151
|
Impacts of experimentally induced and clinically acquired quinolone resistance on the membrane and intracellular subproteomes of Salmonella Typhimurium DT104B. J Proteomics 2016; 145:46-59. [PMID: 27063838 DOI: 10.1016/j.jprot.2016.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/23/2022]
Abstract
UNLABELLED Antimicrobial resistance is a growing public health threat worldwide that is still far from a complete understanding. Salmonella Typhimurium DT104 multiresistant strains with additional quinolone resistance are highly adaptive and have been responsible for global outbreaks and high mortality. In order to give new insights about the resistance mechanisms involved, the developed work aimed to point out subproteome changes between a DT104B clinical strain (Se20) that acquired quinolone resistance after patient treatment and an in vitro induced clonally related highly-resistant mutant (Se6-M). The intracellular subproteomes were compared by a 2-DE/LC-MS/MS approach and a total of 50 unique proteins were identified (32 more abundant in Se20 and 18 more abundant in Se6-M). The membrane subproteomes were analysed by a shotgun LC-MS/MS approach, where 7 differentially abundant proteins were identified (5 more abundant in Se6-M and 2 more abundant in Se20). Several proteins known to be directly related to quinolone resistance mechanisms (AAC(6')-Ib-cr4, OmpC, OmpD, OmpX, etc.) and MipA, recently reported as novel antibiotic resistance-related protein, were identified. Other proteins (Fur, SodA, SucB, AtpD/AtpG, OmpC, GltI, CheM/CheB, etc.) reflecting the metabolic re-adjustments occurred in each strain in order to acquire quinolone resistance were also identified. Moreover, proteins involved in lipopolysaccharide biosynthesis (RfbF, RfbG, GmhA) and export (LptA) were detected, supporting the importance of exploring these proteins as targets for the development of new antimicrobial agents. In conclusion, this study provides new insights into the mechanisms involved in the acquisition of antibiotic resistance, which can be highly valuable for the development of improved therapeutic strategies. BIOLOGICAL SIGNIFICANCE This comparative proteomic study revealed a large number of differentially regulated proteins involved in antibiotic resistance which can be of great value to drug discovery, research and development programmes.
Collapse
|
152
|
Pérez-Llarena FJ, Bou G. Proteomics As a Tool for Studying Bacterial Virulence and Antimicrobial Resistance. Front Microbiol 2016; 7:410. [PMID: 27065974 PMCID: PMC4814472 DOI: 10.3389/fmicb.2016.00410] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/14/2016] [Indexed: 12/31/2022] Open
Abstract
Proteomic studies have improved our understanding of the microbial world. The most recent advances in this field have helped us to explore aspects beyond genomics. For example, by studying proteins and their regulation, researchers now understand how some pathogenic bacteria have adapted to the lethal actions of antibiotics. Proteomics has also advanced our knowledge of mechanisms of bacterial virulence and some important aspects of how bacteria interact with human cells and, thus, of the pathogenesis of infectious diseases. This review article addresses these issues in some of the most important human pathogens. It also reports some applications of Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) mass spectrometry that may be important for the diagnosis of bacterial resistance in clinical laboratories in the future. The reported advances will enable new diagnostic and therapeutic strategies to be developed in the fight against some of the most lethal bacteria affecting humans.
Collapse
Affiliation(s)
| | - Germán Bou
- Servicio de Microbiología-INIBIC, Complejo Hospitalario Universitario A Coruña A Coruña, Spain
| |
Collapse
|
153
|
Park AJ, Krieger JR, Khursigara CM. Survival proteomes: the emerging proteotype of antimicrobial resistance. FEMS Microbiol Rev 2016; 40:323-42. [PMID: 26790948 DOI: 10.1093/femsre/fuv051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance is one of the greatest challenges in modern medicine. Infectious diseases that have historically been eliminated with routine antibiotic therapy are now re-emerging as life threatening illnesses. A better understanding of the specific mechanisms that contribute to resistance are required to optimize the treatment of infectious microorganisms and limit the survival of recalcitrant populations. This challenging area of research is made more problematic by the observation that multiple, overlapping, and/or compensatory resistance mechanism are often present within a single bacterial species. High-resolution proteomics has emerged as an effective tool to study antimicrobial resistance as it allows for the quantitative investigation of multiple systems concurrently. Furthermore, the ability to examine extracellular mechanisms of resistance and important post-translational modifications make this research tool well suited for the challenge. This review discusses how proteomics has contributed to the understanding of antimicrobial resistance and focuses on advances afforded by the more recent development of technologies that produce quantitative high-resolution proteomic information. We discuss current strategies for studying resistance, including comparative analysis of resistant and susceptible strains and protein-based responses to antimicrobial challenge. Lastly, we suggest specific experimental approaches aimed at advancing our understanding of protein-based resistance mechanisms and maximizing therapeutic outcomes in the future.
Collapse
Affiliation(s)
- Amber J Park
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jonathan R Krieger
- SPARC BioCentre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
154
|
Bello González TDJ, Zuidema T, Bor G, Smidt H, van Passel MWJ. Study of the Aminoglycoside Subsistence Phenotype of Bacteria Residing in the Gut of Humans and Zoo Animals. Front Microbiol 2016; 6:1550. [PMID: 26793182 PMCID: PMC4707250 DOI: 10.3389/fmicb.2015.01550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022] Open
Abstract
Recent studies indicate that next to antibiotic resistance, bacteria are able to subsist on antibiotics as a carbon source. Here we evaluated the potential of gut bacteria from healthy human volunteers and zoo animals to subsist on antibiotics. Nine gut isolates of Escherichia coli and Cellulosimicrobium sp. displayed increases in colony forming units (CFU) during incubations in minimal medium with only antibiotics added, i.e., the antibiotic subsistence phenotype. Furthermore, laboratory strains of E. coli and Pseudomonas putida equipped with the aminoglycoside 3′ phosphotransferase II gene also displayed the subsistence phenotype on aminoglycosides. In order to address which endogenous genes could be involved in these subsistence phenotypes, the broad-range glycosyl-hydrolase inhibiting iminosugar deoxynojirimycin (DNJ) was used. Addition of DNJ to minimal medium containing glucose showed initial growth retardation of resistant E. coli, which was rapidly recovered to normal growth. In contrast, addition of DNJ to minimal medium containing kanamycin arrested resistant E. coli growth, suggesting that glycosyl-hydrolases were involved in the subsistence phenotype. However, antibiotic degradation experiments showed no reduction in kanamycin, even though the number of CFUs increased. Although antibiotic subsistence phenotypes are readily observed in bacterial species, and are even found in susceptible laboratory strains carrying standard resistance genes, we conclude there is a discrepancy between the observed antibiotic subsistence phenotype and actual antibiotic degradation. Based on these results we can hypothesize that aminoglycoside modifying enzymes might first inactivate the antibiotic (i.e., by acetylation of amino groups, modification of hydroxyl groups by adenylation and phosphorylation respectively), before the subsequent action of catabolic enzymes. Even though we do not dispute that antibiotics could be used as a single carbon source, our observations show that antibiotic subsistence should be carefully examined with precise degradation studies, and that its mechanistic basis remains inconclusive.
