151
|
Hostrup M, Bangsbo J. Limitations in intense exercise performance of athletes - effect of speed endurance training on ion handling and fatigue development. J Physiol 2016; 595:2897-2913. [PMID: 27673449 DOI: 10.1113/jp273218] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/21/2016] [Indexed: 01/10/2023] Open
Abstract
Mechanisms underlying fatigue development and limitations for performance during intense exercise have been intensively studied during the past couple of decades. Fatigue development may involve several interacting factors and depends on type of exercise undertaken and training level of the individual. Intense exercise (½-6 min) causes major ionic perturbations (Ca2+ , Cl- , H+ , K+ , lactate- and Na+ ) that may reduce sarcolemmal excitability, Ca2+ release and force production of skeletal muscle. Maintenance of ion homeostasis is thus essential to sustain force production and power output during intense exercise. Regular speed endurance training (SET), i.e. exercise performed at intensities above that corresponding to maximum oxygen consumption (V̇O2, max ), enhances intense exercise performance. However, most of the studies that have provided mechanistic insight into the beneficial effects of SET have been conducted in untrained and recreationally active individuals, making extrapolation towards athletes' performance difficult. Nevertheless, recent studies indicate that only a few weeks of SET enhances intense exercise performance in highly trained individuals. In these studies, the enhanced performance was not associated with changes in V̇O2, max and muscle oxidative capacity, but rather with adaptations in muscle ion handling, including lowered interstitial concentrations of K+ during and in recovery from intense exercise, improved lactate- -H+ transport and H+ regulation, and enhanced Ca2+ release function. The purpose of this Topical Review is to provide an overview of the effect of SET and to discuss potential mechanisms underlying enhancements in performance induced by SET in already well-trained individuals with special emphasis on ion handling in skeletal muscle.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.,Department of Respiratory Research, Bispebjerg University Hospital, Denmark
| | - Jens Bangsbo
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
152
|
de Araujo GG, Papoti M, Dos Reis IGM, de Mello MAR, Gobatto CA. Short and Long Term Effects of High-Intensity Interval Training on Hormones, Metabolites, Antioxidant System, Glycogen Concentration, and Aerobic Performance Adaptations in Rats. Front Physiol 2016; 7:505. [PMID: 27840611 PMCID: PMC5083880 DOI: 10.3389/fphys.2016.00505] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/14/2016] [Indexed: 01/05/2023] Open
Abstract
The purpose of the study was to investigate the effects of short and long term High-Intensity Interval Training (HIIT) on anaerobic and aerobic performance, creatinine, uric acid, urea, creatine kinase, lactate dehydrogenase, catalase, superoxide dismutase, testosterone, corticosterone, and glycogen concentration (liver, soleus, and gastrocnemius). The Wistar rats were separated in two groups: HIIT and sedentary/control (CT). The lactate minimum (LM) was used to evaluate the aerobic and anaerobic performance (AP) (baseline, 6, and 12 weeks). The lactate peak determination consisted of two swim bouts at 13% of body weight (bw): (1) 30 s of effort; (2) 30 s of passive recovery; (3) exercise until exhaustion (AP). Tethered loads equivalent to 3.5, 4.0, 4.5, 5.0, 5.5, and 6.5% bw were performed in incremental phase. The aerobic capacity in HIIT group increased after 12 weeks (5.2 ± 0.2% bw) in relation to baseline (4.4 ± 0.2% bw), but not after 6 weeks (4.5 ± 0.3% bw). The exhaustion time in HIIT group showed higher values than CT after 6 (HIIT = 58 ± 5 s; CT = 40 ± 7 s) and 12 weeks (HIIT = 62 ± 7 s; CT = 49 ± 3 s). Glycogen (mg/100 mg) increased in gastrocnemius for HIIT group after 6 weeks (0.757 ± 0.076) and 12 weeks (1.014 ± 0.157) in comparison to baseline (0.358 ± 0.024). In soleus, the HIIT increased glycogen after 6 weeks (0.738 ± 0.057) and 12 weeks (0.709 ± 0.085) in comparison to baseline (0.417 ± 0.035). The glycogen in liver increased after HIIT 12 weeks (4.079 ± 0.319) in relation to baseline (2.400 ± 0.416). The corticosterone (ng/mL) in HIIT increased after 6 weeks (529.0 ± 30.5) and reduced after 12 weeks (153.6 ± 14.5) in comparison to baseline (370.0 ± 18.3). In conclusion, long term HIIT enhanced the aerobic capacity, but short term was not enough to cause aerobic adaptations. The anaerobic performance increased in HIIT short and long term compared with CT, without differences between HIIT short and long term. Furthermore, the glycogen super-compensation increased after short and long term HIIT in comparison to baseline and CT group. The corticosterone increased after 6 weeks, but reduces after 12 weeks. No significant alterations were observed in urea, uric acid, testosterone, catalase, superoxide dismutase, sulfhydryl groups, and creatine kinase in HIIT group in relation to baseline and CT.
Collapse
Affiliation(s)
- Gustavo G de Araujo
- Laboratory of Sports Applied Physiology, Campinas State UniversityLimeira, Brazil; Research Group Applied to Sports Science, Federal University of Alagoas/PPGNUT/PPGCS/Physical EducationMaceió, Brazil
| | - Marcelo Papoti
- School of Physical Education and Sport of Ribeirão Preto, University of Sao Paulo Ribeirão Preto, Brazil
| | | | | | - Claudio A Gobatto
- Laboratory of Sports Applied Physiology, Campinas State University Limeira, Brazil
| |
Collapse
|
153
|
Sheykhlouvand M, Gharaat M, Khalili E, Agha-Alinejad H. The effect of high-intensity interval training on ventilatory threshold and aerobic power in well-trained canoe polo athletes. Sci Sports 2016; 31:283-289. [DOI: 10.1016/j.scispo.2016.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
154
|
Potential Universal Application of High-intensity Interval Training from Athletes and Sports Lovers to Patients. Keio J Med 2016; 66:19-24. [PMID: 27498746 DOI: 10.2302/kjm.2016-0006-ir] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, high-intensity interval training (HIIT) has received much attention as a promising exercise option not only to improve aerobic fitness, but also to prevent and improve lifestyle-related diseases. Epidemiological studies have shown that the exercise volume, as determined by the product of exercise intensity, duration, and frequency, has been shown to be important for improvements in muscle mitochondrial activity and subsequent improvements in aerobic fitness, insulin sensitivity, and metabolic variables. Therefore, continuous moderate-intensity training has been widely recommended. On the other hand, the main contributor of HIIT to improvements in aerobic fitness and metabolic variables is its high-intensity nature, and many recent studies have shown results favoring HIIT when compared with conventional continuous training, despite its shorter exercise duration and smaller exercise volume. In this review, we aim to show the possible universal application of HIIT in a hospital setting, where athletes, sports lovers, and patients have sought medical advice and have the opportunity to undergo detailed evaluations, including an exercise stress test. For athletes, HIIT is mandatory to achieve further improvements in aerobic fitness. For patients, though higher levels of motivation and careful evaluation are required, the time constraints of HIIT are smaller and both aerobic and resistance training can be expected to yield favorable results because of the high-intensity nature of HIIT.
Collapse
|
155
|
Heiskanen MA, Leskinen T, Heinonen IHA, Löyttyniemi E, Eskelinen JJ, Virtanen K, Hannukainen JC, Kalliokoski KK. Right ventricular metabolic adaptations to high-intensity interval and moderate-intensity continuous training in healthy middle-aged men. Am J Physiol Heart Circ Physiol 2016; 311:H667-75. [PMID: 27448554 DOI: 10.1152/ajpheart.00399.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/21/2016] [Indexed: 01/18/2023]
Abstract
Despite the recent studies on structural and functional adaptations of the right ventricle (RV) to exercise training, adaptations of its metabolism remain unknown. We investigated the effects of short-term, high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on RV glucose and fat metabolism. Twenty-eight untrained, healthy 40-55 yr-old-men were randomized into HIIT (n = 14) and MICT (n = 14) groups. Subjects performed six supervised cycle ergometer training sessions within 2 wk (HIIT session: 4-6 × 30 s all-out cycling/4-min recovery; MICT session: 40-60 min at 60% peak O2 uptake). Primary outcomes were insulin-stimulated RV glucose uptake (RVGU) and fasted state RV free fatty acid uptake (RVFFAU) measured by positron emission tomography. Secondary outcomes were changes in RV structure and function, determined by cardiac magnetic resonance. RVGU decreased after training (-22% HIIT, -12% MICT, P = 0.002 for training effect), but RVFFAU was not affected by the training (P = 0.74). RV end-diastolic and end-systolic volumes, respectively, increased +5 and +7% for HIIT and +4 and +8% for MICT (P = 0.002 and 0.005 for training effects, respectively), but ejection fraction mildly decreased (-2% HIIT, -4% MICT, P = 0.034 for training effect). RV mass and stroke volume remained unaltered. None of the observed changes differed between the training groups (P > 0.12 for group × training interaction). Only 2 wk of physical training in previously sedentary subjects induce changes in RV glucose metabolism, volumes, and ejection fraction, which precede exercise-induced hypertrophy of RV.
