151
|
Secreted gingipains from Porphyromonas gingivalis colonies exert potent immunomodulatory effects on human gingival fibroblasts. Microbiol Res 2015; 178:18-26. [PMID: 26302843 DOI: 10.1016/j.micres.2015.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/05/2015] [Accepted: 05/28/2015] [Indexed: 11/23/2022]
Abstract
Periodontal pathogens, including Porphyromonas gingivalis, can form biofilms in dental pockets and cause inflammation, which is one of the underlying mechanisms involved in the development of periodontal disease, ultimately leading to tooth loss. Although P. gingivalis is protected in the biofilm, it can still cause damage and modulate inflammatory responses from the host, through secretion of microvesicles containing proteinases. The aim of this study was to evaluate the role of cysteine proteinases in P. gingivalis colony growth and development, and subsequent immunomodulatory effects on human gingival fibroblast. By comparing the wild type W50 with its gingipain deficient strains we show that cysteine proteinases are required by P. gingivalis to form morphologically normal colonies. The lysine-specific proteinase (Kgp), but not arginine-specific proteinases (Rgps), was associated with immunomodulation. P. gingivalis with Kgp affected the viability of gingival fibroblasts and modulated host inflammatory responses, including induction of TGF-β1 and suppression of CXCL8 and IL-6 accumulation. These results suggest that secreted products from P. gingivalis, including proteinases, are able to cause damage and significantly modulate the levels of inflammatory mediators, independent of a physical host-bacterial interaction. This study provides new insight of the pathogenesis of P. gingivalis and suggests gingipains as targets for diagnosis and treatment of periodontitis.
Collapse
|
152
|
Tokutomi F, Wada-Takahashi S, Sugiyama S, Toyama T, Sato T, Hamada N, Tsukinoki K, Takahashi SS, Lee MCI. Porphyromonas gingivalis-induced alveolar bone loss is accelerated in the stroke-prone spontaneously hypertensive rat. Arch Oral Biol 2015; 60:911-8. [DOI: 10.1016/j.archoralbio.2015.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 11/27/2014] [Accepted: 02/13/2015] [Indexed: 02/05/2023]
|
153
|
Yang Q, Yu F, Sun L, Zhang Q, Lin M, Geng X, Sun X, Li J, Liu Y. Identification of amino acid residues involved in hemin binding inPorphyromonas gingivalishemagglutinin 2. Mol Oral Microbiol 2015; 30:337-46. [PMID: 25833325 DOI: 10.1111/omi.12097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Q.B. Yang
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - F.Y. Yu
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - L. Sun
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - Q.X. Zhang
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - M. Lin
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - X.Y. Geng
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - X.N. Sun
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - J.L. Li
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - Y. Liu
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| |
Collapse
|
154
|
Porphyromonas gingivalis Periodontal Infection and Its Putative Links with Alzheimer's Disease. Mediators Inflamm 2015; 2015:137357. [PMID: 26063967 PMCID: PMC4430664 DOI: 10.1155/2015/137357] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/01/2015] [Indexed: 12/18/2022] Open
Abstract
Periodontal disease (PD) and Alzheimer's disease (AD) are inflammatory conditions affecting the global adult population. In the pathogenesis of PD, subgingival complex bacterial biofilm induces inflammation that leads to connective tissue degradation and alveolar bone resorption around the teeth. In health, junctional epithelium seals the gingiva to the tooth enamel, thus preventing bacteria from entering the gingivae. Chronic PD involves major pathogens (Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia) which have an immune armoury that can circumvent host's immune surveillance to create and maintain an inflammatory mediator rich and toxic environment to grow and survive. The neurodegenerative condition, AD, is characterised by poor memory and specific hallmark proteins; periodontal pathogens are increasingly being linked with this dementing condition. It is therefore becoming important to understand associations of periodontitis with relevance to late-onset AD. The aim of this review is to discuss the relevance of finding the keystone periodontal pathogen P. gingivalis in AD brains and its plausible contribution to the aetiological hypothesis of this dementing condition.
Collapse
|
155
|
Ibrahim MI, Abdelhafeez MA, Ellaithy MI, Salama AH, Amin AS, Eldakrory H, Elhadad NI. Can Porphyromonas gingivalis be a novel aetiology for recurrent miscarriage? EUR J CONTRACEP REPR 2015; 20:119-27. [PMID: 25328050 DOI: 10.3109/13625187.2014.962651] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To study the association between Porphyromonas gingivalis (P. gingivalis) infection and recurrent miscarriage. METHODS This case control study included women with early pregnancy failure admitted for surgical evacuation of retained products of conception. Cases (group 1) included 50 women with unexplained recurrent early miscarriage whereas the control group (group 2) consisted of 50 women with no such history. The evacuated products of conception, subgingival plaques, cervicovaginal secretions and saliva of all participants were examined to detect P. gingivalis deoxyribonucleic acid (DNA) using a polymerase chain reaction. RESULTS The prevalence of P. gingivalis DNA in the chorionic villous tissue samples of group 1 was significantly higher than in group 2 (8 [16%] vs. 1 [2%], respectively; p = 0.036, odds ratio [OR]: 9.3, 95% confidence interval [CI]: 1.1-76.9). The prevalence of P. gingivalis DNA was significantly higher in cervicovaginal secretions of group 1 than in group 2 (9 [18%] vs. 1 [2%], respectively; p = 0.02, OR: 10.8, 95% CI: 1.3-88.5). On the contrary, P. gingivalis DNA could not be detected in subgingival plaques and saliva samples of either group. CONCLUSION The current study found an association between P. gingivalis infection of the female genital tract and the occurrence of recurrent miscarriage.
Collapse
Affiliation(s)
- Moustafa I Ibrahim
- * Obstetrics & Gynaecology Department, Ain-Shams Faculty of Medicine , Cairo , Egypt
| | | | | | | | | | | | | |
Collapse
|
156
|
Li Y, Miao YS, Fu Y, Li XT, Yu SJ. Attenuation of Porphyromonas gingivalis oral infection by α-amylase and pentamidine. Mol Med Rep 2015; 12:2155-60. [PMID: 25846026 DOI: 10.3892/mmr.2015.3584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 07/04/2014] [Indexed: 11/06/2022] Open
Abstract
The Porphyromonas gingivalis bacterium is one of the most influential pathogens in oral infections. In the current study, the antimicrobial activity of α-amylase and pentamidine against Porphyromonas gingivalis was evaluated. Their in vitro inhibitory activity was investigated with the agar overlay technique, and the minimal inhibitory and bactericidal concentrations were determined. Using the bactericidal concentration, the antimicrobial actions of the inhibitors were investigated. In the present study, multiple techniques were utilized, including scanning electron microscopy (SEM), general structural analysis and differential gene expression analysis. The results obtained from SEM and bactericidal analysis indicated a notable observation; the pentamidine and α-amylase treatment destroyed the structure of the bacterial cell membranes, which led to cell death. These results were used to further explore these inhibitors and the mechanisms by which they act. Downregulated expression levels were observed for a number of genes coding for hemagglutinins and gingipains, and various genes involved in hemin uptake, chromosome replication and energy production. However, the expression levels of genes associated with iron storage and oxidative stress were upregulated by α-amylase and pentamidine. A greater effect was noted in response to pentamidine treatment. The results of the present study demonstrate promising therapeutic potential for α-amylases and pentamidine. These molecules have the potential to be used to develop novel drugs and broaden the availability of pharmacological tools for the attenuation of oral infections caused by Porphyromonas gingivalis.
Collapse
Affiliation(s)
- Ying Li
- Department of Periodontology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yu-Song Miao
- Department of Dental Science, Guangzhou Chest Hospital, Guangzhou, Guangdong 510055, P.R. China
| | - Yun Fu
- Department of Periodontology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Xi-Ting Li
- Department of Periodontology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Shao-Jie Yu
- Department of Periodontology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
157
|
Sánchez GA, Acquier AB, De Couto A, Busch L, Mendez CF. Association between Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis in subgingival plaque and clinical parameters, in Argentine patients with aggressive periodontitis. Microb Pathog 2015; 82:31-6. [PMID: 25812474 DOI: 10.1016/j.micpath.2015.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/17/2015] [Accepted: 03/23/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Aggregatibacter actinomycetemcomitans (Aa) and Porphyromonas gingivalis (Pg) have been associated with aggressive (AgP) and chronic periodontitis. OBJECTIVE The aim of this study was to evaluate the levels of Aa and Pg in gingival crevicular fluid (GCF) of patients with AgP and its relation with clinical parameters. DESIGN Sixteen females and fourteen males with clinical diagnosis of AgP aged 17-23 years and their match's controls, were included in this study. Clinical recording concerning probing pocket depth, clinical attachment level, plaque index and gingival bleeding index were performed at baseline, 30 and 60 days after baseline. After clinical examination GCF samples were analyzed for Aa and Pg with a real-time polymerase chain reaction technique. Patients group was treated with a combined of mechanical and oral antibiotic therapy (doxycycline 100 mg/day, during 21 days). A multivariate analysis was used to determine the relationship between Aa and Pg counts with clinical parameters. RESULTS GCF from all subjects was positive for Aa and PG. In controls Pg concentration was higher than Aa (Pg: 42,420 ± 3,034 copies/ml; Aa: 66.6 ± 5.4 copies/ml p < 0.001) while in patients both microbes showed the same concentration (Aa: 559,878 ± 39,698 Pg: 572,321 ± 58,752). A significant and positive correlation was observed between counts of Aa and Pg (R square: 0.7965, p < 0.0001). Female showed more counts/ml. Aa might be closely associated with clinical parameters while Pg did not. At 30 and 60 days Aa counts in patients were similar to controls while Pg counts were equal to baseline. However, in spite of Pg presence a clinical improvement was observed in all patients. CONCLUSIONS In our population the presence of Aa may be associated with AgP while Pg may be in GCF as an opportunistic pathogen which might caused disease when the ecological balance was favorable.
