151
|
Díaz M, Bach T, González Anta G, Agaras B, Wibberg D, Noguera F, Canciani W, Valverde C. Agronomic efficiency and genome mining analysis of the wheat-biostimulant rhizospheric bacterium Pseudomonas pergaminensis sp. nov. strain 1008 T. FRONTIERS IN PLANT SCIENCE 2022; 13:894985. [PMID: 35968096 PMCID: PMC9369656 DOI: 10.3389/fpls.2022.894985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas sp. strain 1008 was isolated from the rhizosphere of field grown wheat plants at the tillering stage in an agricultural plot near Pergamino city, Argentina. Based on its in vitro phosphate solubilizing capacity and the production of IAA, strain 1008 was formulated as an inoculant for bacterization of wheat seeds and subjected to multiple field assays within the period 2010-2017. Pseudomonas sp. strain 1008 showed a robust positive impact on the grain yield (+8% on average) across a number of campaigns, soil properties, seed genotypes, and with no significant influence of the simultaneous seed treatment with a fungicide, strongly supporting the use of this biostimulant bacterium as an agricultural input for promoting the yield of wheat. Full genome sequencing revealed that strain 1008 has the capacity to access a number of sources of inorganic and organic phosphorus, to compete for iron scavenging, to produce auxin, 2,3-butanediol and acetoin, and to metabolize GABA. Additionally, the genome of strain 1008 harbors several loci related to rhizosphere competitiveness, but it is devoid of biosynthetic gene clusters for production of typical secondary metabolites of biocontrol representatives of the Pseudomonas genus. Finally, the phylogenomic, phenotypic, and chemotaxonomic comparative analysis of strain 1008 with related taxa strongly suggests that this wheat rhizospheric biostimulant isolate is a representative of a novel species within the genus Pseudomonas, for which the name Pseudomonas pergaminensis sp. nov. (type strain 1008T = DSM 113453T = ATCC TSD-287T) is proposed.
Collapse
Affiliation(s)
- Marisa Díaz
- Rizobacter Argentina S.A., Buenos Aires, Argentina
| | - Teresa Bach
- Rizobacter Argentina S.A., Buenos Aires, Argentina
| | - Gustavo González Anta
- Escuela de Ciencias Agrarias, Exactas y Naturales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
- Departamento de Ciencias Naturales y Exactas, Universidad Nacional de San Antonio de Areco (UNSAdA), Buenos Aires, Argentina
- Indrasa Biotecnología S.A., Córdoba, Argentina
| | - Betina Agaras
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | | | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| |
Collapse
|
152
|
Comparative Genomic Analysis of Antarctic Pseudomonas Isolates with 2,4,6-Trinitrotoluene Transformation Capabilities Reveals Their Unique Features for Xenobiotics Degradation. Genes (Basel) 2022; 13:genes13081354. [PMID: 36011267 PMCID: PMC9407559 DOI: 10.3390/genes13081354] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
The nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Since physicochemical methods for remediation are poorly effective, the use of microorganisms has gained interest as an alternative to restore TNT-contaminated sites. We previously demonstrated the high TNT-transforming capability of three novel Pseudomonas spp. isolated from Deception Island, Antarctica, which exceeded that of the well-characterized TNT-degrading bacterium Pseudomonas putida KT2440. In this study, a comparative genomic analysis was performed to search for the metabolic functions encoded in the genomes of these isolates that might explain their TNT-transforming phenotype, and also to look for differences with 21 other selected pseudomonads, including xenobiotics-degrading species. Comparative analysis of xenobiotic degradation pathways revealed that our isolates have the highest abundance of key enzymes related to the degradation of fluorobenzoate, TNT, and bisphenol A. Further comparisons considering only TNT-transforming pseudomonads revealed the presence of unique genes in these isolates that would likely participate directly in TNT-transformation, and others involved in the β-ketoadipate pathway for aromatic compound degradation. Lastly, the phylogenomic analysis suggested that these Antarctic isolates likely represent novel species of the genus Pseudomonas, which emphasizes their relevance as potential agents for the bioremediation of TNT and other xenobiotics.
Collapse
|
153
|
RclS Sensor Kinase Modulates Virulence of Pseudomonas capeferrum. Int J Mol Sci 2022; 23:ijms23158232. [PMID: 35897798 PMCID: PMC9331949 DOI: 10.3390/ijms23158232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Signal transduction systems are the key players of bacterial adaptation and survival. The orthodox two-component signal transduction systems perceive diverse environmental stimuli and their regulatory response leads to cellular changes. Although rarely described, the unorthodox three-component systems are also implemented in the regulation of major bacterial behavior such as the virulence of clinically relevant pathogen P. aeruginosa. Previously, we described a novel three-component system in P. capeferrum WCS358 (RclSAR) where the sensor kinase RclS stimulates the intI1 transcription in stationary growth phase. In this study, using rclS knock-out mutant, we identified RclSAR regulon in P. capeferrum WCS358. The RNA sequencing revealed that activity of RclSAR signal transduction system is growth phase dependent with more pronounced regulatory potential in early stages of growth. Transcriptional analysis emphasized the role of RclSAR in global regulation and indicated the involvement of this system in regulation of diverse cellular activities such as RNA binding and metabolic and biocontrol processes. Importantly, phenotypic comparison of WCS358 wild type and ΔrclS mutant showed that RclS sensor kinase contributes to modulation of antibiotic resistance, production of AHLs and siderophore as well as host cell adherence and cytotoxicity. Finally, we proposed the improved model of interplay between RclSAR, RpoS and LasIR regulatory systems in P. capeferrum WCS358.
Collapse
|
154
|
Silverio MP, Kraychete GB, Rosado AS, Bonelli RR. Pseudomonas fluorescens Complex and Its Intrinsic, Adaptive, and Acquired Antimicrobial Resistance Mechanisms in Pristine and Human-Impacted Sites. Antibiotics (Basel) 2022; 11:antibiotics11080985. [PMID: 35892375 PMCID: PMC9331890 DOI: 10.3390/antibiotics11080985] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas spp. are ubiquitous microorganisms that exhibit intrinsic and acquired resistance to many antimicrobial agents. Pseudomonas aeruginosa is the most studied species of this genus due to its clinical importance. In contrast, the Pseudomonas fluorescens complex consists of environmental and, in some cases, pathogenic opportunistic microorganisms. The records of antimicrobial-resistant P. fluorescens are quite scattered, which hinders the recognition of patterns. This review compiles published data on antimicrobial resistance in species belonging to the P. fluorescens complex, which were identified through phylogenomic analyses. Additionally, we explored the occurrence of clinically relevant antimicrobial resistance genes in the genomes of the respective species available in the NCBI database. Isolates were organized into two categories: strains isolated from pristine sites and strains isolated from human-impacted or metal-polluted sites. Our review revealed that many reported resistant phenotypes in this complex might be related to intrinsic features, whereas some of them might be ascribed to adaptive mechanisms such as colistin resistance. Moreover, a few studies reported antimicrobial resistance genes (ARGs), mainly β-lactamases. In-silico analysis corroborated the low occurrence of transferable resistance mechanisms in this Pseudomonas complex. Both phenotypic and genotypic assays are necessary to gain insights into the evolutionary aspects of antimicrobial resistance in the P. fluorescens complex and the possible role of these ubiquitous species as reservoirs of clinically important and transmissible ARGs.
Collapse
Affiliation(s)
- Myllena Pereira Silverio
- Laboratório de Ecologia Molecular Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Gabriela Bergiante Kraychete
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Alexandre Soares Rosado
- Laboratório de Ecologia Molecular Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Raquel Regina Bonelli
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
155
|
Tibbs-Cortes LE, Tibbs-Cortes BW, Schmitz-Esser S. Tardigrade Community Microbiomes in North American Orchards Include Putative Endosymbionts and Plant Pathogens. Front Microbiol 2022; 13:866930. [PMID: 35923389 PMCID: PMC9340075 DOI: 10.3389/fmicb.2022.866930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
The microbiome of tardigrades, a phylum of microscopic animals best known for their ability to survive extreme conditions, is poorly studied worldwide and completely unknown in North America. An improved understanding of tardigrade-associated bacteria is particularly important because tardigrades have been shown to act as vectors of the plant pathogen Xanthomonas campestris in the laboratory. However, the potential role of tardigrades as reservoirs and vectors of phytopathogens has not been investigated further. This study analyzed the microbiota of tardigrades from six apple orchards in central Iowa, United States, and is the first analysis of the microbiota of North American tardigrades. It is also the first ever study of the tardigrade microbiome in an agricultural setting. We utilized 16S rRNA gene amplicon sequencing to characterize the tardigrade community microbiome across four contrasts: location, substrate type (moss or lichen), collection year, and tardigrades vs. their substrate. Alpha diversity of the tardigrade community microbiome differed significantly by location and year of collection but not by substrate type. Our work also corroborated earlier findings, demonstrating that tardigrades harbor a distinct microbiota from their environment. We also identified tardigrade-associated taxa that belong to genera known to contain phytopathogens (Pseudomonas, Ralstonia, and the Pantoea/Erwinia complex). Finally, we observed members of the genera Rickettsia and Wolbachia in the tardigrade microbiome; because these are obligate intracellular genera, we consider these taxa to be putative endosymbionts of tardigrades. These results suggest the presence of putative endosymbionts and phytopathogens in the microbiota of wild tardigrades in North America.
Collapse
Affiliation(s)
- Laura E. Tibbs-Cortes
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, United States
- *Correspondence: Laura E. Tibbs-Cortes,
| | - Bienvenido W. Tibbs-Cortes
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
156
|
Yamada AY, de Souza AR, Lima MDJDC, Reis AD, Campos KR, Bertani AMDJ, de Araujo LJT, Sacchi CT, Tiba-Casas MR, Camargo CH. Co-production of Classes A and B Carbapenemases BKC-1 and VIM-2 in a Clinical Pseudomonas Putida Group Isolate from Brazil. Curr Microbiol 2022; 79:250. [PMID: 35834136 DOI: 10.1007/s00284-022-02945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
Abstract
Emergence of resistance to classical antimicrobial agents is a public health issue, especially in countries with high antimicrobial consumption rates. Carbapenems have been employed as first-choice option for empirical treatment complicated infections. However, in the last decades, frequency of carbapenemase-producing Gram-negative bacteria has rising, demanding the use of alternative antimicrobial agents. By sequencing the entire genomes with short and long reads technologies, we report the isolation and genomic characterization of a carbapenem-resistant Pseudomonas clinical isolate. The identification based on average nucleotide identity indicates a putative new species into the Pseudomonas putida Group, which carries both the blaBKC-1 and blaVIM-2 carbapenemase genes. The blaBKC-1 was found to be on a transferable IncQ plasmid backbone, whereas blaVIM-2 was found in a new integron, In2126 (intl1∆-blaVIM-2-aacA7-blaVIM-2∆-aacA27-3'CS), described in this study. Our findings indicate that co-occurrence of classes A and B carbapenemase enzymes underscores the evolving emergence of more complex antimicrobial resistance in opportunistic pathogens.
