151
|
Amir M, Kumar V, Mohammad T, Dohare R, Hussain A, Rehman MT, Alam P, Alajmi MF, Islam A, Ahmad F, Hassan MI. Investigation of deleterious effects of nsSNPs in the
POT1
gene: a structural genomics‐based approach to understand the mechanism of cancer development. J Cell Biochem 2018; 120:10281-10294. [DOI: 10.1002/jcb.28312] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Mohd. Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University Noida Uttar Pradesh India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi India
| | - Afzal Hussain
- Department of Pharmacognosy College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Md. Tabish Rehman
- Department of Pharmacognosy College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Perwez Alam
- Department of Pharmacognosy College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Mohamed F. Alajmi
- Department of Pharmacognosy College of Pharmacy, King Saud University Riyadh Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia New Delhi India
| |
Collapse
|
152
|
Lopes AC, Oliveira PF, Sousa M. Shedding light into the relevance of telomeres in human reproduction and male factor infertility†. Biol Reprod 2018; 100:318-330. [DOI: 10.1093/biolre/ioy215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/05/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ana Catarina Lopes
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, New University of Lisbon (FCT-UNL), Campus Caparica, Caparica, Portugal
| | - Pedro F Oliveira
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- i3S- Institute of Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Centre for Reproductive Genetics Professor Alberto Barros, Porto, Portugal
| |
Collapse
|
153
|
Greenwood J, Patel H, Cech TR, Cooper JP. Fission yeast telosomes: non-canonical histone-containing chromatin structures dependent on shelterin and RNA. Nucleic Acids Res 2018; 46:8865-8875. [PMID: 29992245 PMCID: PMC6158490 DOI: 10.1093/nar/gky605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/25/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
Despite the prime importance of telomeres in chromosome stability, significant mysteries surround the architecture of telomeric chromatin. Through micrococcal nuclease mapping, we show that fission yeast chromosome ends are assembled into distinct protected structures ('telosomes') encompassing the telomeric DNA repeats and over half a kilobase of subtelomeric DNA. Telosome formation depends on the conserved telomeric proteins Taz1 and Rap1, and surprisingly, RNA. Although yeast telomeres have long been thought to be free of histones, we show that this is not the case; telomere repeats contain histones. While telomeric histone H3 bears the heterochromatic lys9-methyl mark, we show that this mark is dispensable for telosome formation. Therefore, telomeric chromatin is organized at an architectural level, in which telomere-binding proteins and RNAs impose a unique nucleosome arrangement, and a second level, in which histone modifications are superimposed upon the higher order architecture.
Collapse
Affiliation(s)
- Jessica Greenwood
- Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London, WC2A 3LY, UK
- Cell Cycle Lab, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Thomas R Cech
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Julia Promisel Cooper
- Telomere Biology Laboratory, Cancer Research UK, London Research Institute, London, WC2A 3LY, UK
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
154
|
Abstract
For more than a decade, it has been known that mammalian cells use shelterin to protect chromosome ends. Much progress has been made on the mechanism by which shelterin prevents telomeres from inadvertently activating DNA damage signaling and double-strand break (DSB) repair pathways. Shelterin averts activation of three DNA damage response enzymes [the ataxia-telangiectasia-mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) kinases and poly(ADP-ribose) polymerase 1 (PARP1)], blocks three DSB repair pathways [classical nonhomologous end joining (c-NHEJ), alternative (alt)-NHEJ, and homology-directed repair (HDR)], and prevents hyper-resection at telomeres. For several of these functions, mechanistic insights have emerged. In addition, much has been learned about how shelterin maintains the telomeric 3' overhang, forms and protects the t-loop structure, and promotes replication through telomeres. These studies revealed that shelterin is compartmentalized, with individual subunits dedicated to distinct aspects of the end-protection problem. This review focuses on the current knowledge of shelterin-mediated telomere protection, highlights differences between human and mouse shelterin, and discusses some of the questions that remain.
Collapse
Affiliation(s)
- Titia de Lange
- Laboratory of Cell Biology and Genetics, Rockefeller University, New York, NY 10065, USA;
| |
Collapse
|
155
|
Kratz K, de Lange T. Protection of telomeres 1 proteins POT1a and POT1b can repress ATR signaling by RPA exclusion, but binding to CST limits ATR repression by POT1b. J Biol Chem 2018; 293:14384-14392. [PMID: 30082315 DOI: 10.1074/jbc.ra118.004598] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
Comprised of telomeric TTAGGG repeats and shelterin, telomeres ensure that the natural ends of chromosomes remain impervious to the DNA damage response. Telomeres carry a long constitutive 3' overhang that can bind replication protein A (RPA) and activate the ATR Ser/Thr kinase (ATR), which induces cell cycle arrest. A single-stranded (ss) TTAGGG repeat-binding protein in mouse shelterin, POT1a, has been proposed to repress ATR signaling by preventing RPA binding. Repression of ATR at telomeres requires tethering of POT1a to the other shelterin subunits situated on the double-stranded (ds) telomeric DNA. The simplest model of ATR repression, the "tethered exclusion model," suggests that the only critical features of POT1a are its connection to shelterin and its binding to ss telomeric DNA. In agreement with the model, we show here that a shelterin-tethered variant of RPA70 (lacking the ATR recruitment domain) can repress ATR signaling at telomeres that lack POT1a. However, arguing against the tethered exclusion model, the nearly identical POT1b subunit of shelterin has been shown to be much less proficient than POT1a in repression of ATR. We now show that POT1b has the intrinsic ability to fully repress ATR but is prevented from doing so when bound to Ctc1, Stn1, Ten1 (CST), the complex needed for telomere end processing. These results establish that shelterin represses ATR with a tethered ssDNA-binding domain that excludes RPA from the 3' overhang and also reveal an unexpected effect of CST on the ability of POT1b to repress ATR.
Collapse
Affiliation(s)
- Katja Kratz
- From the Laboratory for Cell Biology and Genetics, Rockefeller University, New York, New York 10021
| | - Titia de Lange
- From the Laboratory for Cell Biology and Genetics, Rockefeller University, New York, New York 10021
| |
Collapse
|
156
|
Armstrong CA, Tomita K. Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells. Open Biol 2018; 7:rsob.160338. [PMID: 28330934 PMCID: PMC5376709 DOI: 10.1098/rsob.160338] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of telomerase occurs in 85–90% of all cancers and underpins the ability of cancer cells to bypass their proliferative limit, rendering them immortal. The activity of telomerase is tightly controlled at multiple levels, from transcriptional regulation of the telomerase components to holoenzyme biogenesis and recruitment to the telomere, and finally activation and processivity. However, studies using cancer cell lines and other model systems have begun to reveal features of telomeres and telomerase that are unique to cancer. This review summarizes our current knowledge on the mechanisms of telomerase recruitment and activation using insights from studies in mammals and budding and fission yeasts. Finally, we discuss the differences in telomere homeostasis between normal cells and cancer cells, which may provide a foundation for telomere/telomerase targeted cancer treatments.