Collapse
Affiliation(s)
| | | | - Ilkka H A Heinonen
- Turku PET Centre, University of Turku, Turku, Finland; School of Sport Science, Exercise and Health, University Of Western Australia, Crawley, Western Australia, Australia; and
| | | | | | | | | | | |
Collapse
|
156
|
Mohr M, Krustrup P. Comparison between two types of anaerobic speed endurance training in competitive soccer players. J Hum Kinet 2016; 51:183-192. [PMID: 28149381 PMCID: PMC5260561 DOI: 10.1515/hukin-2015-0181] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of the present study was to examine the effects of additional in-season speed endurance production versus speed endurance maintenance training regimes on performance in competitive male soccer players. In a randomised controlled trial 18 male sub-elite players were exposed to additional speed endurance production (SEP) or speed endurance maintenance (SEM) training (two additional sessions/wk for 4 weeks) during the competitive season. Players performed the Yo-Yo intermittent recovery level 2 test (YYIR2) and a repeated sprint test (RST) pre- and post-intervention. Yo-Yo IR2 performance increased (p<0.001) by 50 ± 8% and 26 ± 5% in SEP and SEM, respectively, with greater (p=0.03) improvement in SEP. RST performance improved by 2.1 ± 0.3% and 1.3 ± 0.4% in SEP and SEM, respectively, while the RST fatigue index decreased (4.4 ± 0.8 to 3.4 ± 0.5%; p<0.04) in SEP only. Peak and average speed during training were higher (p<0.001) in SEP than in SEM (24.5 ± 0.3 vs 19.2 ± 0.3 and 15.5 ± 0.1 km·h-1 vs 9.4 ± 0.1 km·h-1). Additional in-season anaerobic speed endurance production and maintenance training improves high-intensity exercise performance in competitive soccer players with superior effects of speed endurance production training.
Collapse
Affiliation(s)
- Magni Mohr
- Faculty of Natural and Health Sciences, University of the Faroe Islands, Tórshavn, Faroe Islands; Centre for Health and Human Performance, Department of Food and Nutrition, and Sport Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Peter Krustrup
- Department of Nutrition, Exercise and Sports, Section of Human Physiology, Copenhagen Centre for Team Sport and Health, University of Copenhagen, Denmark; Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
157
|
Franchini E, Julio UF, Panissa VLG, Lira FS, Gerosa-Neto J, Branco BHM. High-Intensity Intermittent Training Positively Affects Aerobic and Anaerobic Performance in Judo Athletes Independently of Exercise Mode. Front Physiol 2016; 7:268. [PMID: 27445856 PMCID: PMC4923181 DOI: 10.3389/fphys.2016.00268] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
Abstract
Purpose: The present study investigated the effects of high-intensity intermittent training (HIIT) on lower- and upper-body graded exercise and high-intensity intermittent exercise (HIIE, four Wingate bouts) performance, and on physiological and muscle damage markers responses in judo athletes. Methods: Thirty-five subjects were randomly allocated to a control group (n = 8) or to one of the following HIIT groups (n = 9 for each) and tested pre- and post-four weeks (2 training d·wk−1): (1) lower-body cycle-ergometer; (2) upper-body cycle-ergometer; (3) uchi-komi (judo technique entrance). All HIIT were constituted by two blocks of 10 sets of 20 s of all out effort interspersed by 10 s set intervals and 5-min between blocks. Results: For the upper-body group there was an increase in maximal aerobic power in graded upper-body exercise test (12.3%). The lower-body group increased power at onset blood lactate in graded upper-body exercise test (22.1%). The uchi-komi group increased peak power in upper- (16.7%) and lower-body (8.5%), while the lower-body group increased lower-body mean power (14.2%) during the HIIE. There was a decrease in the delta blood lactate for the uchi-komi training group and in the third and fourth bouts for the upper-body training group. Training induced testosterone-cortisol ratio increased in the lower-body HIIE for the lower-body (14.9%) and uchi-komi (61.4%) training groups. Conclusion: Thus, short-duration low-volume HIIT added to regular judo training was able to increase upper-body aerobic power, lower- and upper-body HIIE performance.
Collapse
Affiliation(s)
- Emerson Franchini
- Department of Sport, School of Physical Education and Sport, University of São Paulo São Paulo, Brazil
| | - Ursula F Julio
- Department of Sport, School of Physical Education and Sport, University of São Paulo São Paulo, Brazil
| | - Valéria L G Panissa
- Department of Sport, School of Physical Education and Sport, University of São Paulo São Paulo, Brazil
| | - Fábio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Paulista State University Presidente Prudente, Brazil
| | - José Gerosa-Neto
- Exercise and Immunometabolism Research Group, Department of Physical Education, Paulista State University Presidente Prudente, Brazil
| | - Braulio H M Branco
- Department of Sport, School of Physical Education and Sport, University of São Paulo São Paulo, Brazil
| |
Collapse
|
158
|
Richer SD, Nolte VW, Bechard DJ, Belfry GR. Effects of Novel Supramaximal Interval Training Versus Continuous Training on Performance in Preconditioned Collegiate, National, and International Class Rowers. J Strength Cond Res 2016; 30:1752-62. [PMID: 27213500 DOI: 10.1519/jsc.0000000000001274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Sylvie D Richer
- Canadian Centre for Activity and Aging Laboratory, School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
159
|
Sugita M, Kapoor MP, Nishimura A, Okubo T. Influence of green tea catechins on oxidative stress metabolites at rest and during exercise in healthy humans. Nutrition 2016; 32:321-31. [DOI: 10.1016/j.nut.2015.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/22/2015] [Accepted: 09/11/2015] [Indexed: 01/18/2023]
|
160
|
García-Pinillos F, Soto-Hermoso VM, Latorre-Román PÁ. Do Running Kinematic Characteristics Change over a Typical HIIT for Endurance Runners? J Strength Cond Res 2016; 30:2907-17. [PMID: 26890973 DOI: 10.1519/jsc.0000000000001380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
García-Pinillos, F, Soto-Hermoso, VM, and Latorre-Román, PÁ. Do running kinematic characteristics change over a typical HIIT for endurance runners?. J Strength Cond Res 30(10): 2907-2917, 2016-The purpose of this study was to describe kinematic changes that occur during a common high-intensity intermittent training (HIIT) session for endurance runners. Twenty-eight male endurance runners participated in this study. A high-speed camera was used to measure sagittal-plane kinematics at the first and the last run during a HIIT (4 × 3 × 400 m). The dependent variables were spatial-temporal variables, joint angles during support and swing, and foot strike pattern. Physiological variables, rate of perceived exertion, and athletic performance were also recorded. No significant changes (p ≥ 0.05) in kinematic variables were found during the HIIT session. Two cluster analyses were performed, according to the average running pace-faster vs. slower, and according to exhaustion level reached-exhausted group vs. nonexhausted group (NEG). At first run, no significant differences were found between groups. As for the changes induced by the running protocol, significant differences (p ≤ 0.05) were found between faster and slower athletes at toe-off in θhip and θknee, whereas some changes were found in NEG in θhip during toe-off (+4.3°) and θknee at toe-off (-5.2°) during swing. The results show that a common HIIT session for endurance runners did not consistently or substantially perturb the running kinematics of trained male runners. Additionally, although some differences between groups have been found, neither athletic performance nor exhaustion level reached seems to be determinant in the kinematic response during a HIIT, at least for this group of moderately trained endurance runners.
Collapse
Affiliation(s)
- Felipe García-Pinillos
- 1Department of Corporal Expression, University of Jaen, Jaen, Spain; 2Department of Sport and Physical Education, University of Granada, Granada, Spain; and 3University Institute Sport & Health, iMUDS, Granada, Spain
| | | | | |
Collapse
|
161
|
Goodman JM, Burr JF, Banks L, Thomas SG. The Acute Risks of Exercise in Apparently Healthy Adults and Relevance for Prevention of Cardiovascular Events. Can J Cardiol 2016; 32:523-32. [PMID: 27017149 DOI: 10.1016/j.cjca.2016.01.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increased physical activity (PA) is associated with improved quality of life and reductions in cardiovascular (CV) morbidity and all-cause mortality in the general population in a dose-response manner. However, PA acutely increases the risk of adverse CV event or sudden cardiac death (SCD) above levels expected at rest. We review the likelihood of adverse CV events related to exercise in apparently healthy adults and strategies for prevention, and contextualize our understanding of the long-term risk reduction conferred from PA. METHODS A systematic review of the literature was performed using electronic databases; additional hand-picked relevant articles from reference lists and additional sources were included after the search. RESULTS The incidence of adverse CV events in adults is extremely low during and immediately after PA of varying types and intensities and is significantly lower in those with long-standing PA experience. The risk of SCD and nonfatal events during and immediately after PA remains extremely low (well below 0.01 per 10,000 participant hours); increasing age and PA intensity are associated with greater risk. In most cases of exercise-related SCD, occult CV disease is present and SCD is typically the first clinical event. CONCLUSIONS Exercise acutely increases the risk of adverse CV events, with greater risk associated with vigorous intensity. The risks of an adverse CV event during and immediately after exercise are outweighed by the health benefits of vigorous exercise performed regularly. A key challenge remains the identification of occult structural heart disease and inheritable conditions that increase the chances of lethal arrhythmias during exercise.
Collapse
Affiliation(s)
- Jack M Goodman
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; UHN/Mt Sinai Division of Cardiology, Heart and Stroke/Richard Lewar Centres of Excellence in Cardiovascular Research, Toronto, Ontario, Canada.
| | - Jamie F Burr
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Laura Banks
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Scott G Thomas
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
162
|
Cipryan L, Laursen PB, Plews DJ. Cardiac autonomic response following high-intensity running work-to-rest interval manipulation. Eur J Sport Sci 2015; 16:808-17. [DOI: 10.1080/17461391.2015.1103317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
163
|
Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise. Proc Natl Acad Sci U S A 2015; 112:15492-7. [PMID: 26575622 DOI: 10.1073/pnas.1507176112] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High-intensity interval training (HIIT) is a time-efficient way of improving physical performance in healthy subjects and in patients with common chronic diseases, but less so in elite endurance athletes. The mechanisms underlying the effectiveness of HIIT are uncertain. Here, recreationally active human subjects performed highly demanding HIIT consisting of 30-s bouts of all-out cycling with 4-min rest in between bouts (≤3 min total exercise time). Skeletal muscle biopsies taken 24 h after the HIIT exercise showed an extensive fragmentation of the sarcoplasmic reticulum (SR) Ca(2+) release channel, the ryanodine receptor type 1 (RyR1). The HIIT exercise also caused a prolonged force depression and triggered major changes in the expression of genes related to endurance exercise. Subsequent experiments on elite endurance athletes performing the same HIIT exercise showed no RyR1 fragmentation or prolonged changes in the expression of endurance-related genes. Finally, mechanistic experiments performed on isolated mouse muscles exposed to HIIT-mimicking stimulation showed reactive oxygen/nitrogen species (ROS)-dependent RyR1 fragmentation, calpain activation, increased SR Ca(2+) leak at rest, and depressed force production due to impaired SR Ca(2+) release upon stimulation. In conclusion, HIIT exercise induces a ROS-dependent RyR1 fragmentation in muscles of recreationally active subjects, and the resulting changes in muscle fiber Ca(2+)-handling trigger muscular adaptations. However, the same HIIT exercise does not cause RyR1 fragmentation in muscles of elite endurance athletes, which may explain why HIIT is less effective in this group.