Collapse
Affiliation(s)
- Gabriel A Sánchez
- Department of Biophysics, Faculty of Dentistry, University of Buenos Aires, Argentina.
| | - Andrea B Acquier
- Department of Pharmacology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - Alejandra De Couto
- Department of Pharmacology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - Lucila Busch
- Department of Pharmacology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - Carlos F Mendez
- Department of Pharmacology, Faculty of Dentistry, University of Buenos Aires, Argentina
| |
Collapse
|
158
|
Chen H, Liu Y, Zhang M, Wang G, Qi Z, Bridgewater L, Zhao L, Tang Z, Pang X. A Filifactor alocis-centered co-occurrence group associates with periodontitis across different oral habitats. Sci Rep 2015; 5:9053. [PMID: 25761675 PMCID: PMC4356962 DOI: 10.1038/srep09053] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/16/2015] [Indexed: 01/04/2023] Open
Abstract
Periodontitis is a highly prevalent polymicrobial disease worldwide, yet the synergistic pattern of the multiple oral pathogens involved is still poorly characterized. Here, saliva, supragingival and subgingival plaque samples from periodontitis patients and periodontally healthy volunteers were collected and profiled with 16S rRNA gene pyrosequencing. Different oral habitats harbored significantly different microbiota, and segregation of microbiota composition between periodontitis and health was observed as well. Two-step redundancy analysis identified twenty-one OTUs, including Porphyromonas gingivalis, Tannerella forsythia and Filifactor alocis, as potential pathogens that were significantly associated with periodontitis and with two periodontitis diagnostic parameters (pocket depth and attachment loss) in both saliva and supragingival plaque habitats. Interestingly, pairwise correlation analysis among the 21 OTUs revealed that Filifactor alocis was positively correlated with seven other putative pathogens (R > 0.6, P < 0.05), forming a co-occurrence group that was remarkably enriched in all three habitats of periodontitis patients. This bacterial cluster showed a higher diagnostic value for periodontitis than did any individual potential pathogens, especially in saliva. Thus, our study identified a potential synergistic ecological pattern involving eight co-infecting pathogens across various oral habitats, providing a new framework for understanding the etiology of periodontitis and developing new diagnoses and therapies.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Liu
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guoyang Wang
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengnan Qi
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Laura Bridgewater
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602, USA
| | - Liping Zhao
- 1] State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China [2] Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zisheng Tang
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Xiaoyan Pang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
159
|
Ruan Y, Shen L, Zou Y, Qi Z, Yin J, Jiang J, Guo L, He L, Chen Z, Tang Z, Qin S. Comparative genome analysis of Prevotella intermedia strain isolated from infected root canal reveals features related to pathogenicity and adaptation. BMC Genomics 2015; 16:122. [PMID: 25765460 PMCID: PMC4349605 DOI: 10.1186/s12864-015-1272-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/22/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Many species of the genus Prevotella are pathogens that cause oral diseases. Prevotella intermedia is known to cause various oral disorders e.g. periodontal disease, periapical periodontitis and noma as well as colonize in the respiratory tract and be associated with cystic fibrosis and chronic bronchitis. It is of clinical significance to identify the main drive of its various adaptation and pathogenicity. In order to explore the intra-species genetic differences among strains of Prevotella intermedia of different niches, we isolated a strain Prevotella intermedia ZT from the infected root canal of a Chinese patient with periapical periodontitis and gained a draft genome sequence. We annotated the genome and compared it with the genomes of other taxa in the genus Prevotella. RESULTS The raw data set, consisting of approximately 65X-coverage reads, was trimmed and assembled into contigs from which 2165 ORFs were predicted. The comparison of the Prevotella intermedia ZT genome sequence with the published genome sequence of Prevotella intermedia 17 and Prevotella intermedia ATCC25611 revealed that ~14% of the genes were strain-specific. The Preveotella intermedia strains share a set of conserved genes contributing to its adaptation and pathogenic and possess strain-specific genes especially those involved in adhesion and secreting bacteriocin. The Prevotella intermedia ZT shares similar gene content with other taxa of genus Prevotella. The genomes of the genus Prevotella is highly dynamic with relative conserved parts: on average, about half of the genes in one Prevotella genome were not included in another genome of the different Prevotella species. The degree of conservation varied with different pathways: the ability of amino acid biosynthesis varied greatly with species but the pathway of cell wall components biosynthesis were nearly constant. Phylogenetic tree shows that the taxa from different niches are scarcely distributed among clades. CONCLUSIONS Prevotella intermedia ZT belongs to a genus marked with highly dynamic genomes. The specific genes of Prevotella intermedia indicate that adhesion, competing with surrounding microbes and horizontal gene transfer are the main drive of the evolution of Prevotella intermedia.
Collapse
Affiliation(s)
- Yunfeng Ruan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
- Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
- Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Yan Zou
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Zhengnan Qi
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jun Yin
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
| | - Liang Guo
- The Fourth Hospital of Jinan City; Taishan Medical College, Jinan, 250031, China.
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
- Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Zijiang Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| | - Zisheng Tang
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
- Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| |
Collapse
|
160
|
Inhibition of initial bacterial adhesion on titanium surfaces by lactoferrin coating. Biointerphases 2015; 9:029006. [PMID: 24985210 DOI: 10.1116/1.4867415] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Because dental implant abutments are located at transmucosal sites, their surface should inhibit bacterial accumulation to prevent peri-implantitis. The authors examined the effects of human lactoferrin (LF), an antibacterial protein present in saliva, as an antibacterial coating on the titanium surface and evaluated its effects before and after mucin-containing artificial saliva (AS) incubation. In the control group, titanium disks were soaked in distilled water, whereas in the LF group, titanium disks were soaked in LF solution to coat the disks. In the control-AS and LF-AS groups, half of the control and LF disks were incubated with AS. To confirm LF adsorption, the fluorescence intensity of fluorescein isothiocyanate-labeled LF was measured. The LF and LF-AS groups showed significantly higher intensity than the control and control-AS groups (P < 0.01). There was no significant difference between the LF and LF-AS groups (P > 0.05). The amount of adhered Streptococcus gordonii significantly increased by incubation with AS (P < 0.01) and significantly decreased by adsorption of LF (P < 0.01). There was no interaction between the two factors, LF adsorption and AS incubation (P = 0.561). These results suggest that the adsorbed LF inhibited bacterial adhesion following AS incubation. According to qualitative LIVE/DEAD analysis, viable bacteria appeared to be decreased in the presence of LF and SEM observation indicated that altered morphologies increased in LF and LF-AS groups. These results suggest that the adsorbed LF remained on the titanium surface after incubation with AS, and the remaining LF inhibited bacterial adhesion and exhibited bactericidal effects. Therefore, the adsorption of LF on the abutment material appears to be effective in preventing peri-implantitis.
Collapse
|
161
|
Onozawa S, Kikuchi Y, Shibayama K, Kokubu E, Nakayama M, Inoue T, Nakano K, Shibata Y, Ohara N, Nakayama K, Ishihara K, Kawakami T, Hasegawa H. Role of extracytoplasmic function sigma factors in biofilm formation of Porphyromonas gingivalis. BMC Oral Health 2015; 15:4. [PMID: 25596817 PMCID: PMC4324044 DOI: 10.1186/1472-6831-15-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/09/2015] [Indexed: 12/04/2022] Open
Abstract
Background Porphyromonas gingivalis has been implicated as a major pathogen in the development and progression of chronic periodontitis. P. gingivalis biofilm formation in the subgingival crevice plays an important role in the ability of the bacteria to tolerate stress signals outside the cytoplasmic membrane. Some bacteria use a distinct subfamily of sigma factors to regulate their extracytoplasmic functions (the ECF subfamily). The objective of this study was to determine if P. gingivalis ECF sigma factors affect P. gingivalis biofilm formation. Methods To elucidate the role of ECF sigma factors in P. gingivalis, chromosomal mutants carrying a disruption of each ECF sigma factor-encoding gene were constructed. Bacterial growth curves were measured by determining the turbidity of bacterial cultures. The quantity of biofilm growing on plates was evaluated by crystal violet staining. Results Comparison of the growth curves of wild-type P. gingivalis strain 33277 and the ECF mutants indicated that the growth rate of the mutants was slightly lower than that of the wild-type strain. The PGN_0274- and PGN_1740-defective mutants had increased biofilm formation compared with the wild-type (p < 0.001); however, the other ECF sigma factor mutants or the complemented strains did not enhance biofilm formation. Conclusion These results suggest that PGN_0274 and PGN_1740 play a key role in biofilm formation by P. gingivalis. Electronic supplementary material The online version of this article (doi:10.1186/1472-6831-15-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Yuichiro Kikuchi
- Oral Health Science Center, Tokyo Dental College, 2-9-18, Misaki-cho, Chiyoda-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Klein BA, Duncan MJ, Hu LT. Defining essential genes and identifying virulence factors of Porphyromonas gingivalis by massively parallel sequencing of transposon libraries (Tn-seq). Methods Mol Biol 2015; 1279:25-43. [PMID: 25636611 PMCID: PMC4824196 DOI: 10.1007/978-1-4939-2398-4_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen in the development and progression of periodontal disease. Obstacles to the development of saturated transposon libraries have previously limited transposon mutant-based screens as well as essential gene studies. We have developed a system for efficient transposon mutagenesis of P. gingivalis using a modified mariner transposon. Tn-seq is a technique that allows for quantitative assessment of individual mutants within a transposon mutant library by sequencing the transposon-genome junctions and then compiling mutant presence by mapping to a base genome. Using Tn-seq, it is possible to quickly define all the insertional mutants in a library and thus identify nonessential genes under the conditions in which the library was produced. Identification of fitness of individual mutants under specific conditions can be performed by exposing the library to selective pressures.
Collapse
Affiliation(s)
- Brian A Klein
- Graduate Program of Molecular Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
163
|
Baek KJ, Ji S, Kim YC, Choi Y. Association of the invasion ability of Porphyromonas gingivalis with the severity of periodontitis. Virulence 2015; 6:274-81. [PMID: 25616643 PMCID: PMC4601282 DOI: 10.1080/21505594.2014.1000764] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 12/12/2022] Open
Abstract
Porphyromonas gingivalis is one of the well-characterized periodontal pathogens involved in periodontitis. The invasive and proteolytic activities of P. gingivalis clinical isolates have been shown to be associated with heterogenic virulence, as determined in a mouse abscess model. The aims of the present study were to identify a P. gingivalis strain with a low virulence among clinical isolates, based on its invasive ability and cytokine proteolytic activities, and to explore the preferential degradation of a certain cytokine by P. gingivalis. P. gingivalis ATCC 33277, W50, and 10 clinical isolates were used. After incubating bacteria with IL-4, IL-6, IL-10, IL-17A, TNFα, IFNγ, and IL-1α, the amounts of remaining cytokines were determined by ELISA. Invasion ability was measured by a flow cytometric invasion assay. There was inter-strain variability both in the cytokine proteolytic activities and invasion ability. In addition, differential degradation of cytokines by P. gingivalis was observed: while IFNγ and IL-17A were almost completely degraded, inflammatory cytokines TNFα and IL-1α were less susceptible to degradation. Interestingly, the invasion index, but not cytokine proteolytic activities, of P. gingivalis had strong positive correlations with clinical parameters of subjects who harbored the isolates. Therefore, the invasive ability of P. gingivalis is an important virulence factor, and the bacterial invasion step may be a good target for new therapeutics of periodontitis.