Collapse
Affiliation(s)
- Christine A Armstrong
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Kazunori Tomita
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
157
|
Spåhr H, Chia T, Lingford JP, Siira SJ, Cohen SB, Filipovska A, Rackham O. Modular ssDNA binding and inhibition of telomerase activity by designer PPR proteins. Nat Commun 2018; 9:2212. [PMID: 29880855 PMCID: PMC5992170 DOI: 10.1038/s41467-018-04388-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023] Open
Abstract
DNA is typically found as a double helix, however it must be separated into single strands during all phases of DNA metabolism; including transcription, replication, recombination and repair. Although recent breakthroughs have enabled the design of modular RNA- and double-stranded DNA-binding proteins, there are currently no tools available to manipulate single-stranded DNA (ssDNA). Here we show that artificial pentatricopeptide repeat (PPR) proteins can be programmed for sequence-specific ssDNA binding. Interactions occur using the same code and specificity as for RNA binding. We solve the structures of DNA-bound and apo proteins revealing the basis for ssDNA binding and how hydrogen bond rearrangements enable the PPR structure to envelope its ssDNA target. Finally, we show that engineered PPRs can be designed to bind telomeric ssDNA and can block telomerase activity. The modular mode of ssDNA binding by PPR proteins provides tools to target ssDNA and to understand its importance in cells. Pentatricopeptide repeat proteins bind single-stranded RNA and have been used to study ssRNA biology. Here the authors co-opt these proteins to target ssDNA and demonstrate specific binding of telomere sequences, the structural basis for ssDNA wrapping, and use them as potent telomerase inhibitors.
Collapse
Affiliation(s)
- Henrik Spåhr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931, Cologne, Germany
| | - Tiongsun Chia
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - James P Lingford
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Scott B Cohen
- Children's Medical Research Institute, University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia.,School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia. .,School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
158
|
Abstract
The ASBMB 2018 Bert and Natalie Vallee award in Biomedical Sciences honors our work on shelterin, a protein complex that helps cells distinguish the chromosome ends from sites of DNA damage. Shelterin protects telomeres from all aspects of the DNA damage response, including ATM and ATR serine/threonine kinase signaling and several forms of double-strand break repair. Today, this six-subunit protein complex could easily be identified in one single proteomics step. But, it took us more than 15 years to piece together the entire shelterin complex, one protein at a time. Although we did a lot of things right, here I tell the story of shelterin's discovery with an emphasis on the things that I got wrong along the way.
Collapse
Affiliation(s)
- Titia de Lange
- From the Laboratory for Cell Biology and Genetics, Rockefeller University, New York, New York 10065
| |
Collapse
|
159
|
Chen X, Liu L, Chen Y, Yang Y, Yang CY, Guo T, Lei M, Sun H, Wang S. Cyclic Peptidic Mimetics of Apollo Peptides Targeting Telomeric Repeat Binding Factor 2 (TRF2) and Apollo Interaction. ACS Med Chem Lett 2018; 9:507-511. [PMID: 29795768 DOI: 10.1021/acsmedchemlett.8b00152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/25/2018] [Indexed: 01/30/2023] Open
Abstract
Telomeric repeat binding factor 2 (TRF2) is a telomere-associated protein that plays an important role in the formation of the 3' single strand DNA overhang and the "T loop", two structures critical for the stability of the telomeres. Apollo is a 5'-exonuclease recruited by TRF2 to the telomere and contributes to the formation of the 3' single strand DNA overhang. Knocking down of Apollo can induce DNA damage response similar to that caused by the knocking down of TRF2. In this Letter, we report the design and synthesis of a class of cyclic peptidic mimetics of the TRFH binding motif of Apollo (ApolloTBM). We found conformational control of the C terminal residues of ApolloTBM can effectively improve the binding affinity. We have obtained a crystal structure of a cyclic peptidic Apollo peptide mimetic (34) complexed with TRF2, which provides valuable guidance to the future design of TRF2 inhibitors.
Collapse
Affiliation(s)
- Xia Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | | | - Yong Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | | | | | - Tianyue Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Lei
- Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Lu, Shanghai 200011, China
- Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | | |
Collapse
|
160
|
Ebrahimi H, Masuda H, Jain D, Cooper JP. Distinct 'safe zones' at the nuclear envelope ensure robust replication of heterochromatic chromosome regions. eLife 2018; 7:32911. [PMID: 29722648 PMCID: PMC5933923 DOI: 10.7554/elife.32911] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/30/2018] [Indexed: 12/24/2022] Open
Abstract
Chromosome replication and transcription occur within a complex nuclear milieu whose functional subdomains are beginning to be mapped out. Here we delineate distinct domains of the fission yeast nuclear envelope (NE), focusing on regions enriched for the inner NE protein, Bqt4, or the lamin interacting domain protein, Lem2. Bqt4 is relatively mobile around the NE and acts in two capacities. First, Bqt4 tethers chromosome termini and the mat locus to the NE specifically while these regions are replicating. This positioning is required for accurate heterochromatin replication. Second, Bqt4 mobilizes a subset of Lem2 molecules around the NE to promote pericentric heterochromatin maintenance. Opposing Bqt4-dependent Lem2 mobility are factors that stabilize Lem2 beneath the centrosome, where Lem2 plays a crucial role in kinetochore maintenance. Our data prompt a model in which Bqt4-rich nuclear subdomains are 'safe zones' in which collisions between transcription and replication are averted and heterochromatin is reassembled faithfully.
