151
|
del Castillo-Vaquero A, Salido GM, Gonzalez A. Melatonin induces calcium release from CCK-8- and thapsigargin-sensitive cytosolic stores in pancreatic AR42J cells. J Pineal Res 2010; 49:256-263. [PMID: 20626590 DOI: 10.1111/j.1600-079x.2010.00790.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Melatonin is produced following circadian rhythm with high levels being released at night and has been implicated in the regulation of physiological processes in major tissues, including the pancreas. The aim of our study was to examine the effects of melatonin on intracellular free Ca(2+) concentration ([Ca(2+) ](c)) in AR42J pancreatic cells. Our results show that stimulation of cells with 1 nm cholecystokinin (CCK)-8 led to a transient increase in [Ca(2+) ](c) followed by a decrease towards a value close to the prestimulation level. Melatonin (at the concentrations 1, 10, 100 μm and 1 mm) induced changes in [Ca(2+) ](c) that consisted of single or short lasting spikes in the form of oscillations or slow transient increases followed by a slow reduction towards a value close to the resting level. Depletion of intracellular Ca(2+) stores by stimulation of cells with 1 nm CCK-8 or 1 μm thapsigargin (Tps) blocked Ca(2+) responses evoked by melatonin in the majority of cells. Conversely, prior stimulation of cells with 1 mm melatonin in the absence of extracellular Ca(2+) inhibited Ca(2+) mobilization in response to a secondary application of CCK-8 or Tps. In summary, our results show that melatonin releases Ca(2+) from intracellular stores and can therefore modulate the responses of the pancreas to CCK-8. The source for Ca(2+) mobilization most probably is the endoplasmic reticulum. These data raise the possibility that melatonin also involves Ca(2+) signalling, in addition to other intracellular messengers, to modulate cellular function.
Collapse
|
152
|
Lin ZY, Chuang WL. Pharmacologic concentrations of melatonin have diverse influence on differential expressions of angiogenic chemokine genes in different hepatocellular carcinoma cell lines. Biomed Pharmacother 2010; 64:659-62. [PMID: 20970952 DOI: 10.1016/j.biopha.2010.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 09/05/2010] [Indexed: 12/30/2022] Open
Abstract
This study was to investigate whether melatonin (MLT) at pharmacologic concentrations (1 and 100 μM) had potential to influence the expressions of angiogenic (CCL2, CXCL6, IL8) and angiostatic (CXCL10) chemokine genes in two hepatocellular carcinoma (HCC) cell lines with different characteristics (cell line A, HCC24/KMUH, without susceptible to amphotericin B (AmB)-induced oxidative stress; cell line B, HCC38/KMUH, susceptible to AmB-induced oxidative stress). Differential expression of gene was investigated by quantitative reverse transcriptase-polymerase chain reaction. Two genes related to oxidative stress (SOD2, VNN3) were also studied. One and 100 μM MLT up-regulated CCL2, IL8 and CXCL10 genes in cell line A but down-regulated CCL2, CXCL6, IL8 and SOD2 genes in cell line B. CXCL10 gene was up-regulated by 1 and 100 μM MLT in both cell lines. SOD2 gene was down-regulated by 1 and 100 μM MLT only in cell line B. The magnitudes of gene expression fold changes of CCL2 and IL8 genes in cell line A and CCL2, CXCL6, IL8 and SOD2 genes in cell line B were similar between 1 and 100 μM MLT. The magnitudes of gene expression fold change of up-regulated CXCL10 gene in both cell lines were smaller in 100 μM MLT than in 1 μM MLT. In conclusion, the responses of angiogenic chemokine genes to MLT were mainly determined by the characteristics of cancer cells. The concentration of MLT may be the main determinant for the response of angiostatic CXCL10 gene to MLT. Clinical application of MLT in patients with HCC should consider these effects.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Cancer Center and Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, No. 100 Tzyou, 1(st) Road, Kaohsiung 807, Taiwan.