Collapse
Affiliation(s)
- Keum Jin Baek
- Department of Immunology and Molecular Microbiology; School of Dentistry and Dental Research Institute; Seoul National University; Korea
| | - Suk Ji
- Department of Periodontology; Anam Hospital; Korea University; Korea
| | - Yong Chul Kim
- Department of Immunology and Molecular Microbiology; School of Dentistry and Dental Research Institute; Seoul National University; Korea
| | - Youngnim Choi
- Department of Immunology and Molecular Microbiology; School of Dentistry and Dental Research Institute; Seoul National University; Korea
| |
Collapse
|
164
|
Gokyu M, Kobayashi H, Nanbara H, Sudo T, Ikeda Y, Suda T, Izumi Y. Thrombospondin-1 production is enhanced by Porphyromonas gingivalis lipopolysaccharide in THP-1 cells. PLoS One 2014; 9:e115107. [PMID: 25501558 PMCID: PMC4264871 DOI: 10.1371/journal.pone.0115107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/18/2014] [Indexed: 01/13/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease caused by gram-negative anaerobic bacteria. Monocytes and macrophages stimulated by periodontopathic bacteria induce inflammatory mediators that cause tooth-supporting structure destruction and alveolar bone resorption. In this study, using a DNA microarray, we identified the enhanced gene expression of thrombospondin-1 (TSP-1) in human monocytic cells stimulated by Porphyromonas gingivalis lipopolysaccharide (LPS). TSP-1 is a multifunctional extracellular matrix protein that is upregulated during the inflammatory process. Recent studies have suggested that TSP-1 is associated with rheumatoid arthritis, diabetes mellitus, and osteoclastogenesis. TSP-1 is secreted from neutrophils, monocytes, and macrophages, which mediate immune responses at inflammatory regions. However, TSP-1 expression in periodontitis and the mechanisms underlying TSP-1 expression in human monocytic cells remain unknown. Here using real-time RT-PCR, we demonstrated that TSP-1 mRNA expression level was significantly upregulated in inflamed periodontitis gingival tissues and in P. gingivalis LPS-stimulated human monocytic cell line THP-1 cells. TSP-1 was expressed via Toll-like receptor (TLR) 2 and TLR4 pathways. In P. gingivalis LPS stimulation, TSP-1 expression was dependent upon TLR2 through the activation of NF-κB signaling. Furthermore, IL-17F synergistically enhanced P. gingivalis LPS-induced TSP-1 production. These results suggest that modulation of TSP-1 expression by P. gingivalis plays an important role in the progression and chronicity of periodontitis. It may also contribute a new target molecule for periodontal therapy.
Collapse
Affiliation(s)
- Misa Gokyu
- Periodontology, Bio-Matrix Department, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Kobayashi
- Periodontology, Bio-Matrix Department, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | - Hiromi Nanbara
- Periodontology, Bio-Matrix Department, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeaki Sudo
- Periodontology, Bio-Matrix Department, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuichi Ikeda
- Periodontology, Bio-Matrix Department, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomonari Suda
- Periodontology, Bio-Matrix Department, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuichi Izumi
- Periodontology, Bio-Matrix Department, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
165
|
Nadkarni MA, Chhour KL, Chapple CC, Nguyen KA, Hunter N. The profile of Porphyromonas gingivalis kgp biotype and fimA genotype mosaic in subgingival plaque samples. FEMS Microbiol Lett 2014; 361:190-4. [PMID: 25353706 DOI: 10.1111/1574-6968.12631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 01/13/2023] Open
Abstract
Combined analysis of allelic variation of the virulence-associated, strain-specific lys-gingipain gene (kgp) and major fimbrial gene (fimA) of Porphyromonas gingivalis was undertaken in 116 subgingival plaque samples to understand the kgp biotype and fimA genotype profile in a subject-specific manner. Allelic variation in the polyadhesin domain of kgp from P. gingivalis strains 381 (ATCC 33277), HG66 and W83 generated four isoforms corresponding to four biotypes of P. gingivalis. Similarly, variation in the fimA subunit of the fimA gene cluster of P. gingivalis resulted in six fimA genotypes. Strain-specific differential PCR was performed for kgp and fimA using DNA isolated from subgingival plaque samples. Our findings demonstrate that all of the P. gingivalis kgp biotypes detected in this study were predominantly associated with the fimA II genotype. Dominance of kgp biotypes 381 or HG66 combined with fimA II fimbriae could imply an adaptive strategy by P. gingivalis to generate the fittest strains for survival in the host environment.
Collapse
Affiliation(s)
- Mangala A Nadkarni
- Institute of Dental Research, Westmead Millennium Institute and Westmead Centre for Oral Health, Westmead, NSW, Australia; Faculty of Dentistry, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
166
|
Maeda K, Nagata H, Ojima M, Amano A. Proteomic and Transcriptional Analysis of Interaction between Oral Microbiota Porphyromonas gingivalis and Streptococcus oralis. J Proteome Res 2014; 14:82-94. [DOI: 10.1021/pr500848e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kazuhiko Maeda
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Hideki Nagata
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Miki Ojima
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Atsuo Amano
- Department
of Preventive
Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| |
Collapse
|
167
|
Lucas AR, Verma RK, Dai E, Liu L, Chen H, Kesavalu S, Rivera M, Velsko I, Ambadapadi S, Chukkapalli S, Kesavalu L. Myxomavirus anti-inflammatory chemokine binding protein reduces the increased plaque growth induced by chronic Porphyromonas gingivalis oral infection after balloon angioplasty aortic injury in mice. PLoS One 2014; 9:e111353. [PMID: 25354050 PMCID: PMC4213024 DOI: 10.1371/journal.pone.0111353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/21/2014] [Indexed: 01/30/2023] Open
Abstract
Thrombotic occlusion of inflammatory plaque in coronary arteries causes myocardial infarction. Treatment with emergent balloon angioplasty (BA) and stent implant improves survival, but restenosis (regrowth) can occur. Periodontal bacteremia is closely associated with inflammation and native arterial atherosclerosis, with potential to increase restenosis. Two virus-derived anti-inflammatory proteins, M-T7 and Serp-1, reduce inflammation and plaque growth after BA and transplant in animal models through separate pathways. M-T7 is a broad spectrum C, CC and CXC chemokine-binding protein. Serp-1 is a serine protease inhibitor (serpin) inhibiting thrombotic and thrombolytic pathways. Serp-1 also reduces arterial inflammation and improves survival in a mouse herpes virus (MHV68) model of lethal vasculitis. In addition, Serp-1 demonstrated safety and efficacy in patients with unstable coronary disease and stent implant, reducing markers of myocardial damage. We investigate here the effects of Porphyromonas gingivalis, a periodontal pathogen, on restenosis after BA and the effects of blocking chemokine and protease pathways with M-T7 and Serp-1. ApoE−/− mice had aortic BA and oral P. gingivalis infection. Arterial plaque growth was examined at 24 weeks with and without anti-inflammatory protein treatment. Dental plaques from mice infected with P. gingivalis tested positive for infection. Neither Serp-1 nor M-T7 treatment reduced infection, but IgG antibody levels in mice treated with Serp-1 and M-T7 were reduced. P. gingivalis significantly increased monocyte invasion and arterial plaque growth after BA (P<0.025). Monocyte invasion and plaque growth were blocked by M-T7 treatment (P<0.023), whereas Serp-1 produced only a trend toward reductions. Both proteins modified expression of TLR4 and MyD88. In conclusion, aortic plaque growth in ApoE−/− mice increased after angioplasty in mice with chronic oral P. gingivalis infection. Blockade of chemokines, but not serine proteases significantly reduced arterial plaque growth, suggesting a central role for chemokine-mediated inflammation after BA in P. gingivalis infected mice.
Collapse
Affiliation(s)
- Alexandra R. Lucas
- Division of Cardiovascular Medicine, Departments of Medicine and Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (AL); (LK)
| | - Raj K. Verma
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Erbin Dai
- Division of Cardiovascular Medicine, Departments of Medicine and Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Liying Liu
- Division of Cardiovascular Medicine, Departments of Medicine and Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Hao Chen
- Division of Cardiovascular Medicine, Departments of Medicine and Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sheela Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Mercedes Rivera
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Irina Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Sriram Ambadapadi
- Division of Cardiovascular Medicine, Departments of Medicine and Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sasanka Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (AL); (LK)
| |
Collapse
|
168
|
Yang LC, Hu SW, Yan M, Yang JJ, Tsou SH, Lin YY. Antimicrobial activity of platelet-rich plasma and other plasma preparations against periodontal pathogens. J Periodontol 2014; 86:310-8. [PMID: 25345340 DOI: 10.1902/jop.2014.140373] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND In addition to releasing a pool of growth factors during activation, platelets have many features that indicate their role in the anti-infective host defense. The antimicrobial activities of platelet-rich plasma (PRP) and related plasma preparations against periodontal disease-associated bacteria were evaluated. METHODS Four distinct plasma fractions were extracted in the formulation used commonly in dentistry and were tested for their antibacterial properties against three periodontal bacteria: Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. The minimum inhibitory concentration of each plasma preparation was determined, and in vitro time-kill assays were used to detect their abilities to inhibit bacterial growth. Bacterial adhesion interference and the susceptibility of bacterial adherence by these plasma preparations were also conducted. RESULTS All plasma preparations can inhibit bacterial growth, with PRP showing the superior activity. Bacterial growth inhibition by PRP occurred in the first 24 hours after application in the time-kill assay. PRP interfered with P. gingivalis and A. actinomycetemcomitans attachment and enhanced exfoliation of attached P. gingivalis but had no influences on F. nucleatum bacterial adherence. CONCLUSIONS PRP expressed antibacterial properties, which may be attributed to platelets possessing additional antimicrobial molecules. The application of PRP on periodontal surgical sites is advisable because of its regenerative potential and its antibacterial effects.
Collapse
Affiliation(s)
- Li-Chiu Yang
- School of Dentistry, College of Oral Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
169
|
McKenzie RME, Aruni W, Johnson NA, Robles A, Dou Y, Henry L, Boskovic DS, Fletcher HM. Metabolome variations in the Porphyromonas gingivalis vimA mutant during hydrogen peroxide-induced oxidative stress. Mol Oral Microbiol 2014; 30:111-27. [PMID: 25055986 DOI: 10.1111/omi.12075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2014] [Indexed: 01/01/2023]
Abstract
The adaptability and survival of Porphyromonas gingivalis in the oxidative microenvironment of the periodontal pocket are indispensable for survival and virulence, and are modulated by multiple systems. Among the various genes involved in P. gingivalis oxidative stress resistance, vimA gene is a part of the 6.15-kb locus. To elucidate the role of a P. gingivalis vimA-defective mutant in oxidative stress resistance, we used a global approach to assess the transcriptional profile, to study the unique metabolome variations affecting survival and virulence in an environment typical of the periodontal pocket. A multilayered protection strategy against oxidative stress was noted in P. gingivalis FLL92 with upregulation of detoxifying genes. The duration of oxidative stress was shown to differentially modulate transcription with 94 (87%) genes upregulated twofold during 10 min and 55 (83.3%) in 15 min. Most of the upregulated genes (55%), fell in the hypothetical/unknown/unassigned functional class. Metabolome variation showed reduction in fumarate and formaldehyde, hence resorting to alternative energy generation and maintenance of a reduced metabolic state. There was upregulation of transposases, genes encoding for the metal ion binding protein transport and secretion system.