Collapse
Affiliation(s)
- Hani Ebrahimi
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Hirohisa Masuda
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Devanshi Jain
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Julia Promisel Cooper
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| |
Collapse
|
161
|
Lloyd NR, Wuttke DS. Discrimination against RNA Backbones by a ssDNA Binding Protein. Structure 2018; 26:722-733.e2. [PMID: 29681468 DOI: 10.1016/j.str.2018.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 01/10/2018] [Accepted: 03/27/2018] [Indexed: 11/18/2022]
Abstract
Pot1 is the shelterin component responsible for the protection of the single-stranded DNA (ssDNA) overhang at telomeres in nearly all eukaryotic organisms. The C-terminal domain of the DNA-binding domain, Pot1pC, exhibits non-specific ssDNA recognition, achieved through thermodynamically equivalent alternative binding conformations. Given this flexibility, it is unclear how specificity for ssDNA over RNA, an activity required for biological function, is achieved. Examination of the ribose-position specificity of Pot1pC shows that ssDNA specificity is additive but not uniformly distributed across the ligand. High-resolution structures of several Pot1pC complexes with RNA-DNA chimeric ligands reveal Pot1pC discriminates against RNA by utilizing non-compensatory binding modes that feature significant rearrangement of the binding interface. These alternative conformations, accessed through both ligand and protein flexibility, recover much, but not all, of the binding energy, leading to the observed reduction in affinities. These findings suggest that intermolecular interfaces are remarkably sophisticated in their tuning of specificity toward flexible ligands.
Collapse
Affiliation(s)
- Neil R Lloyd
- Department of Chemistry and Biochemistry, University of Colorado, UCB 596, Boulder, CO 80309-0596, USA
| | - Deborah S Wuttke
- Department of Chemistry and Biochemistry, University of Colorado, UCB 596, Boulder, CO 80309-0596, USA.
| |
Collapse
|
162
|
Kalathiya U, Padariya M, Baginski M. The structurally similar TRFH domain of TRF1 and TRF2 dimers shows distinct behaviour towards TIN2. Arch Biochem Biophys 2018; 642:52-62. [PMID: 29428209 DOI: 10.1016/j.abb.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/25/2023]
Abstract
The telomere repeat binding-factor 1 and 2 (TRF1 and TRF2) proteins of the shelterin complex bind to duplex telomeric DNA as homodimers, and the homodimerization is mediated by their TRFH (TRF-homology) domains. We performed molecular dynamic (MD) simulations of the dimer forms of TRF1TRFH and TRF2TRFH in the presence/absence of the TIN2TBM (TIN2, TRF-interacting nuclear protein 2, TBM, TRF-binding motif) peptide. The MD results suggest that TIN2TBM is necessary to ensure the stability of TRF1TRFH homodimer but not the TRF2TRFH homodimer. In TRF1-TIN2-TRF2 complex, the peptide enhances the protein-protein interactions to yield a stable heterodimer. Both monomers in TRF1TRFH homodimer interact almost equally with the peptide, whereas in TRF2TRFH homodimer, monomer TRF2TRFH(M1) exhibits more dominant interactions than the TRF2TRFH(M2). The common residues of TRF1/2TRFH(M1) that form interactions with TIN2TBM in all peptide-bound systems originate from the H3 (helix) and L3 (loop) regions. Additionally, in the homodimer systems, residues of TRF1/2TRFH(M2) also interact with the peptide. The residue pair E71-K213 is responsible for different conformations of TRF1TRFH homodimers; specifically, this residue pair enhances the protein-peptide/protein interactions in peptide-bound/unbound systems, respectively. TRF1TRFH and TRF2TRFH proteins have a conserved but different interface responsible for the protein-protein/peptide interactions that exist in the corresponding dimers.
Collapse
Affiliation(s)
- Umesh Kalathiya
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233 Gdansk, Poland.
| | - Monikaben Padariya
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233 Gdansk, Poland
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
163
|
Time-Dependent Effects of POT1 Knockdown on Proliferation, Tumorigenicity, and HDACi Response of SK-OV3 Ovarian Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7184253. [PMID: 29546066 PMCID: PMC5818924 DOI: 10.1155/2018/7184253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
The roles of protection of telomeres 1 (POT1) in human ovarian cancer have not been fully elucidated. Here, we investigated the impact of POT1 knockdown (POT1-KD) on in vitro cell proliferation, tumorigenesis, and histone deacetylase inhibitor (HDACi) response in human ovarian cancer-derived SK-OV3 cells. The POT1 gene was knocked down by infection with POT1 lenti-shRNA. POT1, c-Myc, and hTERT mRNA levels and relative telomere length were determined by qRT-PCR; POT1 protein levels were determined by western blot. The relative telomerase activity levels were detected using qTRAP; cell proliferation was assessed using cumulative population doubling (cPD) experiments. Cell tumorigenicity was evaluated by anchorage-independent cell growth assays, and cell response to HDACi was determined by luminescence cell viability assays. Results indicate that lenti-shRNA-mediated POT1-KD significantly reduced POT1 mRNA and protein expression. POT1-KD immediately downregulated c-Myc expression, which led to the inhibition of cell proliferation, tumorigenesis, and HDACi response. However, after brief suppression, c-Myc expression increased in the medium term, which resulted in enhanced cell proliferation, tumorigenesis, and HDACi response in the POT1-KD cells. Furthermore, we discovered that c-Myc regulated cell proliferation and tumorigenesis via hTERT/telomerase/telomere pathway.
Collapse
|
164
|
Grunseich C, Wang IX, Watts JA, Burdick JT, Guber RD, Zhu Z, Bruzel A, Lanman T, Chen K, Schindler AB, Edwards N, Ray-Chaudhury A, Yao J, Lehky T, Piszczek G, Crain B, Fischbeck KH, Cheung VG. Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters. Mol Cell 2018; 69:426-437.e7. [PMID: 29395064 PMCID: PMC5815878 DOI: 10.1016/j.molcel.2017.12.030] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 12/11/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022]
Abstract
R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor β (TGF-β), is reduced; that then leads to the activation of the TGF-β pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins.