| | | |
Collapse
|
153
|
Paul S, Bhattacharya P, Das Mahapatra P, Swarnakar S. Melatonin protects against endometriosis via regulation of matrix metalloproteinase-3 and an apoptotic pathway. J Pineal Res 2010; 49:156-68. [PMID: 20609072 DOI: 10.1111/j.1600-079x.2010.00780.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The role of matrix metalloproteinases (MMPs) in endometriosis, a gynecological disease of women, is unclear. The study investigated the activity of MMP-3 and its interplay with MMP-9 during the onset of endometriosis. Additionally, the importance of MMP-3 on the apoptotic pathway in endometriosis and effect of melatonin thereon were investigated. A Significant increase in the activity of MMP-3 with the severity of endometriosis in human was observed which was found similar in mice also. During the early phase of endometriosis, MMP-3 but not MMP-9 was increased and associated with the expression of transcription factor, c-Fos. Moreover, urokinase plasminogen activator and tissue inhibitor of metalloproteinase (TIMP)-3 were involved in MMP-3 regulation during endometriosis. Furthermore, MMP-3 activity that was parallel to c-Fos expression in endometriosis was reduced by melatonin pretreatment as characterized by diminished activator protein (AP)-1 DNA-binding activity. Because decreased apoptosis is an explanation for the perpetuation of endometriosis, we tested the role of melatonin on apoptotic pathway in preventing endometriosis. Significant regression of glandular epithelium was observed in melatonin-treated when compared to untreated mice. Melatonin treatment increased apoptotic cells in endometriotic zones. This was related to reduced Bcl-2 expression along with increased Bax expression and caspase-9 activation. In summary, early induction of MMP-3 was distinct from MMP-9 during endometriosis, which was regulated by c-Fos and TIMP-3. Melatonin suppressed MMP-3 activity and amplified apoptosis while regressing endometriosis through a caspase-3 mediated pathway. Thus, melatonin may be a therapeutic agent for resolving endometriosis.
Collapse
Affiliation(s)
- Sumit Paul
- Department of Physiology, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | |
Collapse
|
154
|
Cabrera J, Negrín G, Estévez F, Loro J, Reiter RJ, Quintana J. Melatonin decreases cell proliferation and induces melanogenesis in human melanoma SK-MEL-1 cells. J Pineal Res 2010; 49:45-54. [PMID: 20459460 DOI: 10.1111/j.1600-079x.2010.00765.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Melatonin is an indoleamine synthesized in the pineal gland, and after its release into the blood, it has an extensive repertoire of biological activities, including antitumoral properties. In this study, we found that melatonin reduced the growth of the human melanoma cells SK-MEL-1. The antiproliferative effect was associated with an alteration in the progression of the phases of the cell cycle and also with an increase in tyrosinase activity, the key regulatory enzyme of melanogenesis. Antagonists for melatonin membrane receptors (luzindole and 4-P-PDOT) and the general G-coupled receptor inhibitor, pertussis toxin, did not prevent the melatonin-induced cell growth arrest; this suggests a mechanism independent of G-coupled membrane receptors. In contrast, p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway seems to play a significant role in cell growth inhibition by melatonin. The indoleamine-induced phosphorylation of p38 MAPK and the effect on cell proliferation were abrogated by the specific inhibitor SB203580. Furthermore, comparative studies with known antioxidants such as N-acetyl-l-cysteine and trolox indicate that the growth of SK-MEL-1 cells is highly sensitive to antioxidants.
Collapse
Affiliation(s)
- Javier Cabrera
- Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | | | | | | | | | | |
Collapse
|
155
|
Fan LL, Sun GP, Wei W, Wang ZG, Ge L, Fu WZ, Wang H. Melatonin and Doxorubicin synergistically induce cell apoptosis in human hepatoma cell lines. World J Gastroenterol 2010; 16:1473-81. [PMID: 20333787 PMCID: PMC2846252 DOI: 10.3748/wjg.v16.i12.1473] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether Melatonin has synergistic effects with Doxorubicin in the growth-inhibition and apoptosis-induction of human hepatoma cell lines HepG2 and Bel-7402.
METHODS: The synergism of Melatonin and Doxorubicin inhibited the cell growth and induced cell apoptosis in human hepatoma cell lines HepG2 and Bel-7402. Cell viability was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. Cell apoptosis was evaluated using TUNEL method and flow cytometry. Apoptosis-related protein Bax, Bcl-2 and caspase-3 expressions were measured by immunohistochemical staining.
