151
|
Dickson CJ, Gee AD, Bennacef I, Gould IR, Rosso L. Further evaluation of quantum chemical methods for the prediction of non-specific binding of positron emission tomography tracers. Phys Chem Chem Phys 2011; 13:21552-7. [PMID: 22052158 DOI: 10.1039/c1cp22739d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The non-specific binding of candidate positron emission tomography (PET) radiotracers causes resulting PET images to have poor contrast and is a key determinant for the success or failure of imaging drugs. Non-specific binding is thought to arise when radiotracers bind to cell membranes and moieties other than their intended target. Our previous preliminary work has proposed the use of the drug-lipid interaction energy descriptor to predict the level of non-specific binding in vivo using a limited set of ten well known PET radiotracers with kinetic modelling data taken from the literature. This work validates and extends the use of the drug-lipid interaction energy descriptor using a new set of twenty-two candidate PET radiotracers with non-specific binding data recently collected at the same imaging centre with consistent methodology. As with the previous set of radiotracers, a significant correlation is found between the quantum chemical drug-lipid interaction energy and in vivo non-specific binding experimental values. In an effort to speed up the calculation process, several semi-empirical quantum chemical methods were assessed for their ability to reproduce the ab initio results. However no single semi-empirical method was found to consistently reproduce the level of correlation achieved with ab initio quantum chemical methods.
Collapse
Affiliation(s)
- Callum J Dickson
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, South Kensington, SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
152
|
Yoshii K, Hirayama M, Nakamura T, Toda R, Hasegawa J, Takei M, Mera Y, Kawabata Y. Mechanism for distribution of acotiamide, a novel gastroprokinetic agent for the treatment of functional dyspepsia, in rat stomach. J Pharm Sci 2011; 100:4965-73. [DOI: 10.1002/jps.22649] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 04/04/2011] [Accepted: 05/11/2011] [Indexed: 11/05/2022]
|
153
|
Uchida Y, Ohtsuki S, Kamiie J, Terasaki T. Blood-brain barrier (BBB) pharmacoproteomics: reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. J Pharmacol Exp Ther 2011; 339:579-88. [PMID: 21828264 DOI: 10.1124/jpet.111.184200] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
The purpose of this study was to examine whether in vivo drug distribution to the brain can be reconstructed by integrating P-glycoprotein (P-gp)/mdr1a expression levels, P-gp in vitro activity, and drug unbound fractions in mouse plasma and brain. For 11 P-gp substrates, in vitro P-gp transport activities were determined by measuring transcellular transport across monolayers of mouse P-gp-transfected LLC-PK1 (L-mdr1a) and parental cells. P-gp expression amounts were determined by quantitative targeted absolute proteomics. Unbound drug fractions in plasma and brain were obtained from the literature and by measuring brain slice uptake, respectively. Brain-to-plasma concentration ratios (K(p brain)) and its ratios between wild-type and mdr1a/1b(-/-) mice (K(p brain) ratio) were obtained from the literature or determined by intravenous constant infusion. Unbound brain-to-plasma concentration ratios (K(p,uu,brain)) were estimated from K(p brain) and unbound fractions. Based on pharmacokinetic theory, K(p brain) ratios were reconstructed from in vitro P-gp transport activities and P-gp expression amounts in L-mdr1a cells and mouse brain capillaries. All reconstructed K(p brain) ratios were within a 1.6-fold range of observed values. K(p brain) then was reconstructed from the reconstructed K(p brain) ratios and unbound fractions. K(p,uu,brain) was reconstructed as the reciprocal of the reconstructed K(p brain) ratios. For quinidine, loperamide, risperidone, indinavir, dexamethasone, paclitaxel, verapamil, loratadine, and diazepam, the reconstructed K(p brain) and K(p,uu,brain) agreed with observed and estimated in vivo values within a 3-fold range, respectively. Thus, brain distributions of P-gp substrates can be reconstructed from P-gp expression levels, in vitro activity, and drug unbound fractions.
Collapse
Affiliation(s)
- Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | |
Collapse
|
154
|
Bundgaard C, Sveigaard C, Brennum LT, Stensbøl TB. Associating in vitro target binding and in vivo CNS occupancy of serotonin reuptake inhibitors in rats: the role of free drug concentrations. Xenobiotica 2011; 42:256-65. [PMID: 22017605 DOI: 10.3109/00498254.2011.618953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present study aimed at investigating the theory that free (unbound) active site concentrations are the best predictors of target binding of compounds blocking the serotonin transporter (Sert) in the central nervous system (CNS). Thirteen serotonin reuptake inhibitors were evaluated for their Sert-binding affinities in vitro and in vivo in rats together with their unbound fractions in plasma and brain. Cortical Sert occupancy was used in vivo to acquire EC₅₀-estimates from total plasma, free plasma, whole brain, and free brain concentrations after acute drug administration. The in vitro-in vivo Sert occupancy analyses showed that the best correlation was achieved when unbound brain concentrations were employed. Unbound brain concentrations also provided a better correlation when compared with unbound plasma concentrations, which could be related to lack of equilibrium between plasma and brain at time of measurements or involvement of active brain efflux processes. In addition, brain-free fractions were shown to be directly correlated to the lipophilicity of the compounds. These data emphasize the use and impact of applying free fraction data in assessment of pharmacological in vitro-in vivo correlations and demonstrates its use to validate in vivo Sert occupancy as pharmacodynamic marker for serotonin reuptake inhibitors in rats.
Collapse
|
155
|
Vandenhaute E, Sevin E, Hallier-Vanuxeem D, Dehouck MP, Cecchelli R. Case study: adapting in vitro blood-brain barrier models for use in early-stage drug discovery. Drug Discov Today 2011; 17:285-90. [PMID: 22033197 DOI: 10.1016/j.drudis.2011.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/28/2011] [Accepted: 10/12/2011] [Indexed: 01/13/2023]
Abstract
Several parameters influencing the brain distribution of compounds must be considered when designing potential neuropharmaceuticals in early-stage drug discovery. The blood-brain barrier (BBB) represents an obstacle for drug penetration into the brain. Many in vitro BBB models have proven useful for predicting the BBB permeation rate, but do not meet all criteria for use in early-stage drug discovery: feasibility, rapidity, reliability and a low requirement for human resources. To meet this demand, we have developed a robust, higher-throughput, cell-based model exhibiting BBB features (low paracellular permeability, functional efflux pumps and the correct endothelial phenotype). This system comes in a ready-to-use, frozen format, appropriate for in-house use by large pharmaceutical firms and small biotech companies during early-stage drug discovery.
Collapse
|
156
|
2-(Cyclohexylamino)-1-(4-cyclopentylpiperazin-1-yl)-2-methylpropan-1-one, a novel compound with neuroprotective and neurotrophic effects in vitro. Neurochem Int 2011; 59:821-9. [PMID: 21854820 DOI: 10.1016/j.neuint.2011.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 11/23/2022]
Abstract
Focusing on development of novel drug candidates for the treatment of neurodegenerative diseases, we developed and synthesized a new compound, 2-(cyclohexylamino)-1-(4-cyclopentylpiperazin-1-yl)-2-methylpropan-1-one (amido-piperizine 1). The compound demonstrated robust neuroprotective properties after both glutamate excitotoxicity and peroxide induced oxidative stress in primary cortical cultures. Furthermore, amido-piperizine 1 was found to significantly induce neurite outgrowth in vitro which could suggest central reparative and regenerative potential of the compound. With these potential beneficial effects in CNS, the ability of the amido-piperizine 1 to penetrate the blood-brain barrier was tested using MDR1-MDCK cells. Amido-piperizine 1 was found not to be a P-gp substrate and to have a high blood-brain barrier penetration potential, indicating excellent availability to the CNS. Moreover, amido-piperizine 1 had a fast metabolic clearance rate in vitro, suggesting that parenteral in vivo administration seems preferable. As an attempt to elucidate a possible mechanism of action, we found that amido-piperizine 1 bound in nano-molar range to the sigma-1 receptor, which could explain the observed neuroprotective and neurotrophic properties, and with a 100-fold lower affinity to the sigma-2 receptor. These results propose that amido-piperizine 1 may hold promise as a drug candidate for the treatment of stroke/traumatic brain injury or other neurodegenerative diseases.