Collapse
Affiliation(s)
| | - Tina Zuidema
- RIKILT, Wageningen University Wageningen, Netherlands
| | - Gerrit Bor
- RIKILT, Wageningen University Wageningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | - Mark W J van Passel
- Laboratory of Microbiology, Wageningen UniversityWageningen, Netherlands; National Institute of Public Health and EnvironmentBilthoven, Netherlands
| |
Collapse
|
155
|
Thekkiniath J, Ravirala R, San Francisco M. Multidrug Efflux Pumps in the Genus Erwinia: Physiology and Regulation of Efflux Pump Gene Expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:131-49. [DOI: 10.1016/bs.pmbts.2016.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
156
|
Effects of Stress, Reactive Oxygen Species, and the SOS Response on De Novo Acquisition of Antibiotic Resistance in Escherichia coli. Antimicrob Agents Chemother 2015; 60:1319-27. [PMID: 26666928 DOI: 10.1128/aac.02684-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/04/2015] [Indexed: 12/24/2022] Open
Abstract
Strategies to prevent the development of antibiotic resistance in bacteria are needed to reduce the threat of infectious diseases to human health. The de novo acquisition of resistance due to mutations and/or phenotypic adaptation occurs rapidly as a result of interactions of gene expression and mutations (N. Handel, J. M. Schuurmans, Y. Feng, S. Brul, and B. H. Ter Kuile, Antimicrob Agents Chemother 58:4371-4379, 2014, http://dx.doi.org/10.1128/AAC.02892-14). In this study, the contribution of several individual genes to the de novo acquisition of antibiotic resistance in Escherichia coli was investigated using mutants with deletions of genes known to be involved in antibiotic resistance. The results indicate that recA, vital for the SOS response, plays a crucial role in the development of antibiotic resistance. Likewise, deletion of global transcriptional regulators, such as gadE or soxS, involved in pH homeostasis and superoxide removal, respectively, can slow the acquisition of resistance to a degree depending on the antibiotic. Deletion of the transcriptional regulator soxS, involved in superoxide removal, slowed the acquisition of resistance to enrofloxacin. Acquisition of resistance occurred at a lower rate in the presence of a second stress factor, such as a lowered pH or increased salt concentration, than in the presence of optimal growth conditions. The overall outcome suggests that a central cellular mechanism is crucial for the development of resistance and that genes involved in the regulation of transcription play an essential role. The actual cellular response, however, depends on the class of antibiotic in combination with environmental conditions.
Collapse
|
157
|
The adaptive response of bacterial food-borne pathogens in the environment, host and food: Implications for food safety. Int J Food Microbiol 2015; 213:99-109. [DOI: 10.1016/j.ijfoodmicro.2015.06.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/21/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022]
|
158
|
Chen S, Li X, Sun G, Zhang Y, Su J, Ye J. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7. Int J Mol Sci 2015; 16:23390-404. [PMID: 26426011 PMCID: PMC4632705 DOI: 10.3390/ijms161023390] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 02/07/2023] Open
Abstract
Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals on bacterial antibiotic resistance is largely unclear. To investigate this, the effects of heavy metals on antibiotic resistance were studied in a genome-sequenced bacterium, LSJC7. The results showed that the presence of arsenate, copper, and zinc were implicated in fortifying the resistance of LSJC7 towards tetracycline. The concentrations of heavy metals required to induce antibiotic resistance, i.e., the minimum heavy metal concentrations (MHCs), were far below (up to 64-fold) the minimum inhibition concentrations (MIC) of LSJC7. This finding indicates that the relatively low heavy metal levels in polluted environments and in treated humans and animals might be sufficient to induce bacterial antibiotic resistance. In addition, heavy metal induced antibiotic resistance was also observed for a combination of arsenate and chloramphenicol in LSJC7, and copper/zinc and tetracycline in antibiotic susceptible strain Escherichia coli DH5α. Overall, this study implies that heavy metal induced antibiotic resistance might be ubiquitous among various microbial species and suggests that it might play a role in the emergence and spread of antibiotic resistance in metal and antibiotic co-contaminated environments.
Collapse
Affiliation(s)
- Songcan Chen
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiaomin Li
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guoxin Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yingjiao Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Jianqiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Jun Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
159
|
Kiamco MM, Atci E, Khan QF, Mohamed A, Renslow RS, Abu-Lail N, Fransson BA, Call DR, Beyenal H. Vancomycin and maltodextrin affect structure and activity of Staphylococcus aureus biofilms. Biotechnol Bioeng 2015; 112:2562-70. [PMID: 26084588 DOI: 10.1002/bit.25681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 01/15/2023]
Abstract
Hyperosmotic agents such as maltodextrin negatively impact bacterial growth through osmotic stress without contributing to drug resistance. We hypothesized that a combination of maltodextrin (osmotic agent) and vancomycin (antibiotic) would be more effective against Staphylococcus aureus biofilms than either alone. To test our hypothesis, S. aureus was grown in a flat plate flow cell reactor. Confocal laser scanning microscopy images were analyzed to quantify changes in biofilm structure. We used dissolved oxygen microelectrodes to quantify how vancomycin and maltodextrin affected the respiration rate and oxygen penetration into the biofilm. We found that treatment with vancomycin or maltodextrin altered biofilm structure. The effect on the structure was significant when they were used simultaneously to treat S. aureus biofilms. In addition, vancomycin treatment increased the oxygen respiration rate, while maltodextrin treatment caused an increase and then a decrease. An increased maltodextrin concentration decreased the diffusivity of the antibiotic. Overall, we conclude that (1) an increased maltodextrin concentration decreases vancomycin diffusion but increases the osmotic effect, leading to the optimum treatment condition, and (2) the combination of vancomycin and maltodextrin is more effective against S. aureus biofilms than either alone. Vancomycin and maltodextrin act together to increase the effectiveness of treatment against S. aureus biofilm growth.
Collapse
Affiliation(s)
- Mia Mae Kiamco
- The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Erhan Atci
- The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Qaiser Farid Khan
- The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Abdelrhman Mohamed
- The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Ryan S Renslow
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Nehal Abu-Lail
- The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington
| | - Boel A Fransson
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington
| | - Haluk Beyenal
- The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington.
| |
Collapse
|
160
|
Pinet E, Franceschi C, Davin-Regli A, Zambardi G, Pagès JM. Role of the culture medium in porin expression and piperacillin-tazobactam susceptibility in Escherichia coli. J Med Microbiol 2015; 64:1305-1314. [PMID: 26242994 DOI: 10.1099/jmm.0.000152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The continuing emergence of the multidrug resistance phenotype in Gram-negative bacteria makes the development of rapid susceptibility tests mandatory. To achieve this goal, proprietary specific media for bacterial growth can be used but may have some adverse effects. In this study, we dissected the role of media on porin, efflux pump and β-lactamase expression. Depending on the medium used, we observed a change in piperacillin-tazobactam susceptibility for some isolates, such as increases in MIC values. No significant alteration in efflux activity or in β-lactamase production was detected after changing the incubation medium. The ratio of piperacillinase:nitrocefinase showed no specific alteration, indicating that the various media did not affect significantly the relative enzymic affinity for the substrates. In contrast, osmotic variation was able to modulate both porin expression and OmpC : OmpF balance, thus modulating the antibiotic uptake. This study suggests that porin expression may be impacted by a susceptibility testing medium, which may modify the antibiotic diffusion into the bacteria, thus affecting MIC results.