RESULTS: Treatment with Melatonin (10-8-10-5 mol/L) alone had a dose-related inhibitory effect on cell proliferation but no cytotoxic effect on hepatoma cell lines HepG2 and Bel-7402. Interestingly, when combined with Doxorubicin, Melatonin significantly increased the effects of cell growth inhibition and cell apoptosis. Furthermore, TUNEL staining and flow cytometry revealed that cooperative apoptosis induction was associated with decreased expression of Bcl-2 as well as increased expression of Bax and Caspase3.
CONCLUSION: The synergism of Melatonin and Doxorubicin inhibits hepatoma cell growth and induces cell apoptosis.
Collapse
|
156
|
Yoo YM, Jeung EB. Melatonin-induced calbindin-D9k expression reduces hydrogen peroxide-mediated cell death in rat pituitary GH3 cells. J Pineal Res 2010; 48:83-93. [PMID: 20041988 DOI: 10.1111/j.1600-079x.2009.00730.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, we investigated whether calbindin-D9k (CaBP-9k) expression was regulated by melatonin during hydrogen peroxide (H(2)O(2))-induced cell death in rat pituitary GH3 cells. CaBP-9k expression was increased by melatonin in a dose- and time-dependent manner, indicating that CaBP-9k expression is regulated by melatonin. Cell survival was increased approximately 27-30% where H(2)O(2)-treated cells (0.25 or 0.5 mm) were also incubated with 1 mm melatonin, when compared with H(2)O(2) alone or H(2)O(2) plus 0.5 mm melatonin. This result was consistent with 4,6-diamidino-2-phenylindole staining. CaBP-9k expression was also augmented by co-treatment with H(2)O(2) and 1 mm melatonin, suggesting a functional relationship between increased cell death and melatonin-induced CaBP-9k expression during H(2)O(2)-mediated apoptosis. Bcl-2-associated protein expression increased following treatment with H(2)O(2) alone, whereas Bcl-2 expression was elevated following treatment with melatonin alone, or H(2)O(2) plus melatonin. The expression of p53 was depressed by treatment with melatonin alone, or co-treatment with H(2)O(2) plus melatonin. These results correlated with CaBP-9k expression levels and activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway. Knockdown of CaBP-9k expression using a small inhibitory RNA resulted in an elevation of H(2)O(2)-induced cell death, whereas cell survival was increased in cells that overexpressed CaBP-9k, providing additional evidence that the induction of CaBP-9k expression may be associated with survival signaling during H(2)O(2)-mediated oxidative cell death. CaBP-9k appears to interact with p53, suggesting a possible role for this interaction in cell proliferation and cell cycle progression.
Collapse
Affiliation(s)
- Yeong-Min Yoo
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Chungbuk, Republic of Korea
| | | |
Collapse
|
157
|
Abstract
Histone deacetylases (HDAC) have been under intense scientific investigation for a number of years. However, only recently the unique class III HDAC, sirtuins, have gained increasing investigational momentum. Originally linked to longevity in yeast, sirtuins and more specifically, SIRT1 have been implicated in numerous biological processes having both protective and/or detrimental effects. SIRT1 appears to play a critical role in the process of carcinogenesis, especially in age-related neoplasms. Similarly, alterations in circadian rhythms as well as production of the pineal hormone melatonin have been linked to aging and cancer risk. Melatonin has been found act as a differentiating agent in some cancer cells and to lower their invasive and metastatic status. In addition, melatonin synthesis and release occurs in a circadian rhythm fashion and it has been linked to the core circadian machinery genes (Clock, Bmal1, Periods, and Cryptochromes). Melatonin has also been associated with chronotherapy, the timely administration of chemotherapy agents to optimize trends in biological cycles. Interestingly, a recent set of studies have linked SIRT1 to the circadian rhythm machinery through direct deacetylation activity as well as through the nicotinamide adenine dinucleotide (NAD(+)) salvage pathway. In this review, we provide evidence for a possible connection between sirtuins, melatonin, and the circadian rhythm circuitry and their implications in aging, chronomodulation, and cancer.