Collapse
|
157
|
Micieli D, Giuffrida MC, Pignatello R, Castelli F, Sarpietro MG. Interaction of naproxen amphiphilic derivatives with biomembrane models evaluated by differential scanning calorimetry and Langmuir–Blodgett studies. J Colloid Interface Sci 2011; 360:359-69. [DOI: 10.1016/j.jcis.2011.04.092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/22/2011] [Accepted: 04/23/2011] [Indexed: 10/18/2022]
|
158
|
Harrison ST, Mulhearn J, Wolkenberg SE, Miller PJ, O’Malley SS, Zeng Z, Williams DL, Hostetler ED, Sanabria-Bohórquez S, Gammage L, Fan H, Sur C, Culberson JC, Hargreaves RJ, Cook JJ, Hartman GD, Barrow JC. Synthesis and Evaluation of 5-Fluoro-2-aryloxazolo[5,4-b]pyridines as β-Amyloid PET Ligands and Identification of MK-3328. ACS Med Chem Lett 2011; 2:498-502. [PMID: 24900338 DOI: 10.1021/ml200018n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 03/15/2011] [Indexed: 11/29/2022] Open
Abstract
5-Fluoro-2-aryloxazolo[5,4-b]pyridines were synthesized and investigated as potential (18)F containing β-amyloid PET ligands. In competition binding assays using human AD brain homogenates, compounds 14b, 16b, and 17b were identified as having favorable potency versus human β-amyloid plaque and were radiolabeled for further evaluation in in vitro binding and in vivo PET imaging experiments. These studies led to the identification of 17b (MK-3328) as a candidate PET ligand for the clinical assessment of β-amyloid plaque load.
Collapse
Affiliation(s)
- Scott T. Harrison
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - James Mulhearn
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Scott E. Wolkenberg
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Patricia J. Miller
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Stacey S. O’Malley
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Zhizhen Zeng
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - David L. Williams
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Eric D. Hostetler
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Sandra Sanabria-Bohórquez
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Linda Gammage
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Hong Fan
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Cyrille Sur
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - J. Christopher Culberson
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Richard J. Hargreaves
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Jacquelynn J. Cook
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - George D. Hartman
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - James C. Barrow
- Departments of Medicinal Chemistry, ‡Imaging, and §Chemical Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc., P.O. Box 4, West Point, Pennsylvania 19486, United States
| |
Collapse
|
159
|
Characterization of in vivo metabolites of WR319691, a novel compound with activity against Plasmodium falciparum. Eur J Drug Metab Pharmacokinet 2011; 36:151-8. [DOI: 10.1007/s13318-011-0047-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/06/2011] [Indexed: 11/27/2022]
|
160
|
Dolghih E, Bryant C, Renslo AR, Jacobson MP. Predicting binding to p-glycoprotein by flexible receptor docking. PLoS Comput Biol 2011; 7:e1002083. [PMID: 21731480 PMCID: PMC3121697 DOI: 10.1371/journal.pcbi.1002083] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/22/2011] [Indexed: 01/07/2023] Open
Abstract
P-glycoprotein (P-gp) is an ATP-dependent transport protein that is selectively expressed at entry points of xenobiotics where, acting as an efflux pump, it prevents their entering sensitive organs. The protein also plays a key role in the absorption and blood-brain barrier penetration of many drugs, while its overexpression in cancer cells has been linked to multidrug resistance in tumors. The recent publication of the mouse P-gp crystal structure revealed a large and hydrophobic binding cavity with no clearly defined sub-sites that supports an “induced-fit” ligand binding model. We employed flexible receptor docking to develop a new prediction algorithm for P-gp binding specificity. We tested the ability of this method to differentiate between binders and nonbinders of P-gp using consistently measured experimental data from P-gp efflux and calcein-inhibition assays. We also subjected the model to a blind test on a series of peptidic cysteine protease inhibitors, confirming the ability to predict compounds more likely to be P-gp substrates. Finally, we used the method to predict cellular metabolites that may be P-gp substrates. Overall, our results suggest that many P-gp substrates bind deeper in the cavity than the cyclic peptide in the crystal structure and that specificity in P-gp is better understood in terms of physicochemical properties of the ligands (and the binding site), rather than being defined by specific sub-sites. With many drugs failing in the preclinical stages of drug discovery due to undesirable ADMETox (absorption, distribution, metabolism, excretion and toxicity) properties, improvement of these properties early on in the process, alongside the optimization of the compound activity, is emerging as a new focus in the pharmaceutical field. One of the key players affecting pharmacokinetic profiles of many clinically relevant compounds is an active efflux transporter, P-glycoprotein. Expressed predominantly at various physiological barriers, it can influence drug absorption (intestinal epithelium, colon), drug elimination (kidney proximal tubules) and drug penetration of the blood-brain barrier (endothelial brain cells). Moreover, its increased expression in cancer cells has been linked to resistance to multiple drugs in tumors. In this study we describe a computational approach that allows prediction of which compounds are more likely to interact with P-gp. We have tested the ability of this method to differentiate between binders and nonbinders of P-gp by using consistently measured in vitro experimental data. We also implemented a blind test on a series of peptidic cysteine protease inhibitors with encouraging outcome. Overall, our results suggest that this method provides a qualitative, quick, and inexpensive way of evaluating potential drug efflux problem at the early stages of drug development.
Collapse
Affiliation(s)
- Elena Dolghih
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.
| | | | | | | |
Collapse
|
161
|
Johnson M, Kozielska M, Pilla Reddy V, Vermeulen A, Li C, Grimwood S, de Greef R, Groothuis GMM, Danhof M, Proost JH. Mechanism-based pharmacokinetic-pharmacodynamic modeling of the dopamine D2 receptor occupancy of olanzapine in rats. Pharm Res 2011; 28:2490-504. [PMID: 21647790 PMCID: PMC3170473 DOI: 10.1007/s11095-011-0477-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 05/09/2011] [Indexed: 01/16/2023]
Abstract
Purpose A mechanism-based PK-PD model was developed to predict the time course of dopamine D2 receptor occupancy (D2RO) in rat striatum following administration of olanzapine, an atypical antipsychotic drug. Methods A population approach was utilized to quantify both the pharmacokinetics and pharmacodynamics of olanzapine in rats using the exposure (plasma and brain concentration) and D2RO profile obtained experimentally at various doses (0.01–40 mg/kg) administered by different routes. A two-compartment pharmacokinetic model was used to describe the plasma pharmacokinetic profile. A hybrid physiology- and mechanism-based model was developed to characterize the D2 receptor binding in the striatum and was fitted sequentially to the data. The parameters were estimated using nonlinear mixed-effects modeling . Results Plasma, brain concentration profiles and time course of D2RO were well described by the model; validity of the proposed model is supported by good agreement between estimated association and dissociation rate constants and in vitro values from literature. Conclusion This model includes both receptor binding kinetics and pharmacokinetics as the basis for the prediction of the D2RO in rats. Moreover, this modeling framework can be applied to scale the in vitro and preclinical information to clinical receptor occupancy.
