151
|
Sulfur-dependent microbial lifestyles: deceptively flexible roles for biochemically versatile enzymes. Curr Opin Chem Biol 2019; 49:139-145. [PMID: 30739067 DOI: 10.1016/j.cbpa.2018.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022]
Abstract
A wide group of microbes are able to "make a living" on Earth by basing their energetic metabolism on inorganic sulfur compounds. Because of their range of stable redox states, sulfur and inorganic sulfur compounds can be utilized as either oxidants or reductants in a diverse array of energy-conserving reactions. In this review the major enzymes and basic chemistry of sulfur-based respiration and chemolithotrophy are outlined. The reversibility and versatility of these enzymes, however, means that they can often be used in multiple ways, and several cases are discussed in which enzymes which are considered to be hallmarks of a particular respiratory or lithotrophic process have been found to be used in other, often opposing, metabolic processes. These results emphasize the importance of taking into account the geochemistry, biochemistry and microbiology of an organism and/or environment when trying to interpret the function of a particular sulfur-dependent redox enzyme.
Collapse
|
152
|
A review of the mechanisms of mineral-based metabolism in early Earth analog rock-hosted hydrothermal ecosystems. World J Microbiol Biotechnol 2019; 35:29. [PMID: 30689069 DOI: 10.1007/s11274-019-2604-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/20/2019] [Indexed: 10/27/2022]
Abstract
Prior to the advent of oxygenic photosynthesis ~ 2.8-3.2 Ga, life was dependent on chemical energy captured from oxidation-reduction reactions involving minerals or substrates generated through interaction of water with minerals. Terrestrial hydrothermal environments host abundant and diverse non-photosynthetic communities and a variety of minerals that can sustain microbial metabolism. Minerals and substrates generated through interaction of minerals with water are differentially distributed in hot spring environments which, in turn, shapes the distribution of microbial life and the metabolic processes that support it. Emerging evidence suggests that terrestrial hydrothermal environments may have played a role in supporting the metabolism of the earliest forms of microbial life. It follows that these environments and their microbial inhabitants are increasingly being studied as analogs of early Earth ecosystems. Here we review current understanding of the processes that lead to variation in the availability of minerals or mineral-sourced substrates in terrestrial hydrothermal environments. In addition, we summarize proposed mechanisms of mineral substrate acquisition and metabolism in microbial cells inhabiting terrestrial hydrothermal environments, highlighting the importance of the dynamic interplay between biotic and abiotic reactions in influencing mineral substrate bioavailability. An emphasis is placed on mechanisms involved in the solubilization, acquisition, and metabolism of sulfur- and iron-bearing minerals, since these elements were likely integrated into the metabolism of the earliest anaerobic cells.
Collapse
|
153
|
Dhiman S, Dubey RC, Maheshwari DK, Kumar S. Sulfur-oxidizing buffalo dung bacteria enhance growth and yield of Foeniculum vulgare Mill. Can J Microbiol 2019; 65:377-386. [PMID: 30657697 DOI: 10.1139/cjm-2018-0476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to harness the benefits of sulfur-oxidizing beneficial bacteria from buffalo dung to improve crop yields of Foeniculum vulgare. A total of 61 bacterial isolates were screened from buffalo dung, of which 40 isolates exhibited plant-growth-promoting attributes, such as phosphate solubilization, indole-3-acetic acid production, and hydrogen cyanide production. Of these 40, four bacterial isolates, viz., BUFF12, BUFF14, BUFF23, and BUFF38, were the most potent, having plant-growth-promoting and sulfur-oxidizing properties. These four isolates produced phytase by solubilizing calcium phytate and sodium phytate. They solubilized potassium besides oxidizing the sulfur, causing an increase in soil fertility and crop production. All four isolates were nonpathogenic in nature, as demonstrated by a negative haemolysis test. According to the 16S rRNA gene sequence, the isolate BUFF14 was identified as Proteus mirabilis. Proteus mirabilis BUFF14 maximized seed germination with enhanced vegetative and reproductive parameters during pot and field trial studies, compared with the other isolates.
Collapse
Affiliation(s)
- Sandhya Dhiman
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar 249-404, Uttarakhand, India.,Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar 249-404, Uttarakhand, India
| | - Ramesh Chand Dubey
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar 249-404, Uttarakhand, India.,Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar 249-404, Uttarakhand, India
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar 249-404, Uttarakhand, India.,Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar 249-404, Uttarakhand, India
| | - Sandeep Kumar
- Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar 249-404, Uttarakhand, India.,Department of Botany and Microbiology, Gurukula Kangri Vishwavidyalaya, Haridwar 249-404, Uttarakhand, India
| |
Collapse
|
154
|
Roy S, Roy M. Characterization of plant growth promoting feature of a neutromesophilic, facultatively chemolithoautotrophic, sulphur oxidizing bacterium Delftia sp. strain SR4 isolated from coal mine spoil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:531-540. [PMID: 30648405 DOI: 10.1080/15226514.2018.1537238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A new facultative chemolithoautotrophic heavy metal resistant sulfur-oxidizing bacterium was isolated from spoil sample of an open cast coal mine. FESEM demonstrated that the bacterium from Delftia genus was rod-shaped mucoid and motile. It autotrophically oxidized 20 mM thiosulfate and 1 g l-1 elemental sulfur to 220 mg l-1 and 203 mg l-1 of sulfate, respectively in 7 days under oxic condition and was also able to grow heterotrophically. The strain showed many plant growth promoting properties like production of IAA (23 ug ml-1), ammonia (6 umol ml-1), siderophore (55% siderophore unit), and HCN (30 ppm) upon 48 hours of incubation. In Pikovskaya's agar, the strain showed phosphate solubilization index of 2.0 and solubilized tri-calcium phosphate (232 ug ml-1) and lowered pH from 8.0 to 4.5 within 18 days. The strain yielded promising results on Brassica juncea growth and sulfur, phosphorus, and lead uptake. Where sulfur and phosphorous accumulation was 52 and 116% higher in whole treated plants (derived from microbe-coated seeds), lead accumulation were 81 and 50% higher in shoot and root of the treated plants than control plants (derived from untreated seeds) . These results point that this multifunctional strain can be proposed for phytorestoration of heavy metal contaminated sites.
Collapse
Affiliation(s)
- Satarupa Roy
- a Department of Biotechnology , Techno India University , Kolkata , WB , India
| | - Madhumita Roy
- a Department of Biotechnology , Techno India University , Kolkata , WB , India
| |
Collapse
|
155
|
Wang R, Lin JQ, Liu XM, Pang X, Zhang CJ, Yang CL, Gao XY, Lin CM, Li YQ, Li Y, Lin JQ, Chen LX. Sulfur Oxidation in the Acidophilic Autotrophic Acidithiobacillus spp. Front Microbiol 2019; 9:3290. [PMID: 30687275 PMCID: PMC6335251 DOI: 10.3389/fmicb.2018.03290] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Sulfur oxidation is an essential component of the earth's sulfur cycle. Acidithiobacillus spp. can oxidize various reduced inorganic sulfur compounds (RISCs) with high efficiency to obtain electrons for their autotrophic growth. Strains in this genus have been widely applied in bioleaching and biological desulfurization. Diverse sulfur-metabolic pathways and corresponding regulatory systems have been discovered in these acidophilic sulfur-oxidizing bacteria. The sulfur-metabolic enzymes in Acidithiobacillus spp. can be categorized as elemental sulfur oxidation enzymes (sulfur dioxygenase, sulfur oxygenase reductase, and Hdr-like complex), enzymes in thiosulfate oxidation pathways (tetrathionate intermediate thiosulfate oxidation (S4I) pathway, the sulfur oxidizing enzyme (Sox) system and thiosulfate dehydrogenase), sulfide oxidation enzymes (sulfide:quinone oxidoreductase) and sulfite oxidation pathways/enzymes. The two-component systems (TCSs) are the typical regulation elements for periplasmic thiosulfate metabolism in these autotrophic sulfur-oxidizing bacteria. Examples are RsrS/RsrR responsible for S4I pathway regulation and TspS/TspR for Sox system regulation. The proposal of sulfur metabolic and regulatory models provide new insights and overall understanding of the sulfur-metabolic processes in Acidithiobacillus spp. The future research directions and existing barriers in the bacterial sulfur metabolism are also emphasized here and the breakthroughs in these areas will accelerate the research on the sulfur oxidation in Acidithiobacillus spp. and other sulfur oxidizers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
156
|
Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. ISME JOURNAL 2018; 13:902-920. [PMID: 30518817 PMCID: PMC6461927 DOI: 10.1038/s41396-018-0318-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/23/2018] [Accepted: 11/04/2018] [Indexed: 12/28/2022]
Abstract
Lucinidae clams harbor gammaproteobacterial thioautotrophic gill endosymbionts that are environmentally acquired. Thioautotrophic lucinid symbionts are related to metabolically similar symbionts associated with diverse marine host taxa and fall into three distinct phylogenetic clades. Most studies on the lucinid–bacteria chemosymbiosis have been done with seagrass-dwelling hosts, whose symbionts belong to the largest phylogenetic clade. In this study, we examined the taxonomy and functional repertoire of bacterial endosymbionts at an unprecedented resolution from Phacoides pectinatus retrieved from mangrove-lined coastal sediments, which are underrepresented in chemosymbiosis studies. The P. pectinatus thioautotrophic endosymbiont expressed metabolic gene variants for thioautotrophy, respiration, and nitrogen assimilation distinct from previously characterized lucinid thioautotrophic symbionts and other marine symbionts. At least two other bacterial species with different metabolisms were also consistently identified in the P. pectinatus gill microbiome, including a Kistimonas-like species and a Spirochaeta-like species. Bacterial transcripts involved in adhesion, growth, and virulence and mixotrophy were highly expressed, as were host-related hemoglobin and lysozyme transcripts indicative of sulfide/oxygen/CO2 transport and bactericidal activity. This study suggests the potential roles of P. pectinatus and its gill microbiome species in mangrove sediment biogeochemistry and offers insights into host and microbe metabolisms in the habitat.
Collapse
|
157
|
Kostrytsia A, Papirio S, Morrison L, Ijaz UZ, Collins G, Lens PNL, Esposito G. Biokinetics of microbial consortia using biogenic sulfur as a novel electron donor for sustainable denitrification. BIORESOURCE TECHNOLOGY 2018; 270:359-367. [PMID: 30243243 DOI: 10.1016/j.biortech.2018.09.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
In this study, the biokinetics of autotrophic denitrification with biogenic S0 (ADBIOS) for the treatment of nitrogen pollution in wastewaters were investigated. The used biogenic S0, a by-product of gas desulfurization, was an elemental microcrystalline orthorhombic sulfur with a median size of 4.69 µm and a specific surface area of 3.38 m2/g, which made S0 particularly reactive and bioavailable. During denitritation, the biomass enriched on nitrite (NO2-) was capable of degrading up to 240 mg/l NO2--N with a denitritation activity of 339.5 mg NO2--N/g VSS·d. The use of biogenic S0 induced a low NO2--N accumulation, hindering the NO2--N negative impact on the denitrifying consortia and resulting in a specific denitrification activity of 223.0 mg NO3--N/g VSS·d. Besides Thiobacillus being the most abundant genus, Moheibacter and Thermomonas were predominantly selected for denitrification and denitritation, respectively.