Collapse
Affiliation(s)
- R M E McKenzie
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, USA; Center for Dental Research, School of Dentistry, Loma Linda University, Loma Linda, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Klarström Engström K, Khalaf H, Kälvegren H, Bengtsson T. The role of Porphyromonas gingivalis gingipains in platelet activation and innate immune modulation. Mol Oral Microbiol 2014; 30:62-73. [PMID: 25043711 DOI: 10.1111/omi.12067] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2014] [Indexed: 12/31/2022]
Abstract
Platelets are considered to have important functions in inflammatory processes and as actors in the innate immunity. Several studies have shown associations between cardiovascular disease and periodontitis, where the oral anaerobic pathogen Porphyromonas gingivalis has a prominent role in modulating the immune response. Porphyromonas gingivalis has been found in atherosclerotic plaques, indicating spreading of the pathogen via the circulation, with an ability to interact with and activate platelets via e.g. Toll-like receptors (TLR) and protease-activated receptors. We aimed to evaluate how the cysteine proteases, gingipains, of P. gingivalis affect platelets in terms of activation and chemokine secretion, and to further investigate the mechanisms of platelet-bacteria interaction. This study shows that primary features of platelet activation, i.e. changes in intracellular free calcium and aggregation, are affected by P. gingivalis and that arg-gingipains are of great importance for the ability of the bacterium to activate platelets. The P. gingivalis induced a release of the chemokine RANTES, however, to a much lower extent compared with the TLR2/1-agonist Pam3 CSK4 , which evoked a time-dependent release of the chemokine. Interestingly, the TLR2/1-evoked response was abolished by a following addition of viable P. gingivalis wild-types and gingipain mutants, showing that both Rgp and Kgp cleave the secreted chemokine. We also demonstrate that Pam3 CSK4 -stimulated platelets release migration inhibitory factor and plasminogen activator inhibitor-1, and that also these responses were antagonized by P. gingivalis. These results supports immune-modulatory activities of P. gingivalis and further clarify platelets as active players in innate immunity and in sensing bacterial infections, and as target cells in inflammatory reactions induced by P. gingivalis infection.
Collapse
Affiliation(s)
- K Klarström Engström
- Department of Biomedicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | | | | | | |
Collapse
|
171
|
Tamanai-Shacoori Z, Chandad F, Rébillard A, Cillard J, Bonnaure-Mallet M. Silver-zeolite combined to polyphenol-rich extracts of Ascophyllum nodosum: potential active role in prevention of periodontal diseases. PLoS One 2014; 9:e105475. [PMID: 25272151 PMCID: PMC4182675 DOI: 10.1371/journal.pone.0105475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/21/2014] [Indexed: 01/18/2023] Open
Abstract
The purpose of this study was to evaluate various biological effects of silver-zeolite and a polyphenol-rich extract of A. nodosum (ASCOP) to prevent and/or treat biofilm-related oral diseases. Porphyromonas gingivalis and Streptococcus gordonii contribute to the biofilm formation associated with chronic periodontitis. In this study, we evaluated in vitro antibacterial and anti-biofilm effects of silver-zeolite (Ag-zeolite) combined to ASCOP on P. gingivalis and S. gordonii growth and biofilm formation capacity. We also studied the anti-inflammatory and antioxidant capacities of ASCOP in cell culture models. While Ag-zeolite combined with ASCOP was ineffective against the growth of S. gordonii, it showed a strong bactericidal effect on P. gingivalis growth. Ag-zeolite combined with ASCOP was able to completely inhibit S. gordonii monospecies biofilm formation as well as to reduce the formation of a bi-species S. gordonii/P. gingivalis biofilm. ASCOP alone was ineffective towards the growth and/or biofilm formation of S. gordonii and P. gingivalis while it significantly reduced the secretion of inflammatory cytokines (TNFα and IL-6) by LPS-stimulated human like-macrophages. It also exhibited antioxidant properties and decreased LPS induced lipid peroxidation in gingival epithelial cells. These findings support promising use of these products in future preventive or therapeutic strategies against periodontal diseases.
Collapse
Affiliation(s)
| | - Fatiha Chandad
- Groupe de Recherche en Ecologie Buccale, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Amélie Rébillard
- Laboratoire Mouvement, Sport, Santé, EA 1274, Université Rennes 1, Université Rennes 2, UEB, Rennes, France
| | - Josiane Cillard
- Laboratoire Mouvement, Sport, Santé, EA 1274, Université Rennes 1, Université Rennes 2, UEB, Rennes, France
| | - Martine Bonnaure-Mallet
- Equipe de Microbiologie, EA 1254, Université Rennes 1, UEB, Rennes, France
- Centre hospitalo-universitaire, Rennes, France
| |
Collapse
|
172
|
Ciuraszkiewicz J, Śmiga M, Mackiewicz P, Gmiterek A, Bielecki M, Olczak M, Olczak T. Fur homolog regulatesPorphyromonas gingivalisvirulence under low-iron/heme conditions through a complex regulatory network. Mol Oral Microbiol 2014; 29:333-53. [DOI: 10.1111/omi.12077] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2014] [Indexed: 12/22/2022]
Affiliation(s)
- J. Ciuraszkiewicz
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - M. Śmiga
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - P. Mackiewicz
- Department of Genomics; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - A. Gmiterek
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - M. Bielecki
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - M. Olczak
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| | - T. Olczak
- Laboratory of Biochemistry; Faculty of Biotechnology; University of Wroclaw; Wroclaw Poland
| |
Collapse
|
173
|
Wilensky A, Tzach-Nahman R, Potempa J, Shapira L, Nussbaum G. Porphyromonas gingivalis gingipains selectively reduce CD14 expression, leading to macrophage hyporesponsiveness to bacterial infection. J Innate Immun 2014; 7:127-135. [PMID: 25228314 DOI: 10.1159/000365970] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 07/14/2014] [Indexed: 01/01/2023] Open
Abstract
Cysteine proteases (gingipains) from Porphyromonas gingivalis are key virulence factors in chronic periodontitis. Innate immune receptors CD14, Toll-like receptor (TLR) 2 and TLR4 are important in P. gingivalis recognition. We examined the ability of gingipains to cleave CD14, TLR2 and TLR4, and the consequences for the cellular response to bacterial challenge. Macrophages were exposed to Arg (RgpA and RgpB)- and Lys (Kgp)-gingipains, and residual expression of TLR2, TLR4 and CD14 was determined by flow cytometry. The cellular response to live bacteria following exposure to purified gingipains was evaluated by TNFα production and bacterial phagocytosis. RgpA and Kgp decreased CD14 detection in a concentration (p = 0.0000002)- and time (p = 0.03)-dependent manner, whereas RgpB had no significant effect. TLR2 and TLR4 expression were unaffected. Reduction in CD14 expression was more efficient with Lys-gingipain than with Arg-gingipain. A reduced CD14 surface level correlated with decreased TNFα secretion and bacterial phagocytosis following challenge with live P. gingivalis, but the response to heat-killed bacteria was unaffected. Therefore, gingipains reduce CD14 expression without affecting expression of the bacterial-sensing TLRs. Reduced CD14 expression depends on the gingipain hemagglutinin/adhesion site and results in macrophage hyporesponsiveness to bacterial challenge. Further studies are needed to determine if reduced CD14 expression is linked to periodontitis induced by P. gingivalis.
Collapse
Affiliation(s)
- Asaf Wilensky
- Department of Periodontology , Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Rinat Tzach-Nahman
- Department of Periodontology , Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel.,Institute of Dental Sciences, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Jan Potempa
- Center of Oral Health and Systemic Disease, School of Dentistry, University of Louisville, KY, USA.,Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Lior Shapira
- Department of Periodontology , Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Dental Sciences, Faculty of Dental Medicine, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| |
Collapse
|
174
|
Al Batran R, Al-Bayaty F, Al-Obaidi MMJ, Ashrafi A. Insights into the antiatherogenic molecular mechanisms of andrographolide against Porphyromonas gingivalis-induced atherosclerosis in rabbits. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:1141-52. [PMID: 25172523 DOI: 10.1007/s00210-014-1041-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/19/2014] [Indexed: 01/22/2023]
Abstract
Atherosclerosis is the commonest and most important vascular disease. Andrographolide (AND) is the main bioactive component of the medicinal plant Andrographis paniculata and is used in traditional medicine. This study was aimed to evaluate the antiatherogenic effect of AND against atherosclerosis induced by Porphyromonas gingivalis in White New Zealand rabbits. Thirty rabbits were divided into five groups as follows: G1, normal group; G2-5, were orally challenged with P. gingivalis five times a week over 12 weeks; G2, atherogenic control group; G3, standard group treated with atorvastatin (AV) 5 mg/kg; and G4 and G5, treatment groups treated with AND 10 and 20 mg/kg, respectively over 12 weeks. Serums were subjected to antioxidant enzymatic and anti-inflammatory activities, and the aorta was subjected to histological analyses. Groups treated with AND showed a significant reversal of liver and renal biochemical changes, compared with the atherogenic control group. In the same groups, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), total glutathione (GSH) levels in serum were significantly increased (P < 0.05), and lipid peroxidation (malondialdehyde (MDA)) levels were significantly decreased (P < 0.05), respectively. Furthermore, treated groups with AV and AND showed significant decrease in the level of VCAM-1 and ICAM-1 compared with the atherogenic control group. In aortic homogenate, the level of nitrotyrosine was significantly increased, while the level of MCP1 was significantly decreased in AV and AND groups compared with the atherogenic control group. In addition, staining the aorta with Sudan IV showed a reduction in intimal thickening plaque in AV and AND groups compared with the atherogenic control group. AND has showed an antiatherogenic property as well as the capability to reduce lipid, liver, and kidney biomarkers in atherogenic serum that prevents atherosclerosis complications caused by P. gingivalis.