Collapse
Affiliation(s)
- Martin Johnson
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Dow GS, Milner E, Bathurst I, Bhonsle J, Caridha D, Gardner S, Gerena L, Kozar M, Lanteri C, Mannila A, McCalmont W, Moon J, Read KD, Norval S, Roncal N, Shackleford DM, Sousa J, Steuten J, White KL, Zeng Q, Charman SA. Central nervous system exposure of next generation quinoline methanols is reduced relative to mefloquine after intravenous dosing in mice. Malar J 2011; 10:150. [PMID: 21645370 PMCID: PMC3128011 DOI: 10.1186/1475-2875-10-150] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 06/06/2011] [Indexed: 11/10/2022] Open
Abstract
Background The clinical use of mefloquine (MQ) has declined due to dose-related neurological events. Next generation quinoline methanols (NGQMs) that do not accumulate in the central nervous system (CNS) to the same extent may have utility. In this study, CNS levels of NGQMs relative to MQ were measured and an early lead chemotype was identified for further optimization. Experimental design The plasma and brain levels of MQ and twenty five, 4-position modified NGQMs were determined using LCMS/MS at 5 min, 1, 6 and 24 h after IV administration (5 mg/kg) to male FVB mice. Fraction unbound in brain tissue homogenate was assessed in vitro using equilibrium dialysis and this was then used to calculate brain-unbound concentration from the measured brain total concentration. A five-fold reduction CNS levels relative to mefloquine was considered acceptable. Additional pharmacological properties such as permeability and potency were determined. Results The maximum brain (whole/free) concentrations of MQ were 1807/4.9 ng/g. Maximum whole brain concentrations of NGQMs were 23 - 21546 ng/g. Maximum free brain concentrations were 0.5 to 267 ng/g. Seven (28%) and two (8%) compounds exhibited acceptable whole and free brain concentrations, respectively. Optimization of maximum free brain levels, IC90s (as a measure or potency) and residual plasma concentrations at 24 h (as a surrogate for half-life) in the same molecule may be feasible since they were not correlated. Diamine quinoline methanols were the most promising lead compounds. Conclusion Reduction of CNS levels of NGQMs relative to mefloquine may be feasible. Optimization of this property together with potency and long half-life may be feasible amongst diamine quinoline methanols.
Collapse
Affiliation(s)
- Geoffrey S Dow
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
|
164
|
Abraham MH. The Permeation of Neutral Molecules, Ions, and Ionic Species Through Membranes: Brain Permeation as an Example. J Pharm Sci 2011; 100:1690-701. [DOI: 10.1002/jps.22404] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/26/2010] [Accepted: 10/16/2010] [Indexed: 11/11/2022]
|
165
|
Haggarty SJ, Tsai LH. Probing the role of HDACs and mechanisms of chromatin-mediated neuroplasticity. Neurobiol Learn Mem 2011; 96:41-52. [PMID: 21545841 DOI: 10.1016/j.nlm.2011.04.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
Advancing our understanding of neuroplasticity and the development of novel therapeutics based upon this knowledge is critical in order to improve the treatment and prevention of a myriad of nervous system disorders. Epigenetic mechanisms of neuroplasticity involve the post-translational modification of chromatin and the recruitment or loss of macromolecular complexes that control neuronal activity-dependent gene expression. While over a century after Ramón y Cajal first described nuclear subcompartments and foci that we now know correspond to sites of active transcription with acetylated histones that are under epigenetic control, the rate and extent to which epigenetic processes act in a dynamic and combinatorial fashion to shape experience-dependent phenotypic and behavioral plasticity in response to various types of neuronal stimuli over a range of time scales is only now coming into focus. With growing recognition that a subset of human diseases involving cognitive dysfunction can be classified as 'chromatinopathies', in which aberrant chromatin-mediated neuroplasticity plays a causal role in the underlying disease pathophysiology, understanding the molecular nature of epigenetic mechanisms in the nervous system may provide important new avenues for the development of novel therapeutics. In this review, we discuss the chemistry and neurobiology of the histone deacetylase (HDAC) family of chromatin-modifying enzymes, outline the role of HDACs in the epigenetic control of neuronal function, and discuss the potential relevance of these epigenetic mechanisms to the development of therapeutics aiming to enhance memory and neuroplasticity. Finally, open questions, challenges, and critical needs for the field of 'neuroepigenetics' in the years to come will be summarized.
Collapse
Affiliation(s)
- Stephen J Haggarty
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
166
|
Lacombe O, Videau O, Chevillon D, Guyot AC, Contreras C, Blondel S, Nicolas L, Ghettas A, Bénech H, Thevenot E, Pruvost A, Bolze S, Krzaczkowski L, Prévost C, Mabondzo A. In vitro primary human and animal cell-based blood-brain barrier models as a screening tool in drug discovery. Mol Pharm 2011; 8:651-63. [PMID: 21438632 DOI: 10.1021/mp1004614] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Brain penetration is characterized by its extent and rate and is influenced by drug physicochemical properties, plasma exposure, plasma and brain protein binding and BBB permeability. This raises questions related to physiology, interspecies differences and in vitro/in vivo extrapolation. We herein discuss the use of in vitro human and animal BBB model as a tool to improve CNS compound selection. These cell-based BBB models are characterized by low paracellular permeation, well-developed tight junctions and functional efflux transporters. A study of twenty drugs shows similar compound ranking between rat and human models although with a 2-fold higher permeability in rat. cLogP < 5, PSA < 120 Å, MW < 450 were confirmed as essential for CNS drugs. An in vitro/in vivo correlation in rat (R² = 0.67; P = 2 × 10⁻⁴) was highlighted when in vitro permeability and efflux were considered together with plasma exposure and free fraction. The cell-based BBB model is suitable to optimize CNS-drug selection, to study interspecies differences and then to support human brain exposure prediction.
Collapse
|
167
|
Avdeef A. How well can in vitro brain microcapillary endothelial cell models predict rodent in vivo blood-brain barrier permeability? Eur J Pharm Sci 2011; 43:109-24. [PMID: 21514381 DOI: 10.1016/j.ejps.2011.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 02/06/2011] [Accepted: 04/03/2011] [Indexed: 01/16/2023]
Abstract
The object of the study was to improve the blood-brain barrier (BBB) permeability in vitro-invivo correlations (IVIVC) between in vitro brain microcapillary endothelial cell (BMEC) models and the well-tested rodent in situ brain perfusion technique. Porcine, bovine, rat, mouse, and human in vitro BMEC apparent permeability values, P(e), (14 studies from several laboratories: 229 P(e), 60 compounds) were analyzed by a novel biophysical model encoded in a weighted nonlinear regression procedure to determine the aqueous boundary layer (ABL) thickness and the paracellular parameters: porosity-pathlength (dual-pore model), pore radius, and water channel electrostatic potential. The refined parameters were then used to transform the P(e) values into the transendothelial permeability (P(c)) values. Porcine BMEC mono-culture models showed tight junctions comparable to those reported in several Caco-2 studies. Bovine cultures were somewhat leakier. In the human primary cultured cell and the hCMEC/D3 cell line data, IVIVC based on P(e) values has r(2) = 0.14. With transformed permeability values, r(2) = 0.58. Comparable improvements were found in the other species data. By using the in vitro transendothelial P(c) values in place of the apparent P(e) values, IVIVC can be dramatically improved.