Collapse
Affiliation(s)
- Elizabeth Pinet
- UMR-MD-1, Aix-Marseille Université, IRBA, Transporteurs Membranaires, Chimiorésistance et Drug Design, Marseille, France
| | | | - Anne Davin-Regli
- UMR-MD-1, Aix-Marseille Université, IRBA, Transporteurs Membranaires, Chimiorésistance et Drug Design, Marseille, France
| | - Gilles Zambardi
- R&D Microbiology Innovation, bioMérieux, La Balme les Grottes, France
| | - Jean-Marie Pagès
- UMR-MD-1, Aix-Marseille Université, IRBA, Transporteurs Membranaires, Chimiorésistance et Drug Design, Marseille, France
| |
Collapse
|
161
|
Logical-continuous modelling of post-translationally regulated bistability of curli fiber expression in Escherichia coli. BMC SYSTEMS BIOLOGY 2015. [PMID: 26201334 PMCID: PMC4511525 DOI: 10.1186/s12918-015-0183-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Bacteria have developed a repertoire of signalling mechanisms that enable adaptive responses to fluctuating environmental conditions. The formation of biofilm, for example, allows persisting in times of external stresses, e.g. induced by antibiotics or a lack of nutrients. Adhesive curli fibers, the major extracellular matrix components in Escherichia coli biofilms, exhibit heterogeneous expression in isogenic cells exposed to identical external conditions. The dynamical mechanisms underlying this heterogeneity remain poorly understood. In this work, we elucidate the potential role of post-translational bistability as a source for this heterogeneity. RESULTS We introduce a structured modelling workflow combining logical network topology analysis with time-continuous deterministic and stochastic modelling. The aim is to evaluate the topological structure of the underlying signalling network and to identify and analyse model parameterisations that satisfy observations from a set of genetic knockout experiments. Our work supports the hypothesis that the phenotypic heterogeneity of curli expression in biofilm cells is induced by bistable regulation at the post-translational level. Stochastic modelling suggests diverse noise-induced switching behaviours between the stable states, depending on the expression levels of the c-di-GMP-producing (diguanylate cyclases, DGCs) and -degrading (phosphodiesterases, PDEs) enzymes and reveals the quantitative difference in stable c-di-GMP levels between distinct phenotypes. The most dominant type of behaviour is characterised by a fast switching from curli-off to curli-on with a slow switching in the reverse direction and the second most dominant type is a long-term differentiation into curli-on or curli-off cells. This behaviour may implicate an intrinsic feature of the system allowing for a fast adaptive response (curli-on) versus a slow transition to the curli-off state, in line with experimental observations. CONCLUSION The combination of logical and continuous modelling enables a thorough analysis of different determinants of bistable regulation, i.e. network topology and biochemical kinetics, and allows for an incorporation of experimental data from heterogeneous sources. Our approach yields a mechanistic explanation for the phenotypic heterogeneity of curli fiber expression. Furthermore, the presented work provides a detailed insight into the interactions between the multiple DGC- and PDE-type enzymes and the role of c-di-GMP in dynamical regulation of cellular decisions.
Collapse
|
162
|
Fraqueza MJ. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Int J Food Microbiol 2015; 212:76-88. [PMID: 26002560 DOI: 10.1016/j.ijfoodmicro.2015.04.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/19/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria.
Collapse
Affiliation(s)
- Maria João Fraqueza
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal.
| |
Collapse
|
163
|
Abstract
The metabolic state of a bacterial cell influences its susceptibility to antibiotics. In this issue, Peng et al. (2015) show that resistant bacteria can be sensitized to antibiotic treatment through the addition of exogenous metabolites that stimulate central metabolic pathways and increase drug uptake.
Collapse
Affiliation(s)
- Prerna Bhargava
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - James J Collins
- Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
164
|
Martinez JL. General principles of antibiotic resistance in bacteria. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 11:33-9. [PMID: 24847651 DOI: 10.1016/j.ddtec.2014.02.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Given the impact of antibiotic resistance on human health, its study is of great interest from a clinical view- point. In addition, antibiotic resistance is one of the few examples of evolution that can be studied in real time. Knowing the general principles involved in the acquisition of antibiotic resistance is therefore of interest to clinicians, evolutionary biologists and ecologists. The origin of antibiotic resistance genes now possessed by human pathogens can be traced back to environmental microorganisms. Consequently, a full understanding of the evolution of antibiotic resistance requires the study of natural environments as well as clinical ecosystems. Updated information on the evolutionary mechanisms behind resistance, indicates that ecological connectivity, founder effect and fitness costs are important bottle- necks that modulate the transfer of resistance from environmental microorganisms to pathogens.
Collapse
|
165
|
Post DMB, Held JM, Ketterer MR, Phillips NJ, Sahu A, Apicella MA, Gibson BW. Comparative analyses of proteins from Haemophilus influenzae biofilm and planktonic populations using metabolic labeling and mass spectrometry. BMC Microbiol 2014; 14:329. [PMID: 25551439 PMCID: PMC4302520 DOI: 10.1186/s12866-014-0329-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/16/2014] [Indexed: 11/25/2022] Open
Abstract
Background Non-typeable H. influenzae (NTHi) is a nasopharyngeal commensal that can become an opportunistic pathogen causing infections such as otitis media, pneumonia, and bronchitis. NTHi is known to form biofilms. Resistance of bacterial biofilms to clearance by host defense mechanisms and antibiotic treatments is well-established. In the current study, we used stable isotope labeling by amino acids in cell culture (SILAC) to compare the proteomic profiles of NTHi biofilm and planktonic organisms. Duplicate continuous-flow growth chambers containing defined media with either “light” (L) isoleucine or “heavy” (H) 13C6-labeled isoleucine were used to grow planktonic (L) and biofilm (H) samples, respectively. Bacteria were removed from the chambers, mixed based on weight, and protein extracts were generated. Liquid chromatography-mass spectrometry (LC-MS) was performed on the tryptic peptides and 814 unique proteins were identified with 99% confidence. Results Comparisons of the NTHi biofilm to planktonic samples demonstrated that 127 proteins showed differential expression with p-values ≤0.05. Pathway analysis demonstrated that proteins involved in energy metabolism, protein synthesis, and purine, pyrimidine, nucleoside, and nucleotide processes showed a general trend of downregulation in the biofilm compared to planktonic organisms. Conversely, proteins involved in transcription, DNA metabolism, and fatty acid and phospholipid metabolism showed a general trend of upregulation under biofilm conditions. Selected reaction monitoring (SRM)-MS was used to validate a subset of these proteins; among these were aerobic respiration control protein ArcA, NAD nucleotidase and heme-binding protein A. Conclusions The present proteomic study indicates that the NTHi biofilm exists in a semi-dormant state with decreased energy metabolism and protein synthesis yet is still capable of managing oxidative stress and in acquiring necessary cofactors important for biofilm survival. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0329-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deborah M B Post
- The Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| | - Jason M Held
- Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | | | - Nancy J Phillips
- The University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Alexandria Sahu
- The Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| | | | - Bradford W Gibson
- The Buck Institute for Research on Aging, Novato, CA, 94945, USA. .,The University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
166
|
Nagar E, Schwarz R. To be or not to be planktonic? Self-inhibition of biofilm development. Environ Microbiol 2014; 17:1477-86. [DOI: 10.1111/1462-2920.12583] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/23/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Elad Nagar
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Rakefet Schwarz
- The Mina and Everard Goodman Faculty of Life Sciences; Bar-Ilan University; Ramat-Gan 5290002 Israel
| |
Collapse
|
167
|
Fajardo A, Hernando-Amado S, Oliver A, Ball G, Filloux A, Martinez JL. Characterization of a novel Zn2+-dependent intrinsic imipenemase from Pseudomonas aeruginosa. J Antimicrob Chemother 2014; 69:2972-8. [DOI: 10.1093/jac/dku267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
168
|
Hall AR, Angst DC, Schiessl KT, Ackermann M. Costs of antibiotic resistance - separating trait effects and selective effects. Evol Appl 2014; 8:261-72. [PMID: 25861384 PMCID: PMC4380920 DOI: 10.1111/eva.12187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/06/2014] [Indexed: 12/26/2022] Open
Abstract
Antibiotic resistance can impair bacterial growth or competitive ability in the absence of antibiotics, frequently referred to as a ‘cost’ of resistance. Theory and experiments emphasize the importance of such effects for the distribution of resistance in pathogenic populations. However, recent work shows that costs of resistance are highly variable depending on environmental factors such as nutrient supply and population structure, as well as genetic factors including the mechanism of resistance and genetic background. Here, we suggest that such variation can be better understood by distinguishing between the effects of resistance mechanisms on individual traits such as growth rate or yield (‘trait effects’) and effects on genotype frequencies over time (‘selective effects’). We first give a brief overview of the biological basis of costs of resistance and how trait effects may translate to selective effects in different environmental conditions. We then review empirical evidence of genetic and environmental variation of both types of effects and how such variation may be understood by combining molecular microbiological information with concepts from evolution and ecology. Ultimately, disentangling different types of costs may permit the identification of interventions that maximize the cost of resistance and therefore accelerate its decline.