Collapse
Affiliation(s)
- Anastasiia Kostrytsia
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043 Cassino (FR), Italy.
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples, Italy
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Umer Zeeshan Ijaz
- School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Gavin Collins
- Microbial Communities Laboratory, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Piet N L Lens
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland; UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft, The Netherlands
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, via Di Biasio 43, 03043 Cassino (FR), Italy
| |
Collapse
|
158
|
Lopez-Fernandez M, Åström M, Bertilsson S, Dopson M. Depth and Dissolved Organic Carbon Shape Microbial Communities in Surface Influenced but Not Ancient Saline Terrestrial Aquifers. Front Microbiol 2018; 9:2880. [PMID: 30538690 PMCID: PMC6277548 DOI: 10.3389/fmicb.2018.02880] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
The continental deep biosphere is suggested to contain a substantial fraction of the earth's total biomass and microorganisms inhabiting this environment likely have a substantial impact on biogeochemical cycles. However, the deep microbial community is still largely unknown and can be influenced by parameters such as temperature, pressure, water residence times, and chemistry of the waters. In this study, 21 boreholes representing a range of deep continental groundwaters from the Äspö Hard Rock Laboratory were subjected to high-throughput 16S rRNA gene sequencing to characterize how the different water types influence the microbial communities. Geochemical parameters showed the stability of the waters and allowed their classification into three groups. These were (i) waters influenced by infiltration from the Baltic Sea with a "modern marine (MM)" signature, (ii) a "thoroughly mixed (TM)" water containing groundwaters of several origins, and (iii) deep "old saline (OS)" waters. Decreasing microbial cell numbers positively correlated with depth. In addition, there was a stronger positive correlation between increased cell numbers and dissolved organic carbon for the MM compared to the OS waters. This supported that the MM waters depend on organic carbon infiltration from the Baltic Sea while the ancient saline waters were fed by "geogases" such as carbon dioxide and hydrogen. The 16S rRNA gene relative abundance of the studied groundwaters revealed different microbial community compositions. Interestingly, the TM water showed the highest dissimilarity compared to the other two water types, potentially due to the several contrasting water types contributing to this groundwater. The main identified microbial phyla in the groundwaters were Gammaproteobacteria, unclassified sequences, Campylobacterota (formerly Epsilonproteobacteria), Patescibacteria, Deltaproteobacteria, and Alphaproteobacteria. Many of these taxa are suggested to mediate ferric iron and nitrate reduction, especially in the MM waters. This indicated that nitrate reduction may be a neglected but important process in the deep continental biosphere. In addition to the high number of unclassified sequences, almost 50% of the identified phyla were archaeal or bacterial candidate phyla. The percentage of unknown and candidate phyla increased with depth, pointing to the importance and necessity of further studies to characterize deep biosphere microbial populations.
Collapse
Affiliation(s)
| | - Mats Åström
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Stefan Bertilsson
- Limnology and Science for Life Laboratory, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
159
|
Vuillemin A, Horn F, Friese A, Winkel M, Alawi M, Wagner D, Henny C, Orsi WD, Crowe SA, Kallmeyer J. Metabolic potential of microbial communities from ferruginous sediments. Environ Microbiol 2018; 20:4297-4313. [PMID: 29968357 DOI: 10.1111/1462-2920.14343] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/22/2018] [Accepted: 06/25/2018] [Indexed: 01/22/2023]
Abstract
Ferruginous (Fe-rich, SO4 -poor) conditions are generally restricted to freshwater sediments on Earth today, but were likely widespread during the Archean and Proterozoic Eons. Lake Towuti, Indonesia, is a large ferruginous lake that likely hosts geochemical processes analogous to those that operated in the ferruginous Archean ocean. The metabolic potential of microbial communities and related biogeochemical cycling under such conditions remain largely unknown. We combined geochemical measurements (pore water chemistry, sulfate reduction rates) with metagenomics to link metabolic potential with geochemical processes in the upper 50 cm of sediment. Microbial diversity and quantities of genes for dissimilatory sulfate reduction (dsrAB) and methanogenesis (mcrA) decrease with increasing depth, as do rates of potential sulfate reduction. The presence of taxa affiliated with known iron- and sulfate-reducers implies potential use of ferric iron and sulfate as electron acceptors. Pore-water concentrations of acetate imply active production through fermentation. Fermentation likely provides substrates for respiration with iron and sulfate as electron donors and for methanogens that were detected throughout the core. The presence of ANME-1 16S and mcrA genes suggests potential for anaerobic methane oxidation. Overall our data suggest that microbial community metabolism in anoxic ferruginous sediments support coupled Fe, S and C biogeochemical cycling.
Collapse
Affiliation(s)
- Aurèle Vuillemin
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany.,Department of Earth & Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany
| | - André Friese
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany
| | - Matthias Winkel
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany
| | - Mashal Alawi
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany.,University of Potsdam, Faculty of Mathematics and Natural Sciences, Institute of Earth and Environmental Sciences, Potsdam, Germany
| | - Cynthia Henny
- Research Center for Limnology (LIPI), Indonesian Institute of Sciences, Division of Inland Waterways Dynamics, Cibinong-Bogor, Indonesia
| | - William D Orsi
- Department of Earth & Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany.,Geobio-CenterLMU, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sean A Crowe
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.,Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section 5.3: Geomicrobiology, Potsdam, Germany
| |
Collapse
|
160
|
Lin S, Mackey HR, Hao T, Guo G, van Loosdrecht MCM, Chen G. Biological sulfur oxidation in wastewater treatment: A review of emerging opportunities. WATER RESEARCH 2018; 143:399-415. [PMID: 29986249 DOI: 10.1016/j.watres.2018.06.051] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Sulfide prevails in both industrial and municipal waste streams and is one of the most troublesome issues with waste handling. Various technologies and strategies have been developed and used to deal with sulfide for decades, among which biological means make up a considerable portion due to their low operation requirements and flexibility. Sulfur bacteria play a vital role in these biotechnologies. In this article, conventional biological approaches dealing with sulfide and functional microorganisms are systematically reviewed. Linking the sulfur cycle with other nutrient cycles such as nitrogen or phosphorous, and with continued focus of waste remediation by sulfur bacteria, has led to emerging biotechnologies. Furthermore, opportunities for energy harvest and resource recovery based on sulfur bacteria are also discussed. The electroactivity of sulfur bacteria indicates a broad perspective of sulfur-based bioelectrochemical systems in terms of bioelectricity production and bioelectrochemical synthesis. The considerable PHA accumulation, high yield and anoxygenic growth conditions in certain phototrophic sulfur bacteria could provide an interesting alternative for bioplastic production. In this review, new merits of biological sulfide oxidation from a traditional environmental management perspective as well as a waste to resource perspective are presented along with their potential applications.
Collapse
Affiliation(s)
- Sen Lin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hamish R Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Gang Guo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China; Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
161
|
Broad Phylogenetic Diversity Associated with Nitrogen Loss through Sulfur Oxidation in a Large Public Marine Aquarium. Appl Environ Microbiol 2018; 84:AEM.01250-18. [PMID: 30097447 DOI: 10.1128/aem.01250-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022] Open
Abstract
Denitrification by sulfur-oxidizing bacteria is an effective nitrate removal strategy in engineered aquatic systems. However, the community taxonomic and metabolic diversity of sulfur-driven denitrification (SDN) systems, as well as the relationship between nitrate removal and SDN community structure, remains underexplored. This is particularly true for SDN reactors applied to marine aquaria, despite the increasing use of this technology to supplement filtration. We applied 16S rRNA gene, metagenomic, and metatranscriptomic analyses to explore the microbial basis of SDN reactors operating on Georgia Aquarium's Ocean Voyager, the largest indoor closed-system seawater exhibit in the United States. The exhibit's two SDN systems vary in water retention time and nitrate removal efficiency. The systems also support significantly different microbial communities. These communities contain canonical SDN bacteria, including a strain related to Thiobacillus thioparus that dominates the system with the higher water retention time and nitrate removal but is effectively absent from the other system. Both systems contain a wide diversity of other microbes whose metagenome-assembled genomes contain genes of SDN metabolism. These include hundreds of strains of the epsilonproteobacterium Sulfurimonas, as well as gammaproteobacterial sulfur oxidizers of the Thiotrichales and Chromatiales, and a relative of Sedimenticola thiotaurini with complete denitrification potential. The SDN genes are transcribed and the taxonomic richness of the transcript pool varies markedly among the enzymatic steps, with some steps dominated by transcripts from noncanonical SDN taxa. These results indicate complex and variable SDN communities that may involve chemical dependencies among taxa as well as the potential for altering community structure to optimize nitrate removal.IMPORTANCE Engineered aquatic systems such as aquaria and aquaculture facilities have large societal value. Ensuring the health of animals in these systems requires understanding how microorganisms contribute to chemical cycling and waste removal. Focusing on the largest seawater aquarium in the United States, we explore the microbial communities in specialized reactors designed to remove excess nitrogen through the metabolic activity of sulfur-consuming microbes. We show that the diversity of microbes in these reactors is both high and highly variable, with distinct community types associated with significant differences in nitrogen removal rate. We also show that the genes encoding the metabolic steps of nitrogen removal are distributed broadly throughout community members, suggesting that the chemical transformations in this system are likely a result of microbes relying on other microbes. These results provide a framework for future studies exploring the contributions of different community members, both in waste removal and in structuring microbial biodiversity.
Collapse
|
162
|
Morrison C, Heitmann E, Armiger W, Dodds D, Koffas M. Electrochemical Bioreactor Technology for Biocatalysis and Microbial Electrosynthesis. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:51-86. [PMID: 30342723 DOI: 10.1016/bs.aambs.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Two seemingly distinct fields, industrial biocatalysis and microbial electrosynthesis, can be viewed together through the lens of electrochemical bioreactor technology in order to highlight the challenges that exist in creating a versatile platform technology for use in chemical and biological applications. Industrial biocatalysis applications requiring NAD(P)H to perform redox transformations often necessitate convoluted coupled-enzyme regeneration systems to regenerate reduced cofactor, NAD(P)H from oxidized cofactor, NAD(P). Renewed interest in continuously recycling the cofactor via electrochemical reduction is motivated by the low cost of performing electrochemical reactions, easy monitoring of the reaction progress, and straightforward product recovery. However, electrochemical cofactor regeneration methods invariably produce adventitious reduced cofactor side products which result in unproductive loss of input NAD(P). Microbial electrosynthesis is a form of microbially driven catalysis in which electricity is supplied to living microorganisms for the production of industrially relevant chemical products at higher carbon efficiencies and yields compared with traditional, nonelectrically driven, fermentations. The fundamental biochemistry of these organisms as related to selected biochemical redox processes will be explored in order to highlight opportunities to devise strategies for taking advantage of these biochemical processes in engineered systems.