Collapse
|
168
|
Brunden KR, Yao Y, Potuzak JS, Ferrer NI, Ballatore C, James MJ, Hogan AML, Trojanowski JQ, Smith AB, Lee VMY. The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer's disease and related tauopathies. Pharmacol Res 2011; 63:341-51. [PMID: 21163349 PMCID: PMC3042036 DOI: 10.1016/j.phrs.2010.12.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/06/2010] [Accepted: 12/06/2010] [Indexed: 01/03/2023]
Abstract
Tau, a protein that is enriched in neurons of the central nervous system (CNS), is thought to play a critical role in the stabilization of microtubules (MTs). Several neurodegenerative disorders referred to as tauopathies, including Alzheimer's disease and certain types of frontotemporal lobar degeneration, are characterized by the intracellular accumulation of hyperphosphorylated tau fibrils. Tau deposition into insoluble aggregates is believed to result in a loss of tau function that leads to MT destabilization, and this could cause neurodegeneration as intact MTs are required for axonal transport and normal neuron function. This tau loss-of-function hypothesis has been validated in a tau transgenic mouse model with spinal cord tau inclusions, where the MT-stabilizing agent, paclitaxel, increased spinal nerve MT density and improved motor function after drug absorption at neuromuscular junctions. Unfortunately, paclitaxel is a P-glycoprotein substrate and has poor blood-brain barrier permeability, making it unsuitable for the treatment of human tauopathies. We therefore examined several MT-stabilizing compounds from the taxane and epothilone natural product families to assess their membrane permeability and to determine whether they act as substrates or inhibitors of P-glycoprotein. Moreover, we compared brain and plasma levels of the compounds after administration to mice. Finally, we assessed whether brain-penetrant compounds could stabilize mouse CNS MTs. We found that several epothilones have significantly greater brain penetration than the taxanes. Furthermore, certain epothilones cause an increase in CNS MT stabilization, with epothilone D demonstrating a favorable pharmacokinetic and pharmacodynamic profile which suggests this agent merits further study as a potential tauopathy drug candidate.
Collapse
Affiliation(s)
- Kurt R Brunden
- Center for Neurodegenerative Disease Research and Institute on Aging, Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Partition of bispyridinium oximes (trimedoxime and K074) administered in therapeutic doses into different parts of the rat brain. J Pharm Biomed Anal 2011; 54:1082-7. [DOI: 10.1016/j.jpba.2010.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/08/2010] [Accepted: 11/18/2010] [Indexed: 12/23/2022]
|
170
|
Wager TT, Villalobos A, Verhoest PR, Hou X, Shaffer CL. Strategies to optimize the brain availability of central nervous system drug candidates. Expert Opin Drug Discov 2011; 6:371-81. [DOI: 10.1517/17460441.2011.564158] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
171
|
Sanmartín-Suárez C, Soto-Otero R, Sánchez-Sellero I, Méndez-Álvarez E. Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants. J Pharmacol Toxicol Methods 2011; 63:209-15. [DOI: 10.1016/j.vascn.2010.10.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/29/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
|
172
|
Avdeef A, Sun N. A new in situ brain perfusion flow correction method for lipophilic drugs based on the pH-dependent Crone-Renkin equation. Pharm Res 2011; 28:517-30. [PMID: 21042838 PMCID: PMC3076090 DOI: 10.1007/s11095-010-0298-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 09/28/2010] [Indexed: 09/29/2022]
Abstract
PURPOSE To determine the flow-corrected luminal permeability, P(c), of lipophilic drugs measured by the in situ brain perfusion method under circumstances where the traditional Crone-Renkin equation (CRE) method, using diazepam as a flow marker, often fails. METHODS The pH-dependent rate of brain penetration of five lipophilic drugs (amitriptyline, atomoxetine, imipramine, indomethacin, maprotiline, sertraline), as well as of atenolol and antipyrine, were measured in Sprague-Dawley rats. A new pH-dependent CRE was derived and applied to remove the hydrodynamic component of effective permeability, P(e), to produce P(c) values. RESULTS It was shown by the analysis of the in situ data in the pH 6.5-8.5 interval for the lipophilic bases that the average vascular flow F(pf) = 0.036 mL∙g(-1)∙s(-1), centered in a "flow-limit window" (FLW) bounded by P (e) (min) = 170 and P (e) (max) = 776 (10(-6) cm∙s(-1) units). It was shown that the traditional CRE is expected not to work for half of the molecules in the FLW and is expected to underestimate (up to 64-fold) the other half of the molecules. CONCLUSION The new pH-CRE flow correction method applied to lipophilic ionizable drugs, based on the pH partition hypothesis, can overcome the limitations of the traditional CRE.
Collapse
Affiliation(s)
- Alex Avdeef
- pION INC, 5 Constitution Way, Woburn, Massachusetts 01801, USA.
| | | |
Collapse
|
173
|
Shingaki T, Hidalgo IJ, Furubayashi T, Sakane T, Katsumi H, Yamamoto A, Yamashita S. Nasal delivery of P-gp substrates to the brain through the nose-brain pathway. Drug Metab Pharmacokinet 2011; 26:248-55. [PMID: 21317541 DOI: 10.2133/dmpk.dmpk-10-rg-108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objective of this study was to evaluate in rats the potential utility of the nasal route to enhance central nervous system (CNS) delivery of drugs recognized by P-glycoprotein (P-gp). Well-known P-gp substrates verapamil and talinolol were perfused nasally or infused intravenously, and when plasma concentrations following intravenous infusion and nasal perfusion showed similar profiles. The concentration of verapamil in the brain after nasal perfusion was twice that after intravenous infusion. Although talinolol in the brain and the cerebrospinal fluid after i.v. infusion were below the detection limit, it was detected after nasal perfusion. When rats were treated with cyclosporin A, brain concentrations of verapamil after both administration modes were increased significantly, while those of talinolol were not significantly changed. Since the permeability of talinolol is low, talinolol in the brain which was transported directly from the nasal cavity has little chance of transport by P-gp localized in the apical membrane of cerebral microvessel endothelial cells. The potential for drug delivery utilizing the nose-CNS route was confirmed for P-gp substrates. The advantage of nasal delivery over i.v. delivery of talinolol to the brain was more significant than that of verapamil, suggesting that nasal administration is more useful strategy for the brain delivery of low-permeability P-gp substrates than the use of P-gp inhibitors.
Collapse
|
174
|
Longhi R, Corbioli S, Fontana S, Vinco F, Braggio S, Helmdach L, Schiller J, Boriss H. Brain tissue binding of drugs: evaluation and validation of solid supported porcine brain membrane vesicles (TRANSIL) as a novel high-throughput method. Drug Metab Dispos 2011; 39:312-21. [PMID: 21071520 DOI: 10.1124/dmd.110.036095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Estimating the unbound fraction of drugs in brain has become essential for the evaluation and interpretation of the pharmacokinetics and pharmacodynamics of new central nervous system drug candidates. Dialysis-based methods are considered to be accurate for estimating the fraction unbound in brain; however, these techniques are hampered by a low throughput. In this study, we present a novel, matrix-free, high-throughput method for estimating the unbound fraction, based on a sample pooling approach combining the TRANSIL brain absorption assay with liquid chromatography-mass spectrometry. The base measurement of the TRANSIL approach is the affinity to brain membranes, and this method is used directly to predict the free fraction in brain. The method was evaluated by comparing the free fraction of drugs in brain [f(u,brain) (%)] obtained using the TRANSIL brain absorption assay and equilibrium dialysis methods for a test set of 65 drugs (27 marketed and 38 proprietary drugs). A good correlation (r(2) > 0.93) of f(u,brain) (%) between the TRANSIL brain absorption assay and equilibrium dialysis was observed. Moreover, we compared the lipid composition of rat and porcine brain and analyzed the influence of the brain albumin content on brain tissue binding measurement. The comparison of the lipid composition indicated only minor differences between rat and porcine brain, and albumin appears to have a low impact on brain tissue binding measurements. The TRANSIL brain absorption assay with sample pooling methodology not only significantly reduces the biological matrix required but also increases the throughput, compared with the conventional dialysis methods.