Collapse
Affiliation(s)
- Alex R Hall
- Institute of Integrative Biology, ETH Zürich Zürich, Switzerland ; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| | - Daniel C Angst
- Institute of Integrative Biology, ETH Zürich Zürich, Switzerland ; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| | - Konstanze T Schiessl
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich Zürich, Switzerland ; Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| |
Collapse
|
169
|
Interaction between mutations and regulation of gene expression during development of de novo antibiotic resistance. Antimicrob Agents Chemother 2014; 58:4371-9. [PMID: 24841263 DOI: 10.1128/aac.02892-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria can become resistant not only by horizontal gene transfer or other forms of exchange of genetic information but also by de novo by adaptation at the gene expression level and through DNA mutations. The interrelationship between changes in gene expression and DNA mutations during acquisition of resistance is not well documented. In addition, it is not known whether the DNA mutations leading to resistance always occur in the same order and whether the final result is always identical. The expression of >4,000 genes in Escherichia coli was compared upon adaptation to amoxicillin, tetracycline, and enrofloxacin. During adaptation, known resistance genes were sequenced for mutations that cause resistance. The order of mutations varied within two sets of strains adapted in parallel to amoxicillin and enrofloxacin, respectively, whereas the buildup of resistance was very similar. No specific mutations were related to the rather modest increase in tetracycline resistance. Ribosome-sensed induction and efflux pump activation initially protected the cell through induction of expression and allowed it to survive low levels of antibiotics. Subsequently, mutations were promoted by the stress-induced SOS response that stimulated modulation of genetic instability, and these mutations resulted in resistance to even higher antibiotic concentrations. The initial adaptation at the expression level enabled a subsequent trial and error search for the optimal mutations. The quantitative adjustment of cellular processes at different levels accelerated the acquisition of antibiotic resistance.
Collapse
|
170
|
Abstract
The emergence and spread of antibiotic resistance among human pathogens is a relevant problem for human health and one of the few evolution processes amenable to experimental studies. In the present review, we discuss some basic aspects of antibiotic resistance, including mechanisms of resistance, origin of resistance genes, and bottlenecks that modulate the acquisition and spread of antibiotic resistance among human pathogens. In addition, we analyse several parameters that modulate the evolution landscape of antibiotic resistance. Learning why some resistance mechanisms emerge but do not evolve after a first burst, whereas others can spread over the entire world very rapidly, mimicking a chain reaction, is important for predicting the evolution, and relevance for human health, of a given mechanism of resistance. Because of this, we propose that the emergence and spread of antibiotic resistance can only be understood in a multi-parameter space. Measuring the effect on antibiotic resistance of parameters such as contact rates, transfer rates, integration rates, replication rates, diversification rates, and selection rates, for different genes and organisms, growing under different conditions in distinct ecosystems, will allow for a better prediction of antibiotic resistance and possibilities of focused interventions.
Collapse
Affiliation(s)
- José Luis Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
| | - Fernando Baquero
- Servicio de Microbiología, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
171
|
Katzianer DS, Yano T, Rubin H, Zhu J. A high-throughput small-molecule screen to identify a novel chemical inhibitor of Clostridium difficile. Int J Antimicrob Agents 2014; 44:69-73. [PMID: 24837414 DOI: 10.1016/j.ijantimicag.2014.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 11/28/2022]
Abstract
Clostridium difficile, a highly drug-resistant Gram-positive, spore-forming bacterium, remains a leading cause of hospital-acquired diarrhoea and antibiotic-associated colitis. Clinically, only a handful of antibiotics are used for treating C. difficile infection (CDI), suggesting a necessity for the development of new treatment options. Here we performed a high-throughput screen of 2000 drug-like compounds for inhibition of C. difficile. From this screen, one compound, 5-nitro-1,10-phenanthroline (5-NP), showed potent bactericidal effects in vitro. In addition, this compound displayed high potency towards other Clostridium spp. as well as Mycobacterium bovis but not towards other tested Gram-positive and Gram-negative bacteria. Furthermore, we show that this inhibition may proceed through a metal chelation-dependent mechanism. More importantly, preliminary evidence suggests moderate efficacy for this compound in treating CDI in a murine infection model. These results present a possible basis for the further development of this compound as an antibiotic treatment for CDI.
Collapse
Affiliation(s)
- David S Katzianer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takahiro Yano
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Harvey Rubin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
172
|
Rath S, Dubey D, Sahu MC, Debata NK, Padhy RN. Surveillance of ESBL producing multidrug resistant Escherichia coli in a teaching hospital in India. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60331-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
173
|
Sustainability of Water Reclamation: Long-Term Recharge with Reclaimed Wastewater Does Not Enhance Antibiotic Resistance in Sediment Bacteria. SUSTAINABILITY 2014. [DOI: 10.3390/su6031313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
174
|
Effects of Chlorophyll-Derived Efflux Pump Inhibitor Pheophorbide a and Pyropheophorbide a on Growth and Macrolide Antibiotic Resistance of Indicator and Anaerobic Swine Manure Bacteria. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/185068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Natural plant compounds, such as the chlorophyll a catabolites pheophorbide a (php) and pyropheophorbide a (pyp), are potentially active in the gastrointestinal tracts and manure of livestock as antimicrobial resistance-modifying agents through inhibition of bacterial efflux pumps. To investigate whether php, a known efflux pump inhibitor, and pyp influence bacterial resistance, we determined their long-term effects on the MICs of erythromycin for reference strains of clinically relevant indicator bacteria with macrolide or multidrug resistance efflux pumps. Pyp reduced the final MIC endpoint for Staphylococcus (S.) aureus and Escherichia (E.) coli by up to 1536 and 1024 μg erythromycin mL−1 or 1.4- and 1.2-fold, respectively. Estimation of growth parameters of S. aureus revealed that pyp exerted an intrinsic inhibitory effect under anaerobic conditions and was synergistically active, thereby potentiating the effect of erythromycin and partially reversing high-level erythromycin resistance. Anaerobe colony counts of total and erythromycin-resistant bacteria from stored swine manure samples tended to be lower in the presence of pyp. Tylosin, php, and pyp were not detectable by HPLC in the manure or medium. This is the first study showing that pyp affects growth and the level of sensitivity to erythromycin of S. aureus, E. coli, and anaerobic manure bacteria.