Collapse
Affiliation(s)
- Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Isabel X Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jason A Watts
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joshua T Burdick
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Robert D Guber
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Zhengwei Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Alan Bruzel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Tyler Lanman
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Kelian Chen
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Alice B Schindler
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Nancy Edwards
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Jianhua Yao
- Department of Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
| | - Tanya Lehky
- Electromyography Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Grzegorz Piszczek
- Biophysics Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Barbara Crain
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | - Vivian G Cheung
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
165
|
Zeng L, Wang YL, Wang F, Cui SQ, Hu L, Huang DN, Hou G. Construction of the POT1 promoter report gene vector, and the effect and underlying mechanism of the POT1 promoter in regulating telomerase and telomere length. Oncol Lett 2018; 14:7232-7240. [PMID: 29344158 PMCID: PMC5754914 DOI: 10.3892/ol.2017.7127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/11/2017] [Indexed: 11/05/2022] Open
Abstract
By using human genomic DNA as a template to clone protection of telomere 1 (POT1) promoter gene segments and construct the POT1 promoter luciferase report gene vector (pGL3-Control-POT1-promoter), the association between POT1, and the regulation of telomerase and telomere length was investigated. In the present study, two recombinant luciferase report gene vectors were constructed, which included different regions of the POT1 promoter. The plasmids were transformed into DH5α and the positive clones were obtained. The two plasmids termed as pGL3-Control-POT1-promoter-1 and pGL3-Control-POT1-promoter-2, were confirmed using restriction enzyme analysis and sequencing. They were separately and transiently transfected into four types of human tumor cells (A549, H460, HepG2 and HeLa). The transcriptional activities of the POT1 promoter were verified using the dual-luciferase assay. The relative expression of POT1 and human telomerase reverse transcriptase (hTERT), and telomere length were analyzed using quantitative polymerase chain reaction in the four types of non-transfected tumor cells. Using SPSS software, correlations between POT1 promoter activity, and POT1 expression, hTERT expression and telomere length were analyzed. Two POT1 promoter fragments (POT1-promoter-1 and -2) were successfully constructed into the pGL3-Control luciferase report gene vector. POT1-promoter-1 exhibited significantly stronger transcription activity compared with POT1-promoter-2. The results of the partial correlation and linear regression analyses were similar: POT1 promoter activity was identified to be significantly and positively correlated with POT1 expression and telomere length (partial correlation coefficients, both P<0.05; linear regression, both P<0.01). However, POT1 promoter activity and hTERT expression were significantly negatively correlated (both P<0.05). The results obtained in the present study suggest that the POT1 promoter influences telomere length. Furthermore, these data indicated that POT1 promoter activity and POT1, as well as telomere length, may be a useful biomarker for tumor detection and future patient prognosis.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Basic Medicine, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yue-Li Wang
- Department of Basic Medicine, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Fa Wang
- Department of Basic Medicine, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Shi-Quan Cui
- Department of Basic Medicine, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Liang Hu
- Department of Basic Medicine, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Di-Nan Huang
- Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Gan Hou
- Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
166
|
Telomeres: Implications for Cancer Development. Int J Mol Sci 2018; 19:ijms19010294. [PMID: 29351238 PMCID: PMC5796239 DOI: 10.3390/ijms19010294] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
Telomeres facilitate the protection of natural ends of chromosomes from constitutive exposure to the DNA damage response (DDR). This is most likely achieved by a lariat structure that hides the linear telomeric DNA through protein-protein and protein-DNA interactions. The telomere shortening associated with DNA replication in the absence of a compensatory mechanism culminates in unmasked telomeres. Then, the subsequent activation of the DDR will define the fate of cells according to the functionality of cell cycle checkpoints. Dysfunctional telomeres can suppress cancer development by engaging replicative senescence or apoptotic pathways, but they can also promote tumour initiation. Studies in telomere dynamics and karyotype analysis underpin telomere crisis as a key event driving genomic instability. Significant attainment of telomerase or alternative lengthening of telomeres (ALT)-pathway to maintain telomere length may be permissive and required for clonal evolution of genomically-unstable cells during progression to malignancy. We summarise current knowledge of the role of telomeres in the maintenance of chromosomal stability and carcinogenesis.
Collapse
|
167
|
Habib AGK, Sugiura K, Ueno M. Chromosome passenger complex is required for the survival of cells with ring chromosomes in fission yeast. PLoS One 2018; 13:e0190523. [PMID: 29298360 PMCID: PMC5752009 DOI: 10.1371/journal.pone.0190523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/15/2017] [Indexed: 11/25/2022] Open
Abstract
Ring chromosomes are circular chromosomal abnormalities that have been reported in association with some genetic disorders and cancers. In Schizosaccharomyces pombe, lack of function of protection of telomere 1 (Pot1) or telomerase catalytic subunit (Trt1) results in survivors with circular chromosomes. Hitherto, it is poorly understood how cells with circular chromosomes survive and how circular chromosomes are maintained. Fission yeast Cut17/Bir1, Ark1, Pic1, and Nbl1 is a conserved chromosome passenger complex (CPC) functioning mainly throughout mitosis. Here, using a temperature-sensitive mutant of CPC subunits, we determined that CPC is synthetically lethal in combination with either Pot1 or Trt1. The pot1Δ pic1-T269 double mutant, which has circular chromosomes, showed a high percentage of chromosome mis-segregation and DNA damage foci at 33°C. We furthermore found that neither Shugoshin Sgo2 nor heterochromatin protein Swi6, which contribute to the centromeric localization of CPC, were required for the survival in the absence of Pot1. Both the pot1Δ sgo2Δ and pot1Δ swi6Δ double mutants displayed a high percentage of DNA damage foci, but a low percentage of chromosome mis-segregation, suggesting the link between the high percentage of chromosome mis-segregation and the lethality of the CPC pot1Δ double mutant. Our results suggest that CPC is required for the survival of cells with circular chromosomes and sheds light on the possible roles of CPC in the maintenance of circular chromosomes.
Collapse
Affiliation(s)
- Ahmed G. K. Habib
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Kanako Sugiura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Masaru Ueno
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
- * E-mail:
| |
Collapse
|
168
|
Impact of oxidative stress on telomere biology. Differentiation 2018; 99:21-27. [DOI: 10.1016/j.diff.2017.12.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/12/2022]
|
169
|
Lee HT, Bose A, Lee CY, Opresko PL, Myong S. Molecular mechanisms by which oxidative DNA damage promotes telomerase activity. Nucleic Acids Res 2017; 45:11752-11765. [PMID: 28981887 PMCID: PMC5714237 DOI: 10.1093/nar/gkx789] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/14/2017] [Indexed: 11/13/2022] Open
Abstract
Telomeres are highly susceptible to oxidative DNA damage, which if left unrepaired can lead to dysregulation of telomere length homeostasis. Here we employed single molecule FRET, single molecule pull-down and biochemical analysis to investigate how the most common oxidative DNA lesions, 8-oxoguanine (8oxoG) and thymine glycol (Tg), regulate the structural properties of telomeric DNA and telomerase extension activity. In contrast to 8oxoG which disrupts the telomeric DNA structure, Tg exhibits substantially reduced perturbation of G-quadruplex folding. As a result, 8oxoG induces high accessibility, whereas Tg retains limited accessibility, of telomeric G-quadruplex DNA to complementary single stranded DNA and to telomere binding protein POT1. Surprisingly, the Tg lesion stimulates telomerase loading and activity to a similar degree as an 8oxoG lesion. We demonstrate that this unexpected stimulation arises from Tg-induced conformational alterations and dynamics in telomeric DNA. Despite impacting structure by different mechanisms, both 8oxoG and Tg enhance telomerase binding and extension activity to the same degree, potentially contributing to oncogenesis.
