151
|
Dong H, Liffland S, Hillmyer MA, Chang MCY. Engineering in Vivo Production of α-Branched Polyesters. J Am Chem Soc 2019; 141:16877-16883. [DOI: 10.1021/jacs.9b08585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Stephanie Liffland
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
152
|
Qu G, Liu B, Zhang K, Jiang Y, Guo J, Wang R, Miao Y, Zhai C, Sun Z. Computer-assisted engineering of the catalytic activity of a carboxylic acid reductase. J Biotechnol 2019; 306:97-104. [PMID: 31550488 DOI: 10.1016/j.jbiotec.2019.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022]
Abstract
Carboxylic acid reductases (CARs) play crucial roles in the biosynthesis of optically pure aldehydes with no side products. It has inspired synthetic organic chemists and biotechnologists to exploit them as catalysts in practical applications. However, levels of activity and substrate specificity are not routinely sufficient. Recent developments in protein engineering have produced numerous biocatalysts with new catalytic properties, whereas such efforts in CARs are limited. In this study, we show that the exploitation of information derived from catalytic mechanism analysis and molecular dynamics simulations assisted the semi-rational engineering of a CAR from Segniliparus rugosus (SrCAR) with the aim of increasing activity. Guided by protein-ligand interaction fingerprinting analysis, 17 residues at the substrate binding pockets were first identified. We then performed single site saturation mutagenesis and successfully obtained variants that gave high activities using benzoic acid as the model substrate. As a result, the best mutant K524W enabled 99% conversion and 17.28 s-1 mM-1kcat/Km, with 7- and 2-fold improvement compared to the wild-type, respectively. The engineered catalyst K524W as well as a second variant K524Q proved to be effective in the reduction of other benzoic acid derivatives. Insight into the source of enhanced activity was gained by molecular dynamics simulations.
Collapse
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Beibei Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Kun Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yingying Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Jinggong Guo
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Ran Wang
- Zhengzhou Tabacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang Wuhan, 430062, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.
| |
Collapse
|
153
|
Wells KN, Videau P, Nelson D, Eiting JE, Philmus B. The influence of sigma factors and ribosomal recognition elements on heterologous expression of cyanobacterial gene clusters in Escherichia coli. FEMS Microbiol Lett 2019; 365:5047307. [PMID: 29982530 DOI: 10.1093/femsle/fny164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
Cyanobacterial natural products offer new possibilities for drugs and lead compounds but many factors can inhibit the production of sufficient yields for pharmaceutical processes. While Escherichia coli and Streptomyces sp. have been used as heterologous expression hosts to produce cyanobacterial natural products, they have not met with resounding success largely due to their inability to recognize cyanobacterial promoter regions. Recent work has shown that the filamentous freshwater cyanobacterium Anabaena sp. strain PCC 7120 recognizes various cyanobacterial promoter regions and can produce lyngbyatoxin A from the native promoter. Introduction of Anabaena sigma factors into E. coli might allow the native transcriptional machinery to recognize cyanobacterial promoters. Here, all 12 Anabaena sigma factors were expressed in E. coli and subsets were found to initiate transcription from several cyanobacterial promoters based on transcriptional fusions to the chloramphenicol acetyltransferase (CAT) reporter. Expression of individual Anabaena sigma factors in E. coli did not result in lyngbyatoxin A production from its native cyanobacterial gene cluster, possibly hindered by deficiencies in recognition of cyanobacterial ribosomal binding sites by native E. coli translational machinery. This represents an important step toward engineering E. coli into a general heterologous expression host for cyanobacterial biosynthetic gene cluster expression.
Collapse
Affiliation(s)
- Kaitlyn N Wells
- Undergraduate Honors College, 450 Learning Innovation Center, Oregon State University, Corvallis, OR 97331, USA
| | - Patrick Videau
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| | - Dylan Nelson
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| | - Jessie E Eiting
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, College of Pharmacy, 203 Pharmacy Bldg., Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
154
|
Dhakal D, Sohng JK, Pandey RP. Engineering actinomycetes for biosynthesis of macrolactone polyketides. Microb Cell Fact 2019; 18:137. [PMID: 31409353 PMCID: PMC6693128 DOI: 10.1186/s12934-019-1184-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
Actinobacteria are characterized as the most prominent producer of natural products (NPs) with pharmaceutical importance. The production of NPs from these actinobacteria is associated with particular biosynthetic gene clusters (BGCs) in these microorganisms. The majority of these BGCs include polyketide synthase (PKS) or non-ribosomal peptide synthase (NRPS) or a combination of both PKS and NRPS. Macrolides compounds contain a core macro-lactone ring (aglycone) decorated with diverse functional groups in their chemical structures. The aglycon is generated by megaenzyme polyketide synthases (PKSs) from diverse acyl-CoA as precursor substrates. Further, post-PKS enzymes are responsible for allocating the structural diversity and functional characteristics for their biological activities. Macrolides are biologically important for their uses in therapeutics as antibiotics, anti-tumor agents, immunosuppressants, anti-parasites and many more. Thus, precise genetic/metabolic engineering of actinobacteria along with the application of various chemical/biological approaches have made it plausible for production of macrolides in industrial scale or generation of their novel derivatives with more effective biological properties. In this review, we have discussed versatile approaches for generating a wide range of macrolide structures by engineering the PKS and post-PKS cascades at either enzyme or cellular level in actinobacteria species, either the native or heterologous producer strains.
Collapse
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, 31460 Chungnam Republic of Korea
| |
Collapse
|
155
|
Pang B, Valencia LE, Wang J, Wan Y, Lal R, Zargar A, Keasling JD. Technical Advances to Accelerate Modular Type I Polyketide Synthase Engineering towards a Retro-biosynthetic Platform. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0083-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
156
|
Abstract
Stereospecific generation of α-amino ketones from common α-amino acids is difficult to achieve, often employing superstoichiometric alkylating reagents and requiring multiple protecting group manipulations. In contrast, the α-oxoamine synthase protein family performs this transformation stereospecifically in a single step without the need for protecting groups. Herein, we detail the characterization of the 8-amino-7-oxononanoate synthase (AONS) domain of the four-domain polyketide-like synthase SxtA, which natively mediates the formation of the ethyl ketone derivative of arginine. The function of each of the four domains is elucidated, leading to a revised proposal for the initiation of saxitoxin biosynthesis, a potent neurotoxin. We also demonstrate the synthetic potential of SxtA AONS, which is applied to the synthesis of a panel of novel α-amino ketones.
Collapse
Affiliation(s)
- Stephanie W Chun
- Department of Chemistry, University of Michigan, 930 North University Ave, Ann Arbor, MI 48109-1055, USA
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109-2216, USA
| | - Alison R H Narayan
- Department of Chemistry, University of Michigan, 930 North University Ave, Ann Arbor, MI 48109-1055, USA
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109-2216, USA
| |
Collapse
|
157
|
Epstein SC, Huff AR, Winesett ES, Londergan CH, Charkoudian LK. Tracking carrier protein motions with Raman spectroscopy. Nat Commun 2019; 10:2227. [PMID: 31110182 PMCID: PMC6527581 DOI: 10.1038/s41467-019-10184-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Engineering microbial biosynthetic pathways represents a compelling route to gain access to expanded chemical diversity. Carrier proteins (CPs) play a central role in biosynthesis, but the fast motions of CPs make their conformational dynamics difficult to capture using traditional spectroscopic approaches. Here we present a low-resource method to directly reveal carrier protein-substrate interactions. Chemoenzymatic loading of commercially available, alkyne-containing substrates onto CPs enables rapid visualization of the molecular cargo's local environment using Raman spectroscopy. This method could clarify the foundations of the chain sequestration mechanism, facilitate the rapid characterization of CPs, and enable visualization of the vectoral processing of natural products both in vitro and in vivo.