Collapse
|
175
|
Ng VWL, Tan JPK, Leong J, Voo ZX, Hedrick JL, Yang YY. Antimicrobial Polycarbonates: Investigating the Impact of Nitrogen-Containing Heterocycles as Quaternizing Agents. Macromolecules 2014. [DOI: 10.1021/ma402641p] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Victor Wee Lin Ng
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Jeremy Pang Kern Tan
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Jiayu Leong
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Zhi Xiang Voo
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - James L. Hedrick
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| |
Collapse
|
176
|
Proteome studies of bacterial antibiotic resistance mechanisms. J Proteomics 2014; 97:88-99. [DOI: 10.1016/j.jprot.2013.10.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 10/12/2013] [Accepted: 10/19/2013] [Indexed: 01/10/2023]
|
177
|
Kester JC, Fortune SM. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit Rev Biochem Mol Biol 2013; 49:91-101. [PMID: 24328927 DOI: 10.3109/10409238.2013.869543] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One of the challenges in clinical infectious diseases is the problem of chronic infections, which can require long durations of antibiotic treatment and often recur. An emerging explanation for the refractoriness of some infections to treatment is the existence of subpopulations of drug tolerant cells. While typically discussed as "persister" cells, it is becoming increasingly clear that there is significant heterogeneity in drug responses within a bacterial population and that multiple mechanisms underlie the emergence of drug tolerant and drug-resistant subpopulations. Many of these parallel mechanisms have been shown to affect drug susceptibility at the level of a whole population. Here we review mechanisms of phenotypic drug tolerance and resistance in bacteria with the goal of providing a framework for understanding the similarities and differences in these cells.
Collapse
Affiliation(s)
- Jemila C Kester
- Department of Immunology and Infectious Diseases, Harvard School of Public Health , Boston, MA , USA
| | | |
Collapse
|
178
|
Ng VWL, Ke X, Lee ALZ, Hedrick JL, Yang YY. Synergistic co-delivery of membrane-disrupting polymers with commercial antibiotics against highly opportunistic bacteria. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:6730-6736. [PMID: 24018824 DOI: 10.1002/adma.201302952] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Indexed: 06/02/2023]
Abstract
A series of vitamin E-containing biodegradable antimicrobial cationic polycarbonates is designed and synthesized via controlled organocatalytic ring-opening polymerization. The incorporation of vitamin E significantly enhances antimicrobial activity. These polymers demonstrate broad-spectrum antimicrobial activity against various microbes, e.g., S. aureus (Gram-positive), E-coli (Gram-negative) and C. albicans (fungi). More importantly, the co-delivery of such polymers with selected antibiotics (e.g., doxycycline) shows high synergism towards difficult-to-kill bacteria P. aeruginosa. These findings suggest that these vitamin E-functionalized polycarbonates are potentially useful antimicrobial agents against challenging bacterial/fungal infections.
Collapse
Affiliation(s)
- Victor Wee Lin Ng
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore
| | | | | | | | | |
Collapse
|
179
|
Hemmerlin A, Tritsch D, Hammann P, Rohmer M, Bach TJ. Profiling of defense responses in Escherichia coli treated with fosmidomycin. Biochimie 2013; 99:54-62. [PMID: 24262605 DOI: 10.1016/j.biochi.2013.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
Abstract
The mevalonate-independent isoprenoid biosynthesis pathway has been recognized as a promising target for designing new antibiotics. But pathogens treated with compounds such as fosmidomycin, a slow binding inhibitor of 1-deoxy-D-xylulose 5-phosphate reducto-isomerase, the second enzyme in this pathway, develop rapid drug resistance. In Escherichia coli, acquired resistance results mostly from inactivating the cAMP-dependent glpT transporter, thereby preventing import of the inhibitor. Such mutant strains are characterized by cross-resistance to fosfomycin, by susceptibility to efflux pump inhibitors, by disability to use glycerol 3-phosphate as a carbon source or by increased activity of the promoter controlling the expression of the glpABC regulon when grown in presence of fosmidomycin. The quite challenging task consists in conceiving new and efficient inhibitors avoiding resistance acquisition. They should be efficient in blocking the target enzyme, but should also be durably taken up by the organism. To address this issue, it is essential to characterize the mechanisms the pathogen exploits to defeat the antibiotic before resistance is acquired. Having this in mind, a 2-D Fluorescence Difference Gel Electrophoresis proteomic approach has been applied to identify defense responses in E. coli cells being shortly exposed to fosmidomycin (3 h). It seems that combined strategies are promptly induced. The major one consists in preventing toxic effects of the compound either by adapting metabolism and/or by getting rid of the molecule. The strategy adopted by the bacteria is to eliminate the drug from the cell or to increase the tolerance to oxidative stress. The design of new, but still efficient drugs, needs consideration of such rapid modulations required to adapt cell growth in contact of the inhibitor.
Collapse
Affiliation(s)
- Andréa Hemmerlin
- CNRS UPR 2357, Institut de Biologie Moléculaire des Plantes, Conventionné avec l'Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg Cedex, France.
| | - Denis Tritsch
- Université de Strasbourg/CNRS, Institut de Chimie UMR 7177, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France
| | - Philippe Hammann
- CNRS, FRC 1589, Plateforme Protéomique Esplanade, 15 Rue René Descartes, F-67084 Strasbourg Cedex, France
| | - Michel Rohmer
- Université de Strasbourg/CNRS, Institut de Chimie UMR 7177, 4 rue Blaise Pascal, F-67070 Strasbourg Cedex, France
| | - Thomas J Bach
- CNRS UPR 2357, Institut de Biologie Moléculaire des Plantes, Conventionné avec l'Université de Strasbourg, 28 rue Goethe, F-67083 Strasbourg Cedex, France
| |
Collapse
|
180
|
Vercammen K, Garcia-Armisen T, Goeders N, Van Melderen L, Bodilis J, Cornelis P. Identification of a metagenomic gene cluster containing a new class A beta-lactamase and toxin-antitoxin systems. Microbiologyopen 2013; 2:674-83. [PMID: 23873667 PMCID: PMC3948609 DOI: 10.1002/mbo3.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/15/2013] [Accepted: 06/06/2013] [Indexed: 11/10/2022] Open
Abstract
Several reports mention the presence of antibiotic resistance genes in natural and polluted environments, but many studies are based on their detection via polymerase chain reaction (PCR amplification of known genes and not on an activity screening. We constructed a metagenomic fosmid bank from DNA isolated from a polluted river in Brussels, Belgium, the Zenne. A total of 120,000 clones were pooled and plated directly on solid media containing different antibiotics. Several clones were isolated which could grow in the presence of ampicillin. The DNA from several clones was extracted and subjected to restriction analysis and, based on their restriction pattern, two different clones were found. One of the clones was selected for further study as it showed a higher level of resistance to different β-lactams antibiotics (ticarcilline and ceftazidime). To find out which gene is responsible for the resistance, an in vitro transposon mutagenesis was performed and clones having lost the resistance phenotype were analyzed via inverse PCR amplification. Several clones had an insert in a gene encoding a new type of β-lactamase. The amplified fosmid DNA was fully sequenced revealing an insert of 41 kb containing 39 open reading frames (ORFs). Transposon insertions inactivating the resistance to β-lactams were also found in the ORF upstream of the blaA gene, encoding an aminotransferase, suggesting a polar effect on the transcription of the gene downstream. In addition, other genes were found such as histidine biosynthesis genes, which were found to be scattered on the insert, a relA/spoT gene, and genes belonging to type II toxin–antitoxin system. This predicted system was experimentally validated in Escherichia coli using an inducible expression system.