Collapse
Affiliation(s)
- Hui-Ting Lee
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Arindam Bose
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA 15261, USA
| | - Chun-Ying Lee
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center, Pittsburgh, PA 15261, USA
| | - Sua Myong
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
170
|
Kim JK, Liu J, Hu X, Yu C, Roskamp K, Sankaran B, Huang L, Komives EA, Qiao F. Structural Basis for Shelterin Bridge Assembly. Mol Cell 2017; 68:698-714.e5. [PMID: 29149597 DOI: 10.1016/j.molcel.2017.10.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 10/23/2017] [Indexed: 11/28/2022]
Abstract
Telomere elongation through telomerase enables chromosome survival during cellular proliferation. The conserved multifunctional shelterin complex associates with telomeres to coordinate multiple telomere activities, including telomere elongation by telomerase. Similar to the human shelterin, fission yeast shelterin is composed of telomeric sequence-specific double- and single-stranded DNA-binding proteins, Taz1 and Pot1, respectively, bridged by Rap1, Poz1, and Tpz1. Here, we report the crystal structure of the fission yeast Tpz1475-508-Poz1-Rap1467-496 complex that provides the structural basis for shelterin bridge assembly. Biochemical analyses reveal that shelterin bridge assembly is a hierarchical process in which Tpz1 binding to Poz1 elicits structural changes in Poz1, allosterically promoting Rap1 binding to Poz1. Perturbation of the cooperative Tpz1-Poz1-Rap1 assembly through mutation of the "conformational trigger" in Poz1 leads to unregulated telomere lengthening. Furthermore, we find that the human shelterin counterparts TPP1-TIN2-TRF2 also assemble hierarchically, indicating cooperativity as a conserved driving force for shelterin assembly.
Collapse
Affiliation(s)
- Jin-Kwang Kim
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Jinqiang Liu
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Xichan Hu
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697-1700, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4560, USA
| | - Kyle Roskamp
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA
| | - Lan Huang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4560, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0378, USA
| | - Feng Qiao
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697-1700, USA.
| |
Collapse
|
171
|
Erdel F, Kratz K, Willcox S, Griffith JD, Greene EC, de Lange T. Telomere Recognition and Assembly Mechanism of Mammalian Shelterin. Cell Rep 2017; 18:41-53. [PMID: 28052260 DOI: 10.1016/j.celrep.2016.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/13/2016] [Accepted: 11/30/2016] [Indexed: 11/16/2022] Open
Abstract
Shelterin is a six-subunit protein complex that plays crucial roles in telomere length regulation, protection, and maintenance. Although several shelterin subunits have been studied in vitro, the biochemical properties of the fully assembled shelterin complex are not well defined. Here, we characterize shelterin using ensemble biochemical methods, electron microscopy, and single-molecule imaging to determine how shelterin recognizes and assembles onto telomeric repeats. We show that shelterin complexes can exist in solution and primarily locate telomeric DNA through a three-dimensional diffusive search. Shelterin can diffuse along non-telomeric DNA but is impeded by nucleosomes, arguing against extensive one-dimensional diffusion as a viable assembly mechanism. Our work supports a model in which individual shelterin complexes rapidly bind to telomeric repeats as independent functional units, which do not alter the DNA-binding mode of neighboring complexes but, rather, occupy telomeric DNA in a "beads on a string" configuration.
Collapse
Affiliation(s)
- Fabian Erdel
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Katja Kratz
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY 10065, USA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jack D Griffith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
172
|
Structure of the fission yeast S. pombe telomeric Tpz1-Poz1-Rap1 complex. Cell Res 2017; 27:1503-1520. [PMID: 29160296 DOI: 10.1038/cr.2017.145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/29/2017] [Accepted: 10/19/2017] [Indexed: 01/01/2023] Open
Abstract
Telomeric shelterin complex caps chromosome ends and plays a crucial role in telomere maintenance and protection. In the fission yeast Schizosaccharomyces pombe, shelterin is composed of telomeric single- and double-stranded DNA-binding protein subcomplexes Pot1-Tpz1 and Taz1-Rap1, which are bridged by their interacting protein Poz1. However, the structure of Poz1 and how Poz1 functions as an interaction hub in the shelterin complex remain unclear. Here we report the crystal structure of Poz1 in complex with Poz1-binding motifs of Tpz1 and Rap1. The crystal structure shows that Poz1 employs two different binding surfaces to interact with Tpz1 and Rap1. Unexpectedly, the structure also reveals that Poz1 adopts a dimeric conformation. Mutational analyses suggest that proper interactions between Tpz1, Poz1, and Rap1 in the shelterin core complex are required for telomere length homeostasis and heterochromatin structure maintenance at telomeres. Structural resemblance between Poz1 and the TRFH domains of other shelterin proteins in fission yeast and humans suggests a model for the evolution of shelterin proteins.
Collapse
|
173
|
Telomere-Internal Double-Strand Breaks Are Repaired by Homologous Recombination and PARP1/Lig3-Dependent End-Joining. Cell Rep 2017; 17:1646-1656. [PMID: 27806302 DOI: 10.1016/j.celrep.2016.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/06/2016] [Accepted: 10/03/2016] [Indexed: 01/29/2023] Open
Abstract
Shelterin protects chromosome ends from the DNA damage response. Although the mechanism of telomere protection has been studied extensively, the fate of double-strand breaks (DSBs) inside telomeres is not known. Here, we report that telomere-internal FokI-induced DSBs activate ATM kinase-dependent signaling in S-phase but are well tolerated and repaired efficiently. Homologous recombination contributes to repair, leading to increased telomere length heterogeneity typical of the alternative lengthening of telomeres (ALT) pathway. Furthermore, cells accumulate extra chromosomal telomeric signals (ECTS), a second hallmark of ALT. Telomere-internal DSBs are also repaired by a PARP1- and Ligase3-dependent reaction, suggesting alternative non-homologous end-joining (alt-NHEJ), which relies on microhomology at DSBs. However, as resected telomere-internal DSBs have perfect homology, their PARP1/Lig3-dependent end-joining may be more akin to single strand break repair. We conclude that shelterin does not repress ATM kinase signaling or DSB repair at telomere-internal sites, thereby allowing DNA repair to maintain telomere integrity.