Collapse
Affiliation(s)
- Amanda Yaeko Yamada
- Bacteriology Division, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 9º floor, Sao Paulo, 01246-902, Brazil.,Faculdade de Medicina, Universidade de São Paulo, Doutor Arnaldo Avenue, 455, São Paulo, 01246-000, Brazil
| | - Andreia Rodrigues de Souza
- Bacteriology Division, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 9º floor, Sao Paulo, 01246-902, Brazil
| | | | - Alex Domingos Reis
- Strategic Laboratory, Rapid Response Center, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 10º floor, Sao Paulo, 01246-902, Brazil
| | - Karoline Rodrigues Campos
- Strategic Laboratory, Rapid Response Center, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 10º floor, Sao Paulo, 01246-902, Brazil
| | | | - Leonardo Jose Tadeu de Araujo
- Strategic Laboratory, Rapid Response Center, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 10º floor, Sao Paulo, 01246-902, Brazil
| | - Claudio Tavares Sacchi
- Strategic Laboratory, Rapid Response Center, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 10º floor, Sao Paulo, 01246-902, Brazil
| | - Monique Ribeiro Tiba-Casas
- Bacteriology Division, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 9º floor, Sao Paulo, 01246-902, Brazil
| | - Carlos Henrique Camargo
- Bacteriology Division, Instituto Adolfo Lutz, Doutor Arnaldo Avenue, 351, 9º floor, Sao Paulo, 01246-902, Brazil. .,Faculdade de Medicina, Universidade de São Paulo, Doutor Arnaldo Avenue, 455, São Paulo, 01246-000, Brazil.
| |
Collapse
|
157
|
Nicklasson M, Martín-Rodríguez AJ, Thorell K, Higdon SM, Neves L, Mussagy A, Rydberg HA, Hernroth B, Svensson-Stadler L, Sjöling Å. Pseudomonas boanensis sp. nov., a bacterium isolated from river water used for household purposes in Boane District, Mozambique. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
A Gram-negative rod with a single polar flagellum was isolated from a freshwater reservoir used for household purposes in Boane District, near Maputo, Mozambique, and designated as strain DB1T. Growth was observed at 30–42 °C (optimum, 30–37 °C) and with 0.5–1.5 % NaCl. Whole-genome-, rpoD- and 16S rRNA-based phylogenies revealed this isolate to be distant from other
Pseudomonas
species with
Pseudomonas resinovorans
,
Pseudomonas furukawaii
and
Pseudomonas lalkuanensis
being the closest relatives. Phenotypic analyses of strain DB1T showed marked differences with respect to type strains
P. resinovorans
CCUG 2473T,
P. lalkuanensis
CCUG 73691T,
P. furukawaii
CCUG 75672T and Pseudomonas otiditis CCUG 55592T. Taken together, our results indicate that strain DB1T is a representative of a novel species within the genus
Pseudomonas
for which the name Pseudomonas boanensis is proposed. The type strain is DB1T (=CCUG 62977T=CECT 30359T).
Collapse
Affiliation(s)
- Matilda Nicklasson
- Institute of Biomedicine, Department of Microbiology and Immunology, University of Gothenburg, Göteborg, Sweden
| | - Alberto J. Martín-Rodríguez
- Department of Microbiology, Tumour and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Kaisa Thorell
- Department of Microbiology, Tumour and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
- Institute of Biomedicine, Department of Microbiology and Immunology, University of Gothenburg, Göteborg, Sweden
| | - Shawn M. Higdon
- Department of Microbiology, Tumour and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Luis Neves
- Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
- Vectors and Vector Borne Diseases Research Program, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Aidate Mussagy
- Department of Biological Science, Faculty of Science, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Hanna A. Rydberg
- Department of Microbiology, Tumour and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| | - Bodil Hernroth
- The Royal Swedish Academy of Sciences, Kristineberg, Fiskebäckskil, Sweden; and Department of Biomedicine, Kristianstad University, Kristianstad, Sweden
| | - Liselott Svensson-Stadler
- Culture Collection University of Gothenburg (CCUG), Department of Infectious Diseases, Sahlgrenska Academy of the University of Gothenburg, Göteborg, Sweden
| | - Åsa Sjöling
- Department of Microbiology, Tumour and Cell Biology, Centre for Translational Microbiome Research (CTMR), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
158
|
Job V, Gomez-Valero L, Renier A, Rusniok C, Bouillot S, Chenal-Francisque V, Gueguen E, Adrait A, Robert-Genthon M, Jeannot K, Panchev P, Elsen S, Fauvarque MO, Couté Y, Buchrieser C, Attrée I. Genomic erosion and horizontal gene transfer shape functional differences of the ExlA toxin in Pseudomonas spp. iScience 2022; 25:104596. [PMID: 35789842 PMCID: PMC9250014 DOI: 10.1016/j.isci.2022.104596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/15/2022] [Accepted: 06/08/2022] [Indexed: 12/31/2022] Open
Abstract
Two-partner secretion (TPS) is widespread in the bacterial world. The pore-forming TPS toxin ExlA of Pseudomonas aeruginosa is conserved in pathogenic and environmental Pseudomonas. While P. chlororaphis and P. entomophila displayed ExlA-dependent killing, P. putida did not cause damage to eukaryotic cells. ExlA proteins interacted with epithelial cell membranes; however, only ExlAPch induced the cleavage of the adhesive molecule E-cadherin. ExlA proteins participated in insecticidal activity toward the larvae of Galleria mellonella and the fly Drosophila melanogaster. Evolutionary analyses demonstrated that the differences in the C-terminal domains are partly due to horizontal movements of the operon within the genus Pseudomonas. Reconstruction of the evolutionary history revealed the complex horizontal acquisitions. Together, our results provide evidence that conserved TPS toxins in environmental Pseudomonas play a role in bacteria-insect interactions and discrete differences in CTDs may determine their specificity and mode of action toward eukaryotic cells. ExlA is a two-partner secreted toxin conserved across Pseudomonas spp. Environmental Pseudomonas strains encode ExlA with different cytotoxic activities ExlA of environmental Pseudomonas strains play a role in bacteria-insect interactions ExlBA operon shows a complex evolutionary history of horizontal gene transfer
Collapse
Affiliation(s)
- Viviana Job
- Université Grenoble Alpes, Institute of Structural Biology, Bacterial Pathogenesis and Cellular Responses Team, UMR5075 CNRS, IRIG, CEA, Grenoble, France
| | - Laura Gomez-Valero
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 75015 Paris, France
| | - Adèle Renier
- Université Grenoble Alpes, Institute of Structural Biology, Bacterial Pathogenesis and Cellular Responses Team, UMR5075 CNRS, IRIG, CEA, Grenoble, France
| | - Christophe Rusniok
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 75015 Paris, France
| | - Stephanie Bouillot
- Université Grenoble Alpes, Institute of Structural Biology, Bacterial Pathogenesis and Cellular Responses Team, UMR5075 CNRS, IRIG, CEA, Grenoble, France
| | - Viviane Chenal-Francisque
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 75015 Paris, France
| | - Erwan Gueguen
- University of Lyon, Université Lyon 1, INSA de Lyon, CNRS UMR 5240 Microbiologie Adaptation et Pathogénie, Lyon, France
| | - Annie Adrait
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, Grenoble, France
| | - Mylène Robert-Genthon
- Université Grenoble Alpes, Institute of Structural Biology, Bacterial Pathogenesis and Cellular Responses Team, UMR5075 CNRS, IRIG, CEA, Grenoble, France
| | - Katy Jeannot
- Centre National de Référence de la Résistance aux Antibiotiques, Laboratoire de Bactériologie, Centre Hospitalier Universitaire Jean Minjoz, UMR6249 CNRS, Université de Bourgogne-Franche Comté, Besançon, France
| | - Peter Panchev
- Université Grenoble Alpes, Institute of Structural Biology, Bacterial Pathogenesis and Cellular Responses Team, UMR5075 CNRS, IRIG, CEA, Grenoble, France
| | - Sylvie Elsen
- Université Grenoble Alpes, Institute of Structural Biology, Bacterial Pathogenesis and Cellular Responses Team, UMR5075 CNRS, IRIG, CEA, Grenoble, France
| | | | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, Grenoble, France
- CNRS, CEA, FR2048, Grenoble, France
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Intracellulaires, 75015 Paris, France
- Corresponding author
| | - Ina Attrée
- Université Grenoble Alpes, Institute of Structural Biology, Bacterial Pathogenesis and Cellular Responses Team, UMR5075 CNRS, IRIG, CEA, Grenoble, France
- Corresponding author
| |
Collapse
|
159
|
Inhibitory Effects of Compounds from Plumula nelumbinis on Biofilm and Quorum Sensing Against P. aeruginosa. Curr Microbiol 2022; 79:236. [PMID: 35767197 DOI: 10.1007/s00284-022-02914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Quorum sensing (QS), which controls the survival and virulence of Pseudomonas aeruginosa, including the formation of biofilm, is considered to be a new target to overcome pathogens. The aim of this study was to identify new QS inhibitors against P. aeruginosa and provide potential treatments for clinical infections. In this study, 25 compounds were isolated from Plumula nelumbini. Among these compounds, C25 showed the most significant biofilm inhibition activity, reaching 44.63% at 100 μM without inhibiting bacterial growth. Furthermore, C25 showed significant inhibition activity of rhamnolipid, pyocyanin, and elastase. Further mechanistic studies have confirmed that C25 could downregulate key genes in the QS system, including lasI, lasR, lasA, lasB, and pqsR, and Molecular docking studies have shown that C25 can bind to the active sites of the LasR and PqsR receptors. The present study suggests that C25 is a promising QS inhibitor for treating P. aeruginosa infections.
Collapse
|
160
|
Leonhardt SD, Peters B, Keller A. Do amino and fatty acid profiles of pollen provisions correlate with bacterial microbiomes in the mason bee Osmia bicornis? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210171. [PMID: 35491605 DOI: 10.1098/rstb.2021.0171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bee performance and well-being strongly depend on access to sufficient and appropriate resources, in particular pollen and nectar of flowers, which constitute the major basis of bee nutrition. Pollen-derived microbes appear to play an important but still little explored role in the plant pollen-bee interaction dynamics, e.g. through affecting quantities and ratios of important nutrients. To better understand how microbes in pollen collected by bees may affect larval health through nutrition, we investigated correlations between the floral, bacterial and nutritional composition of larval provisions and the gut bacterial communities of the solitary megachilid bee Osmia bicornis. Our study reveals correlations between the nutritional quality of pollen provisions and the complete bacterial community as well as individual members of both pollen provisions and bee guts. In particular pollen fatty acid profiles appear to interact with specific members of the pollen bacterial community, indicating that pollen-derived bacteria may play an important role in fatty acid provisioning. As increasing evidence suggests a strong effect of dietary fatty acids on bee performance, future work should address how the observed interactions between specific fatty acids and the bacterial community in larval provisions relate to health in O. bicornis. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Sara Diana Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Birte Peters
- Department for Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.,Center for Computational and Theoretical Biology, University of Würzburg, Emil Fischer Strasse, 97074 Würzburg, Germany
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
161
|
Sinha DK, Gupta A, Padmakumari AP, Bentur JS, Nair S. Infestation of Rice by Gall Midge Influences Density and Diversity of Pseudomonas and Wolbachia in the Host Plant Microbiome. Curr Genomics 2022; 23:126-136. [PMID: 36778977 PMCID: PMC9878839 DOI: 10.2174/1389202923666220401101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background: The virulence of phytophagous insects is predominantly determined by their ability to evade or suppress host defense for their survival. The rice gall midge (GM, Orseolia oryzae), a monophagous pest of rice, elicits a host defense similar to the one elicited upon pathogen attack. This could be due to the GM feeding behaviour, wherein the GM endosymbionts are transferred to the host plant via oral secretions, and as a result, the host mounts an appropriate defense response(s) (i.e., up-regulation of the salicylic acid pathway) against these endosymbionts. Methods: The current study aimed to analyze the microbiome present at the feeding site of GM maggots to determine the exchange of bacterial species between GM and its host and to elucidate their role in rice-GM interaction using a next-generation sequencing approach. Results: Our results revealed differential representation of the phylum Proteobacteria in the GM-infested and -uninfested rice tissues. Furthermore, analysis of the species diversity of Pseudomonas and Wolbachia supergroups at the feeding sites indicated the exchange of bacterial species between GM and its host upon infestation. Conclusion: As rice-GM microbial associations remain relatively unstudied, these findings not only add to our current understanding of microbe-assisted insect-plant interactions but also provide valuable insights into how these bacteria drive insect-plant coevolution. Moreover, to the best of our knowledge, this is the first report analyzing the microbiome of a host plant (rice) at the feeding site of its insect pest (GM).