Collapse
Affiliation(s)
- Brittney Jung-Hynes
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin
| | - Russel J. Reiter
- Department of Cellular & Structural Biology, The University of Texas Health Science Center, San Antonio, Texas
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Wisconsin
- The University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
- Address correspondence to: Nihal Ahmad, Ph.D., Department of Dermatology, University of Wisconsin, 1300 University Avenue, MSC 423, Madison, Wisconsin, 53706; Phone: (608) 263-5359; Fax: (608) 263-5223;
| |
Collapse
|
158
|
Akbulut KG, Gonul B, Akbulut H. The role of melatonin on gastric mucosal cell proliferation and telomerase activity in ageing. J Pineal Res 2009; 47:308-12. [PMID: 19796046 DOI: 10.1111/j.1600-079x.2009.00715.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite antiproliferative effects of melatonin on cultured tumor cells, its effects on normal cells are less clear. The action of melatonin on telomerase activity in ageing of gastric mucosal tissues also is not known. In this study, we investigated the age-related changes in telomerase activity and cellular proliferation rate of gastric mucosa and the effect of melatonin. A total of 37 young (4 months old), and aged (20 months old) Wistar rats, kept under equal periods of light and dark, were divided into control [(PBS), i.p. for 21 days] and melatonin-treated (10 mg/kg melatonin, i.p. for 21 days) groups. Telomerase activity, cell proliferation rate, malondialdehyde (MDA) and glutathione (GSH) levels of the stomach were determined. Melatonin significantly inhibited the gastric mucosal proliferation rate of both young and aged rats. Telomerase activity was significantly reduced in aged rats compared to young animals. Melatonin significantly increased the telomerase activity of both young and aged rats. The MDA levels of gastric mucosa in the aged rats were significantly higher than those of the younger rats. On the contrary, the GSH levels of gastric mucosa of the aged group were significantly lower than that of the young rats. While melatonin had no effect on GSH levels of either young or aged rats, it significantly decreased the MDA levels in aged animals. In conclusion, melatonin may delay the ageing of gastric mucosa by inhibiting the replicative cellular senescence via its stimulatory effect on telomerase activity and suppressive effect on cellular proliferation and lipid peroxidation.
Collapse
Affiliation(s)
- K Gonca Akbulut
- Department of Physiology, Gazi University Faculty of Medicine, Ankara, Turkey.
| | | | | |
Collapse
|
159
|
Carbajo-Pescador S, Martín-Renedo J, García-Palomo A, Tuñón MJ, Mauriz JL, González-Gallego J. Changes in the expression of melatonin receptors induced by melatonin treatment in hepatocarcinoma HepG2 cells. J Pineal Res 2009; 47:330-8. [PMID: 19817970 DOI: 10.1111/j.1600-079x.2009.00719.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and its incidence is increasing worldwide. Melatonin, an indoleamine hormone, exerts anti-oxidant, immunomodulatory, anti-aging, and antitumor effects. Previous studies have shown that melatonin can act through specific receptors, including MT(1), MT(2), MT(3) receptors as well as a nuclear receptor belonging to the orphan nuclear receptor family. Recently, we have described their role in the oncostatic and pro-apoptotic effects of melatonin on HepG2 human HCC cells. However, the potential role of the different melatonin cellular receptors on its antiproliferative effects remains unknown. In the present study, we examined the effect of melatonin treatment on HepG2 human HCC cells, analyzing cell cycle arrest and melatonin receptor expression. Melatonin was administered for 2, 4, and 6 days at 1000 or 2500 microm. Melatonin induced a dose- and time-dependent inhibition on cell proliferation. This treatment caused an alteration in the cell cycle, with an increase in the number of cells in G(2)/M phase at both 1000 and 2500 microm melatonin concentrations, and a significant increase on S phase cell percentage by the highest dose. Furthermore, increases in protein expression of MT(1), MT(3), and retinoic acid-related orphan receptor-alpha were found after melatonin treatments. These increases were coincident with a significant induction in the expression of p21 protein, which negatively regulates cell cycle progression. Our results confirm the antitumor effect of melatonin in HCC cells, suggesting that its oncostatic properties are related, at least in part, to changes on the expression of their different subtypes of receptors.