Collapse
Affiliation(s)
- Rami Al Batran
- Center of Periodontology Studies, Faculty of Dentistry, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | | | | | | |
Collapse
|
175
|
Comparative genome analysis and identification of competitive and cooperative interactions in a polymicrobial disease. ISME JOURNAL 2014; 9:629-42. [PMID: 25171331 PMCID: PMC4331577 DOI: 10.1038/ismej.2014.155] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Abstract
Polymicrobial diseases are caused by combinations of multiple bacteria, which can lead to not only mild but also life-threatening illnesses. Periodontitis represents a polymicrobial disease; Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, called ‘the red complex', have been recognized as the causative agents of periodontitis. Although molecular interactions among the three species could be responsible for progression of periodontitis, the relevant genetic mechanisms are unknown. In this study, we uncovered novel interactions in comparative genome analysis among the red complex species. Clustered regularly interspaced short palindromic repeats (CRISPRs) of T. forsythia might attack the restriction modification system of P. gingivalis, and possibly work as a defense system against DNA invasion from P. gingivalis. On the other hand, gene deficiencies were mutually compensated in metabolic pathways when the genes of all the three species were taken into account, suggesting that there are cooperative relationships among the three species. This notion was supported by the observation that each of the three species had its own virulence factors, which might facilitate persistence and manifestations of virulence of the three species. Here, we propose new mechanisms of bacterial symbiosis in periodontitis; these mechanisms consist of competitive and cooperative interactions. Our results might shed light on the pathogenesis of periodontitis and of other polymicrobial diseases.
Collapse
|
176
|
Evaluation of the effect of andrographolide on atherosclerotic rabbits induced by Porphyromonas gingivalis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:724718. [PMID: 25215291 PMCID: PMC4151849 DOI: 10.1155/2014/724718] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 12/11/2022]
Abstract
Epidemiologic evidence has demonstrated significant associations between atherosclerosis and Porphyromonas gingivalis (Pg). We had investigated the effect of andrographolide (AND) on atherosclerosis induced by Pg in rabbits. For experimental purpose, we separated thirty male white New Zealand rabbits into 5 groups. Group 1 received standard food pellets; Groups 2-5 were orally challenged with Pg; Group 3 received atorvastatin (AV, 5 mg/kg), and Groups 4-5 received 10 and 20 mg/kg of AND, respectively, over 12 weeks. Groups treated with AND showed significant decrease in TC, TG, and LDL levels (P<0.05) and significant increase in HDL level in the serum of rabbits. Furthermore, the treated groups (G3-G5) exhibited reductions in interleukins (IL-1β and IL-6) and C-reactive protein (CRP) as compared to atherogenicgroup (G2). The histological results showed that the thickening of atherosclerotic plaques were less significant in treated groups (G3-G5) compared with atherogenicgroup (G2). Also, alpha-smooth muscle actin (α-SMA) staining decreased within the plaques of atherogenicgroup (G2), while it was increased in treated groups (G3-G5). Lastly, groups treated with AV and AND (G3-G5) showed significant reduction of CD36 expression (P<0.05) compared to atherogenicgroup (G2). These results substantially proved that AND contain antiatherogenic activity.
Collapse
|
177
|
Zhang W, Ju J, Rigney T, Tribble G. Porphyromonas gingivalis infection increases osteoclastic bone resorption and osteoblastic bone formation in a periodontitis mouse model. BMC Oral Health 2014; 14:89. [PMID: 25027664 PMCID: PMC4108595 DOI: 10.1186/1472-6831-14-89] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/10/2014] [Indexed: 11/27/2022] Open
Abstract
Background Porphyromonas gingivalis has been shown to invade osteoblasts and inhibit their differentiation and mineralization in vitro. However, it is unclear if P. gingivalis can invade osteoblasts in vivo and how this would affect alveolar osteoblast/osteoclast dynamics. This study aims to answer these questions using a periodontitis mouse model under repetitive P. gingivalis inoculations. Methods For 3-month-old BALB/cByJ female mice, 109 CFU of P. gingivalis were inoculated onto the gingival margin of maxillary molars 4 times at 2-day intervals. After 2 weeks, another 4 inoculations at 2-day intervals were applied. Calcein was injected 7 and 2 days before sacrificing animals to label the newly formed bone. Four weeks after final inoculation, mice were sacrificed and maxilla collected. Immunohistochemistry, micro-CT, and bone histomorphometry were performed on the specimens. Sham infection with only vehicle was the control. Results P. gingivalis was found to invade gingival epithelia, periodontal ligament fibroblasts, and alveolar osteoblasts. Micro-CT showed alveolar bone resorption and significant reduction of bone mineral density and content in the infected mice compared to the controls. Bone histomorphometry showed a decrease in osteoblasts, an increase in osteoclasts and bone resorption, and a surprisingly increased osteoblastic bone formation in the infected mice compared to the controls. Conclusions P. gingivalis invades alveolar osteoblasts in the periodontitis mouse model and cause alveolar bone loss. Although P. gingivalis appears to suppress osteoblast pool and enhance osteoclastic bone resorption, the bone formation capacity is temporarily elevated in the infected mice, possibly via some anti-microbial compensational mechanisms.
Collapse
Affiliation(s)
- Wenjian Zhang
- Department of Diagnostic and Biomedical Sciences, 7500 Cambridge Street, Suite 5366, Houston 77054, TX, USA.
| | | | | | | |
Collapse
|
178
|
Li N, Collyer CA. Gingipains from Porphyromonas gingivalis - Complex domain structures confer diverse functions. Eur J Microbiol Immunol (Bp) 2014; 1:41-58. [PMID: 24466435 DOI: 10.1556/eujmi.1.2011.1.7] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gingipains, a group of arginine or lysine specific cysteine proteinases (also known as RgpA, RgpB and Kgp), have been recognized as major virulence factors in Porphyromonas gingivalis. This bacterium is one of a handful of pathogens that cause chronic periodontitis. Gingipains are involved in adherence to and colonization of epithelial cells, haemagglutination and haemolysis of erythrocytes, disruption and manipulation of the inflammatory response, and the degradation of host proteins and tissues. RgpA and Kgp are multi-domain proteins composed of catalytic domains and haemagglutinin/adhesin (HA) regions. The structure of the HA regions have previously been defined by a gingipain domain structure hypothesis which is a set of putative domain boundaries derived from the sequences of fragments of these proteins extracted from the cell surface. However, multiple sequence alignments and hidden Markov models predict an alternative domain architecture for the HA regions of gingipains. In this alternate model, two or three repeats of the so-called "cleaved adhesin" domains (and one other undefined domain in some strains) are the modules which constitute the substructure of the HA regions. Recombinant forms of these putative cleaved adhesin domains are indeed stable folded protein modules and recently determined crystal structures support the hypothesis of a modular organisation of the HA region. Based on the observed K2 and K3 structures as well as multiple sequence alignments, it is proposed that all the cleaved adhesin domains in gingipains will share the same β-sandwich jelly roll fold. The new domain model of the structure for gingipains and the haemagglutinin (HagA) proteins of P. gingivalis will guide future functional studies of these virulence factors.
Collapse
Affiliation(s)
- N Li
- School of Molecular Bioscience, University of Sydney NSW Australia
| | - C A Collyer
- School of Molecular Bioscience, University of Sydney NSW Australia
| |
Collapse
|
179
|
Alpha-mangostin suppresses IL-6 and IL-8 expression in P. gingivalis LPS-stimulated human gingival fibroblasts. Odontology 2014; 103:348-55. [DOI: 10.1007/s10266-014-0160-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/10/2014] [Indexed: 12/11/2022]
|
180
|
Shaik-Dasthagirisaheb YB, Huang N, Weinberg EO, Shen SS, Genco CA, Gibson FC. Aging and contribution of MyD88 and TRIF to expression of TLR pathway-associated genes following stimulation with Porphyromonas gingivalis. J Periodontal Res 2014; 50:89-102. [PMID: 24862405 DOI: 10.1111/jre.12185] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal disease is a highly complex chronic inflammatory disease of the oral cavity. Multiple factors influence periodontal disease, including socio-economic status, genetics and age; however, inflammation elicited by the presence of specific bacteria in the subgingival space is thought to drive the majority of soft- and hard-tissue destruction. Porphyromonas gingivalis is closely associated with periodontal disease. Toll-like receptors (TLRs) and their intracellular signaling pathways play roles in the host response to P. gingivalis. The focus of the current study was to use microarray analysis to define the contributions of the TLR adaptor molecules myeloid differentiation factor 88 (MyD88) and Toll/interleukin-1 receptor domain-containing adaptor inducing interferon-beta (TRIF), and aging, on the expression of TLR pathway-associated mRNAs in response to P. gingivalis. MATERIAL AND METHODS Bone marrow-derived macrophages (BMØ) from wild-type (Wt), MyD88 knockout (MyD88-KO) and Trif(Lps2) [i.e. containing a point mutation in the lipopolysaccharide 2 (Lps2) gene rendering the Toll/interleukin (IL)-1 receptor domain-containing adaptor inducing interferon-beta (TRIF) protein nonfunctional] mice, at 2-and 12-mo of age, were cultured with P. gingivalis. Expression of genes in BMØ cultured with P. gingivalis was determined in comparison with expression of genes in BMØ cultured in medium only. RESULTS Using, as criteria, a twofold increase or decrease in mRNA expression, differential expression of 32 genes was observed when Wt BMØ from 2-mo-old mice were cultured with P. gingivalis compared with the medium-only control. When compared with 2-mo-old Wt mice, 21 and 12 genes were differentially expressed (p < 0.05) as a result of the mutations in MyD88 or TRIF, respectively. The expression of five genes was significantly (p < 0.05) reduced in Wt BMØ from 12-mo-old mice compared with those from 2-mo-old mice following culture with P. gingivalis. Age also influenced the expression of genes in MyD88-KO and Trif(Lps2) mice challenged with P. gingivalis. CONCLUSIONS Our results indicate that P. gingivalis induces differential expression of TLR pathway-associated genes, and both MyD88 and TRIF play roles in the expression of these genes. Age also played a role in the expression of TLR-associated genes following stimulation of BMØ with P. gingivalis.