Collapse
Affiliation(s)
| | - Ayushi Gupta
- These authors contributed equally in this manuscript.
| | | | | | - Suresh Nair
- Address correspondence to this author at the Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India; Tel: 91-11-26741242; Fax: 91-11-26742316; E-mail:
| |
Collapse
|
162
|
Control of biofilm-producing Pseudomonas aeruginosa isolated from dairy farm using Virokill silver nano-based disinfectant as an alternative approach. Sci Rep 2022; 12:9452. [PMID: 35676412 PMCID: PMC9177611 DOI: 10.1038/s41598-022-13619-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/09/2022] [Indexed: 11/08/2022] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an important opportunistic pathogen that is responsible for many clinical infections in both animals and humans. This study aimed to detect the prevalence of P. aeruginosa in dairy farm's that possess a great importance to dairy industry where it shares in milk spoilage. Evaluation of the efficacy of commonly used disinfectants to control the pathogen in dairy environment and finding a way to overcome high resistance to the used agents. Samples (n = 250) were collected from different environmental components, milk, and milkers' hands. Pathogens were isolated, biofilm was detected and their sensitivity against two commonly used disinfectants and against silver nanoparticles and Virokill AgNPs at different concentrations and contact times were tested. The pathogen significantly prevailed in milk samples (70.0%, P < 0.001). 50 out 74 isolates were biofilm-forming that was significantly obtained from environment (71.8%, P < 0.001). P. aeruginosa showed variable degree of resistance to tested disinfectants but it was significantly sensitive to Virokill AgNPs (200/1000) mg/l at exposure time 24 h (P < 0.001). It was concluded that using Virokill AgNPs in regular sanitation and disinfection of dairy farms, this helps the control of P. aeruginosa subsequently increasing milk quality and improving dairy industry and protecting human health.
Collapse
|
163
|
Isolation and Whole-Genome Sequencing of Four Antibiotic-Producing Pseudomonas Strains. Microbiol Resour Announc 2022; 11:e0000522. [PMID: 35658559 PMCID: PMC9302146 DOI: 10.1128/mra.00005-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the isolation, whole-genome sequencing, and annotation of four novel Pseudomonas isolates. We also evaluate the biosynthetic potential of each genome.
Collapse
|
164
|
Gupta A, Sinha DK, Nair S. Shifts in Pseudomonas species diversity influence adaptation of brown planthopper to changing climates and geographical locations. iScience 2022; 25:104550. [PMID: 35754716 PMCID: PMC9218508 DOI: 10.1016/j.isci.2022.104550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022] Open
Abstract
The brown planthopper (BPH) is a monophagous sap-sucking pest of rice that causes immense yield loss. The rapid build-up of pesticide resistance combined with the ability of BPH populations to quickly overcome host plant resistance has rendered conventional control strategies ineffective. One of the likely ways in which BPH adapts to novel environments is by undergoing rapid shifts in its microbiome composition. To elucidate the rapid adaptation to novel environments and the contributions of Pseudomonas toward insect survival, we performed Pseudomonas-specific 16S rRNA gut-microbiome profiling of BPH populations. Results revealed the differential occurrence of Pseudomonas species in BPH populations with changing climates and geographical locations. Further, the observed variation in Pseudomonas species composition and abundance correlated with BPH survivability. Collectively, this study, while adding to our current understanding of symbiont-mediated insect adaptation, also demonstrated a complex interplay between insect physiology and microbiome dynamics, which likely confers BPH its rapid adaptive capacity. BPH, a major pest of rice, undergoes seasonal shifts in its microbiome composition Pseudomonas sp. in BPH microbiome varied with seasons and geographical locations Pseudomonas sp. composition and abundance correlated with BPH survivability Environment-guided microbial shifts drive rapid stress adaptations in BPH
Collapse
|
165
|
Nutrient Sensing and Biofilm Modulation: The Example of L-arginine in Pseudomonas. Int J Mol Sci 2022; 23:ijms23084386. [PMID: 35457206 PMCID: PMC9028604 DOI: 10.3390/ijms23084386] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/01/2022] Open
Abstract
Bacterial biofilm represents a multicellular community embedded within an extracellular matrix attached to a surface. This lifestyle confers to bacterial cells protection against hostile environments, such as antibiotic treatment and host immune response in case of infections. The Pseudomonas genus is characterised by species producing strong biofilms difficult to be eradicated and by an extraordinary metabolic versatility which may support energy and carbon/nitrogen assimilation under multiple environmental conditions. Nutrient availability can be perceived by a Pseudomonas biofilm which, in turn, readapts its metabolism to finally tune its own formation and dispersion. A growing number of papers is now focusing on the mechanism of nutrient perception as a possible strategy to weaken the biofilm barrier by environmental cues. One of the most important nutrients is amino acid L-arginine, a crucial metabolite sustaining bacterial growth both as a carbon and a nitrogen source. Under low-oxygen conditions, L-arginine may also serve for ATP production, thus allowing bacteria to survive in anaerobic environments. L-arginine has been associated with biofilms, virulence, and antibiotic resistance. L-arginine is also a key precursor of regulatory molecules such as polyamines, whose involvement in biofilm homeostasis is reported. Given the biomedical and biotechnological relevance of biofilm control, the state of the art on the effects mediated by the L-arginine nutrient on biofilm modulation is presented, with a special focus on the Pseudomonas biofilm. Possible biotechnological and biomedical applications are also discussed.
Collapse
|
166
|
Negative Effects of Rhizobacteria Association on Plant Recruitment of Generalist Predators. PLANTS 2022; 11:plants11070920. [PMID: 35406900 PMCID: PMC9003080 DOI: 10.3390/plants11070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Plant-associated microbes can influence above- and belowground interactions between plants and other organisms and thus have significant potential for use in the management of agricultural ecosystems. However, fully realizing this potential will require improved understanding of the specific ways in which microbes influence plant ecology, which are both more complex and less well studied than the direct effects of microbes on host-plant physiology. Microbial effects on mutualistic and antagonistic interactions between plants and insects are of particular interest in this regard. This study examines the effects of two strains of Pseudomonas rhizobacteria on the direct and indirect (predator-mediated) resistance of tomato plants to a generalist herbivore (Spodoptera littoralis) and associated changes in levels of defense compounds. We observed no significant effects of rhizobacteria inoculation on caterpillar weight, suggesting that rhizobacteria did not influence direct resistance. However, the generalist predator Podisus maculiventris avoided plants inoculated with one of our rhizobacteria strains, Pseudomonas simiae. Consistent with these results, we found that inoculation with P. simiae influenced plant volatile emissions, but not levels of defense-related compounds. These findings show that rhizobacteria can negatively affect the attraction of generalist predators, while highlighting the complexity and context dependence of microbial effects on plant–insect interactions.
Collapse
|
167
|
Hungaro HM, Vidigal PMP, do Nascimento EC, Gomes da Costa Oliveira F, Gontijo MTP, Lopez MES. Genomic Characterisation of UFJF_PfDIW6: A Novel Lytic Pseudomonas fluorescens-Phage with Potential for Biocontrol in the Dairy Industry. Viruses 2022; 14:v14030629. [PMID: 35337036 PMCID: PMC8951688 DOI: 10.3390/v14030629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, we have presented the genomic characterisation of UFJF_PfDIW6, a novel lytic Pseudomonas fluorescens-phage with potential for biocontrol in the dairy industry. This phage showed a short linear double-stranded DNA genome (~42 kb) with a GC content of 58.3% and more than 50% of the genes encoding proteins with unknown functions. Nevertheless, UFJF_PfDIW6’s genome was organised into five functional modules: DNA packaging, structural proteins, DNA metabolism, lysogenic, and host lysis. Comparative genome analysis revealed that the UFJF_PfDIW6’s genome is distinct from other viral genomes available at NCBI databases, displaying maximum coverages of 5% among all alignments. Curiously, this phage showed higher sequence coverages (38–49%) when aligned with uncharacterised prophages integrated into Pseudomonas genomes. Phages compared in this study share conserved locally collinear blocks comprising genes of the modules’ DNA packing and structural proteins but were primarily differentiated by the composition of the DNA metabolism and lysogeny modules. Strategies for taxonomy assignment showed that UFJF_PfDIW6 was clustered into an unclassified genus in the Podoviridae clade. Therefore, our findings indicate that this phage could represent a novel genus belonging to the Podoviridae family.
Collapse
Affiliation(s)
- Humberto Moreira Hungaro
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil; (E.C.d.N.); (F.G.d.C.O.)
- Correspondence: (H.M.H.); (M.E.S.L.); Tel.: +55-32-2102-3804 (H.M.H.); +57-310-469-02-04 (M.E.S.L.)
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Campus da UFV, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil;
| | - Edilane Cristina do Nascimento
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil; (E.C.d.N.); (F.G.d.C.O.)
| | - Felipe Gomes da Costa Oliveira
- Departamento de Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil; (E.C.d.N.); (F.G.d.C.O.)
| | - Marco Túlio Pardini Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-872, SP, Brazil;
| | - Maryoris Elisa Soto Lopez
- Departamento de Engenharia de Alimentos, Universidade de Córdoba (UNICORDOBA), Córdoba 230002, Colombia
- Correspondence: (H.M.H.); (M.E.S.L.); Tel.: +55-32-2102-3804 (H.M.H.); +57-310-469-02-04 (M.E.S.L.)
| |
Collapse
|
168
|
Klassert TE, Zubiria-Barrera C, Neubert R, Stock M, Schneegans A, López M, Driesch D, Zakonsky G, Gastmeier P, Slevogt H, Leistner R. Comparative analysis of surface sanitization protocols on the bacterial community structures in the hospital environment. Clin Microbiol Infect 2022; 28:1105-1112. [PMID: 35272014 DOI: 10.1016/j.cmi.2022.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES In hospital hygiene it remains unclear to which extent surface contamination might represent a potential reservoir for nosocomial pathogens. This study investigates the effects of different sanitization strategies on the microbial structures and the ecological balance of the environmental microbiome in the clinical setting. METHODS Three cleaning regimes (disinfectants, detergents and probiotics) were applied subsequently in 9 independent patient rooms at a neurological ward (Charité, Berlin). Weekly sampling procedures included 3 different environmental sites: floor, doorhandle and sink. Characterization of the environmental microbiota and detection of antibiotic resistance genes (ARGs) were performed by 16S rRNA sequencing and multiplex Taq-Man qPCR assays, respectively. RESULTS Our results showed a displacement of the intrinsic environmental microbiota after probiotic sanitization, which reached statistical significance in the sink samples (Median 16S-rRNA copies = 138.3; IQR: 24.38-379.5) when compared to traditional disinfection measures (Median 16S-rRNA copies = 1343; IQR: 330.9-9479; p<0.05). This effect was concomitant with a significant increase of the alpha-diversity metrics in both the floor (p<0.001) and the sink samples (p<0.01) during the probiotic strategy. We did not observe a sanitization-dependent change of relative pathogen abundance at any tested site, but a significant reduction of the total ARGs counts in the sink samples during probiotic cleaning (mean ARGs/sample: 0.095 ± 0.067) when compared to the disinfection strategy (mean ARGs/sample: 0.386 ± 0.116; p<0.01). CONCLUSIONS The data presented in this study suggest the probiotic sanitization as interesting strategy in hospital hygiene management to be further analyzed and validated in randomized clinical studies.