Collapse
MESH Headings
- Antioxidants/pharmacology
- Blotting, Western
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Flow Cytometry
- Humans
- Melatonin/pharmacology
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Receptors, Melatonin/genetics
- Receptors, Melatonin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Sara Carbajo-Pescador
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas and Institute of Biomedicine, University of León, León, Spain
| | | | | | | | | | | |
Collapse
|
160
|
Nah SS, Won HJ, Park HJ, Ha E, Chung JH, Cho HY, Baik HH. Melatonin inhibits human fibroblast-like synoviocyte proliferation via extracellular signal-regulated protein kinase/P21(CIP1)/P27(KIP1) pathways. J Pineal Res 2009; 47:70-4. [PMID: 19538337 DOI: 10.1111/j.1600-079x.2009.00689.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The excessive proliferation and migration of synoviocytes are well-characterized phenomena that play key roles in the pathophysiology of rheumatoid arthritis (RA). Melatonin has been shown to have potent anti-proliferative effect in various cancer cells such as breast and prostate cancer cells. In this study, we examined the role of melatonin on synoviocyte proliferation in primary cultured human fibroblast-like synoviocytes (FLSs) by analyzing protein expression of P21(CIP1) (P21) and P27(KIP1) (P27), the cyclin-dependent kinase inhibitors that are important in cell cycle control, and the phosphorylation of mitogen-activated protein kinases (MAPKs). RA-FLS proliferation was determined by a [(3)H]-thymidine incorporation assay. Western blot analysis was applied to examine the underlying mechanisms of melatonin's effect. Melatonin inhibited RA-FLS proliferation in a dose-dependent manner. It reduced proliferation of passage 2 FLSs by 25% at 10 microm and by nearly 40% at 100 microm concentrations. The inhibitory effect of melatonin on RA-FLS proliferation was also observed in passages 4 and 6. Melatonin upregulated the expression levels of P21 and P27 dose-dependently (24 hr), induced the phosphorylation of extracellular signal-regulated protein kinase (ERK) time-dependently (10 microm), but did not affect phosphorylation of P38 in RA-FLSs. In addition, the expression of P21 and P27 triggered by melatonin was inhibited by the pretreatment of the ERK inhibitor, PD98059 (10 microm). The anti-proliferative action of melatonin in RA-FLSs was also blocked by PD98059. Taken together, these results suggest that melatonin exerts the inhibitory effect of the proliferation of RA-FLSs through the activation of P21 and P27 mediated by ERK. Hence we suggest that melatonin could be used as a therapeutic agent for the treatment of RA.
Collapse
Affiliation(s)
- Seong-Su Nah
- Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University, College of Medicine, Choenan, Korea
| | | | | | | | | | | | | |
Collapse
|
161
|
Joo SS, Yoo YM. Melatonin induces apoptotic death in LNCaP cells via p38 and JNK pathways: therapeutic implications for prostate cancer. J Pineal Res 2009; 47:8-14. [PMID: 19522739 DOI: 10.1111/j.1600-079x.2009.00682.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Apoptosis, a form of cell death, is a fundamental process for the development and maintenance of multicellular organisms that promotes the removal of damaged, senescent or unwanted cells. Induction of cancer cell apoptosis is an important strategy of anticancer therapy. In this study, we examined if melatonin, the main secretory product of the pineal gland, inhibited the growth of prostate cancer cells (LNCaP) and promoted apoptosis via mitogen-activated protein kinases (MAPKs), which are closely associated with apoptosis and survival. Melatonin treatment significantly inhibited the growth of LNCaP cells in a dose- and time-dependent manner. It clearly induced both an early stage of apoptosis (propidium iodide(-), FITC Annexin-V(+)) and a late apoptosis/secondary necrosis (propidium iodide(+) and FITC Annexin-V(+)), which indicated induction of serial stages of apoptosis in cells. Moreover, melatonin markedly activated c-JUN N-terminal kinase (JNK) and p38 kinase, whereas extracellular signal-regulated kinase (ERK) was not responsive to melatonin. Treatment with MAPK inhibitors, PD98059 (ERK inhibitor), SP600125 (JNK inhibitor) and SB202190 (p38 inhibitor), confirmed that melatonin-induced apoptosis was JNK- and p38-dependent, but ERK-independent. In the presence of PD98059, caspase-3 activity increased, while levels of Bax/cytochrome c (Cyt c) and Bcl-2 decreased. These effects were opposite to those observed with SP600125 and SB202190 treatments. Together, these results strongly suggest that JNK and p38 activation directly participate in apoptosis induced by melatonin. Thus, melatonin may be of promise for anti-prostate cancer strategies.