Collapse
Affiliation(s)
- Clifford Morrison
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Elizabeth Heitmann
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - David Dodds
- BioChemInsights, Inc., Malvern, PA, United States
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
163
|
Issotta F, Moya-Beltrán A, Mena C, Covarrubias PC, Thyssen C, Bellenberg S, Sand W, Quatrini R, Vera M. Insights into the biology of acidophilic members of the Acidiferrobacteraceae family derived from comparative genomic analyses. Res Microbiol 2018; 169:608-617. [PMID: 30142431 DOI: 10.1016/j.resmic.2018.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
The family Acidiferrobacteraceae (order Acidiferrobacterales) currently contains Gram negative, neutrophilic sulfur oxidizers such as Sulfuricaulis and Sulfurifustis, as well as acidophilic iron and sulfur oxidizers belonging to the Acidiferrobacter genus. The diversity and taxonomy of the genus Acidiferrobacter has remained poorly explored. Although several metagenome and bioleaching studies have identified its presence worldwide, only two strains, namely Acidiferrobacter thiooxydans DSM 2932T, and Acidiferrobacter spp. SP3/III have been isolated and made publically available. Using 16S rRNA sequence data publically available for the Acidiferrobacteraceae, we herein shed light into the molecular taxonomy of this family. Results obtained support the presence of three clades Acidiferrobacter, Sulfuricaulis and Sulfurifustis. Genomic analyses of the genome sequences of A. thiooxydansT and Acidiferrobacter spp. SP3/III indicate that ANI relatedness between the SPIII/3 strain and A. thiooxydansT is below 95-96%, supporting the classification of strain SP3/III as a new species within this genus. In addition, approximately 70% of Acidiferrobacter sp. SPIII/3 predicted genes have a conserved ortholog in A. thiooxydans strains. A comparative analysis of iron, sulfur oxidation pathways, genome plasticity and cell-cell communication mechanisms of Acidiferrobacter spp. are also discussed.
Collapse
Affiliation(s)
- Francisco Issotta
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ana Moya-Beltrán
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Cristóbal Mena
- Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, 7820486, Santiago, Chile
| | - Paulo C Covarrubias
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Christian Thyssen
- Universität Duisburg Essen, Biofilm Centre, Aquatische Biotechnologie, Universitätsstr. 5, 45141, Essen, Germany
| | - Sören Bellenberg
- Universität Duisburg Essen, Biofilm Centre, Aquatische Biotechnologie, Universitätsstr. 5, 45141, Essen, Germany
| | - Wolfgang Sand
- Universität Duisburg Essen, Biofilm Centre, Aquatische Biotechnologie, Universitätsstr. 5, 45141, Essen, Germany; College of Environmental Science and Engineering, Donghua University, 2999 North Ren Min Rd., Song Jiang District, Shanghai, 201620, PR China; Technische Universität Bergakademie Freiberg, Institut für Biowissenschaften, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile.
| | - Mario Vera
- Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, 7820486, Santiago, Chile; Departamento de Ingeniería Hidráulica y Ambiental, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, 7820486, Santiago, Chile.
| |
Collapse
|
164
|
Amenabar MJ, Colman DR, Poudel S, Roden EE, Boyd ES. Electron acceptor availability alters carbon and energy metabolism in a thermoacidophile. Environ Microbiol 2018; 20:2523-2537. [PMID: 29749696 DOI: 10.1111/1462-2920.14270] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022]
Abstract
The thermoacidophilic Acidianus strain DS80 displays versatility in its energy metabolism and can grow autotrophically and heterotrophically with elemental sulfur (S°), ferric iron (Fe3+ ) or oxygen (O2 ) as electron acceptors. Here, we show that autotrophic and heterotrophic growth with S° as the electron acceptor is obligately dependent on hydrogen (H2 ) as electron donor; organic substrates such as acetate can only serve as a carbon source. In contrast, organic substrates such as acetate can serve as electron donor and carbon source for Fe3+ or O2 grown cells. During growth on S° or Fe3+ with H2 as an electron donor, the amount of CO2 assimilated into biomass decreased when cultures were provided with acetate. The addition of CO2 to cultures decreased the amount of acetate mineralized and assimilated and increased cell production in H2 /Fe3+ grown cells but had no effect on H2 /S° grown cells. In acetate/Fe3+ grown cells, the presence of H2 decreased the amount of acetate mineralized as CO2 in cultures compared to those without H2 . These results indicate that electron acceptor availability constrains the variety of carbon sources used by this strain. Addition of H2 to cultures overcomes this limitation and alters heterotrophic metabolism.
Collapse
Affiliation(s)
| | - Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Saroj Poudel
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Eric E Roden
- Department of Geosciences, University of Wisconsin, Madison, WI, USA.,NASA Astrobiology Institute, Mountain View, CA, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,NASA Astrobiology Institute, Mountain View, CA, USA
| |
Collapse
|
165
|
Gros O, Bisqué L, Sadjan M, Azede C, Jean-Louis P, Guidi-Rontani C. First description of a new uncultured purple sulfur bacterium colonizing marine mangrove sediment in the Caribbean: Halochromatium-like PSB from Guadeloupe. C R Biol 2018; 341:387-397. [PMID: 30097382 DOI: 10.1016/j.crvi.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Here, we report the first description of a marine purple sulfur bacterium (PSB) from sulfide-rich sediments of a marine mangrove in the Caribbean. TEM shows that this new isolate contains intracytoplasmic vesicular membrane systems (containing bacteriochlorophyll a) and larger internal sulfur granules, confirmed by EDXS analyses performed using ESEM. The sulfur distribution and mapping obtained for this PSB strain has allowed us to conclude that elemental sulfur is formed as an intermediate oxidation product and stored intracellularly. SEM shows that the bacterial cells are ovoid and extremely motile via lophotrichous flagella. Phylogenetic characterization, based on the analysis of 16S rDNA and functional gene pufM sequences, demonstrate that this strain belongs to the Chromatiaceae and may be a representative of a new species of the genus Halochromatium. Thus, reduced sediments of marine mangrove represent a sulfide-rich environment that sustains the development of Chromatiaceae, in addition to sulfur-oxidizing bacteria and cyanobacteria, as previously reported.
Collapse
Affiliation(s)
- Olivier Gros
- Sorbonne Universités, UPMC Université Paris-6, Université des Antilles, CNRS, Évolution Paris Seine-Institut de biologie Paris Seine (EPS-IBPS), 75005 Paris, France; C(3)MAG, UFR des sciences exactes et naturelles, Université des Antilles, BP 592, 97159 Pointe-à-Pitre, Guadeloupe.
| | - Laurie Bisqué
- Sorbonne Universités, UPMC Université Paris-6, Université des Antilles, CNRS, Évolution Paris Seine-Institut de biologie Paris Seine (EPS-IBPS), 75005 Paris, France
| | - Mélissa Sadjan
- Sorbonne Universités, UPMC Université Paris-6, Université des Antilles, CNRS, Évolution Paris Seine-Institut de biologie Paris Seine (EPS-IBPS), 75005 Paris, France
| | - Catherine Azede
- Sorbonne Universités, UPMC Université Paris-6, Université des Antilles, CNRS, Évolution Paris Seine-Institut de biologie Paris Seine (EPS-IBPS), 75005 Paris, France
| | - Patrick Jean-Louis
- Sorbonne Universités, UPMC Université Paris-6, Université des Antilles, CNRS, Évolution Paris Seine-Institut de biologie Paris Seine (EPS-IBPS), 75005 Paris, France
| | - Chantal Guidi-Rontani
- Sorbonne Universités, UPMC Université Paris-6, Université des Antilles, CNRS, Évolution Paris Seine-Institut de biologie Paris Seine (EPS-IBPS), 75005 Paris, France
| |
Collapse
|
166
|
Fan W, Peng Y, Meng Y, Zhang W, Zhu N, Wang J, Guo C, Li J, Du H, Dang Z. Transcriptomic Analysis Reveals Reduced Inorganic Sulfur Compound Oxidation Mechanism in Acidithiobacillus ferriphilus. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
167
|
Hynek BM, Rogers KL, Antunovich M, Avard G, Alvarado GE. Lack of Microbial Diversity in an Extreme Mars Analog Setting: Poás Volcano, Costa Rica. ASTROBIOLOGY 2018; 18:923-933. [PMID: 29688767 PMCID: PMC6067093 DOI: 10.1089/ast.2017.1719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Poás volcano in Costa Rica has been studied as a Mars geochemical analog environment, since both the style of hydrothermal alteration present and the alteration mineralogy are consistent with Mars' relict hydrothermal systems. The site hosts an active volcano, with high-temperature fumaroles (up to 980°C) and an ultra-acidic lake. This lake, Laguna Caliente, is one of the most dynamic environments on Earth, with frequent phreatic eruptions, temperatures ranging from near-ambient to almost boiling, a pH range of -1 to 1.5, and a wide range of chemistries and redox potential. Martian acid-sulfate hydrothermal systems were likely similarly dynamic and equally challenging to life. The microbiology existing within Laguna Caliente was characterized for the first time, with sampling taking place in November, 2013. The diversity of the microbial community was surveyed via extraction of environmental DNA from fluid and sediment samples followed by Illumina sequencing of the 16S rRNA gene. The microbial diversity was limited to a single species of the bacterial genus Acidiphilium. This organism likely gets its energy from oxidation of reduced sulfur in the lake, including elemental sulfur. Given Mars' propensity for sulfur and acid-sulfate environments, this type of organism is of significant interest to the search for past or present life on the Red Planet. Key Words: Mars astrobiology-Acid-sulfate hydrothermal systems-Extremophiles-Acidic-High temperature-Acidiphilium bacteria. Astrobiology 18, 923-933.
Collapse
Affiliation(s)
- Brian M. Hynek
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA
- Department of Geological Sciences, University of Colorado, Boulder, Colorado, USA
- Address correspondence to:Brian M. HynekLaboratory for Atmospheric and Space PhysicsUniversity of Colorado3665 Discovery Dr.Boulder, CO 80303
| | - Karyn L. Rogers
- Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Monique Antunovich
- Department of Geological Sciences, University of Colorado, Boulder, Colorado, USA
| | - Geoffroy Avard
- OVSICORI, National University of Costa Rica, Heredia, Costa Rica
| | - Guillermo E. Alvarado
- Centro de Investigaciones Geológicas, Red Sismológica Nacional, Universidad de Costa Rica, Costa Rica
| |
Collapse
|
168
|
Methanotrophy across a natural permafrost thaw environment. ISME JOURNAL 2018; 12:2544-2558. [PMID: 29955139 PMCID: PMC6155033 DOI: 10.1038/s41396-018-0065-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/09/2022]
Abstract
The fate of carbon sequestered in permafrost is a key concern for future global warming as this large carbon stock is rapidly becoming a net methane source due to widespread thaw. Methane release from permafrost is moderated by methanotrophs, which oxidise 20-60% of this methane before emission to the atmosphere. Despite the importance of methanotrophs to carbon cycling, these microorganisms are under-characterised and have not been studied across a natural permafrost thaw gradient. Here, we examine methanotroph communities from the active layer of a permafrost thaw gradient in Stordalen Mire (Abisko, Sweden) spanning three years, analysing 188 metagenomes and 24 metatranscriptomes paired with in situ biogeochemical data. Methanotroph community composition and activity varied significantly as thaw progressed from intact permafrost palsa, to partially thawed bog and fully thawed fen. Thirteen methanotroph population genomes were recovered, including two novel genomes belonging to the uncultivated upland soil cluster alpha (USCα) group and a novel potentially methanotrophic Hyphomicrobiaceae. Combined analysis of porewater δ13C-CH4 isotopes and methanotroph abundances showed methane oxidation was greatest below the oxic-anoxic interface in the bog. These results detail the direct effect of thaw on autochthonous methanotroph communities, and their consequent changes in population structure, activity and methane moderation potential.