Collapse
Affiliation(s)
- Tilman E Klassert
- Jena University Hospital, ZIK Septomics, Host Septomics, Jena, Germany.
| | | | - Robert Neubert
- Jena University Hospital, ZIK Septomics, Host Septomics, Jena, Germany
| | - Magdalena Stock
- Jena University Hospital, ZIK Septomics, Host Septomics, Jena, Germany
| | - Antony Schneegans
- Jena University Hospital, ZIK Septomics, Host Septomics, Jena, Germany
| | - Mercedes López
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Spain
| | | | | | - Petra Gastmeier
- Institute for Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Hortense Slevogt
- Jena University Hospital, ZIK Septomics, Host Septomics, Jena, Germany; Department of Respiratory Medicine, Medizinische Hochschule Hannover, Germany
| | - Rasmus Leistner
- Institute for Hygiene and Environmental Medicine, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
169
|
Inhibition of Several Bacterial Species Isolated from Squid and Shrimp Skewers by Different Natural Edible Compounds. Foods 2022; 11:foods11050757. [PMID: 35267390 PMCID: PMC8909736 DOI: 10.3390/foods11050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Seafood is an excellent source of nutrients, essential for a healthy diet, ranging from proteins and fatty acids to vitamins and minerals. Seafood products are highly perishable foods due to their nutritional characteristics and composition. The application of nontoxic, natural, and edible preservatives to extend the shelf-life and inhibit bacterial proliferation of several foods has been a hot topic. Consequently, this work aimed to perform the microbiological characterization of squid and shrimp skewers during their shelf-life (five days) and evaluate the susceptibility of randomly isolated microorganisms to several natural edible compounds so that their application for the preservation and shelf-life extension of the product might be analyzed in the future. The product had considerably high total microorganisms loads of about 5 log CFU/g at day zero and 9 log CFU/g at day five. In addition, high bacterial counts of Pseudomonas spp., Enterobacterales, and lactic acid bacteria (LAB) were found, especially on the last day of storage, being Pseudomonas the dominant genus. However, no Escherichia coli or Listeria monocytogenes were detected on the analyzed samples. One hundred bacterial isolates were randomly selected and identified through 16s rRNA sequencing, resulting in the detection of several Enterobacterales, Pseudomonas spp., and LAB. The antibacterial activity of carvacrol, olive leaf extract, limonene, Citrox®, different chitosans, and ethanolic propolis extracts was evaluated by the agar diffusion method, and the minimum inhibitory concentration was determined only for Citrox® since only this solution could inhibit all the identified isolates. At concentrations higher than or equal to 1.69% (v/v), Citrox® demonstrated bacteriostatic and bactericidal activity to 97% and 3% of the isolates, respectively. To our knowledge, there are no available data about the effectiveness of this commercial product on seafood isolates. Although preliminary, this study showed evidence that Citrox® has the potential to be used as a natural preservative in these seafood products, improving food safety and quality while reducing waste. However, further studies are required, such as developing a Citrox®-based coating and its application on this matrix to validate its antimicrobial effect.
Collapse
|
170
|
Marín-Miret J, González-Serrano F, Rosas T, Baixeras J, Latorre A, Pérez-Cobas AE, Moya A. Temporal variations shape the gut microbiome ecology of the moth Brithys crini. Environ Microbiol 2022; 24:3939-3953. [PMID: 35243736 DOI: 10.1111/1462-2920.15952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Jesús Marín-Miret
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain
| | - Francisco González-Serrano
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain.,Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Tania Rosas
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Joaquín Baixeras
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain.,Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), Valencia, Spain.,Biomedical Research Center Network of Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Ana Elena Pérez-Cobas
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and CSIC, Valencia, Spain.,Genomics and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research (FISABIO), Valencia, Spain.,Biomedical Research Center Network of Epidemiology and Public Health (CIBEResp), Madrid, Spain
| |
Collapse
|
171
|
Xiao Q, Luo Y, Shi W, Lu Y, Xiong R, Wu X, Huang H, Zhao C, Zeng J, Chen C. The effects of LL-37 on virulence factors related to the quorum sensing system of Pseudomonas aeruginosa. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:284. [PMID: 35434009 PMCID: PMC9011280 DOI: 10.21037/atm-22-617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022]
Abstract
Background Antimicrobial peptides (AMPs) have shown promise in the treatment of multi-resistant pathogens. It was therefore of interest to analyze the effects of the AMP LL-37 on the regulation of several virulence factors related to the quorum sensing (QS) system of Pseudomonas aeruginosa (P. aeruginosa) in vitro. Methods The minimum inhibitory concentration (MIC) was evaluated by the micro broth dilution method. The expression of QS-related and QS-regulated virulence factor genes was also evaluated. Exotoxin A activity was measured with the nicotinamide adenine dinucleotide (NAD) (Coenzyme I) method; Elastase activity was detected with the elastin-Congo red (ECR) method; Pyocyanin detection was performed using the chloroform extraction method. The effects of LL-37 were assessed by measuring the expression changes of the virulence protein-encoding genes of the strains with quantitative polymerase chain reaction (PCR). Results The MIC of LL-37 against both P. aeruginosa reference strain (ATCC 15692 PAO1) and PA-ΔlasI/rhII was therefore determined to be 256 µg/mL. LL-37 at sub-minimum inhibitory concentrations (sub-MICs) had no significant effects on P. aeruginosa bacterial growth (P>0.05), but significantly downregulated the expression of all 3 virulence factors. Conclusions Interestingly, this effect appeared to be dose-related. These findings suggest that LL-37 could be a potential candidate for QS inhibition against bacterial infection and may have significant clinical potential in the treatment of P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanfen Luo
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen Shi
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Lu
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Xiong
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinggui Wu
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haihao Huang
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chanjing Zhao
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianming Zeng
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cha Chen
- Department of Laboratory Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, China.,The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
172
|
Stapleton F, Shrestha GS, Vijay AK, Carnt N. Epidemiology, Microbiology, and Genetics of Contact Lens-Related and Non-Contact Lens-Related Infectious Keratitis. Eye Contact Lens 2022; 48:127-133. [PMID: 35192567 DOI: 10.1097/icl.0000000000000884] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 01/14/2023]
Abstract
ABSTRACT Infectious keratitis is a rare but severe condition associated with a range of ocular and systemic predisposing conditions, including ocular trauma, prior surgery, surface disease, and contact lens (CL) wear. This review explores the epidemiology of infectious keratitis, specifically the differences in disease incidence and risk factors, causative organism profile and virulence characteristics and host microbiome, genetics, gene expression, proteomics, and metabolomic characteristics in CL-related and non-CL-related diseases. Differences exist in the epidemiology, demographics, causative organisms, and their virulence characteristics in CL-related and non-CL-related diseases, and there is less evidence to support differences between these groups of individuals in the ocular surface microbiome, genetics, and pathways of disease. Genetic variations, however, in the host immune profile are implicated in both the onset and severity of infectious keratitis in CL and non-CL wearers. As technologies in metabolomics, proteomics, and genomics improved to be better able to process small-volume samples from the ocular surface, there will be improved understanding of the interplay between the CL, ocular surface, host immune profile, and the microbial environment. This may result in a more personalized approach in the management of disease to reduce disease severity.
Collapse
Affiliation(s)
- Fiona Stapleton
- School of Optometry and Vision Science, UNSW Sydney, Australia
| | | | | | | |
Collapse
|
173
|
Li G, Zheng X, Zhu Y, Long Y, Xia X. Bacillus symbiont drives alterations in intestinal microbiota and circulating metabolites of lepidopteran host. Environ Microbiol 2022; 24:4049-4064. [PMID: 35191580 DOI: 10.1111/1462-2920.15934] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/01/2021] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Abstract
The symbiotic association between bacterial symbionts and insect hosts is a complicated process that is not completely understood. Herein, we used a silkworm model to study the association between symbiotic Bacillus and lepidopteran insect by investigating the changes in intestinal microbiota and hemolymph circulating metabolites of silkworm after symbiotic Bacillus subtilis treatment. Results showed that B. subtilis can generate a variety of primary and secondary metabolites, such as B vitamins and antimicrobial compounds, to provide micronutrients and enhance the pathogen resistance of their insect host. Shifts in the relative abundance of Enterococcus, Brevibacterium, Buttiauxella, Pseudomonas, Brevundimonas, and Limnobacter had significant correlations with the concentrations of differential metabolites (e.g., phospholipids and certain amino acids) in insect hemolymph. The antimicrobial compounds secreted by B. subtilis were the primary driving force for the reconstruction of intestinal microbiota. Meanwhile, the altered levels of circulating metabolites in multiple metabolic pathways were potential an adaptive mechanism of insect hosts in response to the shifts of intestinal microbiota. Our findings provided concrete evidence that bacterial intestinal symbiont can alter the physiological state of insects and highlighted the importance of the compositional alterations of intestinal microbiota as a source of variation in circulating metabolites of insect hosts. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Guannan Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass, Southwest University, Chongqing, 400716, China.,Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Xi Zheng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass, Southwest University, Chongqing, 400716, China
| | - Yong Zhu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass, Southwest University, Chongqing, 400716, China
| | - Yaohang Long
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou Province, P.R. China
| | - Xuejuan Xia
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
174
|
Bundalovic-Torma C, Desveaux D, Guttman DS. RecPD: A Recombination-aware measure of phylogenetic diversity. PLoS Comput Biol 2022; 18:e1009899. [PMID: 35192600 PMCID: PMC8896707 DOI: 10.1371/journal.pcbi.1009899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/04/2022] [Accepted: 02/07/2022] [Indexed: 12/22/2022] Open
Abstract
A critical step in studying biological features (e.g., genetic variants, gene families, metabolic capabilities, or taxa) is assessing their diversity and distribution among a sample of individuals. Accurate assessments of these patterns are essential for linking features to traits or outcomes of interest and understanding their functional impact. Consequently, it is of crucial importance that the measures employed for quantifying feature diversity can perform robustly under any evolutionary scenario. However, the standard measures used for quantifying and comparing the distribution of features, such as prevalence, phylogenetic diversity, and related approaches, either do not take into consideration evolutionary history, or assume strictly vertical patterns of inheritance. Consequently, these approaches cannot accurately assess diversity for features that have undergone recombination or horizontal transfer. To address this issue, we have devised RecPD, a novel recombination-aware phylogenetic-diversity statistic for measuring the distribution and diversity of features under all evolutionary scenarios. RecPD utilizes ancestral-state reconstruction to map the presence / absence of features onto ancestral nodes in a species tree, and then identifies potential recombination events in the evolutionary history of the feature. We also derive several related measures from RecPD that can be used to assess and quantify evolutionary dynamics and correlation of feature evolutionary histories. We used simulation studies to show that RecPD reliably reconstructs feature evolutionary histories under diverse recombination and loss scenarios. We then applied RecPD in two diverse real-world scenarios including a preliminary study type III effector protein families secreted by the plant pathogenic bacterium Pseudomonas syringae and growth phenotypes of the Pseudomonas genus and demonstrate that prevalence is an inadequate measure that obscures the potential impact of recombination. We believe RecPD will have broad utility for revealing and quantifying complex evolutionary processes for features at any biological level. Phylogenetic diversity is an important concept utilized in evolutionary ecology which has extensive applications in population genetics to help us understand how evolutionary processes have distributed genetic variation among individuals of a species, and how this impacts phenotypic diversification over time. However, existing approaches for studying phylogenetic diversity largely assume that the genetic features follow vertical inheritance, which is frequently violated in the case of microbial genomes due to horizontal transfer. To address this shortcoming, we present RecPD, a recombination-aware phylogenetic diversity measure, which incorporates ancestral state reconstruction to quantify the phylogenetic diversity of genetic features mapped onto a species phylogeny. Through simulation experiments we show that RecPD robustly reconstructs the evolutionary histories of features evolving under various scenarios of recombination and loss. When applied to a real-world example of type III secreted effector protein families from the plant pathogenic bacterium Pseudomonas syringae, RecPD reveals that horizontal transfer has played an important role in shaping the phylogenetic distributions of a substantial proportion of families across the P. syringae species complex. Furthermore, we demonstrate that the traditional measures of feature prevalence are unsuitable as a measure for comparing feature diversity. We also provide a R package implementation of RecPD for public use: https://github.com/cedatorma/recpd.