Collapse
Affiliation(s)
- Samuel C Epstein
- Department of Chemistry, Haverford College, Haverford, PA, 19041-1391, USA
| | - Adam R Huff
- Department of Chemistry, Haverford College, Haverford, PA, 19041-1391, USA
| | - Emily S Winesett
- Department of Chemistry, Haverford College, Haverford, PA, 19041-1391, USA
| | - Casey H Londergan
- Department of Chemistry, Haverford College, Haverford, PA, 19041-1391, USA.
| | | |
Collapse
|
158
|
Cook TB, Pfleger BF. Leveraging synthetic biology for producing bioactive polyketides and non-ribosomal peptides in bacterial heterologous hosts. MEDCHEMCOMM 2019; 10:668-681. [PMID: 31191858 PMCID: PMC6540960 DOI: 10.1039/c9md00055k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/06/2019] [Indexed: 12/14/2022]
Abstract
Bacteria have historically been a rich source of natural products (e.g. polyketides and non-ribosomal peptides) that possess medically-relevant activities. Despite extensive discovery programs in both industry and academia, a plethora of biosynthetic pathways remain uncharacterized and the corresponding molecular products untested for potential bioactivities. This knowledge gap comes in part from the fact that many putative natural product producers have not been cultured in conventional laboratory settings in which the corresponding products are produced at detectable levels. Next-generation sequencing technologies are further increasing the knowledge gap by obtaining metagenomic sequence information from complex communities where production of the desired compound cannot be isolated in the laboratory. For these reasons, many groups are turning to synthetic biology to produce putative natural products in heterologous hosts. This strategy depends on the ability to heterologously express putative biosynthetic gene clusters and produce relevant quantities of the corresponding products. Actinobacteria remain the most abundant source of natural products and the most promising heterologous hosts for natural product discovery and production. However, researchers are discovering more natural products from other groups of bacteria, such as myxobacteria and cyanobacteria. Therefore, phylogenetically similar heterologous hosts have become promising candidates for synthesizing these novel molecules. The downside of working with these microbes is the lack of well-characterized genetic tools for optimizing expression of gene clusters and product titers. This review examines heterologous expression of natural product gene clusters in terms of the motivations for this research, the traits desired in an ideal host, tools available to the field, and a survey of recent progress.
Collapse
Affiliation(s)
- Taylor B Cook
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Dr. Room 3629 , Madison , WI 53706 , USA .
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Dr. Room 3629 , Madison , WI 53706 , USA .
| |
Collapse
|
159
|
Amin SA, Endalur Gopinarayanan V, Nair NU, Hassoun S. Establishing synthesis pathway-host compatibility via enzyme solubility. Biotechnol Bioeng 2019; 116:1405-1416. [PMID: 30802311 DOI: 10.1002/bit.26959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/18/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022]
Abstract
Current pathway synthesis tools identify possible pathways that can be added to a host to produce the desired target molecule through the exploration of abstract metabolic and reaction network space. However, not many of these tools explore gene-level information required to physically realize the identified synthesis pathways, and none explore enzyme-host compatibility. Developing tools that address this disconnect between abstract reactions/metabolic design space and physical genetic sequence design space will enable expedited experimental efforts that avoid exploring unprofitable synthesis pathways. This work describes a workflow, termed Probabilistic Pathway Assembly with Solubility Confidence Scores (ProPASS), which links synthesis pathway construction with the exploration of the physical design space as imposed by the availability of enzymes with predicted characterized activities within the host. Predicted protein solubility propensity scores are used as a confidence level to quantify the compatibility of each pathway enzyme with the host Escherichia coli (E. coli). This study also presents a database, termed Protein Solubility Database (ProSol DB), which provides solubility confidence scores in E. coli for 240,016 characterized enzymes obtained from UniProtKB/Swiss-Prot. The utility of ProPASS is demonstrated by generating genetic implementations of heterologous synthesis pathways in E. coli that target several commercially useful biomolecules.
Collapse
Affiliation(s)
- Sara A Amin
- Department of Computer Science, Tufts University, Medford, Massachusetts
| | | | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts
| | - Soha Hassoun
- Department of Computer Science, Tufts University, Medford, Massachusetts.,Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
160
|
Degen A, Mayerthaler F, Mootz HD, Di Ventura B. Context-dependent activity of A domains in the tyrocidine synthetase. Sci Rep 2019; 9:5119. [PMID: 30914767 PMCID: PMC6435693 DOI: 10.1038/s41598-019-41492-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/08/2019] [Indexed: 01/08/2023] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) are large, modular enzymes that produce bioactive peptides of tremendous structural and chemical diversity, due to the incorporation, alongside the canonical 20 amino acids, of non-proteinogenic amino acids, fatty acids, sugars and heterocyclic rings. For linear NRPSs, the size and composition of the peptide product is dictated by the number, order and specificity of the individual modules, each made of several domains. Given the size and complexity of NRPSs, most in vitro studies have focused on individual domains, di-domains or single modules extracted from the full-length proteins. However, intermodular interactions could play a critical role and regulate the activity of the domains and modules in unpredictable ways. Here we investigate in vitro substrate activation by three A domains of the tyrocidine synthetase TycC enzyme, systematically comparing their activity when alone (with the respective PCP domain), in pairs (di-modular constructs) or all together (tri-modular construct). Furthermore, we study the impact of mutations in the A or PCP domains in these various constructs. Our results suggest that substrate adenylation and effects of mutations largely depend on the context in which the domains/modules are. Therefore, generalizing properties observed for domains or modules in isolation should be done with caution.
Collapse
Affiliation(s)
- Anna Degen
- German Cancer Research Center DKFZ and Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Florian Mayerthaler
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149, Münster, Germany
| | - Henning D Mootz
- Department of Chemistry and Pharmacy, Institute of Biochemistry, University of Münster, 48149, Münster, Germany
| | - Barbara Di Ventura
- Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany.
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
161
|
Klaus M, D’Souza AD, Nivina A, Khosla C, Grininger M. Engineering of Chimeric Polyketide Synthases Using SYNZIP Docking Domains. ACS Chem Biol 2019; 14:426-433. [PMID: 30682239 DOI: 10.1021/acschembio.8b01060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Engineering of assembly line polyketide synthases (PKSs) to produce novel bioactive compounds has been a goal for over 20 years. The apparent modularity of PKSs has inspired many engineering attempts in which entire modules or single domains were exchanged. In recent years, it has become evident that certain domain-domain interactions are evolutionarily optimized and, if disrupted, cause a decrease of the overall turnover rate of the chimeric PKS. In this study, we compared different types of chimeric PKSs in order to define the least invasive interface and to expand the toolbox for PKS engineering. We generated bimodular chimeric PKSs in which entire modules were exchanged, while either retaining a covalent linker between heterologous modules or introducing a noncovalent docking domain, or SYNZIP domain, mediated interface. These chimeric systems exhibited non-native domain-domain interactions during intermodular polyketide chain translocation. They were compared to otherwise equivalent bimodular PKSs in which a noncovalent interface was introduced between the condensing and processing parts of a module, resulting in non-native domain interactions during the extender unit acylation and polyketide chain elongation steps of their catalytic cycles. We show that the natural PKS docking domains can be efficiently substituted with SYNZIP domains and that the newly introduced noncovalent interface between the condensing and processing parts of a module can be harnessed for PKS engineering. Additionally, we established SYNZIP domains as a new tool for engineering PKSs by efficiently bridging non-native interfaces without perturbing PKS activity.
Collapse
Affiliation(s)
- Maja Klaus
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- Departments of Chemistry and Chemical Engineering and Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Alicia D. D’Souza
- Departments of Chemistry and Chemical Engineering and Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Aleksandra Nivina
- Departments of Chemistry and Chemical Engineering and Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Departments of Chemistry and Chemical Engineering and Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
162
|
Zhu M, Wang L, He J. Chemical Diversification Based on Substrate Promiscuity of a Standalone Adenylation Domain in a Reconstituted NRPS System. ACS Chem Biol 2019; 14:256-265. [PMID: 30673204 DOI: 10.1021/acschembio.8b00938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A nonribosomal peptide synthetase (NRPS) assembly line ( sfa) in Streptomyces thioluteus that directs the formation of the diisonitrile chalkophore SF2768 (1) has been characterized by heterologous expression and directed gene knockouts. Herein, differential metabolic analysis of the heterologous expression strain and the original host led to the isolation of an SF2768 analogue (2, a byproduct of sfa) that possesses N-isovaleryl rather than 3-isocyanobutyryl side chains. The proposed biosynthetic logic of sfa and the structural difference between 1 and 2 suggested substrate promiscuity of the adenylate-forming enzyme SfaB. Further substrate scope investigation of SfaB and a successfully reconstituted NRPS system including a four-enzyme cascade enabled incorporation of diverse carboxylic acid building blocks into peptide scaffolds, and 30 unnatural products were thus generated. This structural diversification strategy based on substrate flexibility of the adenylation domain and in vitro reconstitution can be applied to other adenylation-priming pathways, thus providing a supplementary method for diversity-oriented total synthesis. Additionally, the biocatalytic process of the putative lysine δ-hydroxylase SfaE was validated through the derivatization of two key aldehyde intermediates (2a and 2b), thereby expanding the toolkit of enzymatic C-H bond activation.