Collapse
|
164
|
|
165
|
Cui SF, Li W, Niu J, Zhang CY, Chen X, Ma JZ. Acute responses of circulating microRNAs to low-volume sprint interval cycling. Front Physiol 2015; 6:311. [PMID: 26578983 PMCID: PMC4626635 DOI: 10.3389/fphys.2015.00311] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022] Open
Abstract
Low-volume high-intensity interval training is an efficient and practical method of inducing physiological responses in various tissues to develop physical fitness and may also change the expression of circulating microRNAs (miRNAs). The purpose of the present study was to examine whether miRNAs for muscle, heart, somatic tissue and metabolism were affected by 30-s intervals of intensive sprint cycling. We also examined the relationship of these miRNAs to conventional biochemical and performance indices. Eighteen healthy young males performed sprint interval cycling. Circulating miRNAs in plasma were detected using TaqMan-based quantitative PCR and normalized to Let-7d/g/i. In addition, we determined the levels of insulin-like growth factor-I, testosterone and cortisol, and anaerobic capacity. Compared to plasma levels before exercise muscle-specific miR-1 (0.12 ± 0.02 vs. 0.09 ± 0.02), miR-133a (0.46 ± 0.10 vs. 0.31 ± 0.06), and miR-133b (0.19 ± 0.02 vs. 0.10 ± 0.01) decreased (all P < 0.05), while miR-206 and miR-499 remained unchanged. The levels of metabolism related miR-122 (0.62 ± 0.07 vs. 0.34 ± 0.03) and somatic tissues related miR-16 (1.74 ± 0.27 vs. 0.94 ± 0.12) also decreased (both P < 0.05). The post-exercise IGF-1 and cortisol concentrations were significantly increased, while testosterone concentrations did not. Plasma levels of miR-133b correlated to peak power (r = 0.712, P = 0.001) and miR-122 correlated to peak power ratio (r = 0.665, P = 0.003). In conclusion sprint exercise provokes genetic changes for RNA related to specific muscle or metabolism related miRNAs suggesting that miR-133b and miR-122 may be potential useful biomarkers for actual physiological strain or anaerobic capacity. Together, our findings on the circulating miRNAs may provide new insight into the physiological responses that are being performed during exercise and delineate mechanisms by which exercise confers distinct phenotypes and improves performance.
Collapse
Affiliation(s)
- Shu Fang Cui
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University Nanjing, China ; Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University Nanjing, China
| | - Wei Li
- The Lab of Military Conditioning and Motor Function Assessment, The PLA University of Science and Technology Nanjing, China
| | - Jie Niu
- The Lab of Military Conditioning and Motor Function Assessment, The PLA University of Science and Technology Nanjing, China
| | - Chen Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University Nanjing, China ; Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University Nanjing, China
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University Nanjing, China ; Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University Nanjing, China
| | - Ji Zheng Ma
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University Nanjing, China ; Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University Nanjing, China ; The Lab of Military Conditioning and Motor Function Assessment, The PLA University of Science and Technology Nanjing, China
| |
Collapse
|
166
|
Stöggl TL, Sperlich B. The training intensity distribution among well-trained and elite endurance athletes. Front Physiol 2015; 6:295. [PMID: 26578968 PMCID: PMC4621419 DOI: 10.3389/fphys.2015.00295] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 10/05/2015] [Indexed: 01/12/2023] Open
Abstract
Researchers have retrospectively analyzed the training intensity distribution (TID) of nationally and internationally competitive athletes in different endurance disciplines to determine the optimal volume and intensity for maximal adaptation. The majority of studies present a “pyramidal” TID with a high proportion of high volume, low intensity training (HVLIT). Some world-class athletes appear to adopt a so-called “polarized” TID (i.e., significant % of HVLIT and high-intensity training) during certain phases of the season. However, emerging prospective randomized controlled studies have demonstrated superior responses of variables related to endurance when applying a polarized TID in well-trained and recreational individuals when compared with a TID that emphasizes HVLIT or threshold training. The aims of the present review are to: (1) summarize the main responses of retrospective and prospective studies exploring TID; (2) provide a systematic overview on TIDs during preparation, pre-competition, and competition phases in different endurance disciplines and performance levels; (3) address whether one TID has demonstrated greater efficacy than another; and (4) highlight research gaps in an effort to direct future scientific studies.
Collapse
Affiliation(s)
- Thomas L Stöggl
- Department of Sport Science and Kinesiology, University of Salzburg Salzburg, Austria
| | - Billy Sperlich
- Integrative and Experimental Training Science, Department of Sport Science, University of Würzburg Würzburg, Germany
| |
Collapse
|
167
|
Vesterinen V, Häkkinen K, Laine T, Hynynen E, Mikkola J, Nummela A. Predictors of individual adaptation to high-volume or high-intensity endurance training in recreational endurance runners. Scand J Med Sci Sports 2015; 26:885-93. [PMID: 26247789 DOI: 10.1111/sms.12530] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2015] [Indexed: 01/25/2023]
Abstract
The aim of this study was to investigate factors that can predict individual adaptation to high-volume or high-intensity endurance training. After the first 8-week preparation period, 37 recreational endurance runners were matched into the high-volume training group (HVT) and high-intensity training group (HIT). During the next 8-week training period, HVT increased their running training volume and HIT increased training intensity. Endurance performance characteristics, heart rate variability (HRV), and serum hormone concentrations were measured before and after the training periods. While HIT improved peak treadmill running speed (RSpeak ) 3.1 ± 2.8% (P < 0.001), no significant changes occurred in HVT (RSpeak : 0.5 ± 1.9%). However, large individual variation was found in the changes of RSpeak in both groups (HVT: -2.8 to 4.1%; HIT: 0-10.2%). A negative relationship was observed between baseline high-frequency power of HRV (HFPnight ) and the individual changes of RSpeak (r = -0.74, P = 0.006) in HVT and a positive relationship (r = 0.63, P = 0.039) in HIT. Individuals with lower HFP showed greater change of RSpeak in HVT, while individuals with higher HFP responded well in HIT. It is concluded that nocturnal HRV can be used to individualize endurance training in recreational runners.
Collapse
Affiliation(s)
- V Vesterinen
- KIHU - Research Institute for Olympic Sports, Jyväskylä, Finland
| | - K Häkkinen
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - T Laine
- KIHU - Research Institute for Olympic Sports, Jyväskylä, Finland
| | - E Hynynen
- KIHU - Research Institute for Olympic Sports, Jyväskylä, Finland
| | - J Mikkola
- KIHU - Research Institute for Olympic Sports, Jyväskylä, Finland
| | - A Nummela
- KIHU - Research Institute for Olympic Sports, Jyväskylä, Finland
| |
Collapse
|
168
|
Buckley S, Knapp K, Lackie A, Lewry C, Horvey K, Benko C, Trinh J, Butcher S. Multimodal high-intensity interval training increases muscle function and metabolic performance in females. Appl Physiol Nutr Metab 2015; 40:1157-62. [PMID: 26513008 DOI: 10.1139/apnm-2015-0238] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
High-intensity interval training (HIIT) is a time-efficient method of improving aerobic and anaerobic power and capacity. In most individuals, however, HIIT using modalities such as cycling, running, and rowing does not typically result in increased muscle strength, power, or endurance. The purpose of this study is to compare the physiological outcomes of traditional HIIT using rowing (Row-HIIT) with a novel multimodal HIIT (MM-HIIT) circuit incorporating multiple modalities, including strength exercises, within an interval. Twenty-eight recreationally active women (age 24.7 ± 5.4 years) completed 6 weeks of either Row-HIIT or MM-HIIT and were tested on multiple fitness parameters. MM-HIIT and Row-HIIT resulted in similar improvements (p < 0.05 for post hoc pre- vs. post-training increases for each group) in maximal aerobic power (7% vs. 5%), anaerobic threshold (13% vs. 12%), respiratory compensation threshold (7% vs. 5%), anaerobic power (15% vs. 12%), and anaerobic capacity (18% vs. 14%). The MM-HIIT group had significant (p < 0.01 for all) increases in squat (39%), press (27%), and deadlift (18%) strength, broad jump distance (6%), and squat endurance (280%), whereas the Row-HIIT group had no increase in any muscle performance variable (p values 0.33-0.90). Post-training, 1-repetition maximum (1RM) squat (64.2 ± 13.6 vs. 45.8 ± 16.2 kg, p = 0.02), 1RM press (33.2 ± 3.8 vs. 26.0 ± 9.6 kg, p = 0.01), and squat endurance (23.9 ± 12.3 vs. 10.2 ± 5.6 reps, p < 0.01) were greater in the MM-HIIT group than in the Row-HIIT group. MM-HIIT resulted in similar aerobic and anaerobic adaptations but greater muscle performance increases than Row-HIIT in recreationally active women.