Collapse
Affiliation(s)
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - David S. Guttman
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
175
|
Abstract
Polyhydroxyalkanoates (PHAs) are polyesters produced by numerous microorganisms for energy and carbon storage. Simultaneous synthesis and degradation of PHA drives a dynamic cycle linked to the central carbon metabolism, which modulates numerous and diverse bacterial processes, such as stress endurance, pathogenesis, and persistence. Here, we analyze the role of the PHA cycle in conferring robustness to the model bacterium P. putida KT2440. To assess the effect of this cycle in the cell, we began by constructing a PHA depolymerase (PhaZ) mutant strain that had its PHA cycle blocked. We then restored the flux through the cycle in the context of an engineered library of P. putida strains harboring differential levels of PhaZ. High-throughput phenotyping analyses of this collection of strains revealed significant changes in response to PHA cycle performance impacting cell number and size, PHA accumulation, and production of extracellular (R)-hydroxyalkanoic acids. To understand the metabolic changes at the system level due to PHA turnover, we contextualized these physiological data using the genome-scale metabolic model iJN1411. Model-based predictions suggest successive metabolic steady states during the growth curve and an important carbon flux rerouting driven by the activity of the PHA cycle. Overall, we demonstrate that modulating the activity of the PHA cycle gives us control over the carbon metabolism of P. putida, which in turn will give us the ability to tailor cellular mechanisms driving stress tolerance, e.g., defenses against oxidative stress, and any potential biotechnological applications. IMPORTANCE Despite large research efforts devoted to understanding the flexible metabolism of Pseudomonas beyond the role of key regulatory players, the metabolic basis powering the dynamic control of its biological fitness under disturbance conditions remains largely unknown. Among other metabolic hubs, the so-called PHA cycle, involving simultaneous synthesis and degradation of PHAs, is emerging as a pivotal metabolic trait powering metabolic robustness and resilience in this bacterial group. Here, we provide evidence suggesting that metabolic states in Pseudomonas can be anticipated, controlled, and engineered by tailoring the flux through the PHA cycle. Overall, our study suggests that the PHA cycle is a promising metabolic target toward achieving control over bacterial metabolic robustness. This is likely to open up a broad range of applications in areas as diverse as pathogenesis and biotechnology.
Collapse
|
176
|
Bacteria isolated from Triticum monococcum ssp. monococcum roots can improve wheat hologenome in agriculture. Mol Biol Rep 2022; 49:5389-5395. [PMID: 35182319 DOI: 10.1007/s11033-022-07118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Triticum monococcum ssp. monococcum is an ancestral wheat species originated from Karacadağ Mountain of Turkey more than ten thousand years ago. Because of environmental and anthropogenic effects, food supply and demand are not balanced. Agricultural activities such as breeding, and fertilization are important to sustain the balance. Conventional breeding and fertilization applications usually neglect contribution of plant related hologenomes in agricultural yield. The disruption of plant growth promoting microorganisms results in intensive usage of chemical fertilizers. The harmony between plant and plant-associated microorganisms is important for sustainability. In this study, isolation, biochemical characterization, and impact on plant growth parameters of natural bacteria associated with Triticum monococcum ssp. monococcum hologenome were aimed. METHODS AND RESULTS The collection of root samples and isolations of the root-associated bacterial species were carried out from local wheat lands. According to interpretation of three identification methods (MALDI-TOF, 16S rDNA, 16S-23S rDNA) eight isolates are Arthrobacter spp. ESU164, Arthrobacter spp. ESU193, Pseudomonas spp. ESU131, Pseudomonas spp. ESU141, Pseudomonas poae strain ESU182, Pseudomonas thivervalensis strain ESU192, Pseudomonas spp. ESU1531, Bacillus subtilis strain ESU181. For each isolate we investigated biochemical properties especially nitrogen fixation, phosphate solubilization, and indole-3-acetic acid production abilities. The results show that all isolates are nitrogen fixers and the best phosphate solubilizer have been reported as Pseudomonas spp. ESU131 with 2.805 ± 0.439. CONCLUSIONS All isolates are indole-3-acetic acid productors. 2 isolates affected the coleoptile lengths, 7 bacterial isolates showed statistically positive effect on root number, and 5 isolates promote the root lengths and the root fresh weights.
Collapse
|
177
|
Santos-Aberturas J, Vior NM. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel) 2022; 11:195. [PMID: 35203798 PMCID: PMC8868522 DOI: 10.3390/antibiotics11020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/10/2022] Open
Abstract
Bacterial secondary metabolites represent an invaluable source of bioactive molecules for the pharmaceutical and agrochemical industries. Although screening campaigns for the discovery of new compounds have traditionally been strongly biased towards the study of soil-dwelling Actinobacteria, the current antibiotic resistance and discovery crisis has brought a considerable amount of attention to the study of previously neglected bacterial sources of secondary metabolites. The development and application of new screening, sequencing, genetic manipulation, cultivation and bioinformatic techniques have revealed several other groups of bacteria as producers of striking chemical novelty. Biosynthetic machineries evolved from independent taxonomic origins and under completely different ecological requirements and selective pressures are responsible for these structural innovations. In this review, we summarize the most important discoveries related to secondary metabolites from alternative bacterial sources, trying to provide the reader with a broad perspective on how technical novelties have facilitated the access to the bacterial metabolic dark matter.
Collapse
Affiliation(s)
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich NR7 4UH, UK
| |
Collapse
|
178
|
Genome analysis of Pseudomonas sp. 14A reveals metabolic capabilities to support epiphytic behavior. World J Microbiol Biotechnol 2022; 38:49. [DOI: 10.1007/s11274-022-03238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
|
179
|
The Arginine Catabolism-Derived Amino Acid L-ornithine Is a Chemoattractant for Pseudomonas aeruginosa. Microorganisms 2022; 10:microorganisms10020264. [PMID: 35208720 PMCID: PMC8875649 DOI: 10.3390/microorganisms10020264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa is a common, opportunistic bacterial pathogen among patients with cystic fibrosis, asthma, and chronic obstructive pulmonary disease. During the course of these diseases, l-ornithine, a non-proteinogenic amino acid, becomes more abundant. P. aeruginosa is chemotactic towards other proteinogenic amino acids. Here, we evaluated the chemotaxis response of P. aeruginosa towards l-ornithine. Our results show that l-ornithine serves as a chemoattractant for several strains of P. aeruginosa, including clinical isolates, and that the chemoreceptors involved in P. aeruginosa PAO1 are PctA and PctB. It seems likely that P. aeruginosa’s chemotactic response to l-ornithine might be a common feature and thus could potentially contribute to pathogenesis processes during colonization and infection scenarios.
Collapse
|
180
|
Complete Genome Sequence of Pseudomonas sp. Strain MM213, an Isolate from a Brookside in Bielefeld, Germany. Microbiol Resour Announc 2022; 11:e0086621. [PMID: 34989608 PMCID: PMC8759394 DOI: 10.1128/mra.00866-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Here, we report the genome sequence of Pseudomonas sp. strain MM213, isolated from brookside soil in Bielefeld, Germany. The genome is complete and consists of 6,746,355 bp, with a GC content of 59.4% and 6,145 predicted protein-coding sequences. Pseudomonas sp. strain MM213 is part of the Pseudomonas mandelii group.
Collapse
|
181
|
Crippen TL, Singh B, Anderson RC, Sheffield CL. Adult Alphitobius diaperinus Microbial Community during Broiler Production and in Spent Litter after Stockpiling. Microorganisms 2022; 10:microorganisms10010175. [PMID: 35056628 PMCID: PMC8778262 DOI: 10.3390/microorganisms10010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/10/2022] Open
Abstract
The facilities used to raise broiler chickens are often infested with litter beetles (lesser mealworm, Alphitobius diaperinus). These beetles have been studied for their carriage of pathogenic microbes; however, a more comprehensive microbiome study on these arthropods is lacking. This study investigated their microbial community in a longitudinal study throughout 2.5 years of poultry production and after the spent litter, containing the mealworms, was piled in pastureland for use as fertilizer. The mean most abundant phyla harbored by the beetles in house were the Proteobacteria (39.8%), then Firmicutes (30.8%), Actinobacteria (21.1%), Tenericutes (5.1%), and Bacteroidetes (1.6%). The community showed a modest decrease in Firmicutes and increase in Proteobacteria over successive flock rotations. The beetles were relocated within the spent litter to pastureland, where they were found at least 19 weeks later. Over time in the pastureland, their microbial profile underwent a large decrease in the percent of Firmicutes (20.5%). The lesser mealworm showed an ability to survive long-term in the open environment within the spent litter, where their microbiome should be further assessed to both reduce the risk of transferring harmful bacteria, as well as to enhance their contribution when the litter is used as a fertilizer.
Collapse
Affiliation(s)
- Tawni L. Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX 77845, USA; (R.C.A.); (C.L.S.)