Collapse
Affiliation(s)
- Raffaele Longhi
- GlaxoSmithKline Neurosciences Centre of Excellence for Drug Discovery, Verona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Tsinman O, Tsinman K, Sun N, Avdeef A. Physicochemical selectivity of the BBB microenvironment governing passive diffusion--matching with a porcine brain lipid extract artificial membrane permeability model. Pharm Res 2011; 28:337-63. [PMID: 20945153 PMCID: PMC3034772 DOI: 10.1007/s11095-010-0280-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 09/13/2010] [Indexed: 12/22/2022]
Abstract
PURPOSE To mimic the physicochemical selectivity of the blood-brain barrier (BBB) and to predict its passive permeability using a PAMPA model based on porcine brain lipid extract (PBLE 10%w/v in alkane). METHODS Three PAMPA (BD pre-coated and PBLE with 2 different lipid volumes) models were tested with 108 drugs. Abraham solvation descriptors were used to interpret the in vitro-in vivo correlation with 282 in situ brain perfusion measurements, spanning over 5 orders of magnitude. An in combo PAMPA model was developed from combining measured PAMPA permeability with one H-bond descriptor. RESULTS The in combo PAMPA predicted 93% of the variance of 197 largely efflux-inhibited in situ permeability training set. The model was cross-validated by the "leave-many-out" procedure, with q(2) = 0.92 ± 0.03. The PAMPA models indicated the presence of paramembrane water channels. Only the PBLE-based PAMPA-BBB model with sufficient lipid to fill all the internal pore space of the filter showed a wide dynamic range window, selectivity coefficient near 1, and was suitable for predicting BBB permeability. CONCLUSION BBB permeability can be predicted by in combo PAMPA. Its speed and substantially lower cost, compared to in vivo measurements, make it an attractive first-pass screening method for BBB passive permeability.
Collapse
Affiliation(s)
- Oksana Tsinman
- pION INC, 5 Constitution Way, Woburn, Massachusetts 01801, USA
| | | | | | | |
Collapse
|
176
|
Iwanaga K, Yoneda S, Hamahata Y, Miyazaki M, Shibano M, Taniguchi M, Baba K, Kakemi M. Inhibitory Effects of Furanocoumarin Derivatives in Kampo Extract Medicines on P-Glycoprotein at the Blood-Brain Barrier. Biol Pharm Bull 2011; 34:1246-51. [DOI: 10.1248/bpb.34.1246] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kazunori Iwanaga
- Division of Pharmaceutics, Osaka University of Pharmaceutical Sciences
| | - Shinji Yoneda
- Division of Pharmaceutics, Osaka University of Pharmaceutical Sciences
| | - Yukimi Hamahata
- Division of Pharmaceutics, Osaka University of Pharmaceutical Sciences
| | - Makoto Miyazaki
- Division of Pharmaceutics, Osaka University of Pharmaceutical Sciences
| | - Makio Shibano
- Division of Pharmacognosy, Osaka University of Pharmaceutical Sciences
| | | | - Kimiye Baba
- Division of Pharmacognosy, Osaka University of Pharmaceutical Sciences
| | - Masawo Kakemi
- Division of Pharmaceutics, Osaka University of Pharmaceutical Sciences
| |
Collapse
|
177
|
Gynther M, Jalkanen A, Lehtonen M, Forsberg M, Laine K, Ropponen J, Leppänen J, Knuuti J, Rautio J. Brain uptake of ketoprofen–lysine prodrug in rats. Int J Pharm 2010; 399:121-8. [DOI: 10.1016/j.ijpharm.2010.08.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/04/2010] [Accepted: 08/13/2010] [Indexed: 01/15/2023]
|
178
|
Mabondzo A, Bottlaender M, Guyot AC, Tsaouin K, Deverre JR, Balimane PV. Validation of in vitro cell-based human blood-brain barrier model using clinical positron emission tomography radioligands to predict in vivo human brain penetration. Mol Pharm 2010; 7:1805-15. [PMID: 20795735 DOI: 10.1021/mp1002366] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have evaluated a novel in vitro cell-based human blood-brain barrier (BBB) model that could predict in vivo human brain penetration for compounds with different BBB permeabilities using the clinical positron emission tomography (PET) data. Comparison studies were also performed to demonstrate that the in vitro cell-based human BBB model resulted in better predictivity over the traditional permeability model in discovery organizations, Caco-2 cells. We evaluated the in vivo BBB permeability of [(18)F] and [(11)C]-compounds in humans by PET imaging. The in vivo plasma-brain exchange parameters used for comparison were determined in humans by PET using a kinetic analysis of the radiotracer binding. For each radiotracer, the parameters were determined by fitting the brain kinetics of the radiotracer using a two-tissue compartment model of the ligand-receptor interaction. Bidirectional transport studies with the same compounds as in in vivo studies were carried out using the in vitro cell-based human BBB model as well as Caco-2 cells. The in vitro cell-based human BBB model has important features of the BBB in vivo and is suitable for discriminating between CNS and non-CNS marketed drugs. A very good correlation (r(2) = 0.90; P < 0.001) was demonstrated between in vitro BBB permeability and in vivo permeability coefficient. In contrast, a poor correlation (r(2) = 0.17) was obtained between Caco-2 data and in vivo human brain penetration. This study highlights the potential of this in vitro cell-based human BBB model in drug discovery and shows that it can be an extremely effective screening tool for CNS programs.
Collapse
Affiliation(s)
- Aloïse Mabondzo
- CEA, DSV, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France.
| | | | | | | | | | | |
Collapse
|
179
|
Muthusamy VS, Saravanababu C, Ramanathan M, Bharathi Raja R, Sudhagar S, Anand S, Lakshmi BS. Inhibition of protein tyrosine phosphatase 1B and regulation of insulin signalling markers by caffeoyl derivatives of chicory ( Cichorium intybus) salad leaves. Br J Nutr 2010; 104:813-23. [PMID: 20444318 DOI: 10.1017/s0007114510001480] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Evaluations of molecular mechanisms of dietary plants with their active molecules are essential for the complete exploration of their nutritive and therapeutic value. In the present study, we investigated the effect of chicory (Cichorium intybus) salad leaves in inhibiting protein tyrosine phosphatase 1B (PTP1B), and evaluated their role in modulating the key markers involved in insulin cell signalling and adipogenesis using 3T3-L1 adipocytes. Bioactivity-directed purification studies enlightened the additive effects of chlorogenic acid (CGA) along with other caffeic acid derivatives present in methanolic extract of C. intybus (CME). Incubation of CME and CGA with 3T3-L1 adipocytes significantly enhanced the 2-deoxy-d-3[H]-glucose uptake and inhibited adipogenesis through altering the expressions of insulin signalling and adipogenesis markers. Extending to an in vivo model, the effect of CME was also investigated on insulin sensitivity in high-fat diet with low streptozotocin-induced diabetic rats. Supplementation of CME for 2 weeks reinstated the insulin sensitivity along with plasma metabolic profile. The present results demonstrate that the caffeoyl derivatives of chicory salad leaves show promising pharmacological effect on energy homoeostasis via PTP1B inhibition both in vitro and in vivo.