Collapse
|
169
|
Pyne P, Alam M, Rameez MJ, Mandal S, Sar A, Mondal N, Debnath U, Mathew B, Misra AK, Mandal AK, Ghosh W. Homologs from sulfur oxidation (Sox) and methanol dehydrogenation (Xox) enzyme systems collaborate to give rise to a novel pathway of chemolithotrophic tetrathionate oxidation. Mol Microbiol 2018; 109:169-191. [DOI: 10.1111/mmi.13972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Prosenjit Pyne
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Masrure Alam
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Moidu Jameela Rameez
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Subhrangshu Mandal
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Abhijit Sar
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Nibendu Mondal
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Utsab Debnath
- Division of Molecular Medicine; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Boby Mathew
- Clinical Proteomics Unit, Division of Molecular Medicine; St. John's Research Institute St. John's National Academy of Health Sciences, 100ft Road; Koramangala 560034 Bangalore India
| | - Anup Kumar Misra
- Division of Molecular Medicine; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| | - Amit Kumar Mandal
- Clinical Proteomics Unit, Division of Molecular Medicine; St. John's Research Institute St. John's National Academy of Health Sciences, 100ft Road; Koramangala 560034 Bangalore India
| | - Wriddhiman Ghosh
- Department of Microbiology; Bose Institute, P-1/12 CIT Scheme VIIM; Kolkata 700054 India
| |
Collapse
|
170
|
Fernandes S, Mazumdar A, Bhattacharya S, Peketi A, Mapder T, Roy R, Carvalho MA, Roy C, Mahalakshmi P, Da Silva R, Rao PLS, Banik SK, Ghosh W. Enhanced carbon-sulfur cycling in the sediments of Arabian Sea oxygen minimum zone center. Sci Rep 2018; 8:8665. [PMID: 29875466 PMCID: PMC5989202 DOI: 10.1038/s41598-018-27002-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/21/2018] [Indexed: 01/04/2023] Open
Abstract
Biogeochemistry of oxygen minimum zone (OMZ) sediments, which are characterized by high input of labile organic matter, have crucial bearings on the benthic biota, gas and metal fluxes across the sediment-water interface, and carbon-sulfur cycling. Here we couple pore-fluid chemistry and comprehensive microbial diversity data to reveal the sedimentary carbon-sulfur cycle across a water-depth transect covering the entire thickness of eastern Arabian Sea OMZ, off the west coast of India. Geochemical data show remarkable increase in average total organic carbon content and aerial sulfate reduction rate (JSO42-) in the sediments of the OMZ center coupled with shallowing of sulfate methane transition zone and hydrogen sulfide and ammonium build-up. Total bacterial diversity, including those of complex organic matter degraders, fermentative and exoelectrogenic bacteria, and sulfate-reducers (that utilize only simple carbon compounds) were also found to be highest in the same region. The above findings indicate that higher organic carbon sequestration from the water-columns (apparently due to lower benthic consumption, biodegradation and biotransformation) and greater bioavailability of simple organic carbon compounds (apparently produced by fermetative microflora of the sediments) are instrumental in intensifying the carbon-sulfur cycle in the sediments of the OMZ center.
Collapse
Affiliation(s)
| | - Aninda Mazumdar
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | | | - Aditya Peketi
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Tarunendu Mapder
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata, 700009, India
- Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, West Bengal, India
| | - Rimi Roy
- Department of Microbiology, Bose Institute, Kolkata, 700054, West Bengal, India
| | - Mary Ann Carvalho
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Chayan Roy
- Department of Microbiology, Bose Institute, Kolkata, 700054, West Bengal, India
| | | | - Rheane Da Silva
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - P L Srinivasa Rao
- Gujarat Energy Research and Management Institute, Gujarat, 382421, India
| | - Suman Kumar Banik
- Department of Chemistry, Bose Institute, 93/1 APC Road, Kolkata, 700009, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
171
|
Hausmann B, Pelikan C, Herbold CW, Köstlbacher S, Albertsen M, Eichorst SA, Glavina Del Rio T, Huemer M, Nielsen PH, Rattei T, Stingl U, Tringe SG, Trojan D, Wentrup C, Woebken D, Pester M, Loy A. Peatland Acidobacteria with a dissimilatory sulfur metabolism. THE ISME JOURNAL 2018; 12:1729-1742. [PMID: 29476143 PMCID: PMC6018796 DOI: 10.1038/s41396-018-0077-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/21/2017] [Accepted: 01/20/2018] [Indexed: 12/25/2022]
Abstract
Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.
Collapse
Affiliation(s)
- Bela Hausmann
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claus Pelikan
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Stephanie A Eichorst
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | | | - Martin Huemer
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Per H Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Ulrich Stingl
- Department for Microbiology and Cell Science, Fort Lauderdale Research and Education Center, UF/IFAS, University of Florida, Davie, FL, USA
| | - Susannah G Tringe
- US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Daniela Trojan
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Cecilia Wentrup
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| | - Michael Pester
- Department of Biology, University of Konstanz, Konstanz, Germany.
- Leibniz Institute DSMZ, Braunschweig, Germany.
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry meets Microbiology, University of Vienna, Vienna, Austria
| |
Collapse
|
172
|
Włodarczyk A, Lirski M, Fogtman A, Koblowska M, Bidziński G, Matlakowska R. The Oxidative Metabolism of Fossil Hydrocarbons and Sulfide Minerals by the Lithobiontic Microbial Community Inhabiting Deep Subterrestrial Kupferschiefer Black Shale. Front Microbiol 2018; 9:972. [PMID: 29867875 PMCID: PMC5962744 DOI: 10.3389/fmicb.2018.00972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Black shales are one of the largest reservoirs of fossil organic carbon and inorganic reduced sulfur on Earth. It is assumed that microorganisms play an important role in the transformations of these sedimentary rocks and contribute to the return of organic carbon and inorganic sulfur to the global geochemical cycles. An outcrop of deep subterrestrial ~256-million-year-old Kupferschiefer black shale was studied to define the metabolic processes of the deep biosphere important in transformations of organic carbon and inorganic reduced sulfur compounds. This outcrop was created during mining activity 12 years ago and since then it has been exposed to the activity of oxygen and microorganisms. The microbial processes were described based on metagenome and metaproteome studies as well as on the geochemistry of the rock. The microorganisms inhabiting the subterrestrial black shale were dominated by bacterial genera such as Pseudomonas, Limnobacter, Yonghaparkia, Thiobacillus, Bradyrhizobium, and Sulfuricaulis. This study on black shale was the first to detect archaea and fungi, represented by Nitrososphaera and Aspergillus genera, respectively. The enzymatic oxidation of fossil aliphatic and aromatic hydrocarbons was mediated mostly by chemoorganotrophic bacteria, but also by archaea and fungi. The dissimilative enzymatic oxidation of primary reduced sulfur compounds was performed by chemolithotrophic bacteria. The geochemical consequences of microbial activity were the oxidation and dehydrogenation of kerogen, as well as oxidation of sulfide minerals.
Collapse
Affiliation(s)
- Agnieszka Włodarczyk
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Maciej Lirski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Fogtman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Koblowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Renata Matlakowska
- Laboratory of Environmental Pollution Analysis, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
173
|
Roberto AA, Van Gray JB, Leff LG. Sediment bacteria in an urban stream: Spatiotemporal patterns in community composition. WATER RESEARCH 2018; 134:353-369. [PMID: 29454907 DOI: 10.1016/j.watres.2018.01.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/04/2018] [Accepted: 01/20/2018] [Indexed: 05/25/2023]
Abstract
Sediment bacterial communities play a critical role in biogeochemical cycling in lotic ecosystems. Despite their ecological significance, the effects of urban discharge on spatiotemporal distribution of bacterial communities are understudied. In this study, we examined the effect of urban discharge on the spatiotemporal distribution of stream sediment bacteria in a northeast Ohio stream. Water and sediment samples were collected after large storm events (discharge > 100 m) from sites along a highly impacted stream (Tinkers Creek, Cuyahoga River watershed, Ohio, USA) and two reference streams. Although alpha (α) diversity was relatively constant spatially, multivariate analysis of bacterial community 16S rDNA profiles revealed significant spatial and temporal effects on beta (β) diversity and community composition and identified a number of significant correlative abiotic parameters. Clustering of upstream and reference sites from downstream sites of Tinkers Creek combined with the dominant families observed in specific locales suggests that environmentally-induced species sorting had a strong impact on the composition of sediment bacterial communities. Distinct groupings of bacterial families that are often associated with nutrient pollution (i.e., Comamonadaceae, Rhodobacteraceae, and Pirellulaceae) and other contaminants (i.e., Sphingomonadaceae and Phyllobacteriaceae) were more prominent at sites experiencing higher degrees of discharge associated with urbanization. Additionally, there were marked seasonal changes in community composition, with individual taxa exhibiting different seasonal abundance patterns. However, spatiotemporal variation in stream conditions did not affect bacterial community functional profiles. Together, these results suggest that local environmental drivers and niche filtering from discharge events associated with urbanization shape the bacterial community structure. However, dispersal limitations and interactions among other species likely play a role as well.