Collapse
Affiliation(s)
- Ken Vercammen
- Department of Bioengineering Sciences, Research group Microbiology and VIB Department of Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
181
|
Low abundance of respiratory nitrate reductase is essential for Escherichia coli in resistance to aminoglycoside and cephalosporin. J Proteomics 2013; 87:78-88. [DOI: 10.1016/j.jprot.2013.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 05/06/2013] [Accepted: 05/16/2013] [Indexed: 11/19/2022]
|
182
|
Rolain JM. Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. Front Microbiol 2013; 4:173. [PMID: 23805136 PMCID: PMC3690338 DOI: 10.3389/fmicb.2013.00173] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/10/2013] [Indexed: 12/12/2022] Open
Abstract
The increase and spread of antibiotic resistance (AR) over the past decade in human pathogens has become a worldwide health concern. Recent genomic and metagenomic studies in humans, animals, in food and in the environment have led to the discovery of a huge reservoir of AR genes called the resistome that could be mobilized and transferred from these sources to human pathogens. AR is a natural phenomenon developed by bacteria to protect antibiotic-producing bacteria from their own products and also to increase their survival in highly competitive microbial environments. Although antibiotics are used extensively in humans and animals, there is also considerable usage of antibiotics in agriculture, especially in animal feeds and aquaculture. The aim of this review is to give an overview of the sources of AR and the use of antibiotics in these reservoirs as selectors for emergence of AR bacteria in humans via the food chain.
Collapse
Affiliation(s)
- Jean-Marc Rolain
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire Méditerranée Infection, Aix-Marseille Université Marseille, France
| |
Collapse
|
183
|
Compensation of the metabolic costs of antibiotic resistance by physiological adaptation in Escherichia coli. Antimicrob Agents Chemother 2013; 57:3752-62. [PMID: 23716056 DOI: 10.1128/aac.02096-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance is often associated with metabolic costs. To investigate the metabolic consequences of antibiotic resistance, the genomic and transcriptomic profiles of an amoxicillin-resistant Escherichia coli strain and the wild type it was derived from were compared. A total of 125 amino acid substitutions and 7 mutations that were located <1,000 bp upstream of differentially expressed genes were found in resistant cells. However, broad induction and suppression of genes were observed when comparing the expression profiles of resistant and wild-type cells. Expression of genes involved in cell wall maintenance, DNA metabolic processes, cellular stress response, and respiration was most affected in resistant cells regardless of the absence or presence of amoxicillin. The SOS response was downregulated in resistant cells. The physiological effect of the acquisition of amoxicillin resistance in cells grown in chemostat cultures consisted of an initial increase in glucose consumption that was followed by an adaptation process. Furthermore, no difference in maintenance energy was observed between resistant and sensitive cells. In accordance with the transcriptomic profile, exposure of resistant cells to amoxicillin resulted in reduced salt and pH tolerance. Taken together, the results demonstrate that the acquisition of antibiotic resistance in E. coli is accompanied by specifically reorganized metabolic networks in order to circumvent metabolic costs. The overall effect of the acquisition of resistance consists not so much of an extra energy requirement, but more a reduced ecological range.
Collapse
|
184
|
Hess DJ, Henry-Stanley MJ, Lusczek ER, Beilman GJ, Wells CL. Anoxia inhibits biofilm development and modulates antibiotic activity. J Surg Res 2013; 184:488-94. [PMID: 23746961 DOI: 10.1016/j.jss.2013.04.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Many infections involve bacterial biofilms that are notoriously antibiotic resistant. Unfortunately, the mechanism for this resistance is unclear. We tested the effect of oxygen concentration on development of Staphylococcus aureus biofilms, and on the ability of gentamicin and vancomycin to inhibit biofilm development. MATERIALS AND METHODS To mimic catheter-associated biofilms, silastic coupons were inoculated with 10(7)S aureus and incubated either aerobically (∼21% O2) or anaerobically (10% CO2, 5% H2, 85% N2) for 16 h at 37°C with varying concentrations of gentamicin and vancomycin. Viable colony-forming units were quantified from sonicated biofilms, and the crystal violet assay quantified biofilm biomass. Metabolomic profiles probed biochemical differences between aerobic and anaerobic biofilms. RESULTS Control biofilms (no antibiotic) cultivated aerobically contained 8.1-8.6 log10S aureus. Anaerobiasis inhibited biofilm development, quantified by viable bacterial numbers and biomass (P < 0.05). Bactericidal concentrations of gentamicin inhibited biofilm development in normoxia but not anoxia, likely because bacterial uptake of gentamicin is oxygen dependent. The inhibitory effect of vancomycin was more uniform aerobically and anaerobically, although at high bactericidal concentrations, vancomycin effectiveness was decreased under anoxia. There were notable differences in the metabolomic profiles of biofilms cultivated under normoxia versus anoxia. CONCLUSIONS Compared with aerobic incubation, anaerobiasis resulted in decreased biofilm development, and metabolomics is a promising tool to identify key compounds involved in biofilm formation. The effectiveness of a specific antibiotic depended on its mode of action, as well as on the oxygen concentration in the environment.
Collapse
Affiliation(s)
- Donavon J Hess
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455-0374, USA.
| | | | | | | | | |
Collapse
|
185
|
Olivares J, Bernardini A, Garcia-Leon G, Corona F, B Sanchez M, Martinez JL. The intrinsic resistome of bacterial pathogens. Front Microbiol 2013; 4:103. [PMID: 23641241 PMCID: PMC3639378 DOI: 10.3389/fmicb.2013.00103] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/11/2013] [Indexed: 11/13/2022] Open
Abstract
Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyze recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.
Collapse
Affiliation(s)
- Jorge Olivares
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | | | | | | | | | |
Collapse
|
186
|
Corona F, Martinez JL. Phenotypic Resistance to Antibiotics. Antibiotics (Basel) 2013; 2:237-55. [PMID: 27029301 PMCID: PMC4790337 DOI: 10.3390/antibiotics2020237] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/22/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022] Open
Abstract
The development of antibiotic resistance is usually associated with genetic changes, either to the acquisition of resistance genes, or to mutations in elements relevant for the activity of the antibiotic. However, in some situations resistance can be achieved without any genetic alteration; this is called phenotypic resistance. Non-inherited resistance is associated to specific processes such as growth in biofilms, a stationary growth phase or persistence. These situations might occur during infection but they are not usually considered in classical susceptibility tests at the clinical microbiology laboratories. Recent work has also shown that the susceptibility to antibiotics is highly dependent on the bacterial metabolism and that global metabolic regulators can modulate this phenotype. This modulation includes situations in which bacteria can be more resistant or more susceptible to antibiotics. Understanding these processes will thus help in establishing novel therapeutic approaches based on the actual susceptibility shown by bacteria during infection, which might differ from that determined in the laboratory. In this review, we discuss different examples of phenotypic resistance and the mechanisms that regulate the crosstalk between bacterial metabolism and the susceptibility to antibiotics. Finally, information on strategies currently under development for diminishing the phenotypic resistance to antibiotics of bacterial pathogens is presented.