Collapse
Affiliation(s)
- Mengyi Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijuan Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P. R. China
| | - Jing He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
163
|
Al-Dhelaan R, Russo PS, Padden SE, Amaya A, Dong DW, You YO. Condensation-Incompetent Ketosynthase Inhibits trans-Acyltransferase Activity. ACS Chem Biol 2019; 14:304-312. [PMID: 30642162 DOI: 10.1021/acschembio.8b01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonelongating modules with condensation-incompetent ketosynthase (KS0) are frequently found in many trans-acyltransferase polyketide synthases ( trans-AT PKS). KS0 catalyzes translocation of carbon chain without decarboxylative condensation. Unlike typical elongating modules where malonylation of acyl carrier protein (ACP) precedes elongation, the malonylation of ACP downstream of KS0 is assumed to be prevented. In this study, the regulation mechanism(s) of ACP malonylation in a non-elongating module of difficidin biosynthase was investigated. In vitro reconstitution, protein mass spectrometry, and enzyme kinetics demonstrated that KS0 controls the pathway by inhibiting the trans-AT activity. Protein-protein interactions of the surrounding domains also contribute to the regulation. Enzyme kinetics further identified the DfnKS05 as an allosteric inhibitor of trans-AT. The principle and knowledge discovered from this study will enhance the understanding of this unusual PKS system.
Collapse
Affiliation(s)
- Reham Al-Dhelaan
- Department of Chemistry and Biochemistry , George Mason University , Fairfax , Virginia 22030 , United States
| | | | - Sean E Padden
- Department of Chemistry and Biochemistry , George Mason University , Fairfax , Virginia 22030 , United States
| | - Anthony Amaya
- Department of Chemistry and Biochemistry , George Mason University , Fairfax , Virginia 22030 , United States
| | | | - Young-Ok You
- Department of Chemistry and Biochemistry , George Mason University , Fairfax , Virginia 22030 , United States
| |
Collapse
|
164
|
Perez CE, Crawford JM. Characterization of a Hybrid Nonribosomal Peptide–Carbohydrate Biosynthetic Pathway in Photorhabdus luminescens. Biochemistry 2019; 58:1131-1140. [DOI: 10.1021/acs.biochem.8b01120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Corey E. Perez
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| |
Collapse
|
165
|
Qu G, Fu M, Zhao L, Liu B, Liu P, Fan W, Ma JA, Sun Z. Computational Insights into the Catalytic Mechanism of Bacterial Carboxylic Acid Reductase. J Chem Inf Model 2019; 59:832-841. [PMID: 30688451 DOI: 10.1021/acs.jcim.8b00763] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Mingxing Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Beibei Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Pi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Wenchao Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
166
|
Kalkreuter E, CroweTipton JM, Lowell AN, Sherman DH, Williams GJ. Engineering the Substrate Specificity of a Modular Polyketide Synthase for Installation of Consecutive Non-Natural Extender Units. J Am Chem Soc 2019; 141:1961-1969. [PMID: 30676722 DOI: 10.1021/jacs.8b10521] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is significant interest in diversifying the structures of polyketides to create new analogues of these bioactive molecules. This has traditionally been done by focusing on engineering the acyltransferase (AT) domains of polyketide synthases (PKSs) responsible for the incorporation of malonyl-CoA extender units. Non-natural extender units have been utilized by engineered PKSs previously; however, most of the work to date has been accomplished with ATs that are either naturally promiscuous and/or located in terminal modules lacking downstream bottlenecks. These limitations have prevented the engineering of ATs with low native promiscuity and the study of any potential gatekeeping effects by domains downstream of an engineered AT. In an effort to address this gap in PKS engineering knowledge, the substrate preferences of the final two modules of the pikromycin PKS were compared for several non-natural extender units and through active site mutagenesis. This led to engineering of the methylmalonyl-CoA specificity of both modules and inversion of their selectivity to prefer consecutive non-natural derivatives. Analysis of the product distributions of these bimodular reactions revealed unexpected metabolites resulting from gatekeeping by the downstream ketoreductase and ketosynthase domains. Despite these new bottlenecks, AT engineering provided the first full-length polyketide products incorporating two non-natural extender units. Together, this combination of tandem AT engineering and the identification of previously poorly characterized bottlenecks provides a platform for future advancements in the field.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry , NC State University , Raleigh , North Carolina 27695 , United States.,Comparative Medicine Institute , NC State University , Raleigh , North Carolina 27695 , United States
| | - Jared M CroweTipton
- Department of Chemistry , NC State University , Raleigh , North Carolina 27695 , United States
| | - Andrew N Lowell
- Life Sciences Institute, Department of Medicinal Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - David H Sherman
- Life Sciences Institute, Department of Medicinal Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Department of Chemistry and Department of Microbiology & Immunology , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Gavin J Williams
- Department of Chemistry , NC State University , Raleigh , North Carolina 27695 , United States.,Comparative Medicine Institute , NC State University , Raleigh , North Carolina 27695 , United States
| |
Collapse
|
167
|
|
168
|
Cullen A, Pearson LA, Mazmouz R, Liu T, Soeriyadi AH, Ongley SE, Neilan BA. Heterologous expression and biochemical characterisation of cyanotoxin biosynthesis pathways. Nat Prod Rep 2019; 36:1117-1136. [DOI: 10.1039/c8np00063h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses cyanotoxin biosynthetic pathways and highlights the heterologous expression and biochemical studies used to characterise them.
Collapse
Affiliation(s)
- Alescia Cullen
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Leanne A. Pearson
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Rabia Mazmouz
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Tianzhe Liu
- School of Biotechnology and Biomolecular Sciences
- The University of New South Wales
- Sydney 2052
- Australia
| | - Angela H. Soeriyadi
- School of Biotechnology and Biomolecular Sciences
- The University of New South Wales
- Sydney 2052
- Australia
| | - Sarah E. Ongley
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| | - Brett A. Neilan
- School of Environmental and Life Sciences
- University of Newcastle
- Callaghan 2308
- Australia
| |
Collapse
|
169
|
Wehrs M, Prahl JP, Moon J, Li Y, Tanjore D, Keasling JD, Pray T, Mukhopadhyay A. Production efficiency of the bacterial non-ribosomal peptide indigoidine relies on the respiratory metabolic state in S. cerevisiae. Microb Cell Fact 2018; 17:193. [PMID: 30545355 PMCID: PMC6293659 DOI: 10.1186/s12934-018-1045-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Beyond pathway engineering, the metabolic state of the production host is critical in maintaining the efficiency of cellular production. The biotechnologically important yeast Saccharomyces cerevisiae adjusts its energy metabolism based on the availability of oxygen and carbon sources. This transition between respiratory and non-respiratory metabolic state is accompanied by substantial modifications of central carbon metabolism, which impact the efficiency of metabolic pathways and the corresponding final product titers. Non-ribosomal peptide synthetases (NRPS) are an important class of biocatalysts that provide access to a wide array of secondary metabolites. Indigoidine, a blue pigment, is a representative NRP that is valuable by itself as a renewably produced pigment. RESULTS Saccharomyces cerevisiae was engineered to express a bacterial NRPS that converts glutamine to indigoidine. We characterize carbon source use and production dynamics, and demonstrate that indigoidine is solely produced during respiratory cell growth. Production of indigoidine is abolished during non-respiratory growth even under aerobic conditions. By promoting respiratory conditions via controlled feeding, we scaled the production to a 2 L bioreactor scale, reaching a maximum titer of 980 mg/L. CONCLUSIONS This study represents the first use of the Streptomyces lavendulae NRPS (BpsA) in a fungal host and its scale-up. The final product indigoidine is linked to the activity of the TCA cycle and serves as a reporter for the respiratory state of S. cerevisiae. Our approach can be broadly applied to investigate diversion of flux from central carbon metabolism for NRPS and other heterologous pathway engineering, or to follow a population switch between respiratory and non-respiratory modes.