Collapse
Affiliation(s)
- Alescia A Roberto
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | - Jonathon B Van Gray
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | - Laura G Leff
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
174
|
Li Y, Jing H, Xia X, Cheung S, Suzuki K, Liu H. Metagenomic Insights Into the Microbial Community and Nutrient Cycling in the Western Subarctic Pacific Ocean. Front Microbiol 2018; 9:623. [PMID: 29670596 PMCID: PMC5894113 DOI: 10.3389/fmicb.2018.00623] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/19/2018] [Indexed: 01/05/2023] Open
Abstract
The composition and metabolic functions of prokaryotic communities in the western subarctic Pacific (WSP), where strong mixing of waters from the Sea of Okhotsk and the East Kamchatka Current result in transfer to the Oyashio Current, were investigated using a shotgun metagenome sequencing approach. Functional metabolic genes related to nutrient cycling of nitrogen, sulfur, carbohydrates, iron and amino acids were differently distributed between the surface and deep waters of the WSP. Genes related to nitrogen metabolism were mainly found in deep waters, where Thaumarchaeaota, Sphingomonadales, and Pseudomonadales were closely associated and performing important roles in ammonia oxidation, assimilatory nitrate reduction, and dissimilatory nitrate reduction processes, respectively. In addition, orders affiliated to Spingobacteria and Alphaproteobacteria were crucial for sulfate reduction and abundant at 3000 m, whereas orders affiliated to Gammaproteobacteria, which harbored the most sulfate reduction genes, were abundant at 1000 m. Additionally, when compared with the East Kamchatka Current, the prokaryotes in the Oyashio Current were likely to consume more energy for synthesizing cellular components. Also, genes encoding iron transport and siderophore biosynthesis proteins were in low abundance, indicating that the iron was not a limiting factor in the Oyashio current. In contrast, in the East Kamchatka Current, prokaryotes were more likely to directly utilize the amino acids and absorb iron from the environment. Overall, our data indicated that the transformation from the East Kamchatka Current to the Oyashio Current reshapes not only the composition of microbial community, but also the function of the metabolic processes. These results extended our knowledge of the microbial composition and potential metabolism in the WSP.
Collapse
Affiliation(s)
- Yingdong Li
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xiaomin Xia
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Shunyan Cheung
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Koji Suzuki
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
175
|
Mehrshad M, Rodriguez-Valera F, Amoozegar MA, López-García P, Ghai R. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. THE ISME JOURNAL 2018; 12:655-668. [PMID: 29208946 PMCID: PMC5864207 DOI: 10.1038/s41396-017-0009-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/21/2017] [Accepted: 07/24/2017] [Indexed: 11/09/2022]
Abstract
The dark ocean microbiota represents the unknown majority in the global ocean waters. The SAR202 cluster belonging to the phylum Chloroflexi was the first microbial lineage discovered to specifically inhabit the aphotic realm, where they are abundant and globally distributed. The absence of SAR202 cultured representatives is a significant bottleneck towards understanding their metabolic capacities and role in the marine environment. In this work, we use a combination of metagenome-assembled genomes from deep-sea datasets and publicly available single-cell genomes to construct a genomic perspective of SAR202 phylogeny, metabolism and biogeography. Our results suggest that SAR202 cluster members are medium sized, free-living cells with a heterotrophic lifestyle, broadly divided into two distinct clades. We present the first evidence of vertical stratification of these microbes along the meso- and bathypelagic ocean layers. Remarkably, two distinct species of SAR202 cluster are highly abundant in nearly all deep bathypelagic metagenomic datasets available so far. SAR202 members metabolize multiple organosulfur compounds, many appear to be sulfite-oxidizers and are predicted to play a major role in sulfur turnover in the dark water column. This concomitantly suggests an unsuspected availability of these nutrient sources to allow for the high abundance of these microbes in the deep sea.
Collapse
Affiliation(s)
- Maliheh Mehrshad
- Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | | | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Purificación López-García
- Ecologie, Systématique, Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Rohit Ghai
- Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
| |
Collapse
|
176
|
Rice Paddy Nitrospirae Carry and Express Genes Related to Sulfate Respiration: Proposal of the New Genus "Candidatus Sulfobium". Appl Environ Microbiol 2018; 84:AEM.02224-17. [PMID: 29247059 PMCID: PMC5812927 DOI: 10.1128/aem.02224-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/08/2017] [Indexed: 01/16/2023] Open
Abstract
Nitrospirae spp. distantly related to thermophilic, sulfate-reducing Thermodesulfovibrio species are regularly observed in environmental surveys of anoxic marine and freshwater habitats. Here we present a metaproteogenomic analysis of Nitrospirae bacterium Nbg-4 as a representative of this clade. Its genome was assembled from replicated metagenomes of rice paddy soil that was used to grow rice in the presence and absence of gypsum (CaSO4·2H2O). Nbg-4 encoded the full pathway of dissimilatory sulfate reduction and showed expression of this pathway in gypsum-amended anoxic bulk soil as revealed by parallel metaproteomics. In addition, Nbg-4 encoded the full pathway of dissimilatory nitrate reduction to ammonia (DNRA), with expression of its first step being detected in bulk soil without gypsum amendment. The relative abundances of Nbg-4 were similar under both treatments, indicating that Nbg-4 maintained stable populations while shifting its energy metabolism. Whether Nbg-4 is a strict sulfate reducer or can couple sulfur oxidation to DNRA by operating the pathway of dissimilatory sulfate reduction in reverse could not be resolved. Further genome reconstruction revealed the potential to utilize butyrate, formate, H2, or acetate as an electron donor; the Wood-Ljungdahl pathway was expressed under both treatments. Comparison to publicly available Nitrospirae genome bins revealed the pathway for dissimilatory sulfate reduction also in related Nitrospirae recovered from groundwater. Subsequent phylogenomics showed that such microorganisms form a novel genus within the Nitrospirae, with Nbg-4 as a representative species. Based on the widespread occurrence of this novel genus, we propose for Nbg-4 the name “Candidatus Sulfobium mesophilum,” gen. nov., sp. nov. IMPORTANCE Rice paddies are indispensable for the food supply but are a major source of the greenhouse gas methane. If it were not counterbalanced by cryptic sulfur cycling, methane emission from rice paddy fields would be even higher. However, the microorganisms involved in this sulfur cycling are little understood. By using an environmental systems biology approach with Italian rice paddy soil, we could retrieve the population genome of a novel member of the phylum Nitrospirae. This microorganism encoded the full pathway of dissimilatory sulfate reduction and expressed it in anoxic paddy soil under sulfate-enriched conditions. Phylogenomics and comparison to the results of environmental surveys showed that such microorganisms are actually widespread in freshwater and marine environments. At the same time, they represent an undiscovered genus within the little-explored phylum Nitrospirae. Our results will be important for the design of enrichment strategies and postgenomic studies to further understanding of the contribution of these novel Nitrospirae spp. to the global sulfur cycle.
Collapse
|
177
|
Lavy A, Keren R, Yu K, Thomas BC, Alvarez-Cohen L, Banfield JF, Ilan M. A novel Chromatiales bacterium is a potential sulfide oxidizer in multiple orders of marine sponges. Environ Microbiol 2018; 20:800-814. [PMID: 29194919 PMCID: PMC5812793 DOI: 10.1111/1462-2920.14013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 01/09/2023]
Abstract
Sponges are benthic filter feeders that play pivotal roles in coupling benthic-pelagic processes in the oceans that involve transformation of dissolved and particulate organic carbon and nitrogen into biomass. While the contribution of sponge holobionts to the nitrogen cycle has been recognized in past years, their importance in the sulfur cycle, both oceanic and physiological, has only recently gained attention. Sponges in general, and Theonella swinhoei in particular, harbour a multitude of associated microorganisms that could affect sulfur cycling within the holobiont. We reconstructed the genome of a Chromatiales (class Gammaproteobacteria) bacterium from a metagenomic sequence dataset of a T. swinhoei-associated microbial community. This relatively abundant bacterium has the metabolic capability to oxidize sulfide yet displays reduced metabolic potential suggestive of its lifestyle as an obligatory symbiont. This bacterium was detected in multiple sponge orders, according to similarities in key genes such as 16S rRNA and polyketide synthase genes. Due to its sulfide oxidation metabolism and occurrence in many members of the Porifera phylum, we suggest naming the newly described taxon Candidatus Porisulfidus.
Collapse
Affiliation(s)
- Adi Lavy
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Israel
- Earth and Planetary Science, 369 McCone Hall, University of California, Berkeley, USA
| | - Ray Keren
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Israel
- Department of Civil and Environmental Engineering, University of California, Berkeley, USA
| | - Ke Yu
- Department of Civil and Environmental Engineering, University of California, Berkeley, USA
| | - Brian C. Thomas
- Earth and Planetary Science, 369 McCone Hall, University of California, Berkeley, USA
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, USA
| | - Jillian F. Banfield
- Earth and Planetary Science, 369 McCone Hall, University of California, Berkeley, USA
| | - Micha Ilan
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Israel
| |
Collapse
|
178
|
Kato S, Shibuya T, Takaki Y, Hirai M, Nunoura T, Suzuki K. Genome-enabled metabolic reconstruction of dominant chemosynthetic colonizers in deep-sea massive sulfide deposits. Environ Microbiol 2018; 20:862-877. [DOI: 10.1111/1462-2920.14032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/08/2017] [Accepted: 12/13/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Shingo Kato
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Takazo Shibuya
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Department of Subsurface Geobiological Analysis and Research; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Marine Biosciences; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Miho Hirai
- Research and Development Center for Marine Biosciences; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Takuro Nunoura
- Ecosystem Observation and Evaluation Methodology Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Marine Biosciences; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| | - Katsuhiko Suzuki
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources; Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
- Research and Development Center for Submarine Resources; JAMSTEC; Yokosuka Kanagawa 237-0061 Japan
| |
Collapse
|
179
|
Kanao T, Onishi M, Kajitani Y, Hashimoto Y, Toge T, Kikukawa H, Kamimura K. Characterization of tetrathionate hydrolase from the marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH. Biosci Biotechnol Biochem 2018; 82:152-160. [PMID: 29303046 DOI: 10.1080/09168451.2017.1415128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tetrathionate hydrolase (4THase), a key enzyme of the S4-intermediate (S4I) pathway, was partially purified from marine acidophilic bacterium, Acidithiobacillus thiooxidans strain SH, and the gene encoding this enzyme (SH-tth) was identified. SH-Tth is a homodimer with a molecular mass of 97 ± 3 kDa, and contains a subunit 52 kDa in size. Enzyme activity was stimulated in the presence of 1 M NaCl, and showed the maximum at pH 3.0. Although 4THases from A. thiooxidans and the closely related Acidithiobacillus caldus strain have been reported to be periplasmic enzymes, SH-Tth seems to be localized on the outer membrane of the cell, and acts as a peripheral protein. Furthermore, both 4THase activity and SH-Tth proteins were detected in sulfur-grown cells of strain SH. These results suggested that SH-Tth is involved in elemental sulfur-oxidation, which is distinct from sulfur-oxidation in other sulfur-oxidizing strains such as A. thiooxidans and A. caldus.