Collapse
Affiliation(s)
- Stephanie Buckley
- a School of Physical Therapy, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kelly Knapp
- a School of Physical Therapy, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Amy Lackie
- a School of Physical Therapy, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Colin Lewry
- a School of Physical Therapy, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Karla Horvey
- a School of Physical Therapy, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Chad Benko
- b Synergy Strength and Conditioning, Saskatoon, Saskatchewan, Canada.,c BOSS Strength Institute, Saskatoon, Saskatchewan, Canada
| | - Jason Trinh
- b Synergy Strength and Conditioning, Saskatoon, Saskatchewan, Canada
| | - Scotty Butcher
- a School of Physical Therapy, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,c BOSS Strength Institute, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
169
|
Abstract
Running economy (RE) represents a complex interplay of physiological and biomechanical factors that is typically defined as the energy demand for a given velocity of submaximal running and expressed as the submaximal oxygen uptake (VO2) at a given running velocity. This review considered a wide range of acute and chronic interventions that have been investigated with respect to improving economy by augmenting one or more components of the metabolic, cardiorespiratory, biomechanical or neuromuscular systems. Improvements in RE have traditionally been achieved through endurance training. Endurance training in runners leads to a wide range of physiological responses, and it is very likely that these characteristics of running training will influence RE. Training history and training volume have been suggested to be important factors in improving RE, while uphill and level-ground high-intensity interval training represent frequently prescribed forms of training that may elicit further enhancements in economy. More recently, research has demonstrated short-term resistance and plyometric training has resulted in enhanced RE. This improvement in RE has been hypothesized to be a result of enhanced neuromuscular characteristics. Altitude acclimatization results in both central and peripheral adaptations that improve oxygen delivery and utilization, mechanisms that potentially could improve RE. Other strategies, such as stretching should not be discounted as a training modality in order to prevent injuries; however, it appears that there is an optimal degree of flexibility and stiffness required to maximize RE. Several nutritional interventions have also received attention for their effects on reducing oxygen demand during exercise, most notably dietary nitrates and caffeine. It is clear that a range of training and passive interventions may improve RE, and researchers should concentrate their investigative efforts on more fully understanding the types and mechanisms that affect RE and the practicality and extent to which RE can be improved outside the laboratory.
Collapse
Affiliation(s)
- Kyle R Barnes
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Level 2, AUT-Millennium Campus, 17 Antares Place, Mairangi Bay, Auckland, New Zealand,
| | | |
Collapse
|
170
|
Physiological and health-related adaptations to low-volume interval training: influences of nutrition and sex. Sports Med 2015; 44 Suppl 2:S127-37. [PMID: 25355187 PMCID: PMC4213388 DOI: 10.1007/s40279-014-0259-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Interval training refers to the basic concept of alternating periods of relatively intense exercise with periods of lower-intensity effort or complete rest for recovery. Low-volume interval training refers to sessions that involve a relatively small total amount of exercise (i.e. ≤10 min of intense exercise), compared with traditional moderate-intensity continuous training (MICT) protocols that are generally reflected in public health guidelines. In an effort to standardize terminology, a classification scheme was recently proposed in which the term 'high-intensity interval training' (HIIT) be used to describe protocols in which the training stimulus is 'near maximal' or the target intensity is between 80 and 100 % of maximal heart rate, and 'sprint interval training' (SIT) be used for protocols that involve 'all out' or 'supramaximal' efforts, in which target intensities correspond to workloads greater than what is required to elicit 100 % of maximal oxygen uptake (VO2max). Both low-volume SIT and HIIT constitute relatively time-efficient training strategies to rapidly enhance the capacity for aerobic energy metabolism and elicit physiological remodeling that resembles changes normally associated with high-volume MICT. Short-term SIT and HIIT protocols have also been shown to improve health-related indices, including cardiorespiratory fitness and markers of glycemic control in both healthy individuals and those at risk for, or afflicted by, cardiometabolic diseases. Recent evidence from a limited number of studies has highlighted potential sex-based differences in the adaptive response to SIT in particular. It has also been suggested that specific nutritional interventions, in particular those that can augment muscle buffering capacity, such as sodium bicarbonate, may enhance the adaptive response to low-volume interval training.
Collapse
|
171
|
Mille-Hamard L, Breuneval C, Rousseau AS, Grimaldi P, Billat VL. Transcriptional modulation of mitochondria biogenesis pathway at and above critical speed in mice. Mol Cell Biochem 2015; 405:223-32. [DOI: 10.1007/s11010-015-2413-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/18/2015] [Indexed: 01/08/2023]
|
172
|
Elbe AM, Rasmussen CP, Nielsen G, Nordsborg NB. High intensity and reduced volume training attenuates stress and recovery levels in elite swimmers. Eur J Sport Sci 2015; 16:344-9. [PMID: 25867005 DOI: 10.1080/17461391.2015.1028466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This study investigated the effect of increased high-intensity interval training (HIT) at the expense of total training volume on the stress and recovery levels of elite swimmers. Forty-one elite swimmers participated in the study and were randomly assigned to either a HIT or a control group (CON). Eleven swimmers did not complete the questionnaires. For 12 weeks both groups trained ~12 h per week. The amount of HIT was ~5 h vs. 1 h, and total distance was ~17 km vs. ~35 km per week for HIT and CON, respectively. HIT was performed as 6-10 × 10-30 s maximal effort interspersed by 2-4 min of rest. The Recovery Stress Questionnaire - Sport was used to measure the swimmers' stress and recovery levels. After the 12 week intervention, the general stress level was 16.6% (2.6-30.7%; mean and 95% CI) lower and the general recovery level was 6.5% (0.7-12.4%) higher in HIT compared to the CON, after adjusting for baseline values. No significant effects could be observed in sports-specific stress or sports-specific recovery. The results indicate that increasing training intensity and reducing training volume for 12 weeks can reduce general stress and increase general recovery levels in competitive swimmers.
Collapse
Affiliation(s)
- Anne-Marie Elbe
- a Department of Nutrition, Exercise and Sport (NEXS) , University of Copenhagen , Copenhagen K , Denmark
| | - Camilla P Rasmussen
- b Department of Psychology , University of Copenhagen , Copenhagen K , Denmark
| | - Glen Nielsen
- a Department of Nutrition, Exercise and Sport (NEXS) , University of Copenhagen , Copenhagen K , Denmark
| | - Nikolai B Nordsborg
- a Department of Nutrition, Exercise and Sport (NEXS) , University of Copenhagen , Copenhagen K , Denmark
| |
Collapse
|
173
|
Rønnestad BR, Hansen J, Thyli V, Bakken TA, Sandbakk Ø. 5-week block periodization increases aerobic power in elite cross-country skiers. Scand J Med Sci Sports 2015; 26:140-6. [DOI: 10.1111/sms.12418] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2014] [Indexed: 12/11/2022]
Affiliation(s)
- B. R. Rønnestad
- Section for Sport Science; Lillehammer University College; Lillehammer Norway
| | - J. Hansen
- Section for Sport Science; Lillehammer University College; Lillehammer Norway
| | - V. Thyli
- Section for Sport Science; Lillehammer University College; Lillehammer Norway
| | - T. A. Bakken
- Section for Sport Science; Lillehammer University College; Lillehammer Norway
| | - Ø. Sandbakk
- Center for Elite Sports Research; Department of Neuroscience; Norwegian University of Science and Technology; Trondheim Norway
| |
Collapse
|
174
|
Clark B, Costa VP, O'Brien BJ, Guglielmo LG, Paton CD. Effects of a seven day overload-period of high-intensity training on performance and physiology of competitive cyclists. PLoS One 2014; 9:e115308. [PMID: 25521824 PMCID: PMC4270748 DOI: 10.1371/journal.pone.0115308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Competitive endurance athletes commonly undertake periods of overload training in the weeks prior to major competitions. This investigation examined the effects of two seven-day high-intensity overload training regimes (HIT) on performance and physiological characteristics of competitive cyclists. DESIGN The study was a matched groups, controlled trial. METHODS Twenty-eight male cyclists (mean ± SD, Age: 33±10 years, Mass 74±7 kg, VO2 peak 4.7±0.5 L·min-1) were assigned to a control group or one of two training groups for seven consecutive days of HIT. Before and after training cyclists completed an ergometer based incremental exercise test and a 20-km time-trial. The HIT sessions were ∼120 minutes in duration and consisted of matched volumes of 5, 10 and 20 second (short) or 15, 30 and 45 second (long) maximal intensity efforts. RESULTS Both the short and long HIT regimes led to significant (p<0.05) gains in time trial performance compared to the control group. Relative to the control group, the mean changes (±90% confidence limits) in time-trial power were 8.2%±3.8% and 10.4%±4.3% for the short and long HIT regimes respectively; corresponding increases in peak power in the incremental test were 5.5%±2.7% and 9.5%±2.5%. Both HIT (short vs long) interventions led to non-significant (p>0.05) increases (mean ± SD) in VO2 peak (2.3%±4.7% vs 3.5%±6.2%), lactate threshold power (3.6%±3.5% vs 2.9%±5.3%) and gross efficiency (3.2%±2.4% vs 5.1%±3.9%) with only small differences between HIT regimes. CONCLUSIONS Seven days of overload HIT induces substantial enhancements in time-trial performance despite non-significant increases in physiological measures with competitive cyclists.
Collapse
Affiliation(s)
- Bradley Clark
- School of Health Science, Federation University, Ballarat, Victoria, Australia
| | - Vitor P. Costa
- Physical Effort Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Brendan J. O'Brien
- School of Health Science, Federation University, Ballarat, Victoria, Australia
| | - Luiz G. Guglielmo
- Physical Effort Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Carl D. Paton
- Faculty of Health and Sport Science, The Eastern Institute of Technology, Hawkes Bay, New Zealand
| |
Collapse
|
175
|
Autonomic modulations of heart rate variability and performances in short-distance elite swimmers. Eur J Appl Physiol 2014; 115:825-35. [PMID: 25471271 DOI: 10.1007/s00421-014-3064-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Endurance exercise is associated with high cardiac vagal tone, but how the cardiac autonomic control correlates with shorter anaerobic performances is unknown. Therefore, the aim of this study was to evaluate how autonomic modulations of heart rate (HR) variability (V) correlate with performances of short- (<1 min) and very short (<30 s) duration in elite athletes. METHOD Thirteen male swimmers, national-level crawl specialists in short (100-m) and very short (50-m) distances, were enrolled. HR was recorded during 15-min supine rest: (1) in the morning after wake up, (2) in the afternoon before sprint-oriented training sessions, (3) few minutes after training (first recovery phase after swimming cooldown). Heart rate variability (HRV) vagal and sympatho/vagal indices were calculated in time, frequency and complexity domains. Correlations of best seasonal times on 100- or 50-m distances with HRV indices and the velocity at blood lactate accumulation onset (V OBLA) were calculated. RESULTS AND CONCLUSION Vagal indices were highest in the morning where they positively correlated with very short-distance times (higher the index, worse is the 50-m performance). Sympatho/vagal indices were highest after training where they negatively correlated with short-distance times (higher the index, better is the 100-m performance). V OBLA did not correlate with the performances. Therefore, autonomic HRV indices and not V OBLA predict short and very short, most anaerobic, performances. Results also suggest that a strong cardiac vagal control has no effect on short performances and is even detrimental to very short performances, and that the capacity to powerfully increase the sympathetic tone during exercise may improve short, but not very short performances.