Collapse
Affiliation(s)
- V S Muthusamy
- Centre for Biotechnology, Tissue Culture and Drug Discovery Laboratory, Anna University, Chennai 600 025, Tamil Nadu, India
| | | | | | | | | | | | | |
Collapse
|
180
|
Voicu VA, Bajgar J, Medvedovici A, Radulescu FS, Miron DS. Pharmacokinetics and pharmacodynamics of some oximes and associated therapeutic consequences: a critical review. J Appl Toxicol 2010; 30:719-29. [PMID: 20635332 DOI: 10.1002/jat.1561] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/21/2010] [Accepted: 05/21/2010] [Indexed: 11/10/2022]
Abstract
Undoubtedly, the use of oximes represents real progress in counteracting intoxications with organophosphates (OP), through potentiating antidotal effects of atropine. The penetration extent of these compounds through the blood-brain barrier (BBB) to significantly reactivate phosphorylated or phosphonylated acetylcholinesterase (AChE) in the brain still remains a debatable issue. Penetration of biological barriers by oximes was investigated mainly through determination of several quantitative parameters characterizing digestive absorption and BBB penetration. A weak penetration of biological barriers could be concluded from the available experimental data. The functional parameters/therapeutic effects following the penetration of oximes through BBB, more precisely the antagonism of OP-induced seizures and hypothermia, prevention of brain damage and respiratory center protection, leading to the final end-point, the survival of intoxicated organisms, are of high interest. It seems obvious that oximes are weakly penetrating the BBB, with minimal brain AChE reactivation (<5%) in important functional areas, such as the ponto-medullar. The cerebral protection achieved through administration of oximes is only partial, without major impact on the antagonism of OP-induced seizures, hypothermia and respiratory center inhibition. The antidotal effects probably result from synergic effects of other PD properties, different from the brain AChE reactivation process. Oxime structures especially designed for enhanced BBB penetration, through potentiating the hydrophobic characteristics, more often produce neurotoxic effects. Certainly, obtaining oximes with broad action spectrum (active against all OP types) would make a sense, but certainly, such a target is not achievable only through the increase in their penetrability in the brain.
Collapse
Affiliation(s)
- Victor A Voicu
- University of Medicine and Pharmacy Carol Davila, Clinical Pharmacology, Toxicology and Psychopharmacology, Bucharest, Romania.
| | | | | | | | | |
Collapse
|
181
|
Calvo AC, Scherer T, Pey AL, Ying M, Winge I, McKinney J, Haavik J, Thöny B, Martinez A. Effect of pharmacological chaperones on brain tyrosine hydroxylase and tryptophan hydroxylase 2. J Neurochem 2010; 114:853-63. [DOI: 10.1111/j.1471-4159.2010.06821.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
182
|
Read KD, Braggio S. Assessing brain free fraction in early drug discovery. Expert Opin Drug Metab Toxicol 2010; 6:337-44. [PMID: 20102287 DOI: 10.1517/17425250903559873] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD The incorporation of brain tissue binding routinely in CNS drug discovery screening strategies has markedly changed the way CNS drug discovery is performed and is proving to be a valuable tool in identifying new therapies for CNS diseases. For many years emphasis has been placed on the magnitude of the brain to blood ratio, the bigger the better, even though, in many cases, brain total concentration (C(brain)) has no or, at best, poor correlation with receptor occupancy/pharmacodynamic readout. Today, C(brain) values measured during in vivo experiments are corrected for the fraction unbound measured through in vitro experiments using brain tissue homogenate or brain tissue slice to obtain an estimate of the brain unbound concentration (C(u,brain)), and this has been demonstrated across a range of CNS targets to give a much better correlation with receptor occupancy/pharmacodynamic readout. This apparently simple change in CNS lead optimisation strategy has de facto revolutionised the vision of the brain penetration concepts. AREAS COVERED IN THIS REVIEW This review will provide an overview of the use and applications of assessing brain free fraction to determine C(u,brain). TAKE HOME MESSAGE Assessing brain free fraction to determine C(u,brain) in CNS lead optimisation strategies is the surrogate of choice for rapidly assessing biophase concentration for the majority of CNS targets.
Collapse
Affiliation(s)
- Kevin D Read
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, Scotland, UK.
| | | |
Collapse
|
183
|
|
184
|
Müller CE. Prodrug approaches for enhancing the bioavailability of drugs with low solubility. Chem Biodivers 2010; 6:2071-83. [PMID: 19937841 DOI: 10.1002/cbdv.200900114] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Low water solubility and low bioavailability are frequent problems in drug development, particularly in the area of central nervous system (CNS) drugs. This short review describes selected prodrug approaches which have been developed to enhance the bioavailability of drugs, especially that of poorly soluble drugs. Some of the most successful drugs on the market are prodrugs. With a better understanding of active-transport processes at cell membranes in the gut as well as at the blood-brain barrier, the importance of prodrug approaches will further increase in the future. Prodrug approaches will already be considered in the early phase of drug discovery.
Collapse
Affiliation(s)
- Christa E Müller
- PharmaCenter Bonn, University of Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn.
| |
Collapse
|
185
|
Vizi ES, Fekete A, Karoly R, Mike A. Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br J Pharmacol 2010; 160:785-809. [PMID: 20136842 DOI: 10.1111/j.1476-5381.2009.00624.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Beyond direct synaptic communication, neurons are able to talk to each other without making synapses. They are able to send chemical messages by means of diffusion to target cells via the extracellular space, provided that the target neurons are equipped with high-affinity receptors. While synaptic transmission is responsible for the 'what' of brain function, the 'how' of brain function (mood, attention, level of arousal, general excitability, etc.) is mainly controlled non-synaptically using the extracellular space as communication channel. It is principally the 'how' that can be modulated by medicine. In this paper, we discuss different forms of non-synaptic transmission, localized spillover of synaptic transmitters, local presynaptic modulation and tonic influence of ambient transmitter levels on the activity of vast neuronal populations. We consider different aspects of non-synaptic transmission, such as synaptic-extrasynaptic receptor trafficking, neuron-glia communication and retrograde signalling. We review structural and functional aspects of non-synaptic transmission, including (i) anatomical arrangement of non-synaptic release sites, receptors and transporters, (ii) intravesicular, intra- and extracellular concentrations of neurotransmitters, as well as the spatiotemporal pattern of transmitter diffusion. We propose that an effective general strategy for efficient pharmacological intervention could include the identification of specific non-synaptic targets and the subsequent development of selective pharmacological tools to influence them.
Collapse
Affiliation(s)
- E S Vizi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | |
Collapse
|
186
|
Verhoest PR, Proulx-Lafrance C, Corman M, Chenard L, Helal CJ, Hou X, Kleiman R, Liu S, Marr E, Menniti FS, Schmidt CJ, Vanase-Frawley M, Schmidt AW, Williams RD, Nelson FR, Fonseca KR, Liras S. Identification of a brain penetrant PDE9A inhibitor utilizing prospective design and chemical enablement as a rapid lead optimization strategy. J Med Chem 2010; 52:7946-9. [PMID: 19919087 DOI: 10.1021/jm9015334] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By use of chemical enablement and prospective design, a novel series of selective, brain penetrant PDE9A inhibitors have been identified that are capable of producing in vivo elevations of brain cGMP.