Collapse
Affiliation(s)
- Maren Wehrs
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Institut für Genetik, Technische Universität Braunschweig, Brunswick, Germany
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jan-Philip Prahl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jadie Moon
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Yuchen Li
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Todd Pray
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
170
|
Rivas MA, Courouble VC, Baker MC, Cookmeyer DL, Fiore KE, Frost AJ, Godbe KN, Jordan MR, Krasnow EN, Mollo A, Ridings ST, Sawada K, Shroff KD, Studnitzer B, Thiele GAR, Sisto AC, Nawal S, Huff AR, Fairman R, Johnson KA, Beld J, Kokona B, Charkoudian LK. The Effect of Divalent Cations on the Thermostability of Type II Polyketide Synthase Acyl Carrier Proteins. AIChE J 2018; 64:4308-4318. [PMID: 31527922 DOI: 10.1002/aic.16402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The successful engineering of biosynthetic pathways hinges on understanding the factors that influence acyl carrier protein (ACP) stability and function. The stability and structure of ACPs can be influenced by the presence of divalent cations, but how this relates to primary sequence remains poorly understood. As part of a course-based undergraduate research experience, we investigated the thermostability of type II polyketide synthase (PKS) ACPs. We observed an approximate 40 °C range in the thermostability amongst the 14 ACPs studied, as well as an increase in stability (5 - 26 °C) of the ACPs in the presence of divalent cations. Distribution of charges in the helix II-loop-helix III region was found to impact the enthalpy of denaturation. Taken together, our results reveal clues as to how the sequence of type II PKS ACPs relates to their structural stability, information that can be used to study how ACP sequence relates to function.
Collapse
Affiliation(s)
| | - Valentine C. Courouble
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Miranda C. Baker
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | | | - Kristen E. Fiore
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Alexander J. Frost
- Dept. of Biology Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | | | - Michael R. Jordan
- Dept. of Physics Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Emily N. Krasnow
- Dept. of Biology Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Aurelio Mollo
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Stephen T. Ridings
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Keisuke Sawada
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Kavita D. Shroff
- Dept. of Biology Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Bradley Studnitzer
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | - Grace A. R. Thiele
- Dept. of Chemistry Haverford College Haverford PA 19041
- Biochemistry 390 (“Biochemistry Superlab”) Haverford College Haverford PA
| | | | - Saadia Nawal
- Dept. of Chemistry Haverford College Haverford PA 19041
| | - Adam R. Huff
- Dept. of Chemistry Haverford College Haverford PA 19041
| | | | | | - Joris Beld
- Dept. of Microbiology and Immunology Drexel University College of Medicine Philadelphia PA 19102
| | | | | |
Collapse
|
171
|
Su M, Zhu X, Zhang W. Probing the Acyl Carrier Protein-Enzyme Interactions within Terminal Alkyne Biosynthetic Machinery. AIChE J 2018; 64:4255-4262. [PMID: 30983594 DOI: 10.1002/aic.16355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The alkyne functionality has attracted much interest due to its diverse chemical and biological applications. We recently elucidated an acyl carrier protein (ACP)-dependent alkyne biosynthetic pathway, however, little is known about ACP interactions with the alkyne biosynthetic enzymes, an acyl-ACP ligase (JamA) and a membrane-bound bi-functional desaturase/acetylenase (JamB). Here, we showed that JamB has a more stringent interaction with ACP than JamA. In addition, site directed mutagenesis of a non-cognate ACP significantly improved its compatibility with JamB, suggesting a possible electrostatic interaction at the ACP-JamB interface. Finally, error-prone PCR and screening of a second non-cognate ACP identified hot spots on the ACP that are important for interacting with JamB and yielded mutants which were better recognized by JamB. Our data thus not only provide insights into the ACP interactions in alkyne biosynthesis, but it also potentially aids in future combinatorial biosynthesis of alkyne-tagged metabolites for chemical and biological applications.
Collapse
Affiliation(s)
- Michael Su
- Dept. of Chemical and Biomolecular Engineering; University of California, Berkeley, 2151 Berkeley Way; Berkeley CA 94720
| | - Xuejun Zhu
- Dept. of Chemical and Biomolecular Engineering; University of California, Berkeley, 2151 Berkeley Way; Berkeley CA 94720
| | - Wenjun Zhang
- Dept. of Chemical and Biomolecular Engineering; University of California, Berkeley, 2151 Berkeley Way; Berkeley CA 94720
- Chan Zuckerberg Biohub; San Francisco CA 94158
| |
Collapse
|
172
|
Leistra AN, Curtis NC, Contreras LM. Regulatory non-coding sRNAs in bacterial metabolic pathway engineering. Metab Eng 2018; 52:190-214. [PMID: 30513348 DOI: 10.1016/j.ymben.2018.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/31/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are versatile and powerful controllers of gene expression that have been increasingly linked to cellular metabolism and phenotype. In bacteria, identified and characterized ncRNAs range from trans-acting, multi-target small non-coding RNAs to dynamic, cis-encoded regulatory untranslated regions and riboswitches. These native regulators have inspired the design and construction of many synthetic RNA devices. In this work, we review the design, characterization, and impact of ncRNAs in engineering both native and exogenous metabolic pathways in bacteria. We also consider the opportunities afforded by recent high-throughput approaches for characterizing sRNA regulators and their corresponding networks to showcase their potential applications and impact in engineering bacterial metabolism.
Collapse
Affiliation(s)
- Abigail N Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Nicholas C Curtis
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA.
| |
Collapse
|
173
|
Engineering stilbene metabolic pathways in microbial cells. Biotechnol Adv 2018; 36:2264-2283. [PMID: 30414914 DOI: 10.1016/j.biotechadv.2018.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
Numerous in vitro and in vivo studies on biological activities of phytostilbenes have brought to the fore the remarkable properties of these compounds and their derivatives, making them a top storyline in natural product research fields. However, getting stilbenes in sufficient amounts for routine biological activity studies and make them available for pharmaceutical and/or nutraceutical industry applications, is hampered by the difficulty to source them through synthetic chemistry-based pathways or extraction from the native plants. Hence, microbial cell cultures have rapidly became potent workhorse factories for stilbene production. In this review, we present the combined efforts made during the past 15 years to engineer stilbene metabolic pathways in microbial cells, mainly the Saccharomyces cerevisiae baker yeast, the Escherichia coli and the Corynebacterium glutamicum bacteria. Rationalized approaches to the heterologous expression of the partial or the entire stilbene biosynthetic routes are presented to allow the identification and/or bypassing of the major bottlenecks in the endogenous microbial cell metabolism as well as potential regulations of the genes involved in these metabolic pathways. The contributions of bioinformatics to synthetic biology are developed to highlight their tremendous help in predicting which target genes are likely to be up-regulated or deleted for controlling the dynamics of precursor flows in the tailored microbial cells. Further insight is given to the metabolic engineering of microbial cells with "decorating" enzymes, such as methyl and glycosyltransferases or hydroxylases, which can act sequentially on the stilbene core structure. Altogether, the cellular optimization of stilbene biosynthetic pathways integrating more and more complex constructs up to twelve genetic modifications has led to stilbene titers ranging from hundreds of milligrams to the gram-scale yields from various carbon sources. Through this review, the microbial production of stilbenes is analyzed, stressing both the engineering dynamic regulation of biosynthetic pathways and the endogenous control of stilbene precursors.