Collapse
|
176
|
Gliemann L, Gunnarsson TP, Hellsten Y, Bangsbo J. 10-20-30 training increases performance and lowers blood pressure and VEGF in runners. Scand J Med Sci Sports 2014; 25:e479-89. [PMID: 25439558 DOI: 10.1111/sms.12356] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2014] [Indexed: 12/27/2022]
Abstract
The present study examined the effect of training by the 10-20-30 concept on performance, blood pressure (BP), and skeletal muscle angiogenesis as well as the feasibility of completing high-intensity interval training in local running communities. One hundred sixty recreational runners were divided into either a control group (CON; n = 28), or a 10-20-30 training group (10-20-30; n = 132) replacing two of three weekly training sessions with 10-20-30 training for 8 weeks and performance of a 5-km run (5-K) and BP was measured. VO2max was measured and resting muscle biopsies were taken in a subgroup of runners (n = 18). 10-20-30 improved 5-K time (38 s) and lowered systolic BP (2 ± 1 mmHg). For hypertensive subjects in 10-20-30 (n = 30), systolic and diastolic BP was lowered by 5 ± 4 and 3 ± 2 mmHg, respectively, which was a greater reduction than in the non-hypertensive subjects (n = 102). 10-20-30 increased VO2max but did not influence muscle fiber area, distribution or capillarization, whereas the expression of the pro-angiogenic vascular endothelial growth factor (VEGF) was lowered by 22%. No changes were observed in CON. These results suggest that 10-20-30 training is an effective and easily implemented training intervention improving endurance performance, VO2max and lowering BP in recreational runners, but does not affect muscle morphology and reduces muscle VEGF.
Collapse
Affiliation(s)
- Lasse Gliemann
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas P Gunnarsson
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
177
|
Lee AL, Holland AE. Time to adapt exercise training regimens in pulmonary rehabilitation--a review of the literature. Int J Chron Obstruct Pulmon Dis 2014; 9:1275-88. [PMID: 25419125 PMCID: PMC4234392 DOI: 10.2147/copd.s54925] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Exercise intolerance, exertional dyspnea, reduced health-related quality of life, and acute exacerbations are features characteristic of chronic obstructive pulmonary disease (COPD). Patients with a primary diagnosis of COPD often report comorbidities and other secondary manifestations, which diversifies the clinical presentation. Pulmonary rehabilitation that includes whole body exercise training is a critical part of management, and core programs involve endurance and resistance training for the upper and lower limbs. Improvement in maximal and submaximal exercise capacity, dyspnea, fatigue, health-related quality of life, and psychological symptoms are outcomes associated with exercise training in pulmonary rehabilitation, irrespective of the clinical state in which it is commenced. There may be benefits for the health care system as well as the individual patient, with fewer exacerbations and subsequent hospitalization reported with exercise training. The varying clinical profile of COPD may direct the need for modification to traditional training strategies for some patients. Interval training, one-legged cycling (partitioning) and non-linear periodized training appear to be equally or more effective than continuous training. Inspiratory muscle training may have a role as an adjunct to whole body training in selected patients. The benefits of balance training are also emerging. Strategies to ensure that health enhancing behaviors are adopted and maintained are essential. These may include training for an extended duration, alternative environments to undertake the initial program, maintenance programs following initial exercise training, program repetition, and incorporation of approaches to address behavioral change. This may be complemented by methods designed to maximize uptake and completion of a pulmonary rehabilitation program.
Collapse
Affiliation(s)
- Annemarie L Lee
- Physiotherapy, Alfred Health, Melbourne, VIC, Australia ; Institute for Breathing and Sleep, Austin Health, Melbourne, VIC, Australia ; Westpark Healthcare Centre, ON, Canada
| | - Anne E Holland
- Physiotherapy, Alfred Health, Melbourne, VIC, Australia ; Institute for Breathing and Sleep, Austin Health, Melbourne, VIC, Australia ; Physiotherapy, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
178
|
Transcriptional expression changes of glucose metabolism genes after exercise in thoroughbred horses. Gene 2014; 547:152-8. [DOI: 10.1016/j.gene.2014.06.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/15/2014] [Accepted: 06/23/2014] [Indexed: 11/22/2022]
|
179
|
Wahl P, Hein M, Achtzehn S, Bloch W, Mester J. Acute metabolic, hormonal and psychological responses to cycling with superimposed electromyostimulation. Eur J Appl Physiol 2014; 114:2331-9. [PMID: 25059760 DOI: 10.1007/s00421-014-2952-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE The purpose of the present study was to evaluate the effects of superimposed electromyostimulation (E) during cycling on the acute hormonal and metabolic response, as E might be a useful tool to intensify endurance training without performing high external workloads. METHODS Thirteen subjects participated in three experimental trials each lasting 60 min in a randomized order. (1) Cycling (C), (2) cycling with superimposed E (C + E) and (3) E. Human growth hormone (hGH), testosterone and cortisol were determined before (pre) and 0', 30', 60', 240' and 24 h after each intervention. Metabolic stimuli and perturbations were characterized by lactate and blood gas analysis (pH, base excess, bicarbonate, partial pressure of oxygen, partial pressure of carbon dioxide). Furthermore, changes of the person's perceived physical state were determined. RESULTS C + E caused the highest increases in cortisol and hGH, followed by C and E. Testosterone levels showed no significant differences between C + E and C. Metabolic stress was highest during C + E, followed by C and E. C + E was also the most demanding intervention from an athlete's point of view. CONCLUSION As cortisol and hGH are known to react in an intensity dependent manner, the present study showed that superimposed E is a useful method to intensify endurance training, even when performing low to moderate external workloads. Even at lower exercise intensities, additional E may allow one to induce a high (local) stimulus. It can be speculated, that these acute hormonal increases and metabolic perturbations, might play a positive role in optimizing long-term training adaptations, similar to those of intense training protocols.
Collapse
Affiliation(s)
- Patrick Wahl
- Institute of Training Science and Sport Informatics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany,
| | | | | | | | | |
Collapse
|
180
|
Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med 2014; 43:1259-77. [PMID: 23912805 DOI: 10.1007/s40279-013-0083-4] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objective of exercise training is to initiate desirable physiological adaptations that ultimately enhance physical work capacity. Optimal training prescription requires an individualized approach, with an appropriate balance of training stimulus and recovery and optimal periodization. Recovery from exercise involves integrated physiological responses. The cardiovascular system plays a fundamental role in facilitating many of these responses, including thermoregulation and delivery/removal of nutrients and waste products. As a marker of cardiovascular recovery, cardiac parasympathetic reactivation following a training session is highly individualized. It appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, as described by the supercompensation theory. The physiological mechanisms underlying cardiac parasympathetic reactivation are not completely understood. However, changes in cardiac autonomic activity may provide a proxy measure of the changes in autonomic input into organs and (by default) the blood flow requirements to restore homeostasis. Metaboreflex stimulation (e.g. muscle and blood acidosis) is likely a key determinant of parasympathetic reactivation in the short term (0-90 min post-exercise), whereas baroreflex stimulation (e.g. exercise-induced changes in plasma volume) probably mediates parasympathetic reactivation in the intermediate term (1-48 h post-exercise). Cardiac parasympathetic reactivation does not appear to coincide with the recovery of all physiological systems (e.g. energy stores or the neuromuscular system). However, this may reflect the limited data currently available on parasympathetic reactivation following strength/resistance-based exercise of variable intensity. In this review, we quantitatively analyse post-exercise cardiac parasympathetic reactivation in athletes and healthy individuals following aerobic exercise, with respect to exercise intensity and duration, and fitness/training status. Our results demonstrate that the time required for complete cardiac autonomic recovery after a single aerobic-based training session is up to 24 h following low-intensity exercise, 24-48 h following threshold-intensity exercise and at least 48 h following high-intensity exercise. Based on limited data, exercise duration is unlikely to be the greatest determinant of cardiac parasympathetic reactivation. Cardiac autonomic recovery occurs more rapidly in individuals with greater aerobic fitness. Our data lend support to the concept that in conjunction with daily training logs, data on cardiac parasympathetic activity are useful for individualizing training programmes. In the final sections of this review, we provide recommendations for structuring training microcycles with reference to cardiac parasympathetic recovery kinetics. Ultimately, coaches should structure training programmes tailored to the unique recovery kinetics of each individual.