Collapse
Affiliation(s)
- Y B Shaik-Dasthagirisaheb
- Section of Infectious Diseases, Department of Medicine, Boston University Medical Center, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
181
|
Potential Value of a Rice Protein Extract, Containing Proteinaceous Inhibitors against Cysteine Proteinases fromPorphyromonas gingivalis, for Managing Periodontal Diseases. Biosci Biotechnol Biochem 2014; 77:80-6. [DOI: 10.1271/bbb.120585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
182
|
Velsko IM, Chukkapalli SS, Rivera MF, Lee JY, Chen H, Zheng D, Bhattacharyya I, Gangula PR, Lucas AR, Kesavalu L. Active invasion of oral and aortic tissues by Porphyromonas gingivalis in mice causally links periodontitis and atherosclerosis. PLoS One 2014; 9:e97811. [PMID: 24836175 PMCID: PMC4024021 DOI: 10.1371/journal.pone.0097811] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/24/2014] [Indexed: 12/14/2022] Open
Abstract
Atherosclerotic vascular disease is a leading cause of myocardial infarction and cerebrovascular accident, and independent associations with periodontal disease (PD) are reported. PD is caused by polymicrobial infections and aggressive immune responses. Genomic DNA of Porphyromonas gingivalis, the best-studied bacterial pathogen associated with severe PD, is detected within atherosclerotic plaque. We examined causal relationships between chronic P. gingivalis oral infection, PD, and atherosclerosis in hyperlipidemic ApoEnull mice. ApoEnull mice (n = 24) were orally infected with P. gingivalis for 12 and 24 weeks. PD was assessed by standard clinical measurements while the aorta was examined for atherosclerotic lesions and inflammatory markers by array. Systemic inflammatory markers serum amyloid A, nitric oxide, and oxidized low-density lipoprotein were analyzed. P. gingivalis infection elicited specific antibodies and alveolar bone loss. Fluorescent in situ hybridization detected viable P. gingivalis within oral epithelium and aorta, and genomic DNA was detected within systemic organs. Aortic plaque area was significantly increased in P. gingivalis-infected mice at 24 weeks (P<0.01). Aortic RNA and protein arrays indicated a strong Th2 response. Chronic oral infection with P. gingivalis results in a specific immune response, significant increases in oral bone resorption, aortic inflammation, viable bacteria in oral epithelium and aorta, and plaque development.
Collapse
Affiliation(s)
- Irina M. Velsko
- Department of Periodontology, University of Florida, Gainesville, Florida, United States of America
| | - Sasanka S. Chukkapalli
- Department of Periodontology, University of Florida, Gainesville, Florida, United States of America
| | - Mercedes F. Rivera
- Department of Periodontology, University of Florida, Gainesville, Florida, United States of America
| | - Ju-Youn Lee
- Department of Periodontology, School of Dentistry Pusan National University, Yangsan City, Republic of Korea
| | - Hao Chen
- Department of Cardiovascular Medicine and Molecular Genetics & Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Donghang Zheng
- Department of Cardiovascular Medicine and Molecular Genetics & Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Indraneel Bhattacharyya
- Department of Oral Diagnostic Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Pandu R. Gangula
- Department of Physiology, Oral Biology and Research, CWHR Meharry Medical College, Nashville, Tennessee, United States of America
| | - Alexandra R. Lucas
- Department of Cardiovascular Medicine and Molecular Genetics & Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Lakshmyya Kesavalu
- Department of Periodontology, University of Florida, Gainesville, Florida, United States of America
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
183
|
Mizutani Y, Tsuge S, Takeda H, Hasegawa Y, Shiogama K, Onouchi T, Inada K, Sawasaki T, Tsutsumi Y. In situ visualization of plasma cells producing antibodies reactive to Porphyromonas gingivalis in periodontitis: the application of the enzyme-labeled antigen method. Mol Oral Microbiol 2014; 29:156-73. [PMID: 24698402 PMCID: PMC4282379 DOI: 10.1111/omi.12052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2014] [Indexed: 12/02/2022]
Abstract
Porphyromonas gingivalis is a keystone periodontal pathogen. Histologocally, the gingival tissue in periodontitis shows dense infiltration of plasma cells. However, antigens recognized by antibodies secreted from the immunocytes remain unknown. The enzyme-labeled antigen method was applied to detecting plasma cells producing P. gingivalis-specific antibodies in biopsied gingival tissue of periodontitis. N-terminally biotinylated P. gingivalis antigens, Ag53 and four gingipain domains (Arg-pro, Arg-hgp, Lys-pro and Lys-hgp) were prepared by the cell-free protein synthesis system using wheatgerm extract. With these five labeled proteins as probes, 20 lesions of periodontitis were evaluated. With the AlphaScreen method, antibodies against any one of the five P. gingivalis antigens were detected in 11 (55%) serum samples and 17 (85%) tissue extracts. Using the enzyme-labeled antigen method on paraformaldehyde-fixed frozen sections of gingival tissue, plasma cells were labeled with any one of the five antigens in 17 (94%) of 18 specimens, in which evaluable plasma cells were detected. The positivity rates in periodontitis were significantly higher than those found previously in radicular cysts (20% in sera and 33% in tissue extracts with the AlphaScreen method, and 25% with the enzyme-labeled antigen method). Our findings directly indicate that antibodies reactive to P. gingivalis are locally produced in the gingival lesions, and that inflammatory reactions against P. gingivalis are involved in periodontitis.
Collapse
Affiliation(s)
- Y Mizutani
- Department of Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
de Avila ED, de Molon RS, Vergani CE, de Assis Mollo F, Salih V. The Relationship between Biofilm and Physical-Chemical Properties of Implant Abutment Materials for Successful Dental Implants. MATERIALS (BASEL, SWITZERLAND) 2014; 7:3651-3662. [PMID: 28788641 PMCID: PMC5453239 DOI: 10.3390/ma7053651] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/13/2014] [Accepted: 04/16/2014] [Indexed: 12/25/2022]
Abstract
The aim of this review was to investigate the relationship between biofilm and peri-implant disease, with an emphasis on the types of implant abutment surfaces. Individuals with periodontal disease typically have a large amount of pathogenic microorganisms in the periodontal pocket. If the individuals lose their teeth, these microorganisms remain viable inside the mouth and can directly influence peri-implant microbiota. Metal implants offer a suitable solution, but similarly, these remaining bacteria can adhere on abutment implant surfaces, induce peri-implantitis causing potential destruction of the alveolar bone near to the implant threads and cause the subsequent loss of the implant. Studies have demonstrated differences in biofilm formation on dental materials and these variations can be associated with both physical and chemical characteristics of the surfaces. In the case of partially edentulous patients affected by periodontal disease, the ideal type of implant abutments utilized should be one that adheres the least or negligible amounts of periodontopathogenic bacteria. Therefore, it is of clinically relevance to know how the bacteria behave on different types of surfaces in order to develop new materials and/or new types of treatment surfaces, which will reduce or inhibit adhesion of pathogenic microorganisms, and, thus, restrict the use of the abutments with indication propensity for bacterial adhesion.
Collapse
Affiliation(s)
- Erica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, University Estadual Paulista-UNESP, 1680, Araraquara, São Paulo 14801-903, Brazil.
| | - Rafael Scaf de Molon
- Department of Diagnostic and Surgery, School of Dentistry at Araraquara, University Estadual Paulista-UNESP, Araraquara, São Paulo 14801-903, Brazil.
| | - Carlos Eduardo Vergani
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, University Estadual Paulista-UNESP, 1680, Araraquara, São Paulo 14801-903, Brazil.
| | - Francisco de Assis Mollo
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, University Estadual Paulista-UNESP, 1680, Araraquara, São Paulo 14801-903, Brazil.
| | - Vehid Salih
- Peninsula School of Medicine & Dentistry, Plymouth University, C402, Portland Square, Drake Circus, Plymouth, Devon, PL4 8AA, UK.
| |
Collapse
|
185
|
Clais S, Boulet G, Kerstens M, Horemans T, Teughels W, Quirynen M, Lanckacker E, De Meester I, Lambeir AM, Delputte P, Maes L, Cos P. Importance of biofilm formation and dipeptidyl peptidase IV for the pathogenicity of clinicalPorphyromonas gingivalisisolates. Pathog Dis 2014; 70:408-13. [DOI: 10.1111/2049-632x.12156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/28/2022] Open
Affiliation(s)
- Sofie Clais
- Laboratory of Microbiology; Parasitology and Hygiene (LMPH); Faculty of Pharmaceutical; Biomedical and Veterinary Sciences; University of Antwerp; Antwerp Belgium
| | - Gaëlle Boulet
- Laboratory of Microbiology; Parasitology and Hygiene (LMPH); Faculty of Pharmaceutical; Biomedical and Veterinary Sciences; University of Antwerp; Antwerp Belgium
| | - Monique Kerstens
- Laboratory of Microbiology; Parasitology and Hygiene (LMPH); Faculty of Pharmaceutical; Biomedical and Veterinary Sciences; University of Antwerp; Antwerp Belgium
| | - Tessa Horemans
- Laboratory of Microbiology; Parasitology and Hygiene (LMPH); Faculty of Pharmaceutical; Biomedical and Veterinary Sciences; University of Antwerp; Antwerp Belgium
| | - Wim Teughels
- Research Group for Microbial Adhesion; Department of Periodontology; Catholic University of Leuven; Leuven Belgium
| | - Marc Quirynen
- Research Group for Microbial Adhesion; Department of Periodontology; Catholic University of Leuven; Leuven Belgium
| | - Ellen Lanckacker
- Laboratory of Microbiology; Parasitology and Hygiene (LMPH); Faculty of Pharmaceutical; Biomedical and Veterinary Sciences; University of Antwerp; Antwerp Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry; Faculty of Pharmaceutical; Biomedical and Veterinary Sciences; University of Antwerp; Antwerp Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry; Faculty of Pharmaceutical; Biomedical and Veterinary Sciences; University of Antwerp; Antwerp Belgium
| | - Peter Delputte
- Laboratory of Microbiology; Parasitology and Hygiene (LMPH); Faculty of Pharmaceutical; Biomedical and Veterinary Sciences; University of Antwerp; Antwerp Belgium
| | - Louis Maes
- Laboratory of Microbiology; Parasitology and Hygiene (LMPH); Faculty of Pharmaceutical; Biomedical and Veterinary Sciences; University of Antwerp; Antwerp Belgium
| | - Paul Cos
- Laboratory of Microbiology; Parasitology and Hygiene (LMPH); Faculty of Pharmaceutical; Biomedical and Veterinary Sciences; University of Antwerp; Antwerp Belgium
| |
Collapse
|
186
|
Chronic exposure to oral pathogens and autoimmune reactivity in acute coronary atherothrombosis. Autoimmune Dis 2014; 2014:613157. [PMID: 24839554 PMCID: PMC4003799 DOI: 10.1155/2014/613157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 01/22/2023] Open
Abstract
Background. It has been hypothesized that various infective agents may activate immune reactions as part of the atherosclerotic process. We aimed to investigate the interrelationship between chronic exposure to oral pathogens and immune-inflammatory response in patients with acute coronary atherothrombosis.
