Affiliation(s)
- Jason C Slot
- The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
157
|
Wang Y, Yu H, Tian C, Sajjad M, Gao C, Tong Y, Wang X, Jiao Y. Transcriptome Association Identifies Regulators of Wheat Spike Architecture. PLANT PHYSIOLOGY 2017; 175:746-757. [PMID: 28807930 PMCID: PMC5619896 DOI: 10.1104/pp.17.00694] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/11/2017] [Indexed: 05/20/2023]
Abstract
The architecture of wheat (Triticum aestivum) inflorescence and its complexity is among the most important agronomic traits that influence yield. For example, wheat spikes vary considerably in the number of spikelets, which are specialized reproductive branches, and the number of florets, which are spikelet branches that produce seeds. The large and repetitive nature of the three homologous and highly similar subgenomes of wheat has impeded attempts at using genetic approaches to uncover beneficial alleles that can be utilized for yield improvement. Using a population-associative transcriptomic approach, we analyzed the transcriptomes of developing spikes in 90 wheat lines comprising 74 landrace and 16 elite varieties and correlated expression with variations in spike complexity traits. In combination with coexpression network analysis, we inferred the identities of genes related to spike complexity. Importantly, further experimental studies identified regulatory genes whose expression is associated with and influences spike complexity. The associative transcriptomic approach utilized in this study allows rapid identification of the genetic basis of important agronomic traits in crops with complex genomes.
Collapse
Affiliation(s)
- Yuange Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haopeng Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caihuan Tian
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Muhammad Sajjad
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
158
|
Moghe GD, Leong BJ, Hurney SM, Daniel Jones A, Last RL. Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway. eLife 2017; 6:28468. [PMID: 28853706 PMCID: PMC5595436 DOI: 10.7554/elife.28468] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022] Open
Abstract
The diversity of life on Earth is a result of continual innovations in molecular networks influencing morphology and physiology. Plant specialized metabolism produces hundreds of thousands of compounds, offering striking examples of these innovations. To understand how this novelty is generated, we investigated the evolution of the Solanaceae family-specific, trichome-localized acylsugar biosynthetic pathway using a combination of mass spectrometry, RNA-seq, enzyme assays, RNAi and phylogenomics in different non-model species. Our results reveal hundreds of acylsugars produced across the Solanaceae family and even within a single plant, built on simple sugar cores. The relatively short biosynthetic pathway experienced repeated cycles of innovation over the last 100 million years that include gene duplication and divergence, gene loss, evolution of substrate preference and promiscuity. This study provides mechanistic insights into the emergence of plant chemical novelty, and offers a template for investigating the ~300,000 non-model plant species that remain underexplored. There are about 300,000 species of plant on Earth, which together produce over a million different small molecules called metabolites. Plants use many of these molecules to grow, to communicate with each other or to defend themselves against pests and disease. Humans have co-opted many of the same molecules as well; for example, some are important nutrients while others are active ingredients in medicines. Many plant metabolites are found in almost all plants, but hundreds of thousands of them are more specialized and only found in small groups of related plant species. These specialized metabolites have a wide variety of structures, and are made by different enzymes working together to carry out a series of biochemical reactions. Acylsugars are an example of a group of specialized metabolites with particularly diverse structures. These small molecules are restricted to plants in the Solanaceae family, which includes tomato and tobacco plants. Moghe et al. have now focused on acylsugars to better understand how plants produce the large diversity of chemical structures found in specialized metabolites, and how these processes have evolved over time. An analysis of over 35 plant species from across the Solanaceae family revealed hundreds of acylsugars, with some plants accumulating 300 or more different types of these specialized metabolites. Moghe et al. then looked at the enzymes that make acylsugars from a poorly studied flowering plant called Salpiglossis sinuata, partly because it produces a large diversity of these small molecules and partly because it sits in a unique position in the Solanaceae family tree. The activities of the enzymes were confirmed both in test tubes and in plants. This suggested that many of the enzymes were “promiscuous”, meaning that they could likely use a variety of molecules as starting points for their chemical reactions. This finding could help to explain how this plant species can make such a wide variety of acylsugars. Moghe et al. also discovered that many of the enzymes that make acylsugars are encoded by genes that were originally copies of other genes and that have subsequently evolved new activities. Plant scientists and plant breeders value tomato plants that produce acylsugars because these natural chemicals protect against pests like whiteflies and spider mites. A clearer understanding of the diversity of acylsugars in the Solanaceae family, as well as the enzymes that make these specialized metabolites, could help efforts to breed crops that are more resistant to pests. Some of the enzymes related to those involved in acylsugar production could also help to make chemicals with pharmaceutical value. These new findings might also eventually lead to innovative ways to produce these chemicals on a large scale.