Collapse
|
174
|
Lim CJ, Zaug AJ, Kim HJ, Cech TR. Reconstitution of human shelterin complexes reveals unexpected stoichiometry and dual pathways to enhance telomerase processivity. Nat Commun 2017; 8:1075. [PMID: 29057866 PMCID: PMC5651854 DOI: 10.1038/s41467-017-01313-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/07/2017] [Indexed: 01/24/2023] Open
Abstract
The human shelterin proteins associate with telomeric DNA to confer telomere protection and length regulation. They are thought to form higher-order protein complexes for their functions, but studies of shelterin proteins have been mostly limited to pairs of proteins. Here we co-express various human shelterin proteins and find that they form defined multi-subunit complexes. A complex harboring both TRF2 and POT1 has the strongest binding affinity to telomeric DNA substrates comprised of double-stranded DNA with a 3′ single-stranded extension. TRF2 interacts with TIN2 with an unexpected 2:1 stoichiometry in the context of shelterin (RAP12:TRF22:TIN21:TPP11:POT11). Tethering of TPP1 to the telomere either via TRF2–TIN2 or via POT1 gives equivalent enhancement of telomerase processivity. We also identify a peptide region from TPP1 that is both critical and sufficient for TIN2 interaction. Our findings reveal new information about the architecture of human shelterin and how it performs its functions at telomeres. The human shelterin complex protects telomere ends from being recognized as damaged DNA sites and regulates telomere length in conjunction with telomerase. Here the authors establish the stoichiometries of human shelterin complexes of various compositions and show shelterin provides dual pathways to stimulate telomerase processivity.
Collapse
Affiliation(s)
- Ci Ji Lim
- Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO, 80309, USA.,Department of Chemistry & Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Arthur J Zaug
- Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO, 80309, USA.,Department of Chemistry & Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Hee Jin Kim
- Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO, 80309, USA.,Department of Chemistry & Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Thomas R Cech
- Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, CO, 80309, USA. .,Department of Chemistry & Biochemistry, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
175
|
Abstract
PURPOSE OF REVIEW The activation of telomere maintenance pathways has long been regarded as a key hallmark of cancer and this has propelled the development of novel inhibitors of telomerase. In this review, we detail the background biology on telomere maintenance in health and disease, then concentrate on the recent preclinical and clinical development behind targeting telomerase in blood cancers. RECENT FINDINGS Preclinical and clinical studies have shown that imetelstat, a competitive inhibitor of telomerase, has activity in certain hematologic malignancies, in particular the myeloproliferative neoplasms and acute myeloid leukemia. SUMMARY Telomerase inhibition has shown remarkable efficacy in myeloid malignancies, and current and future preclinical and clinical studies are necessary to comprehensively investigate its underlying mechanism of action. Future work should identify the potential genetic susceptibilities to telomerase inhibition therapy, and evaluate rational combinations of telomerase inhibitors with chemotherapy and other novel agents. Robust preclinical evaluation is essential to best translate these new agents successfully into our clinical treatment algorithm for myeloid and other blood cancers.
Collapse
|
176
|
Hayashi MT. Telomere biology in aging and cancer: early history and perspectives. Genes Genet Syst 2017; 92:107-118. [PMID: 28993556 DOI: 10.1266/ggs.17-00010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The ends of eukaryotic linear chromosomes are protected from undesired enzymatic activities by a nucleoprotein complex called the telomere. Expanding evidence indicates that telomeres have central functions in human aging and tumorigenesis. While it is undoubtedly important to follow current advances in telomere biology, it is also fruitful to be well informed in seminal historical studies for a comprehensive understanding of telomere biology, and for the anticipation of future directions. With this in mind, I here summarize the early history of telomere biology and current advances in the field, mostly focusing on mammalian studies relevant to aging and cancer.
Collapse
Affiliation(s)
- Makoto T Hayashi
- Department of Gene Mechanisms, Graduate School of Biostudies/The Hakubi Center for Advanced Research, Kyoto University
| |
Collapse
|
177
|
Takikawa M, Tarumoto Y, Ishikawa F. Fission yeast Stn1 is crucial for semi-conservative replication at telomeres and subtelomeres. Nucleic Acids Res 2017; 45:1255-1269. [PMID: 28180297 PMCID: PMC5388396 DOI: 10.1093/nar/gkw1176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/08/2016] [Accepted: 11/23/2016] [Indexed: 12/29/2022] Open
Abstract
The CST complex is a phylogenetically conserved protein complex consisting of CTC1/Cdc13, Stn1 and Ten1 that protects telomeres on linear chromosomes. Deletion of the fission yeast homologs stn1 and ten1 results in complete telomere loss; however, the precise function of Stn1 is still largely unknown. Here, we have isolated a high-temperature sensitive stn1 allele (termed stn1-1). stn1-1 cells abruptly lost telomeric sequence almost completely at the restrictive temperature. The loss of chromosomal DNA happened without gradual telomere shortening, and extended to 30 kb from the ends of chromosomes. We found transient and modest single-stranded G-strand exposure, but did not find any evidence of checkpoint activation in stn1-1 at the restrictive temperature. When we probed neutral-neutral 2D gels for subtelomere regions, we found no Y-arc-shaped replication intermediates in cycling cells. We conclude that the loss of telomere and subtelomere DNAs in stn1-1 cells at the restrictive temperature is caused by very frequent replication fork collapses specifically in subtelomere regions. Furthermore, we identified two independent suppressor mutants of the high-temperature sensitivity of stn1-1: a multi-copy form of pmt3 and a deletion of rif1. Collectively, we propose that fission yeast Stn1 primarily safeguards the semi-conservative DNA replication at telomeres and subtelomeres.