Patients and Methods. The study included 200 participants from Serbia: 100 patients with acute myocardial infarction (MI), and 100 age- and sex-matched controls. Antibodies to oral anaerobes and aerobes were determined as well as autoantibodies to endothelial cells, beta-2 glycoprotein I, platelet glycoprotein IIb/IIIa and anticardiolipin. Interleukin-6 (IL-6) and C-reactive protein (CRP) were measured. Results. The mean serum antibodies to oral anaerobes tended to be higher among subjects with MI (0.876 ± 0.303 versus 0.685 ± 0.172 OD, P < 0.001). Similarly, antibody levels against oral aerobes in patients were significantly different from controls. Antibodies against endothelial cell, beta-2 glycoprotein I, platelet glycoprotein IIb/IIIa, anticardiolipin along with CRP and IL-6 were highly elevated in patients. The levels of antibodies to oral bacteria showed linear correlation with tissue antibodies, CRP and IL-6.
Conclusion. Antibody response to chronic oral bacterial infections and host immune response against them may be responsible for the elevation of tissue antibodies and biomarkers of inflammation which are involved in acute coronary thrombosis development.
Collapse
|
187
|
Nakatsuka Y, Nagasawa T, Yumoto Y, Nakazawa F, Furuichi Y. Inhibitory effects of sword bean extract on alveolar bone resorption induced in rats by Porphyromonas gingivalis infection. J Periodontal Res 2014; 49:801-9. [PMID: 24494651 DOI: 10.1111/jre.12166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND The domesticated legume, Canavalia gladiata (commonly called the sword bean), is known to contain canavanine. The fruit is used in Chinese and Japanese herbal medicine for treating the discharge of pus, but its pharmacological mechanisms are still unclear. OBJECTIVES This study examined the effect of sword bean extract (SBE) on (i) oral bacteria and human oral epithelial cells in vitro, and (ii) the initiation and progression of experimental Porphyromonas gingivalis-induced alveolar bone resorption in rats. MATERIAL AND METHODS A high-performance liquid chromatography/ultraviolet method was applied to quantitate canavanine in SBE. By assessing oral bacterial growth, we estimated the minimum inhibitory concentration and minimum bactericidal concentration of SBE, canavanine, chlorhexidine gluconate (CHX) solution. The cytotoxicity of SBE, canavanine, CHX, leupeptin and cystatin for KB cells was determined using a trypan blue assay. The effects of SBE, canavanine, leupeptin and cystatin on Arg-gingipain (Rgp) and Lys-gingipain (Kgp) were evaluated by colorimetric assay using synthetic substrates. To examine its effects on P. gingivalis-associated periodontal tissue breakdown, SBE was orally administered to P. gingivalis-infected rats. RESULT Sword bean extract contained 6.4% canavanine. SBE and canavanine inhibited the growth of P. gingivalis and Fusobacterium nucleatum. The cytotoxicity of SBE, canavanine and cystatin on KB cells was significantly lower than that of CHX. Inhibition of Rgp with SBE was comparable to that with leupeptin, a known Rgp inhibitor, and inhibition of Kgp with SBE was significantly higher than that with leupeptin at 500 μg/mL ( p < 0.05). P. gingivalis-induced alveolar bone resorption was significantly suppressed by administration of SBE, with bone levels remaining comparable to non-infected animals ( p < 0.05). CONCLUSION The present study suggests that SBE might be effective against P. gingivalis-associated alveolar bone resorption.
Collapse
Affiliation(s)
- Y Nakatsuka
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | | | | | | |
Collapse
|
188
|
Choi YH, McKeown RE, Mayer-Davis EJ, Liese AD, Song KB, Merchant AT. Serum C-reactive protein and immunoglobulin G antibodies to periodontal pathogens may be effect modifiers of periodontitis and hyperglycemia. J Periodontol 2014; 85:1172-81. [PMID: 24410292 DOI: 10.1902/jop.2014.130658] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Serum C-reactive protein (CRP) is elevated in both periodontitis and type 2 diabetes mellitus through inflammation. Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis have been found in periodontal pockets in patients with diabetes. This study examines effect modification by examining the extent to which the associations between periodontitis and hyperglycemia were different by levels of serum CRP and periodontal pathogens. METHODS Blood samples with plasma were evaluated for immunoglobulin G antibodies, CRP, and fasting glucose from 5,731 participants ≥ 20 years old receiving oral examinations and providing other health-related data from the National Health and Nutrition Examination Survey III. The study participants were classified into quartiles of probing depth (PD) and clinical attachment level (CAL). The first quartile was the reference. Logistic regression models with survey procedures were used to explore the roles of inflammation levels from serum CRP and periodontal pathogens on the relations with periodontitis, including PD, CAL, and hyperglycemia, and their joint associations with interaction terms. RESULTS Stronger associations between PD and diabetes existed in people having elevated CRP and titers for P. gingivalis; odds ratios comparing extreme quartiles of PD were 1.31 and 3.40 in the groups with low and high CRP, respectively, and 1.28 and 2.96 in groups with low and high titers for P. gingivalis, respectively. The joint association patterns were similar for CAL and diabetes. CONCLUSIONS The strengths of association between periodontitis and diabetes were stronger in people having elevated serum CRP and P. gingivalis titers. This may suggest that chronic inflammatory conditions could increase the impact of periodontitis on hyperglycemic status.
Collapse
Affiliation(s)
- Youn-Hee Choi
- Department of Preventive Dentistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | | | | | | | | | | |
Collapse
|
189
|
Feng X, Zhang L, Xu L, Meng H, Lu R, Chen Z, Shi D, Wang X. Detection of Eight Periodontal Microorganisms and Distribution ofPorphyromonas gingivalis fimAGenotypes in Chinese Patients With Aggressive Periodontitis. J Periodontol 2014; 85:150-9. [DOI: 10.1902/jop.2013.120677] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
190
|
Montagner F, Jacinto RC, Correa Signoretti FG, Scheffer de Mattos V, Grecca FS, Gomes BPFDA. Beta-lactamic resistance profiles in Porphyromonas, Prevotella, and Parvimonas species isolated from acute endodontic infections. J Endod 2013; 40:339-44. [PMID: 24565649 DOI: 10.1016/j.joen.2013.10.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 10/15/2013] [Accepted: 10/24/2013] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Susceptibility to beta-lactamic agents has changed among anaerobic isolates from acute endodontic infections. The aim of the present study was to determine the prevalence of the cfxA/cfxA2 gene in Prevotella spp., Porphyromonas spp., and Parviomonas micra strains and show its phenotypic expression. METHODS Root canal samples from teeth with acute endodontic infections were collected and Porphyromonas, Prevotella, and Parvimonas micra strains were isolated and microbiologically identified with conventional culture techniques. The susceptibility of the isolates was determined by the minimum inhibitory concentration of benzylpenicillin, amoxicillin, and amoxicillin + clavulanate using the E-test method (AB BIODISK, Solna, Sweden). The presence of the cfxA/cfxA2 gene was determined through primer-specific polymerase chain reaction. The nitrocefin test was used to determine the expression of the lactamase enzyme. RESULTS Prevotella disiens, Prevotella oralis, Porphyromonas gingivalis, and P. micra strains were susceptible to benzylpenicillin, amoxicillin, and amoxicillin + clavulanate. The cfxA/cfxA2 gene was detected in 2 of 29 isolates (6.9%). Simultaneous detection of the cfxA/cfxA2 gene and lactamase production was observed for 1 Prevotella buccalis strain. The gene was in 1 P. micra strain but was not expressed. Three strains were positive for lactamase production, but the cfxA/cfxA2 gene was not detected through polymerase chain reaction. CONCLUSIONS There is a low prevalence of the cfxA/cfxA2 gene and its expression in Porphyromonas spp., Prevotella spp., and P. micra strains isolated from acute endodontic infections. Genetic and phenotypic screening must be performed simultaneously to best describe additional mechanisms involved in lactamic resistance for strict anaerobes.
Collapse
Affiliation(s)
- Francisco Montagner
- Endodontic Division, Department of Conservative Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Rogério Castilho Jacinto
- Endodontic Division, Department of Semiology and Clinics, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Vanessa Scheffer de Mattos
- Endodontic Division, Department of Conservative Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana Soares Grecca
- Endodontic Division, Department of Conservative Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | |
Collapse
|
191
|
Murakami Y, Masuda T, Imai M, Iwami J, Nakamura H, Noguchi T, Yoshimura F. Analysis of Major Virulence Factors inPorphyromonas gingivalisunder Various Culture Temperatures Using Specific Antibodies. Microbiol Immunol 2013; 48:561-9. [PMID: 15322335 DOI: 10.1111/j.1348-0421.2004.tb03552.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Porphyromonas gingivalis is implicated in the occurrence of adult periodontitis. We have previously identified major outer membrane proteins from P. gingivalis, which include representative virulence factors such as gingipains, a 75 kDa major protein, RagA, RagB, and putative porin. Fimbriae, another important virulence factor, exist on the cell surface. In this study, we identified major supernatant proteins. They were fimbrilin, the 75 kDa major protein, gingipains and their adhesin domains. Microscopic examination showed that supernatant proteins formed vesicle-like and fimbrial structures. To learn more about the character of this bacterium, we examined effects of growth temperature on localization and expression of these virulence factors. In general, localization of major virulence factors did not change at the various growth temperatures used. Most of the 75 kDa major protein, RagA, RagB, and putative porin were found in the envelope fraction, not in cell-free culture supernatant. Gingipains were found in both the envelope fraction and supernatant. More than 80% of fimbriae were associated with cells, less than 20% migrated to the supernatant. Most fimbriae existed in the whole cell lysate, although there was a small amount in the envelope fraction. When the growth temperature was increased, expression of fimbriae, gingipains, the 75 kDa major protein, RagA, and RagB decreased. However, temperature had almost no effect on expression of putative porin. The tendency for expression of major virulence factors to decrease at higher temperatures may enable P. gingivalis to survive under hostile conditions.