- Correspondence:
| | - Baneshwar Singh
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Robin C. Anderson
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX 77845, USA; (R.C.A.); (C.L.S.)
| | - Cynthia L. Sheffield
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX 77845, USA; (R.C.A.); (C.L.S.)
| |
Collapse
|
182
|
Wang N, Li H, Wang B, Ding J, Liu Y, Wei Y, Li J, Ding GC. Taxonomic and Functional Diversity of Rhizosphere Microbiome Recruited From Compost Synergistically Determined by Plant Species and Compost. Front Microbiol 2022; 12:798476. [PMID: 35095808 PMCID: PMC8792965 DOI: 10.3389/fmicb.2021.798476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/26/2021] [Indexed: 11/19/2022] Open
Abstract
Compost is frequently served as the first reservoir for plants to recruit rhizosphere microbiome when used as growing substrate in the seedling nursery. In the present study, recruitment of rhizosphere microbiome from two composts by tomato, pepper, or maize was addressed by shotgun metagenomics and 16S rRNA amplicon sequencing. The 16S rRNA amplicon sequencing analysis showed that 41% of variation in the rhizosphere bacterial community was explained by compost, in contrast to 23% by plant species. Proteobacterial genera were commonly recruited by all three plant species with specific selections for Ralstonia by tomato and Enterobacteria by maize. These findings were confirmed by analysis of 16S rRNA retrieved from the shotgun metagenomics library. Approximately 70% of functional gene clusters differed more than sevenfold in abundance between rhizosphere and compost. Functional groups associated with the sensing and up-taking of C3 and C4 carboxylic acids, amino acids, monosaccharide, production of antimicrobial substances, and antibiotic resistance were over-represented in the rhizosphere. In summary, compost and plant species synergistically shaped the composition of the rhizosphere microbiome and selected for functional traits associated with the competition on root exudates.
Collapse
Affiliation(s)
- Ning Wang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Huixiu Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Tangshan Normal University, Tangshan, China
| | - Bo Wang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Jia Ding
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Yingjie Liu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
| | - Yuquan Wei
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Ji Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Guo-Chun Ding
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
- *Correspondence: Guo-Chun Ding,
| |
Collapse
|
183
|
Hemamali EH, Weerasinghe LP, Tanaka H, Kurisu G, Perera IC. LcaR: a regulatory switch from Pseudomonas aeruginosa for bioengineering alkane degrading bacteria. Biodegradation 2022; 33:117-133. [PMID: 34989928 DOI: 10.1007/s10532-021-09970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/22/2021] [Indexed: 11/26/2022]
Abstract
Application of genetically engineered bacterial strains for biodegradation of hydrocarbons is a sustainable solution for treating pollutants as well as in industrial applications. However, the process of bioengineering should be carefully carried out to optimize the output. Investigation of regulatory genes for bioengineering is essential for developing synthetic circuits for effective biocatalysts. Here we focus on LcaR, a putative transcriptional regulator affecting the expression of alkB2 and lcaR operon that has a high potential to become a tool in designing such pathways. Four LcaR dimers bind specifically to the upstream regulatory region where divergent promoters of alkB2 and lcaR genes are located with high affinity at a Kd of 0.94 ± 0.17 nM and a Hill coefficient is 1.7 ± 0.3 demonstrating cooperativity in the association. Ligand binding alters the conformation of LcaR, which releases the regulator from its cognate DNA. Tetradecanal and hexadecanal act as natural ligands of LcaR with an IC50 values of 3.96 ± 0.59 µg/ml and 0.68 ± 0.21 µg/ml, respectively. The structure and function of transcription factors homologous to LcaR have not been characterized to date. This study provides insight into regulatory mechanisms of alkane degradation with a direction towards potential applications in bioengineering for bioremediation and industrial applications.
Collapse
Affiliation(s)
- Erandika H Hemamali
- Synthetic Biology Laboratory, Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Laksiri P Weerasinghe
- Department of Chemistry, Faculty of Applied Science, University of Sri Jayewardenapura, Colombo, Sri Lanka
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Inoka C Perera
- Synthetic Biology Laboratory, Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka.
| |
Collapse
|
184
|
Sacko O, Engle NL, Tschaplinski TJ, Kumar S, Lee JW. Ozonized biochar filtrate effects on the growth of Pseudomonas putida and cyanobacteria Synechococcus elongatus PCC 7942. BIORESOUR BIOPROCESS 2022; 9:2. [PMID: 38647802 PMCID: PMC10991886 DOI: 10.1186/s40643-021-00491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biochar ozonization was previously shown to dramatically increase its cation exchange capacity, thus improving its nutrient retention capacity. The potential soil application of ozonized biochar warrants the need for a toxicity study that investigates its effects on microorganisms. RESULTS In the study presented here, we found that the filtrates collected from ozonized pine 400 biochar and ozonized rogue biochar did not have any inhibitory effects on the soil environmental bacteria Pseudomonas putida, even at high dissolved organic carbon (DOC) concentrations of 300 ppm. However, the growth of Synechococcus elongatus PCC 7942 was inhibited by the ozonized biochar filtrates at DOC concentrations greater than 75 ppm. Further tests showed the presence of some potential inhibitory compounds (terephthalic acid and p-toluic acid) in the filtrate of non-ozonized pine 400 biochar; these compounds were greatly reduced upon wet-ozonization of the biochar material. Nutrient detection tests also showed that dry-ozonization of rogue biochar enhanced the availability of nitrate and phosphate in its filtrate, a property that may be desirable for soil application. CONCLUSION Ozonized biochar substances can support soil environmental bacterium Pseudomonas putida growth, since ozonization detoxifies the potential inhibitory aromatic molecules.
Collapse
Affiliation(s)
- Oumar Sacko
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA
| | - Nancy L Engle
- Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN, 37831, USA
| | | | - Sandeep Kumar
- Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA, 23529, USA
| | - James Weifu Lee
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, 23529, USA.
| |
Collapse
|
185
|
Transcriptional Profiling of Pseudomonas aeruginosa Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:303-323. [DOI: 10.1007/978-3-031-08491-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
186
|
Laborda P, Hernando-Amado S, Martínez JL, Sanz-García F. Antibiotic Resistance in Pseudomonas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:117-143. [DOI: 10.1007/978-3-031-08491-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
187
|
Prevalence, Risk Factors, and Molecular Epidemiology of Intestinal Carbapenem-Resistant Pseudomonas aeruginosa. Microbiol Spectr 2021; 9:e0134421. [PMID: 34817230 PMCID: PMC8612150 DOI: 10.1128/spectrum.01344-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa may become multidrug-resistant (MDR) due to multiple inherited and acquired resistance mechanisms. The human gastrointestinal tract is known as a reservoir of P. aeruginosa and its resistance genes. In this study, we collected 76 intestinal carbapenem-resistant P. aeruginosa (CRPA) strains from clinical inpatients admitted to our hospital from 2014 to 2019, together with their medical data. We aim to analyze the clinical risk factors associated with CRPA infection and its molecular features. We found that the prevalence of CRPA in P. aeruginosa strains was 41.3% (95% confidence interval [CI], 34.1 to 48.8%). We also identified four variables associated with intestinal CRPA positivity, prior antibiotic exposure to aminoglycosides or carbapenems, underlying diabetes mellitus, and extraintestinal P. aeruginosa isolation. blaKPC-2 is the only detected carbapenemase gene, accounting for 21.1% of CRPA strains. The genetic environment showed that the blaKPC-2 gene was flanked immediately by ISKpn8 and ISKpn6 and several other mobile elements further upstream or downstream. Four sequence types (STs) were identified, with ST463 as the dominant sequence type. In conclusion, screening for P. aeruginosa colonization upon hospital admission could reduce the risk of P. aeruginosa infection and spread of CRPA in the hospital. IMPORTANCEPseudomonas aeruginosa may become multidrug-resistant (MDR) due to multiple inherited and acquired resistance mechanisms. The human gastrointestinal tract is known as a reservoir of P. aeruginosa and its resistance genes. Risk factor analysis and molecular epidemiology are critical for preventing their potential dissemination. Here, we identified four risk factors associated with intestinal CRPA—prior antibiotic exposure to aminoglycosides or carbapenems, underlying diabetes mellitus, and extraintestinal P. aeruginosa isolation. Further, we found similar genetic environments with several mobile elements surrounding the blaKPC gene, a carbapenemase gene only detected in intestinal CRPA strains in this study. These findings are of significant public health importance, as the information will facilitate the control of the emergence and spread of CRPA.
Collapse
|
188
|
Zhang P, Dong X, Zhou K, Zhu T, Liang J, Shi W, Gao M, Feng C, Li Q, Zhang X, Ren P, Lu J, Lin X, Li K, Zhu M, Bao Q, Zhang H. Characterization of a Novel Chromosome-Encoded AmpC β-Lactamase Gene, blaPRC–1, in an Isolate of a Newly Classified Pseudomonas Species, Pseudomonas wenzhouensis A20, From Animal Farm Sewage. Front Microbiol 2021; 12:732932. [PMID: 34975778 PMCID: PMC8719060 DOI: 10.3389/fmicb.2021.732932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
In this work, we characterized a novel chromosome-encoded AmpC β-lactamase gene, blaPRC–1, in an isolate of a newly classified Pseudomonas species designated Pseudomonas wenzhouensis A20, which was isolated from sewage discharged from an animal farm in Wenzhou, China. Susceptibility testing, molecular cloning, and enzyme kinetic parameter analysis were performed to determine the function and enzymatic properties of the β-lactamase. Sequencing and comparative genomic analysis were conducted to clarify the phylogenetic relationship and genetic context of the blaPRC–1 gene. PRC-1 is a 379-amino acid AmpC β-lactamase with a molecular weight of 41.48 kDa and a predicted pI of 6.44, sharing the highest amino acid identity (57.7%) with the functionally characterized AmpC β-lactamase PDC-211 (ARX71249). blaPRC–1 confers resistance to many β-lactam antibiotics, including penicillins (penicillin G, amoxicillin, and amoxicillin-clavulanic acid) and cephalosporins (cefazolin, ceftriaxone, and cefotaxime). The kinetic properties of PRC-1 were compatible with those of a typical class C β-lactamase showing hydrolytic activities against β-lactam antibiotics, and the hydrolytic activity was strongly inhibited by avibactam. The genetic context of blaPRC–1 was relatively conserved, and no mobile genetic element was predicted in its surrounding region. Identification of a novel β-lactamase gene in an unusual environmental bacterium reveals that there might be numerous unknown resistance mechanisms in bacterial populations, which may pose potential risks to human health due to universal horizontal gene transfer between microorganisms. It is therefore of great value to carry out extensive research on the mechanism of antibiotic resistance.
Collapse
Affiliation(s)
- Peiyao Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xu Dong
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kexin Zhou
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tingting Zhu
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jialei Liang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weina Shi
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengdi Gao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunlin Feng
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaoling Li
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ping Ren
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mei Zhu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
- *Correspondence: Mei Zhu,
| | - Qiyu Bao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Sciences, Ministry of Education, Wenzhou Medical University, Wenzhou, China
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Qiyu Bao,
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Hailin Zhang,
| |
Collapse
|
189
|
The Edible Plant Microbiome represents a diverse genetic reservoir with functional potential in the human host. Sci Rep 2021; 11:24017. [PMID: 34911987 PMCID: PMC8674285 DOI: 10.1038/s41598-021-03334-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Plant microbiomes have been extensively studied for their agricultural relevance on growth promotion and pathogenesis, but little is known about their role as part of the diet when fresh fruits and vegetables are consumed raw. Most studies describing these communities are based on 16S rRNA gene amplicon surveys, limiting our understanding of the taxonomic resolution at the species level and functional capabilities. In this study, we characterized microbes colonizing tomatoes, spinach, brined olives, and dried figs using shotgun metagenomics. We recovered metagenome-assembled genomes of novel lactic acid bacteria from green olives and identified high intra- and inter-specific diversity of Pseudomonas in tomatoes. All samples were colonized by Pseudomonas, consistent with other reports with distinct community structure. Functional characterization showed the presence of enzymes involved in vitamin and short chain fatty acid metabolism and degradation of diverse carbohydrate substrates including plant fibers. The dominant bacterial members were isolated, sequenced, and mapped to its metagenome confirming their identity and indicating the microbiota is culturable. Our results reveal high genetic diversity, previously uncultured genera, and specific functions reflecting a likely plant host association. This study highlights the potential that plant microbes can play when consumed as part of our diet and proposes these as transient contributors to the gut microbiome.