Collapse
Affiliation(s)
- Patrick R Verhoest
- Neuroscience Chemistry, Pfizer Global Research and Development, Groton, CT 06340, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Lee EJD, Lean CB, Limenta LMG. Role of membrane transporters in the safety profile of drugs. Expert Opin Drug Metab Toxicol 2010; 5:1369-83. [PMID: 19663740 DOI: 10.1517/17425250903176421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has increasingly been recognized that few molecules move across the cell membrane without the assistance of transporter proteins. Large superfamilies of transporter proteins have been identified in every living cell, including microorganisms and mitochondria. This report reviews the role of transporters in physiology and pharmacology, and identifies where this may have an impact on drug efficacy and toxicity. This new understanding will require a fresh appreciation of pharmacokinetics and drug effects, as the current paradigms are based largely on the assumption that drug molecules have a reasonable unrestricted permeability across membranes. Rather than just focusing on clearance changes and central compartment pharmacokinetics, it will become increasingly necessary to examine the peripheral tissue distribution of drugs to more accurately predict drug efficacy and toxicity.
Collapse
Affiliation(s)
- Edmund Jon Deoon Lee
- National University of Singapore, Clinical Research Centre, Department of Pharmacology, Singapore.
| | | | | |
Collapse
|
188
|
|
189
|
Shaffer CL. Defining Neuropharmacokinetic Parameters in CNS Drug Discovery to Determine Cross-Species Pharmacologic Exposure–Response Relationships. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2010. [DOI: 10.1016/s0065-7743(10)45004-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
190
|
Hammarlund-Udenaes M. Active-site concentrations of chemicals - are they a better predictor of effect than plasma/organ/tissue concentrations? Basic Clin Pharmacol Toxicol 2009; 106:215-20. [PMID: 20050843 DOI: 10.1111/j.1742-7843.2009.00517.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Active-site concentrations can be defined as the concentrations of unbound, pharmacologically active substances at the site of action. In contrast, the total concentrations of the drug in plasma/organ/tissue also include the protein- or tissue-bound molecules that are pharmacologically inactive. Plasma and whole tissue concentrations are used as predictors of effects and side effects because of their ease of sampling, while the concentrations of unbound drug in tissue are more difficult to measure. However, with the introduction of microdialysis and subsequently developed techniques, it has become possible to test the free drug hypothesis. The brain is an interesting organ in this regard because of the presence of the blood-brain barrier with its tight junctions and active efflux and influx transporters. We have proposed that research into brain drug delivery be divided into three main areas: the rate of delivery (PS, CL(in)), the extent of delivery (K(p,uu)) and the non-specific affinity of the drug to brain tissue, described by the volume of distribution of unbound drug in the brain (V(u,brain)). In this way, the concentration of unbound drug at the target site can be estimated from the total brain concentration and the plasma concentration after measuring the fraction of unbound drug. Results so far fully support the theory that active site concentrations are the best predictors when active transport is present. However, there is an urgent need to collect more relevant data for predicting active site concentrations in tissues with active transporters in their plasma membranes.
Collapse
Affiliation(s)
- Margareta Hammarlund-Udenaes
- Division of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
191
|
Fenneteau F, Li J, Nekka F. Assessing drug distribution in tissues expressing P-glycoprotein using physiologically based pharmacokinetic modeling: identification of important model parameters through global sensitivity analysis. J Pharmacokinet Pharmacodyn 2009; 36:495-522. [PMID: 19847628 DOI: 10.1007/s10928-009-9134-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 10/02/2009] [Indexed: 11/26/2022]
Abstract
The structural complexity of a PBPK model is usually accompanied with significant uncertainty in estimating its input parameters. In the last decade, the global sensitivity analysis, which accounts for the variability of all model input parameters simultaneously as well as their correlations, has gained a wide attention as a powerful probing technique to identify and control biological model uncertainties. However, the current sensitivity analysis techniques used in PBPK modeling often neglect the correlation between these input parameters. We introduce a new strategy in the PBPK modeling field to investigate how the uncertainty and variability of correlated input parameters influence the outcomes of the drug distribution process based on a model we recently developed to explain and predict drug distribution in tissues expressing P-glycoprotein (P-gp). As direct results, we will also identify the most important input parameters having the largest contribution to the variability and uncertainty of model outcomes. We combined multivariate random sampling with a ranking procedure. Monte-Carlo simulations were performed on the PBPK model with eighteen model input parameters. Log-normal distributions were assumed for these parameters according to literature and their reported correlations were also included. A multivariate sensitivity analysis was then performed to identify the input parameters with the greatest influence on model predictions. The partial rank correlation coefficients (PRCC) were calculated to establish the input-output relationships. A moderate variability of predicted C(last) and C(max) was observed in liver, heart and brain tissues in the presence or absence of P-gp activity. The major statistical difference in model outcomes of the predicted median values has been obtained in brain tissue. PRCC calculation confirmed the importance for a better quantitative characterisation of input parameters related to the passive diffusion and active transport of the unbound drug through the blood-tissue membrane in heart and brain. This approach has also identified as important input parameters those related to the drug metabolism for the prediction of model outcomes in liver and plasma. The proposed Monte-Carlo/PRCC approach was aimed to address the effect of input parameters correlation in a PBPK model. It allowed the identification of important input parameters that require additional attention in research for strengthening the physiological knowledge of drug distribution in mammalian tissues expressing P-gp, thereby reducing the uncertainty of model predictions.
Collapse
Affiliation(s)
- Frederique Fenneteau
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale Centre Ville, Montreal, QC, H3C 3J7, Canada
| | | | | |
Collapse
|
192
|
Mensch J, Oyarzabal J, Mackie C, Augustijns P. In vivo, in vitro and in silico methods for small molecule transfer across the BBB. J Pharm Sci 2009; 98:4429-68. [DOI: 10.1002/jps.21745] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
193
|
Evaluation of [11C]laniquidar as a tracer of P-glycoprotein: radiosynthesis and biodistribution in rats. Nucl Med Biol 2009; 36:643-9. [PMID: 19647170 DOI: 10.1016/j.nucmedbio.2009.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 01/27/2009] [Accepted: 03/16/2009] [Indexed: 11/20/2022]
Abstract
At present, P-glycoprotein (P-gp) function can be studied using positron emission tomography (PET) together with a labelled P-gp substrate such as R-[11C]verapamil. Such a tracer is, however, less suitable for investigating P-gp (over)expression. Laniquidar is a third-generation P-gp inhibitor, which has been used in clinic trials for modulating multidrug resistance transporters. The purpose of the present study was to develop the radiosynthesis of [11C]laniquidar and to assess its suitability as a tracer of P-gp expression. The radiosynthesis of [11C]laniquidar was performed by methylation of the carboxylic acid precursor with [11C]CH3I. The product was purified by HPLC and reformulated over a tC18 Seppak, yielding a sterile solution of [11C]laniquidar in saline. For evaluating [11C]laniquidar, rats were injected with 20 MBq [11C]laniquidar via a tail vein and sacrificed at 5, 15, 30 and 60 min after injection. Several tissues and distinct brain regions were dissected and counted for radioactivity. In addition, uptake of [11C]laniquidar in rats pretreated with cyclosporine A and valspodar (PSC 833) was determined at 30 min after injection. Finally, the metabolic profile of [11C]laniquidar in plasma was determined. [11C]Laniquidar could be synthesized in moderate yields with high specific activity. Uptake in brain was low, but significantly increased after administration of cyclosporine A. Valspodar did not have any effect on cerebral uptake of [11C]laniquidar. In vivo rate of metabolism was relatively low. Further kinetic studies are needed to investigate the antagonistic behaviour of [11C]laniquidar at tracer level.