Collapse
Affiliation(s)
- Fernando Corona
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049-Madrid, Spain
| | - Jose L Martinez
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049-Madrid, Spain.
| |
Collapse
|
187
|
Dubey D, Rath S, Sahu MC, Pattnaik L, Debata NK, Padhy RN. Surveillance of infection status of drug resistant Staphylococcus aureus in an Indian teaching hospital. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2013. [DOI: 10.1016/s2222-1808(13)60057-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
188
|
Masi M, Pagès JM. Structure, Function and Regulation of Outer Membrane Proteins Involved in Drug Transport in Enterobactericeae: the OmpF/C - TolC Case. Open Microbiol J 2013; 7:22-33. [PMID: 23569467 PMCID: PMC3617542 DOI: 10.2174/1874285801307010022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 11/26/2022] Open
Abstract
Antibiotic translocation across membranes of Gram-negative bacteria is a key step for the activity on their specific intracellular targets. Resistant bacteria control their membrane permeability as a first line of defense to protect themselves against external toxic compounds such as antibiotics and biocides. On one hand, resistance to small hydrophilic antibiotics such as ß-lactams and fluoroquinolones frequently results from the « closing » of their way in: the general outer membrane porins. On the other hand, an effective way out for a wide range of antibiotics is provided by TolC-like proteins, which are outer membrane components of multidrug efflux pumps. Accordingly, altered membrane permeability, including porin modifications and/or efflux pumps’ overexpression, is always associated to multidrug resistance (MDR) in a number of clinical isolates. Several recent studies have highlighted our current understanding of porins/TolC structures and functions in Enterobacteriaceae. Here, we review the transport of antibiotics through the OmpF/C general porins and the TolC-like channels with regards to recent data on their structure, function, assembly, regulation and contribution to bacterial resistance. Because MDR strains have evolved global strategies to identify and fight our antibiotic arsenal, it is important to constantly update our global knowledge on antibiotic transport.
Collapse
Affiliation(s)
- Muriel Masi
- CNRS-UMR 8619, Institut de Biophysique et de Biochimie Moléculaire et Cellulaire (IBBMC), Université Paris Sud, Orsay, France
| | | |
Collapse
|
189
|
Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 2013; 152:39-50. [PMID: 23332745 DOI: 10.1016/j.cell.2012.10.052] [Citation(s) in RCA: 571] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/12/2012] [Accepted: 10/29/2012] [Indexed: 01/03/2023]
Abstract
The human gut contains trillions of microorganisms that influence our health by metabolizing xenobiotics, including host-targeted drugs and antibiotics. Recent efforts have characterized the diversity of this host-associated community, but it remains unclear which microorganisms are active and what perturbations influence this activity. Here, we combine flow cytometry, 16S rRNA gene sequencing, and metatranscriptomics to demonstrate that the gut contains a distinctive set of active microorganisms, primarily Firmicutes. Short-term exposure to a panel of xenobiotics significantly affected the physiology, structure, and gene expression of this active gut microbiome. Xenobiotic-responsive genes were found across multiple bacterial phyla, encoding antibiotic resistance, drug metabolism, and stress response pathways. These results demonstrate the power of moving beyond surveys of microbial diversity to better understand metabolic activity, highlight the unintended consequences of xenobiotics, and suggest that attempts at personalized medicine should consider interindividual variations in the active human gut microbiome.
Collapse
Affiliation(s)
- Corinne Ferrier Maurice
- FAS Center for Systems Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
190
|
Sengupta S, Chattopadhyay MK, Grossart HP. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol 2013; 4:47. [PMID: 23487476 PMCID: PMC3594987 DOI: 10.3389/fmicb.2013.00047] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/20/2013] [Indexed: 12/14/2022] Open
Abstract
Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic-resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic resistance in pathogens. In the natural milieu, antibiotics are often found to be present in sub-inhibitory concentrations acting as signaling molecules supporting the process of quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell, and so on). The evolutionary and ecological aspects of antibiotics and antibiotic resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behavior of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and the genes that confer resistance to antibiotics in nature.
Collapse
|
191
|
Berthelot JM, de la Cochetière MF, Potel G, Le Goff B, Maugars Y. Evidence supporting a role for dormant bacteria in the pathogenesis of spondylarthritis. Joint Bone Spine 2013; 80:135-40. [PMID: 23473929 DOI: 10.1016/j.jbspin.2012.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2012] [Indexed: 12/18/2022]
Abstract
Spondylarthritis is still viewed as a reaction to infectious agents, as opposed to an infection by persistent bacteria, for several reasons: (a) an infection is considered proven only when the organism can be cultured; (b) no studies have identified dormant bacteria in the tissues targeted by spondylarthritis; (c) the bacterial persistence hypothesis has no therapeutic implications at the time being, since antibiotics are effective neither on dormant bacteria nor on the manifestations of spondylarthritis; and (d) the high prevalence of borderline disorders combining features of spondylarthritis and of psoriatic arthritis, or even rheumatoid arthritis (RA), would indicate a role for dormant bacteria in these last two diseases. However, recent data on dormant bacteria have rekindled interest in the bacterial persistence hypothesis. Dormant bacteria cannot be cultured, because they express only a small group of genes, known as the regulon, which includes genes for transcription factors that block the expression of the usual bacterial genes. Certain forms of cell stress, such as molecule misfolding, promote the entry of bacteria into a state of dormancy, which induces the low-level release by the host cells of cytokines such as TNF. Whether HLA-B27 misfolding facilitates the persistence of dormant bacteria within spondylarthritis tissue targets remains to be determined. If it does, then treatments that reactivate dormant bacteria might make these organisms susceptible to appropriate antibiotics and might therefore serve as useful adjuncts to nonsteroidal anti-inflammatory drugs and TNFα antagonists. TNFα antagonists rarely reactivate dormant bacteria, with the exception of Mycobacterium tuberculosis, which, together with metastatic cells, is the most extensively studied latency model to date.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Service de Rhumatologie, Hôtel-Dieu, CHU de Nantes, place Alexis-Ricordeau, 44093 Nantes cedex 01, France.
| | | | | | | | | |
Collapse
|
192
|
Baquero F, Tedim AP, Coque TM. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol 2013; 4:15. [PMID: 23508522 PMCID: PMC3589745 DOI: 10.3389/fmicb.2013.00015] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/22/2013] [Indexed: 12/21/2022] Open
Abstract
Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Ana P. Tedim
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
| | - Teresa M. Coque
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
193
|
Alvarez-Ortega C, Olivares J, Martínez JL. RND multidrug efflux pumps: what are they good for? Front Microbiol 2013; 4:7. [PMID: 23386844 PMCID: PMC3564043 DOI: 10.3389/fmicb.2013.00007] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/07/2013] [Indexed: 01/27/2023] Open
Abstract
Multidrug efflux pumps are chromosomally encoded genetic elements capable of mediating resistance to toxic compounds in several life forms. In bacteria, these elements are involved in intrinsic and acquired resistance to antibiotics. Unlike other well-known horizontally acquired antibiotic resistance determinants, genes encoding for multidrug efflux pumps belong to the core of bacterial genomes and thus have evolved over millions of years. The selective pressure stemming from the use of antibiotics to treat bacterial infections is relatively recent in evolutionary terms. Therefore, it is unlikely that these elements have evolved in response to antibiotics. In the last years, several studies have identified numerous functions for efflux pumps that go beyond antibiotic extrusion. In this review we present some examples of these functions that range from bacterial interactions with plant or animal hosts, to the detoxification of metabolic intermediates or the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Carolina Alvarez-Ortega
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | | | |
Collapse
|
194
|
The Inactivation of intrinsic antibiotic resistance determinants widens the mutant selection window for quinolones in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2012; 56:6397-9. [PMID: 23006759 DOI: 10.1128/aac.01558-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have determined that the mutational inactivation of the SmeDEF efflux pump and the SmQnr quinolone resistance protein widens the mutant selection windows for ofloxacin and ciprofloxacin of Stenotrophomonas maltophilia by reducing their MICs. Resistant mutants arising from a strain lacking SmeDEF and SmQnr presented levels of susceptibility similar to those of the wild-type strain. This indicates that inactivation of intrinsic resistance determinants might increase the chances for selecting resistant mutants at low antibiotic concentrations.