Collapse
Affiliation(s)
- Jamie Stanley
- Centre of Excellence for Applied Sport Science Research, Queensland Academy of Sport, Brisbane, QLD, Australia,
| | | | | |
Collapse
|
181
|
Tønnessen E, Sylta Ø, Haugen TA, Hem E, Svendsen IS, Seiler S. The road to gold: training and peaking characteristics in the year prior to a gold medal endurance performance. PLoS One 2014; 9:e101796. [PMID: 25019608 PMCID: PMC4096917 DOI: 10.1371/journal.pone.0101796] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/10/2014] [Indexed: 11/19/2022] Open
Abstract
Purpose To describe training variations across the annual cycle in Olympic and World Champion endurance athletes, and determine whether these athletes used tapering strategies in line with recommendations in the literature. Methods Eleven elite XC skiers and biathletes (4 male; 28±1 yr, 85±5 mL. min−1. kg−1, 7 female, 25±4 yr, 73±3 mL. min−1. kg−1) reported one year of day-to-day training leading up to the most successful competition of their career. Training data were divided into periodization and peaking phases and distributed into training forms, intensity zones and endurance activity forms. Results Athletes trained ∼800 h/500 sessions.year−1, including ∼500 h. year−1 of sport-specific training. Ninety-four percent of all training was executed as aerobic endurance training. Of this, ∼90% was low intensity training (LIT, below the first lactate threshold) and 10% high intensity training (HIT, above the first lactate threshold) by time. Categorically, 23% of training sessions were characterized as HIT with primary portions executed at or above the first lactate turn point. Training volume and specificity distribution conformed to a traditional periodization model, but absolute volume of HIT remained stable across phases. However, HIT training patterns tended to become more polarized in the competition phase. Training volume, frequency and intensity remained unchanged from pre-peaking to peaking period, but there was a 32±15% (P<.01) volume reduction from the preparation period to peaking phase. Conclusions The annual training data for these Olympic and World champion XC skiers and biathletes conforms to previously reported training patterns of elite endurance athletes. During the competition phase, training became more sport-specific, with 92% performed as XC skiing. However, they did not follow suggested tapering practice derived from short-term experimental studies. Only three out of 11 athletes took a rest day during the final 5 days prior to their most successful competition.
Collapse
Affiliation(s)
| | - Øystein Sylta
- Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | | | - Erlend Hem
- The Norwegian Olympic Federation, Oslo, Norway
| | - Ida S. Svendsen
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom
| | - Stephen Seiler
- Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
182
|
Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med 2014; 43:927-54. [PMID: 23832851 DOI: 10.1007/s40279-013-0066-5] [Citation(s) in RCA: 387] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-intensity interval training (HIT) is a well-known, time-efficient training method for improving cardiorespiratory and metabolic function and, in turn, physical performance in athletes. HIT involves repeated short (<45 s) to long (2-4 min) bouts of rather high-intensity exercise interspersed with recovery periods (refer to the previously published first part of this review). While athletes have used 'classical' HIT formats for nearly a century (e.g. repetitions of 30 s of exercise interspersed with 30 s of rest, or 2-4-min interval repetitions ran at high but still submaximal intensities), there is today a surge of research interest focused on examining the effects of short sprints and all-out efforts, both in the field and in the laboratory. Prescription of HIT consists of the manipulation of at least nine variables (e.g. work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, between-series recovery duration and intensity); any of which has a likely effect on the acute physiological response. Manipulating HIT appropriately is important, not only with respect to the expected middle- to long-term physiological and performance adaptations, but also to maximize daily and/or weekly training periodization. Cardiopulmonary responses are typically the first variables to consider when programming HIT (refer to Part I). However, anaerobic glycolytic energy contribution and neuromuscular load should also be considered to maximize the training outcome. Contrasting HIT formats that elicit similar (and maximal) cardiorespiratory responses have been associated with distinctly different anaerobic energy contributions. The high locomotor speed/power requirements of HIT (i.e. ≥95 % of the minimal velocity/power that elicits maximal oxygen uptake [v/p(·)VO(2max)] to 100 % of maximal sprinting speed or power) and the accumulation of high-training volumes at high-exercise intensity (runners can cover up to 6-8 km at v(·)VO(2max) per session) can cause significant strain on the neuromuscular/musculoskeletal system. For athletes training twice a day, and/or in team sport players training a number of metabolic and neuromuscular systems within a weekly microcycle, this added physiological strain should be considered in light of the other physical and technical/tactical sessions, so as to avoid overload and optimize adaptation (i.e. maximize a given training stimulus and minimize musculoskeletal pain and/or injury risk). In this part of the review, the different aspects of HIT programming are discussed, from work/relief interval manipulation to HIT periodization, using different examples of training cycles from different sports, with continued reference to the cardiorespiratory adaptations outlined in Part I, as well as to anaerobic glycolytic contribution and neuromuscular/musculoskeletal load.
Collapse
Affiliation(s)
- Martin Buchheit
- Physiology Unit, Football Performance and Science Department, ASPIRE, Academy for Sports Excellence, P.O. Box 22287, Doha, Qatar,
| | | |
Collapse
|
183
|
Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med 2014; 43:773-81. [PMID: 23852425 DOI: 10.1007/s40279-013-0071-8] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The measurement of heart rate variability (HRV) is often considered a convenient non-invasive assessment tool for monitoring individual adaptation to training. Decreases and increases in vagal-derived indices of HRV have been suggested to indicate negative and positive adaptations, respectively, to endurance training regimens. However, much of the research in this area has involved recreational and well-trained athletes, with the small number of studies conducted in elite athletes revealing equivocal outcomes. For example, in elite athletes, studies have revealed both increases and decreases in HRV to be associated with negative adaptation. Additionally, signs of positive adaptation, such as increases in cardiorespiratory fitness, have been observed with atypical concomitant decreases in HRV. As such, practical ways by which HRV can be used to monitor training status in elites are yet to be established. This article addresses the current literature that has assessed changes in HRV in response to training loads and the likely positive and negative adaptations shown. We reveal limitations with respect to how the measurement of HRV has been interpreted to assess positive and negative adaptation to endurance training regimens and subsequent physical performance. We offer solutions to some of the methodological issues associated with using HRV as a day-to-day monitoring tool. These include the use of appropriate averaging techniques, and the use of specific HRV indices to overcome the issue of HRV saturation in elite athletes (i.e., reductions in HRV despite decreases in resting heart rate). Finally, we provide examples in Olympic and World Champion athletes showing how these indices can be practically applied to assess training status and readiness to perform in the period leading up to a pinnacle event. The paper reveals how longitudinal HRV monitoring in elites is required to understand their unique individual HRV fingerprint. For the first time, we demonstrate how increases and decreases in HRV relate to changes in fitness and freshness, respectively, in elite athletes.
Collapse
Affiliation(s)
- Daniel J Plews
- High Performance Sport New Zealand, AUT Millennium, 17 Antares Place, Mairangi Bay, 0632 Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
184
|
[High-intensity interval training for young athletes]. Wien Med Wochenschr 2014; 164:228-38. [PMID: 24733304 DOI: 10.1007/s10354-014-0277-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
A computer-based literature research during July 2013 using the electronic databases PubMed, MEDLINE, SPORTDiscus and Web of Science was performed to assess the effect of the high intensity interval training (HIIT) on sport performance in healthy children and adolescents. Studies examining the effect of HIIT on aerobic and anaerobic performance pre and post to HIIT-Interventions in children and adolescents (9-18 years) were included. The results indicate increased aerobic and anaerobic performance following two or three HIIT sessions per week for a period of five to ten weeks, additional to normal training. Results regarding long term effects following HIIT have not been documented so far. In addition, due to the physiological characteris-tics during HIIT protocols improved fatigue resistance has been demonstrated in children as compared to adults, which may be interpreted as a prerequisite for the applicability of HIIT in children.
Collapse
|
185
|
Kilen A, Larsson TH, Jørgensen M, Johansen L, Jørgensen S, Nordsborg NB. Effects of 12 weeks high-intensity & reduced-volume training in elite athletes. PLoS One 2014; 9:e95025. [PMID: 24736598 PMCID: PMC3988165 DOI: 10.1371/journal.pone.0095025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/22/2014] [Indexed: 11/18/2022] Open
Abstract
It was investigated if high-intensity interval training (HIT) at the expense of total training volume improves performance, maximal oxygen uptake and swimming economy. 41 elite swimmers were randomly allocated to a control (CON) or HIT group. For 12 weeks both groups trained ∼12 h per week. HIT comprised ∼5 h vs. 1 h and total distance was ∼17 km vs. 35 km per week for HIT and CON, respectively. HIT was performed as 6-10×10-30 s maximal effort interspersed by 2–4 minutes of rest. Performance of 100 m all-out freestyle and 200 m freestyle was similar before and after the intervention in both HIT (60.4±4.0 vs. 60.3±4.0 s; n = 13 and 133.2±6.4 vs. 132.6±7.7 s; n = 14) and CON (60.2±3.7 vs. 60.6±3.8 s; n = 15 and 133.5±7.0 vs. 133.3±7.6 s; n = 15). Maximal oxygen uptake during swimming was similar before and after the intervention in both the HIT (4.0±0.9 vs. 3.8±1.0 l O2×min−1; n = 14) and CON (3.8±0.7 vs. 3.8±0.7 l O2×min−1; n = 11) group. Oxygen uptake determined at fixed submaximal speed was not significantly affected in either group by the intervention. Body fat % tended to increase (P = 0.09) in the HIT group (15.4±1.6% vs. 16.3±1.6%; P = 0.09; n = 16) and increased (P<0.05) in the CON group (13.9±1.5% vs. 14.9±1.5%; n = 17). A distance reduction of 50% and a more than doubled HIT amount for 12 weeks did neither improve nor compromise performance or physiological capacity in elite swimmers.
Collapse
Affiliation(s)
- Anders Kilen
- Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark
| | | | - Majke Jørgensen
- Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Nikolai B Nordsborg
- Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
186
|
Seo DY, Lee SR, Kim N, Ko KS, Rhee BD, Han J. Humanized animal exercise model for clinical implication. Pflugers Arch 2014; 466:1673-87. [PMID: 24647666 DOI: 10.1007/s00424-014-1496-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 01/20/2023]
Abstract
Exercise and physical activity function as a patho-physiological process that can prevent, manage, and regulate numerous chronic conditions, including metabolic syndrome and age-related sarcopenia. Because of research ethics and technical difficulties in humans, exercise models using animals are requisite for the future development of exercise mimetics to treat such abnormalities. Moreover, the beneficial or adverse outcomes of a new regime or exercise intervention in the treatment of a specific condition should be tested prior to implementation in a clinical setting. In rodents, treadmill running (or swimming) and ladder climbing are widely used as aerobic and anaerobic exercise models, respectively. However, exercise models are not limited to these types. Indeed, there are no golden standard exercise modes or protocols for managing or improving health status since the types (aerobic vs. anaerobic), time (morning vs. evening), and duration (continuous vs. acute bouts) of exercise are the critical determinants for achieving expected beneficial effects. To provide insight into the understanding of exercise and exercise physiology, we have summarized current animal exercise models largely based on aerobic and anaerobic criteria. Additionally, specialized exercise models that have been developed for testing the effect of exercise on specific physiological conditions are presented. Finally, we provide suggestions and/or considerations for developing a new regime for an exercise model.