Collapse
|
174
|
Sabatini M, Comba S, Altabe S, Recio-Balsells AI, Labadie GR, Takano E, Gramajo H, Arabolaza A. Biochemical characterization of the minimal domains of an iterative eukaryotic polyketide synthase. FEBS J 2018; 285:4494-4511. [PMID: 30300504 PMCID: PMC6334511 DOI: 10.1111/febs.14675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/03/2018] [Accepted: 09/25/2018] [Indexed: 01/19/2023]
Abstract
Iterative type I polyketide synthases (PKS) are megaenzymes essential to the biosynthesis of an enormously diverse array of bioactive natural products. Each PKS contains minimally three functional domains, β-ketosynthase (KS), acyltransferase (AT), and acyl carrier protein (ACP), and a subset of reducing domains such as ketoreductase (KR), dehydratase (DH), and enoylreductase (ER). The substrate selection, condensation reactions, and β-keto processing of the polyketide growing chain are highly controlled in a programmed manner. However, the structural features and mechanistic rules that orchestrate the iterative cycles, processing domains functionality, and chain termination in this kind of megaenzymes are often poorly understood. Here, we present a biochemical and functional characterization of the KS and the AT domains of a PKS from the mallard duck Anas platyrhynchos (ApPKS). ApPKS belongs to an animal PKS family phylogenetically more related to bacterial PKS than to metazoan fatty acid synthases. Through the dissection of the ApPKS enzyme into mono- to didomain fragments and its reconstitution in vitro, we determined its substrate specificity toward different starters and extender units. ApPKS AT domain can effectively transfer acetyl-CoA and malonyl-CoA to the ApPKS ACP stand-alone domain. Furthermore, the KS and KR domains, in the presence of Escherichia coli ACP, acetyl-CoA, and malonyl-CoA, showed the ability to catalyze the chain elongation and the β-keto reduction steps necessary to yield a 3-hydroxybutyryl-ACP derivate. These results provide new insights into the catalytic efficiency and specificity of this uncharacterized family of PKSs.
Collapse
Affiliation(s)
- Martin Sabatini
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Santiago Comba
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Silvia Altabe
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Alejandro I Recio-Balsells
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química de Rosario (IQUIR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Guillermo R Labadie
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Química de Rosario (IQUIR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Eriko Takano
- Manchester Centre of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology (MIB), University of Manchester, UK
| | - Hugo Gramajo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| | - Ana Arabolaza
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Argentina
| |
Collapse
|
175
|
Jiang G, Zuo R, Zhang Y, Powell MM, Zhang P, Hylton SM, Loria R, Ding Y. One-Pot Biocombinatorial Synthesis of Herbicidal Thaxtomins. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Guangde Jiang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Ran Zuo
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Yi Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Magan M. Powell
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Peilan Zhang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Sarah M. Hylton
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| | - Rosemary Loria
- Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32611, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
176
|
Cao XQ, Wang JY, Zhou L, Chen B, Jin Y, He YW. Biosynthesis of the yellow xanthomonadin pigments involves an ATP-dependent 3-hydroxybenzoic acid: acyl carrier protein ligase and an unusual type II polyketide synthase pathway. Mol Microbiol 2018; 110:16-32. [PMID: 29995983 DOI: 10.1111/mmi.14064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2018] [Indexed: 11/30/2022]
Abstract
Xanthomonadins are yellow pigments that are produced by the phytopathogen Xanthomonas campestris pv. campestris (Xcc). A pig cluster is responsible for xanthomonadin biosynthesis. Previously, Xcc4014 of the cluster was characterized as a bifunctional chorismatase that produces 3-hydroxybenzoic acid (3-HBA) and 4-HBA. In this study, genetic analysis identified 11 genes within the pig cluster to be essential for xanthomonadin biosynthesis. Biochemical and bioinformatics analysis suggest that xanthomonadins are synthesized via an unusual type II polyketide synthase pathway. Heterologous expression of the pig cluster in non-xanthomonadin-producing Pseudomonas aeruginosa strain resulted in the synthesis of chlorinated xanthomonadin-like pigments. Further analysis showed that xanC encodes an acyl carrier protein (ACP) while xanA2 encodes a ATP-dependent 3-HBA:ACP ligase. Both of them act together to catalyse the formation of 3-HBA-S-ACP from 3-HBA to initiate xanthomonadin biosynthesis. Finally, we showed that xanH encodes a FabG-like enzyme and xanK encodes a novel glycosyltransferase. Both xanH and xanK are not only required for xanthomonadin biosynthesis, but also required for the balanced biosynthesis of extracellular polysaccharides and DSF-family quorum sensing signals. These findings provide us with a better understanding of xanthomonadin biosynthetic mechanisms and directly demonstrate the presence of extensive cross-talk among xanthomonadin biosynthetic pathways and other metabolic pathways.
Collapse
Affiliation(s)
- Xue-Qiang Cao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia-Yuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lian Zhou
- Zhiyuan Innovation Research Centre, Student Innovation Institute, Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Jin
- School of Biotechnology, East China Science and Technology University, Shanghai, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
177
|
Fang L, Zhang G, El-Halfawy O, Simon M, Brown ED, Pfeifer BA. Broadened glycosylation patterning of heterologously produced erythromycin. Biotechnol Bioeng 2018; 115:2771-2777. [PMID: 29873068 DOI: 10.1002/bit.26735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/30/2018] [Accepted: 05/29/2018] [Indexed: 11/08/2022]
Abstract
The biosynthetic flexibility associated with the antibiotic natural product erythromycin is both remarkable and utilitarian. Product formation is marked by a modular nature where directing compound variation increasingly spans both the secondary metabolite core scaffold and adorning functionalization patterns. The resulting molecular diversity allows for chemical expansion of the native compound structural space. Accordingly, associated antibiotic bioactivity is expected to expand infectious disease treatment applications. In the enclosed work, new glycosylation patterns spanning the deoxysugars d-forosamine, d-allose, l-noviose, and d-vicenisamine were engineered within the erythromycin biosynthetic system established through an Escherichia coli heterologous production platform. The resulting analogs highlight the expanded flexibility of the erythromycin biosynthetic process. In addition, the new compounds demonstrated bioactivity against multiple Gram-positive tester strains, including erythromycin-resistant Bacillus subtilis, and limited activity against a Gram-negative bacterial target.
Collapse
Affiliation(s)
- Lei Fang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York
| | - Guojian Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York.,Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Omar El-Halfawy
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.,Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Max Simon
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York.,Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
178
|
Nhu Lam M, Dudekula D, Durham B, Collingwood N, Brown EC, Nagarajan R. Insights into β-ketoacyl-chain recognition for β-ketoacyl-ACP utilizing AHL synthases. Chem Commun (Camb) 2018; 54:8838-8841. [PMID: 30027952 DOI: 10.1039/c8cc04532a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Beta-ketoacyl-ACP utilizing enzymes in fatty acid, polyketide and acyl-homoserine lactone biosynthetic pathways are important targets for developing antimicrobial, anticancer and antiparasitic compounds. Published reports on successful isolation of beta-ketoacyl-ACPs in a laboratory remain scarce to date and thus most beta-ketoacyl-ACP utilizing enzymes are routinely characterized using small molecule substrates in lieu of the bonafide 3-oxoacyl-ACPs. We report the systematic investigation into the electronic, geometric and spatial aspects of beta-ketoacyl-chain recognition to develop 3-oxoacyl-ACP substrate mimics for two beta-ketoacyl-ACP utilizing quorum signal synthases.
Collapse
Affiliation(s)
- Mila Nhu Lam
- Department of Chemistry and Biochemistry, Boise State University, 1910 University Dr, Boise, ID 83725, USA.
| | | | | | | | | | | |
Collapse
|
179
|
Roulet J, Taton A, Golden JW, Arabolaza A, Burkart MD, Gramajo H. Development of a cyanobacterial heterologous polyketide production platform. Metab Eng 2018; 49:94-104. [PMID: 30036678 PMCID: PMC6279439 DOI: 10.1016/j.ymben.2018.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 11/21/2022]
Abstract
The development of new heterologous hosts for polyketides production represents an excellent opportunity to expand the genomic, physiological, and biochemical backgrounds that better fit the sustainable production of these valuable molecules. Cyanobacteria are particularly attractive for the production of natural compounds because they have minimal nutritional demands and several strains have well established genetic tools. Using the model strain Synechococcus elongatus, a generic platform was developed for the heterologous production of polyketide synthase (PKS)-derived compounds. The versatility of this system is based on interchangeable modules harboring promiscuous enzymes for PKS activation and the production of PKS extender units, as well as inducible circuits for a regulated expression of the PKS biosynthetic gene cluster. To assess the capability of this platform, we expressed the mycobacterial PKS-based mycocerosic biosynthetic pathway to produce multimethyl-branched esters (MBE). This work is a foundational step forward for the production of high value polyketides in a photosynthetic microorganism.