Collapse
|
195
|
Abstract
The analysis of the genomes of bacterial pathogens indicates that they have acquired their pathogenic capability by incorporating different genetic elements through horizontal gene transfer. The ancestors of virulent bacteria, as well as the origin of virulence determinants, lay most likely in the environmental microbiota. Studying the role that these determinants may have in non-clinical ecosystems is thus of value for understanding in detail the evolution and the ecology of bacterial pathogens. In this article, I propose that classical virulence determinants might be relevant for basic metabolic processes (for instance iron-uptake systems) or in modulating prey/predator relationships (toxins) in natural, non-infective ecosystems. The different role that horizontal gene transfer and mutation may have in the evolution of bacterial pathogens either for their speciation or in short-sighted evolution processes is also discussed.
Collapse
Affiliation(s)
- José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Darwin 3, Cantoblanco, 28049-Madrid, Spain.
| |
Collapse
|
196
|
Goll J, Thiagarajan M, Abubucker S, Huttenhower C, Yooseph S, Methé BA. A case study for large-scale human microbiome analysis using JCVI's metagenomics reports (METAREP). PLoS One 2012; 7:e29044. [PMID: 22719821 PMCID: PMC3374610 DOI: 10.1371/journal.pone.0029044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/16/2011] [Indexed: 01/23/2023] Open
Abstract
As metagenomic studies continue to increase in their number, sequence volume and complexity, the scalability of biological analysis frameworks has become a rate-limiting factor to meaningful data interpretation. To address this issue, we have developed JCVI Metagenomics Reports (METAREP) as an open source tool to query, browse, and compare extremely large volumes of metagenomic annotations. Here we present improvements to this software including the implementation of a dynamic weighting of taxonomic and functional annotation, support for distributed searches, advanced clustering routines, and integration of additional annotation input formats. The utility of these improvements to data interpretation are demonstrated through the application of multiple comparative analysis strategies to shotgun metagenomic data produced by the National Institutes of Health Roadmap for Biomedical Research Human Microbiome Project (HMP) (http://nihroadmap.nih.gov). Specifically, the scalability of the dynamic weighting feature is evaluated and established by its application to the analysis of over 400 million weighted gene annotations derived from 14 billion short reads as predicted by the HMP Unified Metabolic Analysis Network (HUMAnN) pipeline. Further, the capacity of METAREP to facilitate the identification and simultaneous comparison of taxonomic and functional annotations including biological pathway and individual enzyme abundances from hundreds of community samples is demonstrated by providing scenarios that describe how these data can be mined to answer biological questions related to the human microbiome. These strategies provide users with a reference of how to conduct similar large-scale metagenomic analyses using METAREP with their own sequence data, while in this study they reveal insights into the nature and extent of variation in taxonomic and functional profiles across body habitats and individuals. Over one thousand HMP WGS datasets and the latest open source code are available at http://www.jcvi.org/hmp-metarep.
Collapse
Affiliation(s)
- Johannes Goll
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Sahar Abubucker
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Curtis Huttenhower
- Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Shibu Yooseph
- The J. Craig Venter Institute, San Diego, California, United States of America
| | - Barbara A. Methé
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
197
|
Heilman BJ, St. John J, Oliver SRJ, Mascharak PK. Light-Triggered Eradication of Acinetobacter baumannii by Means of NO Delivery from a Porous Material with an Entrapped Metal Nitrosyl. J Am Chem Soc 2012; 134:11573-82. [DOI: 10.1021/ja3022736] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brandon J. Heilman
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz,
California 95064, United States
| | - Jessica St. John
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz,
California 95064, United States
| | - Scott R. J. Oliver
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz,
California 95064, United States
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz,
California 95064, United States
| |
Collapse
|
198
|
Li P, Liu X, Li H, Peng XX. Downregulation of Na(+)–NQR complex is essential for Vibrio alginolyticus in resistance to balofloxacin. J Proteomics 2012; 75:2638-48. [DOI: 10.1016/j.jprot.2012.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/14/2012] [Accepted: 03/10/2012] [Indexed: 02/01/2023]
|
199
|
The relative contributions of physical structure and cell density to the antibiotic susceptibility of bacteria in biofilms. Antimicrob Agents Chemother 2012; 56:2967-75. [PMID: 22450987 DOI: 10.1128/aac.06480-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For many bacterial infections, noninherited mechanisms of resistance are responsible for extending the term of treatment and in some cases precluding its success. Among the most important of these noninherited mechanisms of resistance is the ability of bacteria to form biofilms. There is compelling evidence that bacteria within biofilms are more refractory to antibiotics than are planktonic cells. Not so clear, however, is the extent to which this resistance can be attributed to the structure of biofilms rather than the physiology and density of bacteria within them. To explore the contribution of the structure of biofilms to resistance in a quantitative way, we developed an assay that compares the antibiotic sensitivity of bacteria in biofilms to cells mechanically released from these structures. Our method, which we apply to Escherichia coli and Staphylococcus aureus each with antibiotics of five classes, controls for the density and physiological state of the treated bacteria. For most of the antibiotics tested, the bacteria in biofilms were no more resistant than the corresponding populations of planktonic cells of similar density. Our results, however, suggest that killing by gentamicin, streptomycin, and colistin is profoundly inhibited by the structure of biofilms; these drugs are substantially more effective in killing bacteria released from biofilms than cells within these structures.
Collapse
|
200
|
Sandalakis V, Psaroulaki A, De Bock PJ, Christidou A, Gevaert K, Tsiotis G, Tselentis Y. Investigation of rifampicin resistance mechanisms in Brucella abortus using MS-driven comparative proteomics. J Proteome Res 2012; 11:2374-85. [PMID: 22360387 DOI: 10.1021/pr201122w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mutations in the rpoB gene have already been shown to contribute to rifampicin resistance in many bacterial strains including Brucella species. Resistance against this antibiotic easily occurs and resistant strains have already been detected in human samples. We here present the first research project that combines proteomic, genomic, and microbiological analysis to investigate rifampicin resistance in an in vitro developed rifampicin resistant strain of Brucella abortus 2308. In silico analysis of the rpoB gene was performed and several antibiotics used in the therapy of Brucellosis were used for cross resistance testing. The proteomic profiles were examined and compared using MS-driven comparative proteomics. The resistant strain contained an already described mutation in the rpoB gene, V154F. A correlation between rifampicin resistance and reduced susceptibility on trimethoprim/sulfamethoxazole was detected by E-test and supported by the proteomics results. Using 12 836 MS/MS spectra we identified 6753 peptides corresponding to 456 proteins. The resistant strain presented 39 differentially regulated proteins most of which are involved in various metabolic pathways. Results from our research suggest that rifampicin resistance in Brucella mostly involves mutations in the rpoB gene, excitation of several metabolic processes, and perhaps the use of the already existing secretion mechanisms at a more efficient level.
Collapse
Affiliation(s)
- Vassilios Sandalakis
- Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Medical School, University of Crete, GR-71110 Heraklion, Greece
| | | | | | | | | | | | | |
Collapse
|