Collapse
|
190
|
Kosina SM, Rademacher P, Wetmore KM, de Raad M, Zemla M, Zane GM, Zulovich JJ, Chakraborty R, Bowen BP, Wall JD, Auer M, Arkin AP, Deutschbauer AM, Northen TR. Biofilm Interaction Mapping and Analysis (BIMA) of Interspecific Interactions in Pseudomonas Co-culture Biofilms. Front Microbiol 2021; 12:757856. [PMID: 34956122 PMCID: PMC8696352 DOI: 10.3389/fmicb.2021.757856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas species are ubiquitous in nature and include numerous medically, agriculturally and technologically beneficial strains of which the interspecific interactions are of great interest for biotechnologies. Specifically, co-cultures containing Pseudomonas stutzeri have been used for bioremediation, biocontrol, aquaculture management and wastewater denitrification. Furthermore, the use of P. stutzeri biofilms, in combination with consortia-based approaches, may offer advantages for these processes. Understanding the interspecific interaction within biofilm co-cultures or consortia provides a means for improvement of current technologies. However, the investigation of biofilm-based consortia has been limited. We present an adaptable and scalable method for the analysis of macroscopic interactions (colony morphology, inhibition, and invasion) between colony-forming bacterial strains using an automated printing method followed by analysis of the genes and metabolites involved in the interactions. Using Biofilm Interaction Mapping and Analysis (BIMA), these interactions were investigated between P. stutzeri strain RCH2, a denitrifier isolated from chromium (VI) contaminated soil, and 13 other species of pseudomonas isolated from non-contaminated soil. One interaction partner, Pseudomonas fluorescens N1B4 was selected for mutant fitness profiling of a DNA-barcoded mutant library; with this approach four genes of importance were identified and the effects on interactions were evaluated with deletion mutants and mass spectrometry based metabolomics.
Collapse
Affiliation(s)
- Suzanne M. Kosina
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Peter Rademacher
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kelly M. Wetmore
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Markus de Raad
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Marcin Zemla
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Grant M. Zane
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | | | - Romy Chakraborty
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Benjamin P. Bowen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Lawrence Berkeley National Laboratory, Joint Genome Institute, Berkeley, CA, United States
| | - Judy D. Wall
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Manfred Auer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Trent R. Northen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Lawrence Berkeley National Laboratory, Joint Genome Institute, Berkeley, CA, United States
| |
Collapse
|
191
|
Lalucat J, Gomila M, Mulet M, Zaruma A, García-Valdés E. Past, present and future of the boundaries of the Pseudomonas genus: Proposal of Stutzerimonas gen. Nov. Syst Appl Microbiol 2021; 45:126289. [PMID: 34920232 DOI: 10.1016/j.syapm.2021.126289] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/10/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
Pseudomonas is one the best studied bacterial genera, and it is the genus with the highest number of species among the gram-negative bacteria. Pseudomonas spp. are widely distributed and play relevant ecological roles; several species are commensal or pathogenic to humans, animals and plants. The main aim of the present minireview is the discussion of how the Pseudomonas taxonomy has evolved with the development of bacterial taxonomy since the first description of the genus in 1894. We discuss how the successive implementation of novel methodologies has influenced the taxonomy of the genus and, vice versa, how the taxonomic studies developed in Pseudomonas have introduced novel tools and concepts to bacterial taxonomy. Current phylogenomic analyses of the family Pseudomonadaceae demonstrate that a considerable number of named Pseudomonas spp. are not monophyletic with P. aeruginosa, the type species of the genus, and that a reorganization of several genera can be foreseen. Phylogenomics of Pseudomonas, Azomonas and Azotobacter within the Pseudomonadaceae is presented as a case study. Five new genus names are delineated to accommodate five well-defined phylogenetic branches that are supported by the shared genes in each group, and two of them can be differentiated by physiological and ecological properties: the recently described genus Halopseudomonas and the genus Stutzerimonas proposed in the present study. Five former Pseudomonas species are transferred to Halopseudomonas and 10 species to Stutzerimonas.
Collapse
Affiliation(s)
- Jorge Lalucat
- Microbiologia, Departament Biologia, Universitat de les Illes Balears, Spain; Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), Spain.
| | - Margarita Gomila
- Microbiologia, Departament Biologia, Universitat de les Illes Balears, Spain
| | - Magdalena Mulet
- Microbiologia, Departament Biologia, Universitat de les Illes Balears, Spain
| | - Anderson Zaruma
- Microbiologia, Departament Biologia, Universitat de les Illes Balears, Spain
| | - Elena García-Valdés
- Microbiologia, Departament Biologia, Universitat de les Illes Balears, Spain; Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), Spain
| |
Collapse
|
192
|
Dong L, Sun L, Hu X, Nie T, Pang J, Wang X, Yang X, Li C, Yao K, Zhang Y, You X. Ostarine attenuates pyocyanin in Pseudomonas aeruginosa by interfering with quorum sensing systems. J Antibiot (Tokyo) 2021; 74:863-873. [PMID: 34480092 DOI: 10.1038/s41429-021-00469-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/15/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance has been an increasingly serious threat to global public health. Anti-virulence strategies are being developed to manage antibiotic resistance because they apply a lower selective pressure for antimicrobial-resistant pathogens than that created using traditional bactericides. We aimed to discover novel small molecules that can reduce the production of virulence factors in Pseudomonas aeruginosa and determine the mechanism of action underlying these effects. A clinical compound library was screened, and ostarine was identified as a potential anti-virulence agent. The effects of ostarine were studied via antimicrobial susceptibility testing, bacterial growth assays, pyocyanin quantitation assays, transcriptomic analysis, quorum sensing signal molecule quantification, and real-time PCR assays. Ostarine treatment significantly decreased the synthesis of pyocyanin without any bactericidal action. Besides, ostarine treatment did not affect the relative growth rate and cell morphology of bacteria. Treatment with ostarine interfered with quorum sensing by decreasing the transcription of genes associated with quorum sensing systems and the production of signalling molecules. The inhibition of ostarine on pyocyanin production and gene expression can be alleviated when signalling molecules were supplemented externally. Overall, ostarine may act as a novel anti-virulence agent that can attenuate P. aeruginosa pyocyanin by interfering with quorum sensing systems.
Collapse
Affiliation(s)
- Limin Dong
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tongying Nie
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kaihu Yao
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
193
|
Krzyżanowska DM, Iwanicki A, Czajkowski R, Jafra S. High-Quality Complete Genome Resource of Tomato Rhizosphere Strain Pseudomonas donghuensis P482, a Representative of a Species with Biocontrol Activity Against Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1450-1454. [PMID: 34428926 DOI: 10.1094/mpmi-06-21-0136-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strain P482 was isolated from a tomato rhizosphere and classified as Pseudomonas donghuensis. The P. donghuensis species was first established in 2015 and currently consists of only four strains: P482, HYST, SVBP6, and 22G5. P. donghuensis strains antagonize plant pathogens, including bacteria, fungi, and oomycetes, and, therefore, are of high interest regarding their biological control potential to combat plant diseases. The antimicrobial activity of P. donghuensis P482 is based on the production of iron-scavenging compound 7-hydroxytropolone, antifungal volatile organic compounds, and as-yet-unidentified secondary metabolites. Here, we report a complete genome resource for P. donghuensis strain P482. The genome consists of a single chromosome (5,656,185 bp) with 5,258 open reading frames (5,158 protein-coding genes, 74 transfer RNAs, 22 ribosomal RNAs, 3 noncoding RNAs, and 1 transfer-messenger RNA) and no plasmid. We believe that information on the first high-quality, complete genome of P. donghuensis will provide resources for analyses targeting the biological control potential of this species and understanding the traits essential for plant-microbe interaction.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Dorota M Krzyżanowska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, A. Abrahama 58, 80-307 Gdańsk, Poland
| | - Adam Iwanicki
- Division of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Gdańsk, Dębinki 1, 80-211, Poland
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, A. Abrahama 58, 80-307 Gdańsk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, A. Abrahama 58, 80-307 Gdańsk, Poland
| |
Collapse
|
194
|
Network analysis of ten thousand genomes shed light on Pseudomonas diversity and classification. Microbiol Res 2021; 254:126919. [PMID: 34808515 DOI: 10.1016/j.micres.2021.126919] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
The growth of sequenced bacterial genomes has revolutionized the assessment of microbial diversity. Pseudomonas is a widely diverse genus, containing more than 254 species. Although type strains have been employed to estimate Pseudomonas diversity, they represent a small fraction of the genomic diversity at a genus level. We used 10,035 available Pseudomonas genomes, including 210 type strains, to build a genomic distance network to estimate the number of species through community identification. We identified taxonomic inconsistencies with several type strains and found that 25.65 % of the Pseudomonas genomes deposited on Genbank are misclassified. The phylogenetic tree using single-copy genes from representative genomes in each species cluster in the distance network revealed at least 14 Pseudomonas groups, including the P. alcaligenes group proposed here. We show that Pseudomonas is likely an admixture of different genera and should be further divided. This study provides an overview of Pseudomonas diversity from a network and phylogenomic perspective that may help reduce the propagation of mislabeled Pseudomonas genomes.
Collapse
|
195
|
Brinkman FSL, Winsor GL, Done RE, Filloux A, Francis VI, Goldberg JB, Greenberg EP, Han K, Hancock REW, Haney CH, Häußler S, Klockgether J, Lamont IL, Levesque RC, Lory S, Nikel PI, Porter SL, Scurlock MW, Schweizer HP, Tümmler B, Wang M, Welch M. The Pseudomonas aeruginosa whole genome sequence: A 20th anniversary celebration. Adv Microb Physiol 2021; 79:25-88. [PMID: 34836612 DOI: 10.1016/bs.ampbs.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Toward the end of August 2000, the 6.3 Mbp whole genome sequence of Pseudomonas aeruginosa strain PAO1 was published. With 5570 open reading frames (ORFs), PAO1 had the largest microbial genome sequenced up to that point in time-including a large proportion of metabolic, transport and antimicrobial resistance genes supporting its ability to colonize diverse environments. A remarkable 9% of its ORFs were predicted to encode proteins with regulatory functions, providing new insight into bacterial network complexity as a function of network size. In this celebratory article, we fast forward 20 years, and examine how access to this resource has transformed our understanding of P. aeruginosa. What follows is more than a simple review or commentary; we have specifically asked some of the leaders in the field to provide personal reflections on how the PAO1 genome sequence, along with the Pseudomonas Community Annotation Project (PseudoCAP) and Pseudomonas Genome Database (pseudomonas.com), have contributed to the many exciting discoveries in this field. In addition to bringing us all up to date with the latest developments, we also ask our contributors to speculate on how the next 20 years of Pseudomonas research might pan out.