Collapse
Affiliation(s)
- Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Department of Health Sciences and Technology, Cardiovascular and Metabolic Disease Center, Inje University, Bok Ji-Ro 75, Busanjin-Gu, Busan, 613-735, Republic of Korea
| | | | | | | | | | | |
Collapse
|
187
|
Sant'anna T, Hernandes NA, Pitta F. Pulmonary rehabilitation and COPD: is nonlinear exercise better? Expert Rev Respir Med 2014; 7:323-5. [PMID: 23964621 DOI: 10.1586/17476348.2013.814395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
188
|
Buchheit M. Monitoring training status with HR measures: do all roads lead to Rome? Front Physiol 2014; 5:73. [PMID: 24578692 PMCID: PMC3936188 DOI: 10.3389/fphys.2014.00073] [Citation(s) in RCA: 447] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/06/2014] [Indexed: 01/25/2023] Open
Abstract
Measures of resting, exercise, and recovery heart rate are receiving increasing interest for monitoring fatigue, fitness and endurance performance responses, which has direct implications for adjusting training load (1) daily during specific training blocks and (2) throughout the competitive season. However, these measures are still not widely implemented to monitor athletes' responses to training load, probably because of apparent contradictory findings in the literature. In this review I contend that most of the contradictory findings are related to methodological inconsistencies and/or misinterpretation of the data rather than to limitations of heart rate measures to accurately inform on training status. I also provide evidence that measures derived from 5-min (almost daily) recordings of resting (indices capturing beat-to-beat changes in heart rate, reflecting cardiac parasympathetic activity) and submaximal exercise (30- to 60-s average) heart rate are likely the most useful monitoring tools. For appropriate interpretation at the individual level, changes in a given measure should be interpreted by taking into account the error of measurement and the smallest important change of the measure, as well as the training context (training phase, load, and intensity distribution). The decision to use a given measure should be based upon the level of information that is required by the athlete, the marker's sensitivity to changes in training status and the practical constrains required for the measurements. However, measures of heart rate cannot inform on all aspects of wellness, fatigue, and performance, so their use in combination with daily training logs, psychometric questionnaires and non-invasive, cost-effective performance tests such as a countermovement jump may offer a complete solution to monitor training status in athletes participating in aerobic-oriented sports.
Collapse
Affiliation(s)
- Martin Buchheit
- Sport Science Department, Myorobie AssociationMontvalezan, France
| |
Collapse
|
189
|
Rønnestad BR, Hansen J, Vegge G, Tønnessen E, Slettaløkken G. Short intervals induce superior training adaptations compared with long intervals in cyclists - An effort-matched approach. Scand J Med Sci Sports 2014; 25:143-51. [DOI: 10.1111/sms.12165] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2013] [Indexed: 01/17/2023]
Affiliation(s)
- B. R. Rønnestad
- Section for Sport Science; Lillehammer University College; Lillehammer Norway
| | - J. Hansen
- Section for Sport Science; Lillehammer University College; Lillehammer Norway
| | - G. Vegge
- Section for Sport Science; Lillehammer University College; Lillehammer Norway
| | - E. Tønnessen
- Norwegian Olympic and Paralympic Committee and Confederation of Sports; Oslo Norway
| | - G. Slettaløkken
- Section for Sport Science; Lillehammer University College; Lillehammer Norway
| |
Collapse
|
190
|
High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Med 2013; 43:313-38. [PMID: 23539308 DOI: 10.1007/s40279-013-0029-x] [Citation(s) in RCA: 767] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
High-intensity interval training (HIT), in a variety of forms, is today one of the most effective means of improving cardiorespiratory and metabolic function and, in turn, the physical performance of athletes. HIT involves repeated short-to-long bouts of rather high-intensity exercise interspersed with recovery periods. For team and racquet sport players, the inclusion of sprints and all-out efforts into HIT programmes has also been shown to be an effective practice. It is believed that an optimal stimulus to elicit both maximal cardiovascular and peripheral adaptations is one where athletes spend at least several minutes per session in their 'red zone,' which generally means reaching at least 90% of their maximal oxygen uptake (VO2max). While use of HIT is not the only approach to improve physiological parameters and performance, there has been a growth in interest by the sport science community for characterizing training protocols that allow athletes to maintain long periods of time above 90% of VO2max (T@VO2max). In addition to T@VO2max, other physiological variables should also be considered to fully characterize the training stimulus when programming HIT, including cardiovascular work, anaerobic glycolytic energy contribution and acute neuromuscular load and musculoskeletal strain. Prescription for HIT consists of the manipulation of up to nine variables, which include the work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, as well as the between-series recovery duration and intensity. The manipulation of any of these variables can affect the acute physiological responses to HIT. This article is Part I of a subsequent II-part review and will discuss the different aspects of HIT programming, from work/relief interval manipulation to the selection of exercise mode, using different examples of training cycles from different sports, with continued reference to T@VO2max and cardiovascular responses. Additional programming and periodization considerations will also be discussed with respect to other variables such as anaerobic glycolytic system contribution (as inferred from blood lactate accumulation), neuromuscular load and musculoskeletal strain (Part II).
Collapse
|
191
|
Etxebarria N, Anson JM, Pyne DB, Ferguson RA. High-intensity cycle interval training improves cycling and running performance in triathletes. Eur J Sport Sci 2013; 14:521-9. [DOI: 10.1080/17461391.2013.853841] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
192
|
Malisoux L, Frisch A, Urhausen A, Seil R, Theisen D. Monitoring of sport participation and injury risk in young athletes. J Sci Med Sport 2013; 16:504-8. [DOI: 10.1016/j.jsams.2013.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/15/2013] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
|
193
|
Holfelder B, Brown N, Bubeck D. The influence of sex, stroke and distance on the lactate characteristics in high performance swimming. PLoS One 2013; 8:e77185. [PMID: 24167563 PMCID: PMC3805569 DOI: 10.1371/journal.pone.0077185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 09/02/2013] [Indexed: 11/19/2022] Open
Abstract
Background In order to achieve world-class performances, regular performance diagnostics is required as an essential prerequisite for guiding high performance sport. In high performance swimming, the lactate performance diagnostic is an important instrument in testing the sport specific endurance capacity. Although the role of lactate as a signaling molecule, fuel and a gluconeogenic substrate is accepted, lactate parameters are discussed concerning stability, explanatory power and interpretability. Methods We calculated the individual anaerobic threshold (IAT) of Bunc using the swimming-specific lactate threshold test by Pansold. Results The cross-sectional analysis (ANOVA) of n = 398 high performance swimmers showed significant effects for sex, stroke and distance on the IAT, the percentage of personal best time on the IAT (% of PB on IAT) and maximal lactate values (max. bLA). For the freestyle events the IAT decreased, % of PB on IAT and max. bLA increased from 100 to 400 m significantly in men and women. Women showed significantly higher % of PB on IAT with descriptive lower IAT in 7 of 8 analyzed events. Men showed significantly higher max. bLA in 5 of 8 events. In the second step, the analysis of 1902 data sets of these 398 athletes with a multi-level analysis (MLA) showed also significant effects for sex, swimming distance and stroke. For initial status and development over time, the effect sizes for the variables distance and sex were medium to large, whereas for stroke there were no or small effect sizes. Discussion These significant results suggest that lactate tests in swimming specifically have to consider the lactate affecting factors sex and distance under consideration of the time period between measurements. Anthropometrical factors and the physiology of women are possible explanations for the relative better performance for lower lactate concentrations compared to men.
Collapse
Affiliation(s)
- Benjamin Holfelder
- Department of Sport and Exercise Science, University of Stuttgart, Stuttgart, Germany
- * E-mail:
| | - Niklas Brown
- Department of Sport and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Dieter Bubeck
- Department of Sport and Exercise Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
194
|
Blasco-Lafarga C, Martínez-Navarro I, Mateo-March M. Is baseline cardiac autonomic modulation related to performance and physiological responses following a supramaximal Judo test? PLoS One 2013; 8:e78584. [PMID: 24205273 PMCID: PMC3799641 DOI: 10.1371/journal.pone.0078584] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 09/15/2013] [Indexed: 12/01/2022] Open
Abstract
Little research exists concerning Heart Rate (HR) Variability (HRV) following supramaximal efforts focused on upper-body explosive strength-endurance. Since they may be very demanding, it seems of interest to analyse the relationship among performance, lactate and HR dynamics (i.e. HR, HRV and complexity) following them; as well as to know how baseline cardiac autonomic modulation mediates these relationships. The present study aimed to analyse associations between baseline and post-exercise HR dynamics following a supramaximal Judo test, and their relationship with lactate, in a sample of 22 highly-trained male judoists (20.70±4.56 years). A large association between the increase in HR from resting to exercise condition and performance suggests that individuals exerted a greater sympathetic response to achieve a better performance (Rating of Perceived Exertion: 20; post-exercise peak lactate: 11.57±2.24 mmol/L; 95.76±4.13 % of age-predicted HRmax). Athletes with higher vagal modulation and lower sympathetic modulation at rest achieved both a significant larger ∆HR and a faster post-exercise lactate removal. A enhanced resting parasympathetic modulation might be therefore related to a further usage of autonomic resources and a better immediate metabolic recovery during supramaximal exertions. Furthermore, analyses of variance displayed a persistent increase in α1 and a decrease in lnRMSSD along the 15 min of recovery, which are indicative of a diminished vagal modulation together with a sympathovagal balance leaning to sympathetic domination. Eventually, time-domain indices (lnRMSSD) showed no lactate correlations, while nonlinear indices (α1 and lnSaEn) appeared to be moderate to strongly correlated with it, thus pointing to shared mechanisms between neuroautonomic and metabolic regulation.