Collapse
Affiliation(s)
- Julia Roulet
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000 Rosario, Argentina
| | - Arnaud Taton
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - James W Golden
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana Arabolaza
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000 Rosario, Argentina.
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| | - Hugo Gramajo
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000 Rosario, Argentina
| |
Collapse
|
180
|
Preparation of new halogenated diphenyl pyrazine analogs in Escherichia coli by a mono-module fungal nonribosomal peptide synthetase from Penicillium herquei. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
181
|
Moscatello N, Pfeifer BA. Constraint-based metabolic targets for the improved production of heterologous compounds across molecular classification. AIChE J 2018. [DOI: 10.1002/aic.16343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Nicholas Moscatello
- Dept. of Chemical and Biological Engineering; University at Buffalo, The State University of New York; Buffalo NY 14260
| | - Blaine A. Pfeifer
- Dept. of Chemical and Biological Engineering; University at Buffalo, The State University of New York; Buffalo NY 14260
| |
Collapse
|
182
|
D’Agostino PM, Gulder TAM. Direct Pathway Cloning Combined with Sequence- and Ligation-Independent Cloning for Fast Biosynthetic Gene Cluster Refactoring and Heterologous Expression. ACS Synth Biol 2018; 7:1702-1708. [PMID: 29940102 DOI: 10.1021/acssynbio.8b00151] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The need for new pharmacological lead structures, especially against drug resistances, has led to a surge in natural product research and discovery. New biosynthetic gene cluster capturing methods to efficiently clone and heterologously express natural product pathways have thus been developed. Direct pathway cloning (DiPaC) is an emerging synthetic biology strategy that utilizes long-amplification PCR and HiFi DNA assembly for the capture and expression of natural product biosynthetic gene clusters. Here, we have further streamlined DiPaC by reducing cloning time and reagent costs by utilizing T4 DNA polymerase (sequence- and ligation-independent cloning, SLIC) for gene cluster capture. As a proof of principle, the majority of the cyanobacterial hapalosin gene cluster was cloned as a single piece (23 kb PCR product) using this approach, and predicted transcriptional terminators were removed by simultaneous pathway refactoring, leading to successful heterologous expression. The complementation of DiPaC with SLIC depicts a time and cost-efficient method for simple capture and expression of new natural product pathways.
Collapse
Affiliation(s)
- Paul M. D’Agostino
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Tobias A. M. Gulder
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| |
Collapse
|
183
|
Review on Abyssomicins: Inhibitors of the Chorismate Pathway and Folate Biosynthesis. Molecules 2018; 23:molecules23061371. [PMID: 29882815 PMCID: PMC6100094 DOI: 10.3390/molecules23061371] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
Antifolates targeting folate biosynthesis within the shikimate-chorismate-folate metabolic pathway are ideal and selective antimicrobials, since higher eukaryotes lack this pathway and rely on an exogenous source of folate. Resistance to the available antifolates, inhibiting the folate pathway, underlines the need for novel antibiotic scaffolds and molecular targets. While para-aminobenzoic acid synthesis within the chorismate pathway constitutes a novel molecular target for antifolates, abyssomicins are its first known natural inhibitors. This review describes the abyssomicin family, a novel spirotetronate polyketide Class I antimicrobial. It summarizes synthetic and biological studies, structural, biosynthetic, and biological properties of the abyssomicin family members. This paper aims to explain their molecular target, mechanism of action, structure⁻activity relationship, and to explore their biological and pharmacological potential. Thirty-two natural abyssomicins and numerous synthetic analogues have been reported. The biological activity of abyssomicins includes their antimicrobial activity against Gram-positive bacteria and mycobacteria, antitumor properties, latent human immunodeficiency virus (HIV) reactivator, anti-HIV and HIV replication inducer properties. Their antimalarial properties have not been explored yet. Future analoging programs using the structure⁻activity relationship data and synthetic approaches may provide a novel abyssomicin structure that is active and devoid of cytotoxicity. Abyssomicin J and atrop-o-benzyl-desmethylabyssomicin C constitute promising candidates for such programs.
Collapse
|
184
|
Improved production of 1-deoxynojirymicin in Escherichia coli through metabolic engineering. World J Microbiol Biotechnol 2018; 34:77. [PMID: 29796897 DOI: 10.1007/s11274-018-2462-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022]
Abstract
Azasugars, such as 1-deoxynojirymicin (1-DNJ), are associated with diverse pharmaceutical applications, such as antidiabetic, anti-obesity, anti-HIV, and antitumor properties. Different azasugars have been isolated from diverse microbial and plant sources though complicated purification steps, or generated by costly chemical synthesis processes. But the biosynthesis of such potent molecules using Escherichia coli as a heterologous host provides a broader opportunity to access these molecules, particularly by utilizing synthetic biological, metabolic engineering, and process optimization approaches. This work used an integrated approach of synthetic biology, enzyme engineering, and pathway optimization for rational metabolic engineering, leading to the improved production of 1-DNJ. The production of 1-DNJ in recombinant E. coli culture broth was confirmed by enzymatic assays and mass spectrometric analysis. Specifically, the pathway engineering for its key precursor, fructose-6-phosphate, along with optimized media condition, results in the highest production levels. When combined, 1-DNJ production was extended to ~ 273 mg/L, which is the highest titer of production of 1-DNJ reported using E. coli.
Collapse
|
185
|
Hug JJ, Bader CD, Remškar M, Cirnski K, Müller R. Concepts and Methods to Access Novel Antibiotics from Actinomycetes. Antibiotics (Basel) 2018; 7:E44. [PMID: 29789481 PMCID: PMC6022970 DOI: 10.3390/antibiotics7020044] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/25/2022] Open
Abstract
Actinomycetes have been proven to be an excellent source of secondary metabolites for more than half a century. Exhibiting various bioactivities, they provide valuable approved drugs in clinical use. Most microorganisms are still untapped in terms of their capacity to produce secondary metabolites, since only a small fraction can be cultured in the laboratory. Thus, improving cultivation techniques to extend the range of secondary metabolite producers accessible under laboratory conditions is an important first step in prospecting underexplored sources for the isolation of novel antibiotics. Currently uncultured actinobacteria can be made available by bioprospecting extreme or simply habitats other than soil. Furthermore, bioinformatic analysis of genomes reveals most producers to harbour many more biosynthetic gene clusters than compounds identified from any single strain, which translates into a silent biosynthetic potential of the microbial world for the production of yet unknown natural products. This review covers discovery strategies and innovative methods recently employed to access the untapped reservoir of natural products. The focus is the order of actinomycetes although most approaches are similarly applicable to other microbes. Advanced cultivation methods, genomics- and metagenomics-based approaches, as well as modern metabolomics-inspired methods are highlighted to emphasise the interplay of different disciplines to improve access to novel natural products.