Collapse
Affiliation(s)
- Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Geoffrey L Winsor
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Rachel E Done
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, United States
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Vanessa I Francis
- Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, United States
| | - E Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Kook Han
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | | | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Susanne Häußler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jens Klockgether
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Pavillon Charles-Eugène Marchand, Faculté of Médicine, Université Laval, Québec City, QC, Canada
| | - Stephen Lory
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Steven L Porter
- Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | | | - Herbert P Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Burkhard Tümmler
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Meng Wang
- Department of Biochemistry (Hopkins Building), University of Cambridge, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry (Hopkins Building), University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
196
|
Kim CM, Jeong JW, Lee DH, Kim SB. Pseudomonas guryensis sp. nov. and Pseudomonas ullengensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2021; 71. [PMID: 34767499 DOI: 10.1099/ijsem.0.005082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-staining-negative, aerobic, rod-shaped bacteria designated strains SR9T and UL070T, were isolated from soil and subjected to taxonomic characterization. Strain SR9T grew at 10-37 °C (optimum 30 °C), at pH 4.0-10.0 (optimum pH 8.0) and in the presence of 0-1 % NaCl (optimum 0 %), and UL070T at 4-33 °C (optimum 30 °C), at pH 4.0-10.0 (optimum pH 7.0) and in the presence of 0-2 % NaCl (optimum 0 %), respectively. Strain UL070T was motile with flagella. Analysis of 16S rRNA gene sequences indicated that the two strains fell into phylogenetic clusters belonging to the genus Pseudomonas. Both strains SR9T and UL070T were mostly related to Pseudomonas campi S1-A32-2T with 99.70 and 99.01% sequence similarities, and the similarity between the two isolates was 98.90 %. The genome-based in silico analyses indicated that each of the strains SR9T and UL070T was clearly separated from other species of Pseudomonas, as the orthologous average nucleotide identity (OrthoANI) and the digital DNA-DNA hybridization (dDDH) values were no higher than 93.09 and 50.03% respectively with any related species, which were clearly below the cutoff for species distinction. The fatty acid profiles of the two strains mainly consisting of unsaturated components, the presence of ubiquinone 9 (Q-9) as the major respiratory quinone, and phosphatidylethanolamine (PE) and diphosphatidylglycerol (DPG) as the diagnostic polar lipids were consistent with their classification into Pseudomonas. The DNA G+C contents of strains SR9T and UL070T were 63.2 mol% and 63.6 mol% respectively. On the basis of both phenotypic and phylogenetic evidences, each of the isolated strains should be classified as a novel species, for which the names Pseudomonas guryensis sp. nov. (type strain=SR9T=KCTC 82228T=JCM 34509T) and Pseudomonas ullengensis sp. nov. (type strain=UL070T=KCTC 82229T=JCM 34510T) are proposed.
Collapse
Affiliation(s)
- Chung Mi Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99, Daehak-ro, Yuseong, Daejeon 34134, Republic of Korea
| | - Ji Won Jeong
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99, Daehak-ro, Yuseong, Daejeon 34134, Republic of Korea
| | - Dong Hyeon Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99, Daehak-ro, Yuseong, Daejeon 34134, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99, Daehak-ro, Yuseong, Daejeon 34134, Republic of Korea
| |
Collapse
|
197
|
Regina ALA, Medeiros JD, Teixeira FM, Côrrea RP, Santos FAM, Brantes CPR, Pereira IA, Stapelfeldt DMA, Diniz CG, da Silva VL. A watershed impacted by anthropogenic activities: Microbial community alterations and reservoir of antimicrobial resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148552. [PMID: 34328962 DOI: 10.1016/j.scitotenv.2021.148552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Water is the main resource for maintaining life. Anthropic activities influence the microbial epidemiological chain in watersheds, which can act as ways of disseminating microorganisms resistant to antimicrobial drugs, with impacts on human, animal, and environmental health. Here, we characterized aquatic microbial communities and their resistomes in samples collected along Rio das Ostras watershed during two seasons. Surface water samples were collected at eleven sites from the Jundiá, Iriry, and Rio das Ostras rivers in two seasons (dry and wet season). Microbial DNA was extracted, high-throughput sequenced and screened for antimicrobial resistance genetic (ARG) markers. The physicochemical characteristics and the microbiota data confirmed that Rio das Ostras watershed can be divided into three well defined portions: rural, urban, and marine. Rural areas were enriched by bacteria typically found in limnic environments and Patescibacteria phyla. The urban portion was characterized by sites with low pH and groups associated with iron oxidation. Some genera of clinical relevance were also identified, though in relatively low abundance. The marine site was enriched mainly by Cyanobacteria and bacteria that showed strong correlation with conductivity, salinity, and chloride. Twenty-six ARG markers were identified on the resistome, being found most frequently in the urban area, despite being present in rural sites. Among them were some related to classes of great clinical concern, such as genes coding for extended-spectrum beta-lactamase (blaCTX-M and blaTEM), resistance to carbapenems (blaKPC) and to methicillin by Staphylococcus aureus (mecA). These results broaden our understanding of the microbial community of a watershed impacted by anthropogenic actions. The large number of ARGs detected along the Rio das Ostras watershed contrasts with the small number of microorganisms of clinical relevance observed, suggesting that antimicrobial resistance has arisen from non-clinical environments and microbes. Our results corroborate that freshwater acts as a reservoir of antimicrobial resistance genes.
Collapse
Affiliation(s)
- Ana Luísa Almeida Regina
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - UFJF, José Lourenço Kelmer, Martelos, CEP 36036-900 Juiz de Fora, MG, Brazil
| | - Julliane Dutra Medeiros
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - UFJF, José Lourenço Kelmer, Martelos, CEP 36036-900 Juiz de Fora, MG, Brazil; Faculty of Biological and Agricultural Sciences, Mato Grosso State University - UNEMAT, Perimetral Rogério Silva - Norte 2, CEP 78580-000 Alta Floresta, MT, Brazil
| | - Francisco Martins Teixeira
- Laboratory of Microbiology and Parasitology, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560 Macaé, RJ, Brazil
| | - Raíssa Pereira Côrrea
- Laboratory of Microbiology and Parasitology, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560 Macaé, RJ, Brazil
| | - Fernanda Almeida Maciel Santos
- Laboratory of Microbiology and Parasitology, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560 Macaé, RJ, Brazil
| | - Caique Pinheiro Rosa Brantes
- Laboratory of Microbiology and Parasitology, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560 Macaé, RJ, Brazil
| | - Ingrid Annes Pereira
- Laboratory of Food Microbiology, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560, Macaé, RJ, Brazil
| | - Danielle Marques Araújo Stapelfeldt
- Laboratory of Chemistry, Federal University of Rio de Janeiro - UFRJ, Macaé Campus, Aloísio da Silva Gomes, Granja dos Cavaleiros, CEP 27930-560 Macaé, RJ, Brazil
| | - Cláudio Galuppo Diniz
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - UFJF, José Lourenço Kelmer, Martelos, CEP 36036-900 Juiz de Fora, MG, Brazil
| | - Vânia Lúcia da Silva
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora - UFJF, José Lourenço Kelmer, Martelos, CEP 36036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
198
|
Kaszab E, Radó J, Kriszt B, Pászti J, Lesinszki V, Szabó A, Tóth G, Khaledi A, Szoboszlay S. Groundwater, soil and compost, as possible sources of virulent and antibiotic-resistant Pseudomonas aeruginosa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:848-860. [PMID: 31736330 DOI: 10.1080/09603123.2019.1691719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Pseudomonas aeruginosa is a major public health concern all around the world. In the frame of this work, a set of diverse environmental P. aeruginosa isolates with various antibiotic resistance profiles were examined in a Galleria mellonella virulence model. Motility, serotypes, virulence factors and biofilm-forming ability were also examined. Molecular types were determined by pulsed-field gel electrophoresis (PFGE). Based on our results, the majority of environmental isolates were virulent in the G. mellonella test and twitching showed a positive correlation with mortality. Resistance against several antibiotic agents such as Imipenem correlated with a lower virulence in the applied G. mellonella model. PFGE revealed that five examined environmental isolates were closely related to clinically detected pulsed-field types. Our study demonstrated that industrial wastewater effluents, composts, and hydrocarbon-contaminated sites should be considered as hot spots of high-risk clones of P. aeruginosa.
Collapse
Affiliation(s)
- Edit Kaszab
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | - Júlia Radó
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | - Judit Pászti
- Department of Phage Typing and Molecular Epidemiology, National Center for Epidemiology, Budapest, Hungary
| | - Virág Lesinszki
- Department of Phage Typing and Molecular Epidemiology, National Center for Epidemiology, Budapest, Hungary
| | - Adám Szabó
- Centre for Experimental and Clinical Infection Research, Institute for Molecular Bacteriology TWINCORE, Hannover, Germany
| | - Gergő Tóth
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| | - Ariane Khaledi
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sándor Szoboszlay
- Department of Environmental Safety and Ecotoxicology, Szent István University, Gödöllő, Hungary
| |
Collapse
|
199
|
Canbay E, Yaşa İ, Akyilmaz E. Development An Amperometric Microbial‐enzyme Hybrid Cholesterol Biosensor Based On Ionic Liquid MWCNT Carbon Paste Electrode. ELECTROANAL 2021. [DOI: 10.1002/elan.202100251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Erhan Canbay
- Department of Medical Biochemistry Faculty of Medicine Ege University Bornova-Izmir 35100 Turkey
| | - İhsan Yaşa
- Department of Microbiology Faculty of Science Ege University Bornova-Izmir 35100 Turkey
| | - Erol Akyilmaz
- Department of Biochemistry Faculty of Science Ege University Bornova-Izmir 35100 Turkey
| |
Collapse
|
200
|
Abstract
Chemosensory pathways are among the most abundant prokaryotic signal transduction systems, allowing bacteria to sense and respond to environmental stimuli. Signaling is typically initiated by the binding of specific molecules to the ligand binding domain (LBD) of chemoreceptor proteins (CRs). Although CRs play a central role in plant-microbiome interactions such as colonization and infection, little is known about their phylogenetic and ecological specificity. Here, we analyzed 82,277 CR sequences from 11,806 representative microbial species covering the whole prokaryotic phylogeny, and we classified them according to their LBD type using a de novo homology clustering method. Through phylogenomic analysis, we identified hundreds of LBDs that are found predominantly in plant-associated bacteria, including several LBDs specific to phytopathogens and plant symbionts. Functional annotation of our catalogue showed that many of the LBD clusters identified might constitute unknown types of LBDs. Moreover, we found that the taxonomic distribution of most LBD types that are specific to plant-associated bacteria is only partially explained by phylogeny, suggesting that lifestyle and niche adaptation are important factors in their selection. Finally, our results show that the profile of LBD types in a given genome is related to the lifestyle specialization, with plant symbionts and phytopathogens showing the highest number of niche-specific LBDs. The LBD catalogue and information on how to profile novel genomes are available at https://github.com/compgenomicslab/CRs. IMPORTANCE Considering the enormous variety of LBDs at sensor proteins, an important question resides in establishing the forces that have driven their evolution and selection. We present here the first clear demonstration that environmental factors play an important role in the selection and evolution of LBDs. We were able to demonstrate the existence of LBD families that are highly enriched in plant-associated bacteria but show a wide phylogenetic spread. These findings offer a number of research opportunities in the field of single transduction, such as the exploration of similar relationships in chemoreceptors of bacteria with a different lifestyle, like those inhabiting or infecting the human intestine. Similarly, our results raise the question whether similar LBD types might be shared by members of different sensor protein families. Lastly, we provide a comprehensive catalogue of CRs classified by their LBD region that includes a large number of putative new LBD types.
Collapse
|