Collapse
Affiliation(s)
- Seong Soo Joo
- Research Institute of Veterinary Medicine, Chungbuk National University, Chungbuk, Korea
| | | |
Collapse
|
162
|
Bejarano I, Redondo PC, Espino J, Rosado JA, Paredes SD, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB. Melatonin induces mitochondrial-mediated apoptosis in human myeloid HL-60 cells. J Pineal Res 2009; 46:392-400. [PMID: 19552762 DOI: 10.1111/j.1600-079x.2009.00675.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The role of melatonin in the mediation of apoptotic events has recently gained attention, especially after recent studies have reported that melatonin exerts antiapoptotic actions in normal cells but may activate proapoptotic pathways in some tumor cells. Here, we have evaluated the effect of melatonin on apoptosis in the human leukemia cell line HL-60. Melatonin treatment (1 mm) induced a significant increase in caspase-3 and -9 activities. The effect of melatonin on the activation of caspases was time dependent, reaching a maximum after 12 hr of stimulation, and then decreasing to a minimum after 72 hr. Treatment with melatonin also evoked mitochondrial membrane depolarization and permeability transition pore induction, which caused loss of mitochondrial staining by calcein, and increased cell death by apoptosis/necrosis as demonstrated by propidium iodide positive-staining of cells after 72 hr of stimulation. In addition, the exposure of cells to melatonin resulted in an activation and association of the proapoptotic proteins Bax and Bid, as well as promoting detectable increases in the expression of both proteins. We conclude that melatonin has proapoptotic and/or oncostatic effects in the human myeloid cell line HL-60.
Collapse
Affiliation(s)
- Ignacio Bejarano
- Department of Physiology, University of Extremadura, Badajoz, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Richter HG, Hansell JA, Raut S, Giussani DA. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. J Pineal Res 2009; 46:357-64. [PMID: 19552758 DOI: 10.1111/j.1600-079x.2009.00671.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Melatonin participates in circadian, seasonal and reproductive physiology. Melatonin also acts as a potent endogenous antioxidant by scavenging free radicals and upregulating antioxidant pathways. The placenta expresses melatonin receptors and melatonin protects against oxidative damage induced in rat placenta by ischemia-reperfusion. One of the most common complications in pregnancy is a reduction in fetal nutrient delivery, which is known to promote oxidative stress. However, whether melatonin protects placental function and fetal development in undernourished pregnancy is unknown. Here, we investigated the effects of maternal treatment with melatonin on placental efficiency, fetal growth, birth weight and protein expression of placental oxidative stress markers in undernourished pregnancy. On day 15 of pregnancy, rats were divided into control and undernourished pregnancy (35% reduction in food intake), with and without melatonin treatment (5 microg/mL drinking water). On day 20 of gestation, fetal biometry was carried out, the placenta was weighed and subsequently analyzed by Western blot for xanthine oxidase, heat shock protein (HSP) 27 and 70, catalase, manganese superoxide dismutase (Mn-SOD) and glutathione peroxidase 1 (GPx-1). A separate cohort was allowed to deliver to assess effects on birth weight. Maternal undernutrition led to a fall in placental efficiency, disproportionate intrauterine growth retardation and a reduction in birth weight. Maternal treatment with melatonin in undernourished pregnancy improved placental efficiency and restored birth weight, and it increased the expression of placental Mn-SOD and catalase. The data show that in pregnancy complicated by undernutrition, melatonin may improve placental efficiency and birth weight by upregulating placental antioxidant enzymes.
Collapse
Affiliation(s)
- Hans G Richter
- Centre for Trophoblast Research, Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|