Collapse
|
195
|
Alkahtani SA, King NA, Hills AP, Byrne NM. Effect of interval training intensity on fat oxidation, blood lactate and the rate of perceived exertion in obese men. SPRINGERPLUS 2013; 2:532. [PMID: 24255835 PMCID: PMC3824717 DOI: 10.1186/2193-1801-2-532] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/07/2013] [Indexed: 11/10/2022]
Abstract
PURPOSE The objectives of this study were to examine the effect of 4-week moderate- and high-intensity interval training (MIIT and HIIT) on fat oxidation and the responses of blood lactate (BLa) and rating of perceived exertion (RPE). METHODS Ten overweight/obese men (age = 29 ±3.7 years, BMI = 30.7 ±3.4 kg/m(2)) participated in a cross-over study of 4-week MIIT and HIIT training. The MIIT training sessions consisted of 5-min cycling stages at mechanical workloads 20% above and 20% below 45%VO2peak. The HIIT sessions consisted of intervals of 30-s work at 90%VO2peak and 30-s rest. Pre- and post-training assessments included VO2max using a graded exercise test (GXT) and fat oxidation using a 45-min constant-load test at 45%VO2max. BLa and RPE were also measured during the constant-load exercise test. RESULTS There were no significant changes in body composition with either intervention. There were significant increases in fat oxidation after MIIT and HIIT (p ≤ 0.01), with no effect of intensity. BLa during the constant-load exercise test significantly decreased after MIIT and HIIT (p ≤ 0.01), and the difference between MIIT and HIIT was not significant (p = 0.09). RPE significantly decreased after HIIT greater than MIIT (p ≤ 0.05). CONCLUSION Interval training can increase fat oxidation with no effect of exercise intensity, but BLa and RPE decreased after HIIT to greater extent than MIIT.
Collapse
Affiliation(s)
- Shaea A Alkahtani
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Australia & University of Dammam, P.O. Box 2375, Dammam, 31451 Saudi Arabia
| | | | | | | |
Collapse
|
196
|
Klijn P, van Keimpema A, Legemaat M, Gosselink R, van Stel H. Nonlinear exercise training in advanced chronic obstructive pulmonary disease is superior to traditional exercise training. A randomized trial. Am J Respir Crit Care Med 2013; 188:193-200. [PMID: 23449691 DOI: 10.1164/rccm.201210-1829oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The optimal exercise training intensity and strategy for individualized exercise training in chronic obstructive pulmonary disease (COPD) is not clear. OBJECTIVES This study compares the effects of nonlinear periodized exercise (NLPE) training used in athletes to traditional endurance and progressive resistance (EPR) training in patients with severe COPD. METHODS A total of 110 patients with severe COPD (FEV1 32% predicted) were randomized to EPR or NLPE. Exercise training was performed three times per week for 10 weeks. The primary outcomes were cycling endurance time and health-related quality of life using the Chronic Respiratory Questionnaire. The difference in change between EPR and NLPE was assessed using linear mixed-effects modeling. MEASUREMENTS AND MAIN RESULTS NLPE resulted in significantly greater improvements in cycling endurance time compared with EPR. The difference in change was +300.6 seconds (95% confidence interval [CI] = 197.2-404.2 s; P < 0.001). NLPE also resulted in significantly greater improvements in all domains of the Chronic Respiratory Questionnaire compared with EPR, ranging from +0.48 (95% CI = 0.19-0.78) for the domain, emotions, to +0.96 (95% CI = 0.57-1.35) for dyspnea. CONCLUSIONS NLPE results in greater improvements in cycle endurance and health-related quality of life in patients with severe COPD than traditional training methods. Clinical trial registered with www.trialregister.nl (The Netherlands Trial Register; NTR 1045).
Collapse
Affiliation(s)
- Peter Klijn
- Department of Pulmonology, Merem Asthma Center Heideheuvel, Hilversum, The Netherlands.
| | | | | | | | | |
Collapse
|
197
|
|
198
|
Clarke DC, Skiba PF. Rationale and resources for teaching the mathematical modeling of athletic training and performance. ADVANCES IN PHYSIOLOGY EDUCATION 2013; 37:134-152. [PMID: 23728131 DOI: 10.1152/advan.00078.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A number of professions rely on exercise prescription to improve health or athletic performance, including coaching, fitness/personal training, rehabilitation, and exercise physiology. It is therefore advisable that the professionals involved learn the various tools available for designing effective training programs. Mathematical modeling of athletic training and performance, which we henceforth call "performance modeling," is one such tool. Two models, the critical power (CP) model and the Banister impulse-response (IR) model, offer complementary information. The CP model describes the relationship between work rates and the durations for which an individual can sustain them during constant-work-rate or intermittent exercise. The IR model describes the dynamics by which an individual's performance capacity changes over time as a function of training. Both models elegantly abstract the underlying physiology, and both can accurately fit performance data, such that educating exercise practitioners in the science of performance modeling offers both pedagogical and practical benefits. In addition, performance modeling offers an avenue for introducing mathematical modeling skills to exercise physiology researchers. A principal limitation to the adoption of performance modeling is a lack of education. The goal of this report is therefore to encourage educators of exercise physiology practitioners and researchers to incorporate the science of performance modeling in their curricula and to serve as a resource to support this effort. The resources include a comprehensive review of the concepts associated with the development and use of the models, software to enable hands-on computer exercises, and strategies for teaching the models to different audiences.
Collapse
Affiliation(s)
- David C Clarke
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
199
|
Does polarized training improve performance in recreational runners? Int J Sports Physiol Perform 2013; 9:265-72. [PMID: 23752040 DOI: 10.1123/ijspp.2012-0350] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To quantify the impact of training-intensity distribution on 10K performance in recreational athletes. METHODS 30 endurance runners were randomly assigned to a training program emphasizing low-intensity, sub-ventilatory-threshold (VT), polarized endurance-training distribution (PET) or a moderately high-intensity (between-thresholds) endurance-training program (BThET). Before the study, the subjects performed a maximal exercise test to determine VT and respiratory-compensation threshold (RCT), which allowed training to be controlled based on heart rate during each training session over the 10-wk intervention period. Subjects performed a 10-km race on the same course before and after the intervention period. Training was quantified based on the cumulative time spent in 3 intensity zones: zone 1 (low intensity, <VT), zone 2 (moderate intensity, between VT and RCT), and zone 3 (high intensity, >RCT). The contribution of total training time in each zone was controlled to have more low-intensity training in PET (±77/3/20), whereas for BThET the distribution was higher in zone 2 and lower in zone 1 (±46/35/19). RESULTS Both groups significantly improved their 10K time (39min18s ± 4min54s vs 37min19s ± 4min42s, P < .0001 for PET; 39min24s ± 3min54s vs 38min0s ± 4min24s, P < .001 for BThET). Improvements were 5.0% vs 3.6%, ~41 s difference at post-training-intervention. This difference was not significant. However, a subset analysis comparing the 12 runners who actually performed the most PET (n = 6) and BThET (n = 16) distributions showed greater improvement in PET by 1.29 standardized Cohen effect-size units (90% CI 0.31-2.27, P = .038). CONCLUSIONS Polarized training can stimulate greater training effects than between-thresholds training in recreational runners.
Collapse
|
200
|
Neal CM, Hunter AM, Brennan L, O'Sullivan A, Hamilton DL, DeVito G, Galloway SDR. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. J Appl Physiol (1985) 2013; 114:461-71. [DOI: 10.1152/japplphysiol.00652.2012] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This study was undertaken to investigate physiological adaptation with two endurance-training periods differing in intensity distribution. In a randomized crossover fashion, separated by 4 wk of detraining, 12 male cyclists completed two 6-wk training periods: 1) a polarized model [6.4 (±1.4 SD) h/wk; 80%, 0%, and 20% of training time in low-, moderate-, and high-intensity zones, respectively]; and 2) a threshold model [7.5 (±2.0 SD) h/wk; 57%, 43%, and 0% training-intensity distribution]. Before and after each training period, following 2 days of diet and exercise control, fasted skeletal muscle biopsies were obtained for mitochondrial enzyme activity and monocarboxylate transporter (MCT) 1 and 4 expression, and morning first-void urine samples were collected for NMR spectroscopy-based metabolomics analysis. Endurance performance (40-km time trial), incremental exercise, peak power output (PPO), and high-intensity exercise capacity (95% maximal work rate to exhaustion) were also assessed. Endurance performance, PPOs, lactate threshold (LT), MCT4, and high-intensity exercise capacity all increased over both training periods. Improvements were greater following polarized rather than threshold for PPO [mean (±SE) change of 8 (±2)% vs. 3 (±1)%, P < 0.05], LT [9 (±3)% vs. 2 (±4)%, P < 0.05], and high-intensity exercise capacity [85 (±14)% vs. 37 (±14)%, P < 0.05]. No changes in mitochondrial enzyme activities or MCT1 were observed following training. A significant multilevel, partial least squares-discriminant analysis model was obtained for the threshold model but not the polarized model in the metabolomics analysis. A polarized training distribution results in greater systemic adaptation over 6 wk in already well-trained cyclists. Markers of muscle metabolic adaptation are largely unchanged, but metabolomics markers suggest different cellular metabolic stress that requires further investigation.
Collapse
Affiliation(s)
- Craig M. Neal
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, Scotland, United Kingdom
| | - Angus M. Hunter
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, Scotland, United Kingdom
| | - Lorraine Brennan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland; and
| | - Aifric O'Sullivan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland; and
| | - D. Lee Hamilton
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, Scotland, United Kingdom
| | - Giuseppe DeVito
- Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Stuart D. R. Galloway
- Health and Exercise Sciences Research Group, School of Sport, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|