Collapse
Affiliation(s)
- Yukitaka Murakami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | | | | | | | | | | | | |
Collapse
|
192
|
Vuotto C, Barbanti F, Mastrantonio P, Donelli G. Lactobacillus brevisCD2 inhibitsPrevotella melaninogenicabiofilm. Oral Dis 2013; 20:668-74. [DOI: 10.1111/odi.12186] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/04/2013] [Accepted: 09/16/2013] [Indexed: 01/09/2023]
Affiliation(s)
- C Vuotto
- Fondazione Santa Lucia IRCCS; Microbial Biofilm Laboratory (LABIM); Rome Italy
| | - F Barbanti
- Istituto Superiore di Sanità; Department of Infectious; Parasitic and Immune-mediated Diseases; Rome Italy
| | - P Mastrantonio
- Istituto Superiore di Sanità; Department of Infectious; Parasitic and Immune-mediated Diseases; Rome Italy
| | - G Donelli
- Fondazione Santa Lucia IRCCS; Microbial Biofilm Laboratory (LABIM); Rome Italy
| |
Collapse
|
193
|
Secondary lymphoid organ homing phenotype of human myeloid dendritic cells disrupted by an intracellular oral pathogen. Infect Immun 2013; 82:101-11. [PMID: 24126519 DOI: 10.1128/iai.01157-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several intracellular pathogens, including a key etiological agent of chronic periodontitis, Porphyromonas gingivalis, infect blood myeloid dendritic cells (mDCs). This infection results in pathogen dissemination to distant inflammatory sites (i.e., pathogen trafficking). The alteration in chemokine-chemokine receptor expression that contributes to this pathogen trafficking function, particularly toward sites of neovascularization in humans, is unclear. To investigate this, we utilized human monocyte-derived DCs (MoDCs) and primary endothelial cells in vitro, combined with ex vivo-isolated blood mDCs and serum from chronic periodontitis subjects and healthy controls. Our results, using conditional fimbria mutants of P. gingivalis, show that P. gingivalis infection of MoDCs induces an angiogenic migratory profile. This profile is enhanced by expression of DC-SIGN on MoDCs and minor mfa-1 fimbriae on P. gingivalis and is evidenced by robust upregulation of CXCR4, but not secondary lymphoid organ (SLO)-homing CCR7. This disruption of SLO-homing capacity in response to respective chemokines closely matches surface expression of CXCR4 and CCR7 and is consistent with directed MoDC migration through an endothelial monolayer. Ex vivo-isolated mDCs from the blood of chronic periodontitis subjects, but not healthy controls, expressed a similar migratory profile; moreover, sera from chronic periodontitis subjects expressed elevated levels of CXCL12. Overall, we conclude that P. gingivalis actively "commandeers" DCs by reprogramming the chemokine receptor profile, thus disrupting SLO homing, while driving migration toward inflammatory vascular sites.
Collapse
|
194
|
Kunnen A, van Pampus MG, Aarnoudse JG, van der Schans CP, Abbas F, Faas MM. The effect of Porphyromonas gingivalis lipopolysaccharide on pregnancy in the rat. Oral Dis 2013; 20:591-601. [PMID: 24112943 DOI: 10.1111/odi.12177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/16/2013] [Accepted: 08/04/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Periodontitis, mostly associated with Porphyromonas gingivalis, has frequently been related to adverse pregnancy outcomes. We therefore investigated whether lipopolysaccharides of P. gingivalis (Pg-LPS) induced pregnancy complications in the rat. METHODS Experiment 1: pregnant rats (day 14) received increasing Pg-LPS doses (0.0-50.0 μg kg(-1) bw; n = 2/3 p per dose). Maternal intra-aortic blood pressure, urinary albumin excretion, placental and foetal weight and foetal resorptions were documented. Experiment 2: 10.0 μg kg(-1) bw (which induced the highest blood pressure together with decreased foetal weight in experiment 1) or saline was infused in pregnant and non-pregnant rats (n = 7/9 p per group). Parameters of experiment 1 and numbers of peripheral leucocytes as well as signs of inflammation in the kidney and placenta were evaluated. RESULTS Pg-LPS infusion in pregnant rats increased maternal systolic blood pressure, reduced placental weight (dose dependently) and decreased foetal weight and induced foetal resorptions. It, however, did not induce proteinuria or a generalised inflammatory response. No effects of Pg-LPS were seen in non-pregnant rats. CONCLUSION Pg-LPS increased maternal blood pressure, induced placental and foetal growth restriction, and increased foetal resorptions, without inducing proteinuria and inflammation. Pg-LPS may therefore play a role in pregnancy complications induced by periodontitis.
Collapse
Affiliation(s)
- A Kunnen
- Department of Periodontology, Center for Dentistry and Oral Hygiene, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; School of Health Care Studies, Hanze University of Applied Sciences Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
195
|
LIU BIN, WANG JIA, CHENG LAN, LIANG JINGPING. Role of JNK and NF-κB pathways in Porphyromonas gingivalis LPS-induced vascular cell adhesion molecule-1 expression in human aortic endothelial cells. Mol Med Rep 2013; 8:1594-600. [DOI: 10.3892/mmr.2013.1685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/05/2013] [Indexed: 11/06/2022] Open
|
196
|
Kobayashi N, Suzuki JI, Ogawa M, Aoyama N, Komuro I, Izumi Y, Isobe M. Porphyromonas gingivalis promotes neointimal formation after arterial injury through toll-like receptor 2 signaling. Heart Vessels 2013; 29:542-9. [PMID: 24002697 DOI: 10.1007/s00380-013-0405-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023]
Abstract
We previously demonstrated that Porphyromonas gingivalis infection induces neointimal hyperplasia with an increase in monocyte chemoattractant protein (MCP)-1 after arterial injury in wild-type mice. Toll-like receptor (TLR) 2 is a key receptor for the virulence factors of P. gingivalis. The aim of this study was to assess whether TLR2 plays a role in periodontopathic bacteria-induced neointimal formation after an arterial injury. Wild-type and TLR2-deficient mice were used in this study. The femoral arteries were injured, and P. gingivalis or vehicle was injected subcutaneously once per week. Fourteen days after arterial injury, the murine femoral arteries were obtained for histopathologic and immunohistochemical analyses. The immunoglobulin-G levels of the P. gingivalis-infected groups were significantly increased in comparison with the level in the corresponding noninfected groups in both wild-type and TLR2-deficient mice. TLR2 deficiency negated the P. gingivalis-induced neointimal formation in comparison with the wild-type mice, and reduced the number of positive monocyte chemoattractant protein-1 cells in the neointimal area. These findings demonstrate that P. gingivalis infection can promote neointimal formation after an arterial injury through TLR2 signaling.
Collapse
Affiliation(s)
- Naho Kobayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
197
|
Ganuelas LA, Li N, Yun P, Hunter N, Collyer CA. The lysine gingipain adhesin domains from Porphyromonas gingivalis interact with erythrocytes and albumin: Structures correlate to function. Eur J Microbiol Immunol (Bp) 2013; 3:152-62. [PMID: 24265933 PMCID: PMC3832095 DOI: 10.1556/eujmi.3.2013.3.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 07/17/2013] [Indexed: 01/07/2023] Open
Abstract
The crystal structure of the K1 domain, an adhesin module of the lysine gingipain (Kgp) expressed on the cell surface by the periodontopathic anaerobic bacterium, Porphyromonas gingivalis W83, is compared to the previously determined structures of homologues K2 and K3, all three being representative members of the cleaved adhesin domain family. In the structure of K1, the conformation of the most extensive surface loop is unexpectedly perturbed, perhaps by crystal packing, and is displaced from a previously reported arginine-anchored position observed in K2 and K3. This displacement allows the loop to become free to interact with other proteins; the alternate flipped-out loop conformation is a novel mechanism for interacting with target host proteins, other bacteria, or other gingipain protein domains. Further, the K1 adhesin module, like others, is found to be haemolytic in vitro, and so, functions in erythrocyte recognition thereby contributing to the haemolytic function of Kgp. K1 was also observed to selectively bind to haem-albumin with high affinity, suggesting this domain may be involved in gingipain-mediated haem acquisition from haem-albumin. Therefore, it is most likely that all cleaved adhesin domains of Kgp contribute to the pathogenicity of P. gingivalis in more complex ways than simply mediating bacterial adherence.
Collapse
Affiliation(s)
- L. A. Ganuelas
- School of Molecular Bioscience, The University of
SydneySydneyAustralia
| | - N. Li
- School of Molecular Bioscience, The University of
SydneySydneyAustralia
| | - P. Yun
- Institute of Dental Research, Westmead Millennium Institute and
Centre for Oral Health, Westmead HospitalSydney, NSWAustralia
| | - N. Hunter
- Institute of Dental Research, Westmead Millennium Institute and
Centre for Oral Health, Westmead HospitalSydney, NSWAustralia,Faculty of Dentistry, The University of SydneySydneyAustralia
| | - C. A. Collyer
- School of Molecular Bioscience, The University of
SydneySydneyAustralia
| |
Collapse
|
198
|
Sağlam M, Arslan U, Buket Bozkurt Ş, Hakki SS. Boric Acid Irrigation as an Adjunct to Mechanical Periodontal Therapy in Patients With Chronic Periodontitis: A Randomized Clinical Trial. J Periodontol 2013; 84:1297-308. [DOI: 10.1902/jop.2012.120467] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
199
|
Chava VK, Vedula BD. Thermo‐Reversible Green Tea Catechin Gel for Local Application in Chronic Periodontitis: A 4‐Week Clinical Trial. J Periodontol 2013; 84:1290-1296. [DOI: 10.1902/jop.2012.120425] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background: Green tea extract is a naturally occurring antimicrobial agent, consisting of polyphenols (catechin) with anticariogenic, anti‐inflammatory, anticollagenolytic properties. Hence, in the present study, an attempt was made to develop a thermo‐reversible sustained‐release green tea gel and to study its clinical effects on patients with chronic periodontitis (CP).Methods: Thermo‐reversible sustained‐release green tea catechin gel was prepared and tested for its in vitro release characteristics. An in vivo controlled, randomized, split‐mouth single‐evaluator masked study was conducted. Thirty patients with two sites in the contralateral quadrants having probing depths (PDs) of ≥4 mm were selected. Assessment of gingival index (GI), PD, and relative clinical attachment levels (rCALs) was done at baseline and at 4 weeks. Green tea and placebo gels were placed at test and control sites as an adjunct to Phase 1 periodontal therapy.Results: Comparison of the mean ± SD GI, PD, and rCAL values within the test group at baseline (1.92 ± 0.24, 4.93 ± 0.58, and 9.97 ± 0.72, respectively) and the end of 4 weeks (0.01 ± 0.04, 2.87 ± 0.51, and 7.87 ± 0.51, respectively) showed high statistical significance (P <0.001). Comparison of mean ± SD of GI, PD, and rCAL within the control group at baseline (1.95 ± 0.16, 4.77 ± 0.50, and 9.73 ± 0.45, respectively) and the end of 4 weeks (0.16 ± 0.11, 3.8 ± 0.48, and 8.76 ± 0.43, respectively) showed significance with P <0.001. High significance was observed between the delta of measurements (0 to 4 weeks) of GI, PD, and rCAL between test (1.91 ± 0.20, 2.06 ± 0.07, and 2.1 ± 0.21, respectively) and control (1.79 ± 0.05, 0.97 ± 0.02, and 0.97 ± 0.02, respectively) groups.Conclusion: Adjunctive local drug therapy with thermo‐reversible green tea gel has shown to reduce pockets and inflammation during the 4 weeks of the clinical trial in patients with CP.
Collapse
|
200
|
|