Collapse
Affiliation(s)
- Tadayoshi Kanao
- a Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science , Okayama University , Okayama , Japan
| | - Moe Onishi
- b Faculty of Agriculture , Okayama University , Okayama , Japan
| | | | - Yuki Hashimoto
- b Faculty of Agriculture , Okayama University , Okayama , Japan
| | - Tatsuya Toge
- b Faculty of Agriculture , Okayama University , Okayama , Japan
| | | | - Kazuo Kamimura
- a Department of Biofunctional Chemistry, Division of Agricultural and Life Science, Graduate School of Environmental and Life Science , Okayama University , Okayama , Japan
| |
Collapse
|
180
|
Survey of sulfur-oxidizing bacterial community in the Pearl River water using soxB, sqr, and dsrA as molecular biomarkers. 3 Biotech 2018; 8:73. [PMID: 29354384 DOI: 10.1007/s13205-017-1077-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022] Open
Abstract
In this study, we surveyed the abundance and diversity of three sulfur oxidation genes (sqr, soxB, and dsrA) using quantitative assays and Miseq high-throughput sequencing. The quantitative assays revealed that soxB is more abundant than sqr and dsrA and is the main contributor to sulfur oxidation. In the diversity analysis, the SOB community mainly comprised the classes Nitrospira, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. The genera Gallionella, Hydrogenophaga, Limnohabitans, Methylomonas, Nitrospira, Rhodoferax, and Sulfuritalea were abundant in the communities for sqr; Dechloromonas, Limnohabitans, Paracoccus, Sulfuritalea, Sulfitobacter, and Thiobacillus were abundant in communities for soxB; Sulfuritalea, Sulfurisoma, and Thiobacillus were abundant in communities for dsrA. This study presented a high diversity of SOB species and functional sulfur-oxidizing genes in Pearl River via high-throughput sequencing, suggesting that the aquatic ecosystem has great potential to scavenge the sulfur pollutants by itself.
Collapse
|
181
|
Diversity of Sulfur-Oxidizing and Sulfur-Reducing Microbes in Diverse Ecosystems. ADVANCES IN SOIL MICROBIOLOGY: RECENT TRENDS AND FUTURE PROSPECTS 2018. [DOI: 10.1007/978-981-10-6178-3_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
182
|
Louyakis AS, Gourlé H, Casaburi G, Bonjawo RME, Duscher AA, Foster JS. A year in the life of a thrombolite: comparative metatranscriptomics reveals dynamic metabolic changes over diel and seasonal cycles. Environ Microbiol 2017; 20:842-861. [DOI: 10.1111/1462-2920.14029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Artemis S. Louyakis
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Hadrien Gourlé
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
- Department of Animal Breeding and Genetics; Global Bioinformatics Centre, Swedish University of Agricultural Sciences; Uppsala Sweden
| | - Giorgio Casaburi
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Rachelle M. E. Bonjawo
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Alexandrea A. Duscher
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Jamie S. Foster
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| |
Collapse
|
183
|
Analysis of the Genes Involved in Thiocyanate Oxidation during Growth in Continuous Culture of the Haloalkaliphilic Sulfur-Oxidizing Bacterium Thioalkalivibrio thiocyanoxidans ARh 2 T Using Transcriptomics. mSystems 2017; 2:mSystems00102-17. [PMID: 29285524 PMCID: PMC5744179 DOI: 10.1128/msystems.00102-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022] Open
Abstract
Thiocyanate is a moderately toxic and chemically stable sulfur compound that is produced by both natural and industrial processes. Despite its significance as a pollutant, knowledge of the microbial degradation of thiocyanate is very limited. Therefore, investigation of thiocyanate oxidation in haloalkaliphiles such as the genus Thioalkalivibrio may lead to improved biotechnological applications in wastewater remediation. Thiocyanate (N=C−S−) is a moderately toxic, inorganic sulfur compound. It occurs naturally as a by-product of the degradation of glucosinolate-containing plants and is produced industrially in a number of mining processes. Currently, two pathways for the primary degradation of thiocyanate in bacteria are recognized, the carbonyl sulfide pathway and the cyanate pathway, of which only the former has been fully characterized. Use of the cyanate pathway has been shown in only 10 strains of Thioalkalivibrio, a genus of obligately haloalkaliphilic sulfur-oxidizing Gammaproteobacteria found in soda lakes. So far, only the key enzyme in this reaction, thiocyanate dehydrogenase (TcDH), has been purified and studied. To gain a better understanding of the other genes involved in the cyanate pathway, we conducted a transcriptomics experiment comparing gene expression during the growth of Thioalkalivibrio thiocyanoxidans ARh 2T with thiosulfate with that during its growth with thiocyanate. Triplicate cultures were grown in continuous substrate-limited mode, followed by transcriptome sequencing (RNA-Seq) of the total mRNA. Differential expression analysis showed that a cluster of genes surrounding the gene for TcDH were strongly upregulated during growth with thiocyanate. This cluster includes genes for putative copper uptake systems (copCD, ABC-type transporters), a putative electron acceptor (fccAB), and a two-component regulatory system (histidine kinase and a σ54-responsive Fis family transcriptional regulator). Additionally, we observed the increased expression of RuBisCO and some carboxysome shell genes involved in inorganic carbon fixation, as well as of aprAB, genes involved in sulfite oxidation through the reverse sulfidogenesis pathway. IMPORTANCE Thiocyanate is a moderately toxic and chemically stable sulfur compound that is produced by both natural and industrial processes. Despite its significance as a pollutant, knowledge of the microbial degradation of thiocyanate is very limited. Therefore, investigation of thiocyanate oxidation in haloalkaliphiles such as the genus Thioalkalivibrio may lead to improved biotechnological applications in wastewater remediation.
Collapse
|
184
|
Masuda S, Hennecke H, Fischer HM. Requirements for Efficient Thiosulfate Oxidation in Bradyrhizobium diazoefficiens. Genes (Basel) 2017; 8:genes8120390. [PMID: 29244759 PMCID: PMC5748708 DOI: 10.3390/genes8120390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022] Open
Abstract
One of the many disparate lifestyles of Bradyrhizobium diazoefficiens is chemolithotrophic growth with thiosulfate as an electron donor for respiration. The employed carbon source may be CO2 (autotrophy) or an organic compound such as succinate (mixotrophy). Here, we discovered three new facets of this capacity: (i) When thiosulfate and succinate were consumed concomitantly in conditions of mixotrophy, even a high molar excess of succinate did not exert efficient catabolite repression over the use of thiosulfate. (ii) Using appropriate cytochrome mutants, we found that electrons derived from thiosulfate during chemolithoautotrophic growth are preferentially channeled via cytochrome c550 to the aa3-type heme-copper cytochrome oxidase. (iii) Three genetic regulators were identified to act at least partially in the expression control of genes for chemolithoautotrophic thiosulfate oxidation: RegR and CbbR as activators, and SoxR as a repressor.
Collapse
Affiliation(s)
- Sachiko Masuda
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan.
| | - Hauke Hennecke
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.
| | - Hans-Martin Fischer
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.
| |
Collapse
|
185
|
A novel soxO gene, encoding a glutathione disulfide reductase, is essential for tetrathionate oxidation in Advenella kashmirensis. Microbiol Res 2017; 205:1-7. [DOI: 10.1016/j.micres.2017.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/19/2017] [Accepted: 08/05/2017] [Indexed: 11/30/2022]
|
186
|
Kouba V, Proksova E, Wiesinger H, Vejmelkova D, Bartacek J. Good servant, bad master: sulfide influence on partial nitritation of sewage. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:3258-3268. [PMID: 29236005 DOI: 10.2166/wst.2017.490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
When applying partial nitritation (PN) to anaerobically pre-treated sewage, ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) will be exposed to dissolved sulfide and methane. Both sulfide and methane may inhibit nitrification. To gain knowledge necessary for sustaining PN under these conditions, we exposed an AOB enrichment and a mixed nitrifying culture to dissolved sulfide and methane. In the mixed nitrifying culture, sulfide selectively inhibited NOB activity (KI,AOB1 = 150 mg-S L-1, KI,NOB = 10 mg-S L-1) which shows that sulfide may help establish PN. The AOB enrichment showed similar KI,AOB2 (130 mg-S L-1), but nitritation activity lagged longer than the time necessary to remove sulfide from the liquid. This demonstrates that feeding of sulfide into established PN should be avoided. Methane inhibition of AOB enrichment was assessed in batch assays with 10 mg-CH4 L-1. As compared to control without methane, AOB enrichment activity was identical. Up to 51% of methane was converted to methanol, thus reducing the greenhouse gas emissions.
Collapse
Affiliation(s)
- V Kouba
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague 166 28, Czech Republic E-mail:
| | - E Proksova
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague 166 28, Czech Republic E-mail:
| | - H Wiesinger
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland
| | - D Vejmelkova
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague 166 28, Czech Republic E-mail:
| | - J Bartacek
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague 166 28, Czech Republic E-mail:
| |
Collapse
|
187
|
Zhang Y, Wang X, Zhen Y, Mi T, He H, Yu Z. Microbial Diversity and Community Structure of Sulfate-Reducing and Sulfur-Oxidizing Bacteria in Sediment Cores from the East China Sea. Front Microbiol 2017; 8:2133. [PMID: 29163420 PMCID: PMC5682103 DOI: 10.3389/fmicb.2017.02133] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/18/2017] [Indexed: 02/03/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) have been studied extensively in marine sediments because of their vital roles in both sulfur and carbon cycles, but the available information regarding the highly diverse SRB and SOB communities is not comprehensive. High-throughput sequencing of functional gene amplicons provides tremendous insight into the structure and functional potential of complex microbial communities. Here, we explored the community structure, diversity, and abundance of SRB and SOB simultaneously through 16S rRNA, dsrB and soxB gene high-throughput sequencing and quantitative PCR analyses of core samples from the East China Sea. Overall, high-throughput sequencing of the dsrB and soxB genes achieved almost complete coverage (>99%) and revealed the high diversity, richness, and operational taxonomic unit (OTU) numbers of the SRB and SOB communities, which suggest the existence of an active sulfur cycle in the study area. Further analysis demonstrated that rare species make vital contributions to the high richness, diversity, and OTU numbers obtained. Depth-based distributions of the dsrB, soxB, and 16S rRNA gene abundances indicated that the SRB abundance might be more sensitive to the sedimentary dynamic environment than those of total bacteria and SOB. In addition, the results of unweighted pair group method with arithmetic mean (UPGMA) clustering analysis and redundancy analysis revealed that environmental parameters, such as depth and dissolved inorganic nitrogen concentrations, and the sedimentary dynamic environment, which differed between the two sampling stations, can significantly influence the community structures of total bacteria, SRB, and SOB. This study provided further comprehensive information regarding the characteristics of SRB and SOB communities.