Collapse
Affiliation(s)
- Joachim J Hug
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Chantal D Bader
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Maja Remškar
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Katarina Cirnski
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.
| |
Collapse
|
186
|
Skyrud W, Liu J, Thankachan D, Cabrera M, Seipke RF, Zhang W. Biosynthesis of the 15-Membered Ring Depsipeptide Neoantimycin. ACS Chem Biol 2018; 13:1398-1406. [PMID: 29693372 DOI: 10.1021/acschembio.8b00298] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antimycins are a family of natural products possessing outstanding biological activities and unique structures, which have intrigued chemists for over a half century. Of particular interest are the ring-expanded antimycins that show promising anticancer potential and whose biosynthesis remains uncharacterized. Specifically, neoantimycin and its analogs have been shown to be effective regulators of the oncogenic proteins GRP78/BiP and K-Ras. The neoantimycin structural skeleton is built on a 15-membered tetralactone ring containing one methyl, one hydroxy, one benzyl, and three alkyl moieties, as well as an amide linkage to a conserved 3-formamidosalicylic acid moiety. Although the biosynthetic gene cluster for neoantimycins was recently identified, the enzymatic logic that governs the synthesis of neoantimycins has not yet been revealed. In this work, the neoantimycin gene cluster is identified, and an updated sequence and annotation is provided delineating a nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) hybrid scaffold. Using cosmid expression and CRISPR/Cas-based genome editing, several heterologous expression strains for neoantimycin production are constructed in two separate Streptomyces species. A combination of in vivo and in vitro analysis is further used to completely characterize the biosynthesis of neoantimycins including the megasynthases and trans-acting domains. This work establishes a set of highly tractable hosts for producing and engineering neoantimycins and their C11 oxidized analogs, paving the way for neoantimycin-based drug discovery and development.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenjun Zhang
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
187
|
Vögeli B, Geyer K, Gerlinger PD, Benkstein S, Cortina NS, Erb TJ. Combining Promiscuous Acyl-CoA Oxidase and Enoyl-CoA Carboxylase/Reductases for Atypical Polyketide Extender Unit Biosynthesis. Cell Chem Biol 2018; 25:833-839.e4. [PMID: 29731424 DOI: 10.1016/j.chembiol.2018.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/22/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Abstract
The incorporation of different extender units generates structural diversity in polyketides. There is significant interest in engineering substrate specificity of polyketide synthases (PKSs) to change their chemical structure. Efforts to change extender unit selectivity are hindered by the lack of simple screening methods and easily available atypical extender units. Here, we present a chemo-biosynthetic strategy that employs biocatalytic proofreading and allows access to a large variety of extender units. First, saturated acids are chemically coupled to free coenzyme A (CoA). The corresponding acyl-CoAs are then converted to alkylmalonyl-CoAs in a "one-pot" reaction through the combined action of an acyl-CoA oxidase and enoyl-CoA carboxylase/reductase. We synthesized six different extender units and used them in in vitro competition screens to investigate active site residues conferring extender unit selectivity. Our results show the importance of an uncharacterized glutamine in extender unit selectivity and open the possibility for comprehensive studies on extender incorporation in PKSs.
Collapse
Affiliation(s)
- Bastian Vögeli
- Biochemistry and Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Kyra Geyer
- Biochemistry and Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Patrick D Gerlinger
- Biochemistry and Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Sarah Benkstein
- Biochemistry and Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Niña Socorro Cortina
- Biochemistry and Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Tobias J Erb
- Biochemistry and Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany.
| |
Collapse
|
188
|
Greunke C, Duell ER, D’Agostino PM, Glöckle A, Lamm K, Gulder TAM. Direct Pathway Cloning (DiPaC) to unlock natural product biosynthetic potential. Metab Eng 2018; 47:334-345. [DOI: 10.1016/j.ymben.2018.03.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/04/2018] [Accepted: 03/11/2018] [Indexed: 12/12/2022]
|
189
|
He Y, Wang B, Chen W, Cox RJ, He J, Chen F. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnol Adv 2018; 36:739-783. [DOI: 10.1016/j.biotechadv.2018.02.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
|
190
|
Abstract
The terminal alkyne is a readily derivatized functionality valued for its diverse applications in material synthesis, pharmaceutical science, and chemical biology. The synthetic biology routes to terminal alkynes are highly desired and yet underexplored. Some marine natural products contain a terminal alkyne functionality, and the discovery of the biosynthetic gene clusters for jamaicamide B and carmabin A marked the beginning of a new era in the understanding and engineering of terminal alkyne biosynthesis. In this chapter, we will overview recent advances in understanding the biosynthetic machinery for terminal alkyne synthesis. We will first describe how to elucidate terminal alkyne biosynthetic mechanism through heterologous expression, purification, and in vitro biochemical assays of individual pathway proteins. This will be followed by the description of an in vivo reporting system for the characterization of a membrane-bound bifunctional desaturase/acetylenase involved in terminal alkyne formation. The chapter will also cover the strategies for discovering additional protein homologs for terminal alkyne synthesis from microbes as well as the applications of click chemistry to identify and quantify terminal alkyne-bearing metabolites from microbial cultures. We will conclude this chapter with current challenges and future directions in this field.
Collapse
Affiliation(s)
- Xuejun Zhu
- University of California, Berkeley, CA, United States
| | - Wenjun Zhang
- University of California, Berkeley, CA, United States; Chan Zuckerberg Biohub, San Francisco, CA, United States.
| |
Collapse
|
191
|
The chejuenolide biosynthetic gene cluster harboring an iterative trans-AT PKS system in Hahella chejuensis strain MB-1084. J Antibiot (Tokyo) 2018; 71:495-505. [DOI: 10.1038/s41429-017-0023-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/21/2017] [Accepted: 12/25/2017] [Indexed: 11/08/2022]
|
192
|
Cell-free synthetic biology for in vitro biosynthesis of pharmaceutical natural products. Synth Syst Biotechnol 2018; 3:83-89. [PMID: 29900420 PMCID: PMC5995452 DOI: 10.1016/j.synbio.2018.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 01/26/2023] Open
Abstract
Natural products with significant biological activities continuously act as rich sources for drug discovery and development. To harness the potential of these valuable compounds, robust methods need to be developed for their rapid and sustainable production. Cell-free biosynthesis of pharmaceutical natural products by in vitro reconstruction of the entire biosynthetic pathways represents one such solution. In this review, we focus on in vitro biosynthesis of two important classes of natural products, polyketides (PKs) and nonribosomal peptides (NRPs). First, we summarize purified enzyme-based systems for the biosynthesis of PKs, NRPs, and PK/NRP hybrids. Then, we introduce the cell-free protein synthesis (CFPS)-based technology for natural product production. With that, we discuss challenges and opportunities of cell-free synthetic biology for in vitro biosynthesis of natural products.
Collapse
|
193
|
Klaus M, Grininger M. Engineering strategies for rational polyketide synthase design. Nat Prod Rep 2018; 35:1070-1081. [DOI: 10.1039/c8np00030a] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this review, we highlight strategies in engineering polyketide synthases (PKSs). We focus on important protein–protein interactions that constitute an intact PKS assembly line.
Collapse
Affiliation(s)
- Maja Klaus
- Institute of Organic Chemistry and Chemical Biology
- Buchmann Institute for Molecular Life Sciences
- Cluster of Excellence for Macromolecular Complexes
- Goethe University Frankfurt
- 60438 Frankfurt am Main
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology
- Buchmann Institute for Molecular Life Sciences
- Cluster of Excellence for Macromolecular Complexes
- Goethe University Frankfurt
- 60438 Frankfurt am Main
| |
Collapse
|
194
|
Park SY, Yang D, Ha SH, Lee SY. Metabolic Engineering of Microorganisms for the Production of Natural Compounds. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700190] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seon Young Park
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Shin Hee Ha
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
- BioProcess Engineering Research Center; KAIST; Daejeon 34141 Republic of Korea
- BioInformatics Research Center; KAIST; Daejeon 34141 Republic of Korea
| |
Collapse
|
195
|
Qiu Y, Du Y, Zhang F, Liao R, Zhou S, Peng C, Guo Y, Liu W. Thiolation Protein-Based Transfer of Indolyl to a Ribosomally Synthesized Polythiazolyl Peptide Intermediate during the Biosynthesis of the Side-Ring System of Nosiheptide. J Am Chem Soc 2017; 139:18186-18189. [DOI: 10.1021/jacs.7b11367] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Rijing Liao
- Xuhui
Central Hospital, Shanghai Clinical Center, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Chao Peng
- National
Center for Protein Science, Shanghai Institute of Biochemistry and Cell Biology, Shanghai 201210, China
| | | | - Wen Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
196
|
The industrial anaerobe Clostridium acetobutylicum uses polyketides to regulate cellular differentiation. Nat Commun 2017; 8:1514. [PMID: 29138399 PMCID: PMC5686105 DOI: 10.1038/s41467-017-01809-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/17/2017] [Indexed: 11/24/2022] Open
Abstract
Polyketides are an important class of bioactive small molecules valued not only for their diverse therapeutic applications, but also for their role in controlling interesting biological phenotypes in their producing organisms. While numerous polyketides are known to be derived from aerobic organisms, only a single family of polyketides has been identified from anaerobic organisms. Here we uncover a family of polyketides native to the anaerobic bacterium Clostridium acetobutylicum, an organism well-known for its historical use as an industrial producer of the organic solvents acetone, butanol, and ethanol. Through mutational analysis and chemical complementation assays, we demonstrate that these polyketides act as chemical triggers of sporulation and granulose accumulation in this strain. This study represents a significant addition to the body of work demonstrating the existence and importance of polyketides in anaerobes, and showcases a strategy of manipulating the secondary metabolism of an organism to improve traits relevant for industrial applications. Polyketides are secondary metabolites mainly found in aerobic organisms with wide applications in medicine and agriculture. Here, the authors uncover new polyketides native to the anaerobic bacterium Clostridium acetobutylicum and show their role in triggering sporulation and granulose accumulation.