Collapse
Affiliation(s)
- Masahiro Takikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Yusuke Tarumoto
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
178
|
Kim H, Li F, He Q, Deng T, Xu J, Jin F, Coarfa C, Putluri N, Liu D, Songyang Z. Systematic analysis of human telomeric dysfunction using inducible telosome/shelterin CRISPR/Cas9 knockout cells. Cell Discov 2017; 3:17034. [PMID: 28955502 PMCID: PMC5613224 DOI: 10.1038/celldisc.2017.34] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/27/2017] [Indexed: 01/14/2023] Open
Abstract
CRISPR/Cas9 technology enables efficient loss-of-function analysis of human genes using
somatic cells. Studies of essential genes, however, require conditional knockout (KO)
cells. Here, we describe the generation of inducible CRISPR KO human cell lines for the
subunits of the telosome/shelterin complex, TRF1, TRF2, RAP1, TIN2, TPP1 and POT1, which
directly interact with telomeres or can bind to telomeres through association with other
subunits. Homozygous inactivation of several subunits is lethal in mice, and most
loss-of-function studies of human telomere regulators have relied on RNA
interference-mediated gene knockdown, which suffers its own limitations. Our inducible
CRISPR approach has allowed us to more expediently obtain large numbers of KO cells in
which essential telomere regulators have been inactivated for biochemical and molecular
studies. Our systematic analysis revealed functional differences between human and mouse
telomeric proteins in DNA damage responses, telomere length and metabolic control,
providing new insights into how human telomeres are maintained.
Collapse
Affiliation(s)
- Hyeung Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Feng Li
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Quanyuan He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Tingting Deng
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Xu
- Cell-Based Assay Screening Service Core, Baylor College of Medicine, Houston, TX, USA
| | - Feng Jin
- Department of Molecular and Cellular Biology and Advanced Technology Core, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology and Advanced Technology Core, Baylor College of Medicine, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology and Advanced Technology Core, Baylor College of Medicine, Houston, TX, USA
| | - Dan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.,Cell-Based Assay Screening Service Core, Baylor College of Medicine, Houston, TX, USA
| | - Zhou Songyang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.,Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
179
|
Zilio N, Eifler-Olivi K, Ulrich HD. Functions of SUMO in the Maintenance of Genome Stability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:51-87. [PMID: 28197906 DOI: 10.1007/978-3-319-50044-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Like in most other areas of cellular metabolism, the functions of the ubiquitin-like modifier SUMO in the maintenance of genome stability are manifold and varied. Perturbations of global sumoylation causes a wide spectrum of phenotypes associated with defects in DNA maintenance, such as hypersensitivity to DNA-damaging agents, gross chromosomal rearrangements and loss of entire chromosomes. Consistent with these observations, many key factors involved in various DNA repair pathways have been identified as SUMO substrates. However, establishing a functional connection between a given SUMO target, the cognate SUMO ligase and a relevant phenotype has remained a challenge, mainly because of the difficulties involved in identifying important modification sites and downstream effectors that specifically recognize the target in its sumoylated state. This review will give an overview over the major pathways of DNA repair and genome maintenance influenced by the SUMO system and discuss selected examples of SUMO's actions in these pathways where the biological consequences of the modification have been elucidated.
Collapse
Affiliation(s)
- Nicola Zilio
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany
| | | | - Helle D Ulrich
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany.
| |
Collapse
|
180
|
Abstract
BACKGROUND Telomeres are protein DNA structures present at the ends of chromosomes and are essential for genetic stability and cell replication. Telomerase is the enzyme complex that maintains telomere integrity. Hematopoietic stem cells express telomerase and contain long telomeres, which become shorter as cells differentiate and mature. The extent of telomere shortening and the level of telomerase activity often correlate with the presence and severity of some hematopoietic diseases. METHODS The fundamentals of telomeres and telomerase are reviewed, and the telomere biology of human hematopoietic cells is discussed. RESULTS Telomere length and telomerase activity are important in the self-renewal of hematopoietic stem cells. Changes within these compartments affect both normal hematopoietic cells and the generation of hematopoietic disease. Telomere length provides information pertaining to the proliferative history and potential of a hematopoietic cell. CONCLUSIONS The role of telomerase and telomeres within the hematopoietic compartment needs further clarification. Advances in our knowledge in this field may improve clinical outcomes for the treatment of hematologic disease.
Collapse
Affiliation(s)
- Ngaire Elwood
- Leukaemia Research Fund Stem Cell Laboratory, Department of Clinical Haematology and Oncology, Murdoch Children's Research Institute, Melbourne, Australia.
| |
Collapse
|
181
|
Cicconi A, Micheli E, Vernì F, Jackson A, Gradilla AC, Cipressa F, Raimondo D, Bosso G, Wakefield JG, Ciapponi L, Cenci G, Gatti M, Cacchione S, Raffa GD. The Drosophila telomere-capping protein Verrocchio binds single-stranded DNA and protects telomeres from DNA damage response. Nucleic Acids Res 2017; 45:3068-3085. [PMID: 27940556 PMCID: PMC5389638 DOI: 10.1093/nar/gkw1244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022] Open
Abstract
Drosophila telomeres are sequence-independent structures maintained by transposition to chromosome ends of three specialized retroelements rather than by telomerase activity. Fly telomeres are protected by the terminin complex that includes the HOAP, HipHop, Moi and Ver proteins. These are fast evolving, non-conserved proteins that localize and function exclusively at telomeres, protecting them from fusion events. We have previously suggested that terminin is the functional analogue of shelterin, the multi-protein complex that protects human telomeres. Here, we use electrophoretic mobility shift assay (EMSA) and atomic force microscopy (AFM) to show that Ver preferentially binds single-stranded DNA (ssDNA) with no sequence specificity. We also show that Moi and Ver form a complex in vivo. Although these two proteins are mutually dependent for their localization at telomeres, Moi neither binds ssDNA nor facilitates Ver binding to ssDNA. Consistent with these results, we found that Ver-depleted telomeres form RPA and γH2AX foci, like the human telomeres lacking the ssDNA-binding POT1 protein. Collectively, our findings suggest that Drosophila telomeres possess a ssDNA overhang like the other eukaryotes, and that the terminin complex is architecturally and functionally similar to shelterin.