Collapse
|
194
|
Fridén M, Winiwarter S, Jerndal G, Bengtsson O, Wan H, Bredberg U, Hammarlund-Udenaes M, Antonsson M. Structure-brain exposure relationships in rat and human using a novel data set of unbound drug concentrations in brain interstitial and cerebrospinal fluids. J Med Chem 2009; 52:6233-43. [PMID: 19764786 DOI: 10.1021/jm901036q] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New experimental methodologies were applied to measure the unbound brain-to-plasma concentration ratio (K(p,uu,brain)) and the unbound CSF-to-plasma concentration ratio (K(p,uu,CSF)) in rats for 43 structurally diverse drugs. The relationship between chemical structure and K(p,uu,brain) was dominated by hydrogen bonding. Contrary to popular understanding based on the total brain-to-plasma concentration ratio (logBB), lipophilicity was not a determinant of unbound brain exposure. Although changing the number of hydrogen bond acceptors is a useful design strategy for optimizing K(p,uu,brain), future improvement of in silico prediction models is dependent on the accommodation of active drug transport. The structure-brain exposure relationships found in the rat also hold for humans, since the rank order of the drugs was similar for human and rat K(p,uu,CSF). This cross-species comparison was supported by K(p,uu,CSF) being within 3-fold of K(p,uu,brain) in the rat for 33 of 39 drugs. It was, however, also observed that K(p,uu,CSF) overpredicts K(p,uu,brain) for highly effluxed drugs, indicating lower efflux capacity of the blood-cerebrospinal fluid barrier compared to the blood-brain barrier.
Collapse
Affiliation(s)
- Markus Fridén
- Discovery DMPK, AstraZeneca R&D Mölndal, SE-431 83 Mölndal, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Reichel A. Addressing Central Nervous System (CNS) Penetration in Drug Discovery: Basics and Implications of the Evolving New Concept. Chem Biodivers 2009; 6:2030-49. [DOI: 10.1002/cbdv.200900103] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
196
|
Guo Q, Brady M, Gunn RN. A Biomathematical Modeling Approach to Central Nervous System Radioligand Discovery and Development. J Nucl Med 2009; 50:1715-23. [DOI: 10.2967/jnumed.109.063800] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
197
|
Dagenais C, Avdeef A, Tsinman O, Dudley A, Beliveau R. P-glycoprotein deficient mouse in situ blood-brain barrier permeability and its prediction using an in combo PAMPA model. Eur J Pharm Sci 2009; 38:121-37. [PMID: 19591928 PMCID: PMC2747801 DOI: 10.1016/j.ejps.2009.06.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 06/25/2009] [Indexed: 01/06/2023]
Abstract
The purpose of the study was to assess the permeability of mouse blood-brain barrier (BBB) to a diverse set of compounds in the absence of P-glycoprotein (Pgp) mediated efflux, to predict it using an in combo PAMPA model, and to explore its role in brain penetration classification (BPC). The initial brain uptake (K(in)) of 19 compounds in both wild-type and Pgp mutant [mdr1a(-/-)] CF-1 mice was determined by the in situ brain perfusion technique. PAMPA measurements were performed, and the values were used to develop an in combo model, including Abraham descriptors. Published rodent K(in) values were used to enhance the dataset and validate the model. The model predicted 92% of the variance of the training set permeability. In all, 182 K(in) values were considered in this study, spanning four log orders of magnitude and where Pgp decreased brain uptake by as much as 14-fold. The calculated permeability-surface area (PS) values along with literature reported brain tissue binding were used to group molecules in terms of their brain penetration classification. The in situ BBB permeability can be predicted by the in combo PAMPA model to a satisfactory degree, and can be used as a lower-cost, high throughput first-pass screening method for BBB passive permeability.
Collapse
Affiliation(s)
- Claude Dagenais
- AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850, USA
| | - Alex Avdeef
- pION INC, 5 Constitution Way, Woburn, MA 01801 USA
| | | | - Adam Dudley
- AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850, USA
| | - Richard Beliveau
- Laboratoire de Médecine Moléculaire, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3P8
| |
Collapse
|
198
|
Jeffrey P, Summerfield S. Assessment of the blood-brain barrier in CNS drug discovery. Neurobiol Dis 2009; 37:33-7. [PMID: 19664709 DOI: 10.1016/j.nbd.2009.07.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/27/2009] [Accepted: 07/29/2009] [Indexed: 01/16/2023] Open
Abstract
A wide variety of models have been developed over the years to predict blood-brain barrier (BBB) penetration, most of them have focussed on predicting total concentrations of drug and then expressing this as a brain:blood (or plasma) ratio. This approach is somewhat flawed and fails to address the critical issue of understanding the relationship between access of free drug to the requisite site of action. In this short review, we highlight the need for an integrated approach and whilst blood-brain barrier permeability is an important determinant in achieving efficacious CNS drug concentrations it should not be viewed or measured in isolation. Optimal CNS penetration is achieved through the correct balance of permeability, a low potential for active efflux and the appropriate physicochemical properties that allow for drug partitioning and distribution into brain tissue. Such an approach should enhance and accelerate our understanding and ability to predict CNS efficacy in terms of free drug concentrations and the rate at which they are achieved.
Collapse
Affiliation(s)
- Phil Jeffrey
- Immunoinflammation Centre of Excellence for Drug Discovery, GlaxoSmithKline R&D, Gunnels Wood Road, Stevenage, SG1 2NY, UK.
| | | |
Collapse
|
199
|
The role of the blood-CNS barrier in CNS disorders and their treatment. Neurobiol Dis 2009; 37:3-12. [PMID: 19664711 DOI: 10.1016/j.nbd.2009.07.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 01/16/2023] Open
Abstract
The physical barrier between blood and the CNS (the blood-brain barrier, the blood-spinal cord barrier and the blood-CSF barrier) protects the CNS from both toxic and pathogenic agents in the blood. It is now clear that disruption of the blood-CNS barrier plays a key role in a number of CNS disorders, particularly those associated with neurodegeneration. Such disruption is inevitably accompanied by inflammatory change, as immune cells and immune mediators gain access to the brain or spinal cord. The blood-CNS barrier also presents a major obstacle for potential CNS medicines. Robust methods to assess CNS permeation are therefore essential for CNS drug discovery, particularly when brain pharmacokinetics are taken into account and especially when such measures are linked to neurochemical, physiological, behavioural or neuroimaging readouts of drug action. Drug candidates can be successfully designed to cross the blood-CNS barrier, but for those that can't there is the possibility of entry with a delivery system that facilitates the movement of drug candidate across the blood-CNS barrier.
Collapse
|
200
|
Large CH, Kalinichev M, Lucas A, Carignani C, Bradford A, Garbati N, Sartori I, Austin NE, Ruffo A, Jones DN, Alvaro G, Read KD. The relationship between sodium channel inhibition and anticonvulsant activity in a model of generalised seizure in the rat. Epilepsy Res 2009; 85:96-106. [DOI: 10.1016/j.eplepsyres.2009.02.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 11/26/2022]
|