Collapse
Affiliation(s)
- Yu Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xungong Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Zhen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tiezhu Mi
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui He
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Zhigang Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Marine Chemical Theory and Technology, Ministry of Education, Qingdao, China
| |
Collapse
|
188
|
Tu TH, Wu LW, Lin YS, Imachi H, Lin LH, Wang PL. Microbial Community Composition and Functional Capacity in a Terrestrial Ferruginous, Sulfate-Depleted Mud Volcano. Front Microbiol 2017; 8:2137. [PMID: 29163423 PMCID: PMC5673622 DOI: 10.3389/fmicb.2017.02137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/19/2017] [Indexed: 01/31/2023] Open
Abstract
Terrestrial mud volcanoes (MVs) are an important natural source of methane emission. The role of microbial processes in methane cycling and organic transformation in such environments remains largely unexplored. In this study, we aim to uncover functional potentials and community assemblages across geochemical transitions in a ferruginous, sulfate-depleted MV of eastern Taiwan. Geochemical profiles combined with 16S rRNA gene abundances indicated that anaerobic oxidation of methane (AOM) mediated by ANME-2a group coincided with iron/manganese reduction by Desulfuromonadales at shallow depths deprived of sulfate. The activity of AOM was stimulated either by methane alone or by methane and a range of electron acceptors, such as sulfate, ferrihydrite, and artificial humic acid. Metagenomic analyses revealed that functional genes for AOM and metal reduction were more abundant at shallow intervals. In particular, genes encoding pili expression and electron transport through multi-heme cytochromes were prevalent, suggesting potential intercellular interactions for electron transport involved in AOM. For comparison, genes responsible for methanogenesis and degradation of chitin and plant-derived molecules were more abundant at depth. The gene distribution combined with the enhanced proportions of 16S rRNA genes related to methanogens and heterotrophs, and geochemical characteristics suggest that particulate organic matter was degraded into various organic entities that could further fuel in situ methanogenesis. Finally, genes responsible for aerobic methane oxidation were more abundant in the bubbling pool and near-surface sediments. These methane oxidizers account for the ultimate attenuation of methane discharge into the atmosphere. Overall, our results demonstrated that various community members were compartmentalized into stratified niches along geochemical gradients. These community members form a metabolic network that cascades the carbon transformation from the upstream degradation of recalcitrant organic carbon with fermentative production of labile organic entities and methane to downstream methane oxidation and metal reduction near the surface. Such a metabolic architecture enables effective methane removal under ferruginous, sulfate-depleted conditions in terrestrial MVs.
Collapse
Affiliation(s)
- Tzu-Hsuan Tu
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Li-Wei Wu
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
- The Experimental Forest, College of Bio-Resources and Agriculture, National Taiwan University, Nantou, Taiwan
| | - Yu-Shih Lin
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hiroyuki Imachi
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
- Research and Development Center for Marine Resources, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Li-Hung Lin
- Department of Geosciences, National Taiwan University, Taipei, Taiwan
| | - Pei-Ling Wang
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
189
|
Jadhav K, Jadhav I. Sulfur oxidation by Achromobacter xylosoxidans strain wsp05 reveals ecological widening over which thiotrophs are distributed. World J Microbiol Biotechnol 2017; 33:192. [PMID: 28975472 DOI: 10.1007/s11274-017-2359-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
Achromobacter xylosoxidans is a versatile bacterium known for its ability to degrade aromatic compounds. However, its ability to oxidize sulfur compounds for electron and energy source is not reported much. In the present work, the Gram-negative bacterium Achromobacter xylosoxidans strain wsp05 isolated from a waste stabilization ponds (WSPs) system was studied for its ability to oxidize reduced sulfur compounds. The strain was able to oxidize thiosulfate and sodium sulfite. To observe the effect of physicochemical parameters on the rate of sulfur oxidation, strain wsp05 was grown in thiosulfate (20 mM) containing minimal salt medium at varied pH, temperature and ammonium and phosphate ions concentration. Maximum thiosulfate oxidation was observed at 30 °C with initial pH of 7-7.2. The strain was characterized using universal 16S rRNA gene primers revealing high similarity (> 99%) with Achromobacter xylosoxidans NBRC 15126T belonging to β-proteobacteria. In the present study, we investigated the sulfur oxidation properties of the Achromobacter xylosoxidans strain wsp05, which revealed an ecological and phylogenetic widening over which the thiotrophs are distributed.
Collapse
Affiliation(s)
- Kapilesh Jadhav
- School of Studies in Botany, Vikram University Ujjain, Ujjain, 456010, India. .,School of Life Sciences, Jaipur National University, Jaipur, 302017, India.
| | - Indrani Jadhav
- School of Studies in Botany, Vikram University Ujjain, Ujjain, 456010, India.,School of Life Sciences, Jaipur National University, Jaipur, 302017, India
| |
Collapse
|
190
|
Gros O. First description of a new uncultured epsilon sulfur bacterium colonizing marine mangrove sediment in the Caribbean: Thiovulum sp. strain karukerense. FEMS Microbiol Lett 2017; 364:4067810. [DOI: 10.1093/femsle/fnx172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/04/2017] [Indexed: 01/06/2023] Open
|
191
|
Rago L, Cristiani P, Villa F, Zecchin S, Colombo A, Cavalca L, Schievano A. Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells. Bioelectrochemistry 2017; 116:39-51. [DOI: 10.1016/j.bioelechem.2017.04.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 01/06/2023]
|
192
|
Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate. mBio 2017; 8:mBio.00671-17. [PMID: 28720728 PMCID: PMC5516251 DOI: 10.1128/mbio.00671-17] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus. Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase. Sulfide oxidation and sulfate reduction, the two major branches of the sulfur cycle, are usually ascribed to distinct sets of microbes with distinct diagnostic genes. Here we show a more complex picture, as D. alkaliphilus, with the genomic setup of a sulfate reducer, grows by sulfide oxidation. The high expression of genes typically involved in the sulfate reduction pathway suggests that these genes, including the reductive-type dissimilatory bisulfite reductases, are also involved in as-yet-unresolved sulfide oxidation pathways. Finally, D. alkaliphilus is closely related to cable bacteria, which grow by electrogenic sulfide oxidation. Since there are no pure cultures of cable bacteria, D. alkaliphilus may represent an exciting model organism in which to study the physiology of this process.
Collapse
|
193
|
Dang H, Chen CTA. Ecological Energetic Perspectives on Responses of Nitrogen-Transforming Chemolithoautotrophic Microbiota to Changes in the Marine Environment. Front Microbiol 2017; 8:1246. [PMID: 28769878 PMCID: PMC5509916 DOI: 10.3389/fmicb.2017.01246] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/20/2017] [Indexed: 11/15/2022] Open
Abstract
Transformation and mobilization of bioessential elements in the biosphere, lithosphere, atmosphere, and hydrosphere constitute the Earth’s biogeochemical cycles, which are driven mainly by microorganisms through their energy and material metabolic processes. Without microbial energy harvesting from sources of light and inorganic chemical bonds for autotrophic fixation of inorganic carbon, there would not be sustainable ecosystems in the vast ocean. Although ecological energetics (eco-energetics) has been emphasized as a core aspect of ecosystem analyses and microorganisms largely control the flow of matter and energy in marine ecosystems, marine microbial communities are rarely studied from the eco-energetic perspective. The diverse bioenergetic pathways and eco-energetic strategies of the microorganisms are essentially the outcome of biosphere-geosphere interactions over evolutionary times. The biogeochemical cycles are intimately interconnected with energy fluxes across the biosphere and the capacity of the ocean to fix inorganic carbon is generally constrained by the availability of nutrients and energy. The understanding of how microbial eco-energetic processes influence the structure and function of marine ecosystems and how they interact with the changing environment is thus fundamental to a mechanistic and predictive understanding of the marine carbon and nitrogen cycles and the trends in global change. By using major groups of chemolithoautotrophic microorganisms that participate in the marine nitrogen cycle as examples, this article examines their eco-energetic strategies, contributions to carbon cycling, and putative responses to and impacts on the various global change processes associated with global warming, ocean acidification, eutrophication, deoxygenation, and pollution. We conclude that knowledge gaps remain despite decades of tremendous research efforts. The advent of new techniques may bring the dawn to scientific breakthroughs that necessitate the multidisciplinary combination of eco-energetic, biogeochemical and “omics” studies in this field.
Collapse
Affiliation(s)
- Hongyue Dang
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
| | - Chen-Tung A Chen
- Department of Oceanography, National Sun Yat-sen UniversityKaohsiung, Taiwan
| |
Collapse
|
194
|
Kumar SS, Malyan SK, Basu S, Bishnoi NR. Syntrophic association and performance of Clostridium, Desulfovibrio, Aeromonas and Tetrathiobacter as anodic biocatalysts for bioelectricity generation in dual chamber microbial fuel cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16019-16030. [PMID: 28537018 DOI: 10.1007/s11356-017-9112-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Anode chamber of a dual chamber microbial fuel cell (MFC) having raw landfill leachate was inoculated with consortium of sulphate-reducing bacteria (SRB) and sulphide-oxidizing bacteria (SOB) to study the phylogenetic architecture, function and mutualism of anolyte community developed in the reactor. Enriched microbial community was analysed with the help of Illumina MiSeq and indicated the dominance of Firmicutes (41.4%), Clostridia (36.4%) and Clostridium (12.9%) at phylum, class and genus level, respectively. Clostridium was associated with fermentation as well as transfer of electrons to the electrode mediated by ferredoxin. Desulfovibrio (6.7%), Aeromonas (6.6%) and Tetrathiobacter (9.8%) were SRB-SOB associated with direct electron transfer to the electrode. Community analysis disclosed a syntrophic association among novel Firmicutes and Proteobacteria species for bioelectricity generation and degradation of organic matter. Complete removal of chemical oxygen demand was observed from landfill leachate within 3 days of inoculation. Lower oxidative slope and polarization resistance revealed from Tafel analysis backed the feasibility of electron transfer from microbes to anodic electrode and thus development of efficient anode-respiring community. Following enrichment and stabilization of the anodic community, maximum power density achieved was 9.15 W/m3 and volumetric current density was 16.17 A/m3. Simultaneous feeding with SRB-SOB and landfill leachate led to the enrichment of a novel, mutually interdependent microbial community capable of synchronized bioremediation of effluents rich in carbon, sulphate, nitrate and aromatic compounds.
Collapse
Affiliation(s)
- Smita S Kumar
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Sandeep K Malyan
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Suddhasatwa Basu
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Narsi R Bishnoi
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
195
|
Momper L, Jungbluth SP, Lee MD, Amend JP. Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community. ISME JOURNAL 2017. [PMID: 28644444 DOI: 10.1038/ismej.2017.94] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The terrestrial deep subsurface is a huge repository of microbial biomass, but in relation to its size and physical heterogeneity, few sites have been investigated in detail. Here, we applied a culture-independent metagenomic approach to characterize the microbial community composition in deep (1500 meters below surface) terrestrial fluids. Samples were collected from a former gold mine in Lead, South Dakota, USA, now Sanford Underground Research Facility (SURF). We reconstructed 74 genomes from metagenomes (MAGs), enabling the identification of common metabolic pathways. Sulfate and nitrate/nitrite reduction were the most common putative energy metabolisms. Complete pathways for autotrophic carbon fixation were found in more than half of the MAGs, with the reductive acetyl-CoA pathway by far the most common. Nearly 40% (29 of 74) of the recovered MAGs belong to bacterial phyla without any cultivated members-microbial dark matter. Three of our MAGs constitute two novel phyla previously only identified in 16 S rRNA gene surveys. The uniqueness of this data set-its physical depth in the terrestrial subsurface, the relative abundance and completeness of microbial dark matter genomes and the overall diversity of this physically deep, dark, community-make it an invaluable addition to our knowledge of deep subsurface microbial ecology.