Collapse
|
197
|
Fang L, Guell M, Church GM, Pfeifer BA. Heterologous erythromycin production across strain and plasmid construction. Biotechnol Prog 2017; 34:271-276. [PMID: 28960932 DOI: 10.1002/btpr.2567] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/25/2017] [Indexed: 02/04/2023]
Abstract
The establishment of erythromycin production within the heterologous host E. coli marked an accomplishment in genetic transfer capacity. Namely, over 20 genes and 50 kb of DNA was introduced to E. coli for successful heterologous biosynthetic reconstitution. However, the prospect for production levels that approach those of the native host requires the application of engineering tools associated with E. coli. In this report, metabolic and genomic engineering were implemented to improve the E. coli cellular background and the plasmid platform supporting heterologous erythromycin formation. Results include improved plasmid stability and metabolic support for biosynthetic product formation. Specifically, the new plasmid design for erythromycin formation allowed for ≥89% stability relative to current standards (20% stability). In addition, the new strain (termed LF01) designed to improve carbon flow to the erythromycin biosynthetic pathway provided a 400% improvement in titer level. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:271-276, 2018.
Collapse
Affiliation(s)
- Lei Fang
- Dept. of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY
| | - Marc Guell
- Dept. of Genetics and Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA
| | - George M Church
- Dept. of Genetics and Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA
| | - Blaine A Pfeifer
- Dept. of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY
| |
Collapse
|
198
|
Blaisse MR, Dong H, Fu B, Chang MCY. Discovery and Engineering of Pathways for Production of α-Branched Organic Acids. J Am Chem Soc 2017; 139:14526-14532. [PMID: 28990776 DOI: 10.1021/jacs.7b07400] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cell-based synthesis offers many opportunities for preparing small molecules from simple renewable carbon sources by telescoping multiple reactions into a single fermentation step. One challenge in this area is the development of enzymatic carbon-carbon bond forming cycles that enable a modular disconnection of a target structure into cellular building blocks. In this regard, synthetic pathways based on thiolase enzymes to catalyze the initial carbon-carbon bond forming step between acyl coenzyme A (CoA) substrates offer a versatile route for biological synthesis, but the substrate diversity of such pathways is currently limited. In this report, we describe the identification and biochemical characterization of a thiolase-ketoreductase pair involved in production of branched acids in the roundworm, Ascaris suum, that demonstrates selectivity for forming products with an α-methyl branch using a propionyl-CoA extender unit. Engineering synthetic pathways for production of α-methyl acids in Escherichia coli using these enzymes allows the construction of microbial strains that produce either chiral 2-methyl-3-hydroxy acids (1.1 ± 0.2 g L-1) or branched enoic acids (1.12 ± 0.06 g L-1) in the presence of a dehydratase at 44% and 87% yield of fed propionate, respectively. In vitro characterization along with in vivo analysis indicates that the ketoreductase is the key driver for selectivity, forming predominantly α-branched products even when paired with a thiolase that highly prefers unbranched linear products. Our results expand the utility of thiolase-based pathways and provide biosynthetic access to α-branched compounds as precursors for polymers and other chemicals.
Collapse
Affiliation(s)
- Michael R Blaisse
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States
| | - Hongjun Dong
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States
| | - Beverly Fu
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States
| | - Michelle C Y Chang
- Department of Chemistry, University of California, Berkeley , Berkeley, California 94720-1460, United States.,Department of Molecular and Cell Biology, University of California, Berkeley , Berkeley, California 94720-1460, United States
| |
Collapse
|
199
|
Cyanobacterial Sfp-type phosphopantetheinyl transferases functionalize carrier proteins of diverse biosynthetic pathways. Sci Rep 2017; 7:11888. [PMID: 28928426 PMCID: PMC5605751 DOI: 10.1038/s41598-017-12244-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/06/2017] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria produce structurally and functionally diverse polyketides, nonribosomal peptides and their hybrids. Sfp-type phosphopantetheinyl transferases (PPTases) are essential to the production of these compounds via functionalizing carrier proteins (CPs) of biosynthetic megaenzymes. However, cyanobacterial Sfp-type PPTases remain poorly characterized, posing a significant barrier to the exploitation of cyanobacteria for biotechnological and biomedical applications. Herein, we describe the detailed characterization of multiple cyanobacterial Sfp-type PPTases that were rationally selected. Biochemical characterization of these enzymes along with the prototypic enzyme Sfp from Bacillus subtilis demonstrated their varying specificities toward 11 recombinant CPs of different types of biosynthetic pathways from cyanobacterial and Streptomyces strains. Kinetic analysis further indicated that PPTases possess the higher binding affinity and catalytic efficiency toward their cognate CPs in comparison with noncognate substrates. Moreover, when chromosomally replacing the native PPTase gene of Synechocystis sp. PCC6803, two selected cyanobacterial PPTases and Sfp supported the growth of resulted mutants. Cell lysates of the cyanobacterial mutants further functionalized recombinant CP substrates. Collectively, these studies reveal the versatile catalysis of selected cyanobacterial PPTases and provide new tools to synthesize cyanobacterial natural products using in vitro and in vivo synthetic biology approaches.
Collapse
|
200
|
Ding W, Ji W, Wu Y, Wu R, Liu WQ, Mo T, Zhao J, Ma X, Zhang W, Xu P, Deng Z, Tang B, Yu Y, Zhang Q. Biosynthesis of the nosiheptide indole side ring centers on a cryptic carrier protein NosJ. Nat Commun 2017; 8:437. [PMID: 28874663 PMCID: PMC5585349 DOI: 10.1038/s41467-017-00439-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/28/2017] [Indexed: 01/10/2023] Open
Abstract
Nosiheptide is a prototypal thiopeptide antibiotic, containing an indole side ring in addition to its thiopeptide-characteristic macrocylic scaffold. This indole ring is derived from 3-methyl-2-indolic acid (MIA), a product of the radical S-adenosylmethionine enzyme NosL, but how MIA is incorporated into nosiheptide biosynthesis remains to be investigated. Here we report functional dissection of a series of enzymes involved in nosiheptide biosynthesis. We show NosI activates MIA and transfers it to the phosphopantetheinyl arm of a carrier protein NosJ. NosN then acts on the NosJ-bound MIA and installs a methyl group on the indole C4, and the resulting dimethylindolyl moiety is released from NosJ by a hydrolase-like enzyme NosK. Surface plasmon resonance analysis show that the molecular complex of NosJ with NosN is much more stable than those with other enzymes, revealing an elegant biosynthetic strategy in which the reaction flux is controlled by protein-protein interactions with different binding affinities.Thiopeptides such as nosiheptide are clinically-interesting antimicrobial natural products. Here the authors show the functional dissection of a series of enzymes involved in nosiheptide biosynthesis, revealing a unique biosynthetic pathway that centers on a previously-unknown carrier protein.
Collapse
Affiliation(s)
- Wei Ding
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bioagriculture, Yancheng Teachers University, Yancheng, 224002, China.,Department of Chemistry, Fudan University, Shanghai, 200433, China.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-environment and Resource, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wenjuan Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yujie Wu
- Department of Chemistry, Fudan University, Shanghai, 200433, China.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Runze Wu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Wan-Qiu Liu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Tianlu Mo
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Junfeng Zhao
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xiaoyan Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco-environment and Resource, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bioagriculture, Yancheng Teachers University, Yancheng, 224002, China.
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|