Collapse
Affiliation(s)
- Gaurav D Moghe
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
| | - Bryan J Leong
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Plant Biology, Michigan State University, East Lansing, United States
| | - Steven M Hurney
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Chemistry, Michigan State University, East Lansing, United States
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Chemistry, Michigan State University, East Lansing, United States
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States.,Department of Plant Biology, Michigan State University, East Lansing, United States
| |
Collapse
|
159
|
Waese J, Fan J, Pasha A, Yu H, Fucile G, Shi R, Cumming M, Kelley LA, Sternberg MJ, Krishnakumar V, Ferlanti E, Miller J, Town C, Stuerzlinger W, Provart NJ. ePlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology. THE PLANT CELL 2017; 29:1806-1821. [PMID: 28808136 PMCID: PMC5590499 DOI: 10.1105/tpc.17.00073] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/17/2017] [Accepted: 08/09/2017] [Indexed: 05/17/2023]
Abstract
A big challenge in current systems biology research arises when different types of data must be accessed from separate sources and visualized using separate tools. The high cognitive load required to navigate such a workflow is detrimental to hypothesis generation. Accordingly, there is a need for a robust research platform that incorporates all data and provides integrated search, analysis, and visualization features through a single portal. Here, we present ePlant (http://bar.utoronto.ca/eplant), a visual analytic tool for exploring multiple levels of Arabidopsis thaliana data through a zoomable user interface. ePlant connects to several publicly available web services to download genome, proteome, interactome, transcriptome, and 3D molecular structure data for one or more genes or gene products of interest. Data are displayed with a set of visualization tools that are presented using a conceptual hierarchy from big to small, and many of the tools combine information from more than one data type. We describe the development of ePlant in this article and present several examples illustrating its integrative features for hypothesis generation. We also describe the process of deploying ePlant as an "app" on Araport. Building on readily available web services, the code for ePlant is freely available for any other biological species research.
Collapse
Affiliation(s)
- Jamie Waese
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Jim Fan
- Department of Computer Science, University of Waterloo, Ontario N2L 3G1, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Hans Yu
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Geoffrey Fucile
- SIB Swiss Institute of Bioinformatics, sciCORE Computing Center, University of Basel, CH-4056 Basel, Switzerland
| | - Ruian Shi
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Matthew Cumming
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | | | | | | | - Erik Ferlanti
- Araport.org/J. Craig Venter Institute, Rockville, Maryland 20850
| | - Jason Miller
- Araport.org/J. Craig Venter Institute, Rockville, Maryland 20850
| | - Chris Town
- Araport.org/J. Craig Venter Institute, Rockville, Maryland 20850
| | - Wolfgang Stuerzlinger
- School of Interactive Arts and Technology, Simon Fraser University, British Columbia V3T 0A3, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| |
Collapse
|
160
|
Tzin V, Hojo Y, Strickler SR, Bartsch LJ, Archer CM, Ahern KR, Zhou S, Christensen SA, Galis I, Mueller LA, Jander G. Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4709-4723. [PMID: 28981781 PMCID: PMC5853842 DOI: 10.1093/jxb/erx274] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/13/2017] [Indexed: 05/20/2023]
Abstract
Insects such as the beet armyworm (Spodoptera exigua) cause extensive damage to maize (Zea mays). Maize plants respond by triggering defense signaling, changes in gene expression, and biosynthesis of specialized metabolites. Leaves of maize inbred line B73, which has an available genome sequence, were infested with S. exigua for 1 to 24 h, followed by comparisons of the transcript and metabolite profiles with those of uninfested controls. The most extensive gene expression responses occurred rapidly, within 4-6 h after caterpillar infestation. However, both gene expression and metabolite profiles were altered within 1 h and continued to change during the entire 24 h experiment. The defensive functions of three caterpillar-induced genes were examined using available Dissociation transposon insertions in maize inbred line W22. Whereas mutations in the benzoxazinoid biosynthesis pathway (Bx1 and Bx2) significantly improved caterpillar growth, the knockout of a 13-lipoxygenase (Lox8) involved in jasmonic acid biosynthesis did not. Interestingly, 9-lipoxygenases, which lead to the production of maize death acids, were more strongly induced by caterpillar feeding than 13-lipoxygenases, suggesting an as yet unknown function in maize defense against herbivory. Together, these results provide a comprehensive view of the dynamic transcriptomic and metabolomic responses of maize leaves to caterpillar feeding.
Collapse
Affiliation(s)
- Vered Tzin
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
- Correspondence:
| | - Yuko Hojo
- Okayama University, Institute of Plant Science and Resources, Kurashiki, Okayama, Japan
| | - Susan R Strickler
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Lee J Bartsch
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Cairo M Archer
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Kevin R Ahern
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Shaoqun Zhou
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Shawn A Christensen
- USDA-ARS Chemistry Unit, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
| | - Ivan Galis
- Okayama University, Institute of Plant Science and Resources, Kurashiki, Okayama, Japan
| | - Lukas A Mueller
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| |
Collapse
|
161
|
Lockhart J. Chasing Scattered Genes: Identifying Specialized Metabolite Pathway Genes through Global Coexpression Analysis. THE PLANT CELL 2017; 29:915. [PMID: 28408659 PMCID: PMC5466037 DOI: 10.1105/tpc.17.00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|