Collapse
Affiliation(s)
- Lily Momper
- Department of Earth, Atmospheric and Planetary Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sean P Jungbluth
- Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, USA.,Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Michael D Lee
- Department of Biological Sciences, Marine Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Jan P Amend
- Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, USA.,Department of Biological Sciences, Marine Environmental Biology Section, University of Southern California, Los Angeles, CA, USA.,Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
196
|
Li X, Kappler U, Jiang G, Bond PL. The Ecology of Acidophilic Microorganisms in the Corroding Concrete Sewer Environment. Front Microbiol 2017; 8:683. [PMID: 28473816 PMCID: PMC5397505 DOI: 10.3389/fmicb.2017.00683] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/04/2017] [Indexed: 12/19/2022] Open
Abstract
Concrete corrosion is one of the most significant problems affecting valuable sewer infrastructure on a global scale. This problem occurs in the aerobic zone of the sewer, where a layer of surface corrosion develops on the exposed concrete and the surface pH is typically lowered from around 11–10 (pristine concrete) to pH 2–4. Acidophilic microorganisms become established as biofilms within the concrete corrosion layer and enhance the loss of concrete mass. Until recently, the acidophilic community was considered to comprise relatively few species of microorganisms, however, the biodiversity of the corrosion community is now recognized as being extensive and varying from different sewer environmental conditions. The diversity of acidophiles in the corrosion communities includes chemolithoautotrophs, chemolithoheterotrophs, and chemoorganoheterotrophs. The activity of these microorganisms is strongly affected by H2S levels in the sewer gas phase, although CO2, organic matter, and iron in the corrosion layer influence this acidic ecosystem. This paper briefly presents the conditions within the sewer that lead to the development of concrete corrosion in that environment. The review focuses on the acidophilic microorganisms detected in sewer corrosion environments, and then summarizes their proposed functions and physiology, especially in relation to the corrosion process. To our knowledge, this is the first review of acidophilic corrosion microbial communities, in which, the ecology and the environmental conditions (when available) are considered. Ecological studies of sewer corrosion are limited, however, where possible, we summarize the important metabolic functions of the different acidophilic species detected in sewer concrete corrosion layers. It is evident that microbial functions in the acidic sewer corrosion environment can be linked to those occurring in the analogous acidic environments of acid mine drainage and bioleaching.
Collapse
Affiliation(s)
- Xuan Li
- Advanced Water Management Centre, The University of Queensland, BrisbaneQLD, Australia
| | - Ulrike Kappler
- Centre for Metals in Biology, School of Chemistry and Molecular Biosciences, The University of Queensland, BrisbaneQLD, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, BrisbaneQLD, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
197
|
Suo Y, Li E, Li T, Jia Y, Qin JG, Gu Z, Chen L. Response of gut health and microbiota to sulfide exposure in Pacific white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2017; 63:87-96. [PMID: 28192256 DOI: 10.1016/j.fsi.2017.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/10/2016] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
Sulfide is a natural and widely distributed toxicant. It can be commonly found on the interface between water and sediment in the aquatic environment. The Pacific white shrimp Litopenaeus vannamei starts life in the benthic zone soon after the mysis stage, an early stage of post larvae. Therefore, L. vannamei is inevitably affected by exposure to sulfide released from pond sediment. This study explored the toxicant effect of different concentrations of sulfide on the intestinal health and microbiota of Pacific white shrimp by monitoring the change of expression of inflammatory, immune related cytokines, and the structure of the intestinal microbiota. The gut histology, expressions of inflammatory and immune related cytokines (tumor necrosis factor-alpha, C-type lectin 3, myostatin and heat shock transcription factor 1), and the microbiota were determined in L. vannamei after exposure to 0 (control), 425.5 (1/10 LC 50-96 h), and 851 μg/L (1/5 LC 50-96 h) of sulfide for 21 days. With the increase of sulfide concentration, intestinal injury was aggravated and the inflammatory and immune related cytokines generated a range of reactions. The expression of myostatin (MSTN) was significantly down-regulated by the concentration of sulfide exposure. No difference in the expression of heat shock transcription factor 1 (HSF1) was found between the control and shrimp exposed to 425.5 μg/L, but significantly higher HSF1 expression was found in shrimp exposed to 851 μg/L of sulfide. Significantly higher values of tumor necrosis factor-alpha (TNF-α) and C-type lectin 3 (CTL3) were found in the shrimp exposed to 425.5 μg/L of sulfide compared to the control, but a lower value was found in the shrimp exposed to 851 μg/L (P < 0.05). Sulfide also changed the intestinal microbial communities. The abundance of pathogenic bacteria, such as Cyanobacteria, Vibrio and Photobacterium, increased significantly with exposure to the increasing concentration of sulfide. The abundance of some anti-stress bacteria, such as Chlorobi and Fusobacterium, increased. Nitrospirae which can alleviate nitrite toxicity decreased. Microbacterium, Parachlamydia, and Shewanella were all commonly found and down-regulated in both sulfide groups, which is associated with an adaptation to sulfide stimulation. This study indicates that chronic exposure to sub-lethal levels of sulfide could lead to damage of the gut structure, stimulate the response of the inflammatory and immune systems, and shape the structure of the gut microbiota in L. vannamei.
Collapse
Affiliation(s)
- Yantong Suo
- School of Life Sciences, East China Normal University, Shanghai, 200241, China; Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Erchao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Tongyu Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yongyi Jia
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
| | - Zhimin Gu
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China.
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
198
|
Mishra S, Raghuvanshi S, Gupta S, Raj K. Application of novel thermo-tolerant haloalkalophilic bacterium Halomonas stevensii for bio mitigation of gaseous phase CO 2 : Energy assessment and product evaluation studies. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
199
|
Berben T, Overmars L, Sorokin DY, Muyzer G. Comparative Genome Analysis of Three Thiocyanate Oxidizing Thioalkalivibrio Species Isolated from Soda Lakes. Front Microbiol 2017; 8:254. [PMID: 28293216 PMCID: PMC5328954 DOI: 10.3389/fmicb.2017.00254] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
Thiocyanate is a C1 compound containing carbon, nitrogen, and sulfur. It is a (by)product in a number of natural and industrial processes. Because thiocyanate is toxic to many organisms, including humans, its removal from industrial waste streams is an important problem. Although a number of bacteria can use thiocyanate as a nitrogen source, only a few can use it as an electron donor. There are two distinct pathways to use thiocyanate: (i) the “carbonyl sulfide pathway,” which has been extensively studied, and (ii) the “cyanate pathway,” whose key enzyme, thiocyanate dehydrogenase, was recently purified and studied. Three species of Thioalkalivibrio, a group of haloalkaliphilic sulfur-oxidizing bacteria isolated from soda lakes, have been described as thiocyanate oxidizers: (i) Thioalkalivibrio paradoxus (“cyanate pathway”), (ii) Thioalkalivibrio thiocyanoxidans (“cyanate pathway”) and (iii) Thioalkalivibrio thiocyanodenitrificans (“carbonyl sulfide pathway”). In this study we provide a comparative genome analysis of these described thiocyanate oxidizers, with genomes ranging in size from 2.5 to 3.8 million base pairs. While focusing on thiocyanate degradation, we also analyzed the differences in sulfur, carbon, and nitrogen metabolism. We found that the thiocyanate dehydrogenase gene is present in 10 different Thioalkalivibrio strains, in two distinct genomic contexts/genotypes. The first genotype is defined by having genes for flavocytochrome c sulfide dehydrogenase upstream from the thiocyanate dehydrogenase operon (present in two strains including the type strain of Tv. paradoxus), whereas in the second genotype these genes are located downstream, together with two additional genes of unknown function (present in eight strains, including the type strains of Tv. thiocyanoxidans). Additionally, we found differences in the presence/absence of genes for various sulfur oxidation pathways, such as sulfide:quinone oxidoreductase, dissimilatory sulfite reductase, and sulfite dehydrogenase. One strain (Tv. thiocyanodenitrificans) lacks genes encoding a carbon concentrating mechanism and none of the investigated genomes were shown to contain known bicarbonate transporters. This study gives insight into the genomic variation of thiocyanate oxidizing bacteria and may lead to improvements in the application of these organisms in the bioremediation of industrial waste streams.
Collapse
Affiliation(s)
- Tom Berben
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands
| | - Lex Overmars
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of SciencesMoscow, Russia; Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
200
|
Mechanism of H 2S Oxidation by the Dissimilatory Perchlorate-Reducing Microorganism Azospira suillum PS. mBio 2017; 8:mBio.02023-16. [PMID: 28223460 PMCID: PMC5358917 DOI: 10.1128/mbio.02023-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The genetic and biochemical basis of perchlorate-dependent H2S oxidation (PSOX) was investigated in the dissimilatory perchlorate-reducing microorganism (DPRM) Azospira suillum PS (PS). Previously, it was shown that all known DPRMs innately oxidize H2S, producing elemental sulfur (So). Although the process involving PSOX is thermodynamically favorable (ΔG°' = -206 kJ ⋅ mol-1 H2S), the underlying biochemical and genetic mechanisms are currently unknown. Interestingly, H2S is preferentially utilized over physiological electron donors such as lactate or acetate although no growth benefit is obtained from the metabolism. Here, we determined that PSOX is due to a combination of enzymatic and abiotic interactions involving reactive intermediates of perchlorate respiration. Using various approaches, including barcode analysis by sequencing (Bar-seq), transcriptome sequencing (RNA-seq), and proteomics, along with targeted mutagenesis and biochemical characterization, we identified all facets of PSOX in PS. In support of our proposed model, deletion of identified upregulated PS genes traditionally known to be involved in sulfur redox cycling (e.g., Sox, sulfide:quinone reductase [SQR]) showed no defect in PSOX activity. Proteomic analysis revealed differential abundances of a variety of stress response metal efflux pumps and divalent heavy-metal transporter proteins, suggesting a general toxicity response. Furthermore, in vitro biochemical studies demonstrated direct PSOX mediated by purified perchlorate reductase (PcrAB) in the absence of other electron transfer proteins. The results of these studies support a model in which H2S oxidation is mediated by electron transport chain short-circuiting in the periplasmic space where the PcrAB directly oxidizes H2S to So The biogenically formed reactive intermediates (ClO2- and O2) subsequently react with additional H2S, producing polysulfide and So as end products.IMPORTANCE Inorganic sulfur compounds are widespread in nature, and microorganisms are central to their transformation, thereby playing a key role in the global sulfur cycle. Sulfur oxidation is mediated by a broad phylogenetic diversity of microorganisms, including anoxygenic phototrophs and either aerobic or anaerobic chemotrophs coupled to oxygen or nitrate respiration, respectively. Recently, perchlorate-respiring microorganisms were demonstrated to be innately capable of sulfur oxidation regardless of their phylogenetic affiliation. As recognition of the prevalence of these organisms intensifies, their role in global geochemical cycles is being queried. This is further highlighted by the recently recognized environmental pervasiveness of perchlorate not only across Earth but also throughout our solar system. The inferred importance of this metabolism not only is that it is a novel and previously unrecognized component of the global sulfur redox cycle but also is because of the recently demonstrated applicability of perchlorate respiration in the control of biogenic sulfide production in engineered environments such as oil reservoirs and wastewater treatment facilities, where excess H2S represents a significant environmental, process, and health risk, with associated costs approximating $90 billion annually.
Collapse
|