Collapse
Affiliation(s)
- Alessandro Cicconi
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy
| | - Alison Jackson
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Ana Citlali Gradilla
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Francesca Cipressa
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy.,Centro Fermi, Piazza del Viminale 1, 00184 Roma, Italy
| | - Domenico Raimondo
- Dipartimento di Medicina Molecolare, Sapienza, Università di Roma, 00185 Roma, Italy
| | - Giuseppe Bosso
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - James G Wakefield
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, 00185 Roma, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| |
Collapse
|
182
|
Chiba K, Lorbeer FK, Shain AH, McSwiggen DT, Schruf E, Oh A, Ryu J, Darzacq X, Bastian BC, Hockemeyer D. Mutations in the promoter of the telomerase gene TERT contribute to tumorigenesis by a two-step mechanism. Science 2017; 357:1416-1420. [PMID: 28818973 DOI: 10.1126/science.aao0535] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
Abstract
TERT promoter mutations (TPMs) are the most common noncoding mutations in cancer. The timing and consequences of TPMs have not been fully established. Here, we show that TPMs acquired at the transition from benign nevus to malignant melanoma do not support telomere maintenance. In vitro experiments revealed that TPMs do not prevent telomere attrition, resulting in cells with critically short and unprotected telomeres. Immortalization by TPMs requires a gradual up-regulation of telomerase, coinciding with telomere fusions. These data suggest that TPMs contribute to tumorigenesis by promoting immortalization and genomic instability in two phases. In an initial phase, TPMs do not prevent bulk telomere shortening but extend cellular life span by healing the shortest telomeres. In the second phase, the critically short telomeres lead to genome instability and telomerase is further up-regulated to sustain cell proliferation.
Collapse
Affiliation(s)
- Kunitoshi Chiba
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Franziska K Lorbeer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - A Hunter Shain
- Departments of Dermatology and Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - David T McSwiggen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Eva Schruf
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Areum Oh
- Optical Biosystems, Santa Clara, CA 95050, USA
| | - Jekwan Ryu
- Optical Biosystems, Santa Clara, CA 95050, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Boris C Bastian
- Departments of Dermatology and Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
183
|
Liu B, Yan R, Zhang J, Wang B, Sun H, Cui X. Abnormal mRNA Expression Levels of Telomere-Binding Proteins Represent Biomarkers in Myelodysplastic Syndromes: A Case-Control Study. Turk J Haematol 2017; 34:200-206. [PMID: 28404540 PMCID: PMC5544038 DOI: 10.4274/tjh.2016.0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: As evidence was shown that abnormal shortening of telomeres begins to accumulate in myelodysplastic syndrome (MDS) patients, this study was conducted to determine the relationship between the mRNA expression levels of telomere-binding proteins (TRF1/TRF2/TIN2/TPP1/POT1/RAP1) and the risk level in MDS. Materials and Methods: There were 40 patients with MDS and 40 normal controls in this study. Methods including telomere content assays and quantitative reverse transcription-polymerase chain reaction were used to examine the mRNA levels of TRF1/TRF2/TIN2/TPP1/POT1/RAP1 in patients with MDS. Results: Compared to the normal group used as a control, the mRNA expression levels of RAP1/POT1/TPP1 of the patients with MDS were decreased, whereas their levels of TRF1/TRF2 and TIN2 were increased. A positive correlation was found between the TRF1, TRF2, and TIN2 mRNA expression levels and the risk level of the International Prognostic Scoring System (IPSS) and the World Health Organization Prognostic Scoring System (WPSS) criteria; however, a negative correlation was found between RAP1/POT1/TPP1 mRNA expression levels and the risk levels of IPSS and WPSS criteria. Conclusion: Because the reduction of TRF1/TRF2/TIN2 mRNA expression and the increase of RAP1/POT1/TPP1 mRNA expression are closely related to the risk levels of the IPSS and WPSS criteria in MDS, it is thought that these telomere-binding proteins could lead to abnormal telomere length and function, which cause chromosomal abnormalities in MDS. With this evidence, we suggest that those proteins’ mRNA expressions could be used as biomarkers for the assessment of the risk degree of MDS patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Xing Cui
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Hematology, Jinan, China
| |
Collapse
|
184
|
Červenák F, Juríková K, Sepšiová R, Neboháčová M, Nosek J, Tomáška L. Double-stranded telomeric DNA binding proteins: Diversity matters. Cell Cycle 2017; 16:1568-1577. [PMID: 28749196 DOI: 10.1080/15384101.2017.1356511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Telomeric sequences constitute only a small fraction of the whole genome yet they are crucial for ensuring genomic stability. This function is in large part mediated by protein complexes recruited to telomeric sequences by specific telomere-binding proteins (TBPs). Although the principal tasks of nuclear telomeres are the same in all eukaryotes, TBPs in various taxa exhibit a surprising diversity indicating their distinct evolutionary origin. This diversity is especially pronounced in ascomycetous yeasts where they must have co-evolved with rapidly diversifying sequences of telomeric repeats. In this article we (i) provide a historical overview of the discoveries leading to the current list of TBPs binding to double-stranded (ds) regions of telomeres, (ii) describe examples of dsTBPs highlighting their diversity in even closely related species, and (iii) speculate about possible evolutionary trajectories leading to a long list of various dsTBPs fulfilling the same general role(s) in their own unique ways.
Collapse
Affiliation(s)
- Filip Červenák
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Katarína Juríková
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Regina Sepšiová
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Martina Neboháčová
- b Department of Biochemistry , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Jozef Nosek
- b Department of Biochemistry , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - L'ubomír Tomáška
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| |
Collapse
|
185
|
Charif R, Granotier-Beckers C, Bertrand HC, Poupon J, Ségal-Bendirdjian E, Teulade-Fichou MP, Boussin FD, Bombard S. Association of a Platinum Complex to a G-Quadruplex Ligand Enhances Telomere Disruption. Chem Res Toxicol 2017; 30:1629-1640. [DOI: 10.1021/acs.chemrestox.7b00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Razan Charif
- Université
Paris Descartes, INSERM UMR-S-1007, 45 rue des Saints-Pères, 75006 Paris, France
| | - Christine Granotier-Beckers
- CEA/DRF/IRCM,
Laboratoire de RadioPathologie, INSERM U967, Université Paris
VII, Université Paris XI, 18
route du Panorama, 92265 Fontenay-aux-Roses Cedex, France
| | - Hélène Charlotte Bertrand
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
- Département
de Chimie, Ecole Normale Supérieure, PSL Research University,
UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités,
UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire
des Biomolécules (LBM), 24 rue
Lhomond, 75005 Paris, France
| | - Joël Poupon
- Laboratoire
de Toxicologie-Biologique, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris, France
| | | | - Marie-Paule Teulade-Fichou
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
| | - François D. Boussin
- CEA/DRF/IRCM,
Laboratoire de RadioPathologie, INSERM U967, Université Paris
VII, Université Paris XI, 18
route du Panorama, 92265 Fontenay-aux-Roses Cedex, France
| | - Sophie Bombard
- Université
Paris Descartes, INSERM UMR-S-1007, 45 rue des Saints-Pères, 75006 Paris, France
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
| |
Collapse
|
186
|
Abstract
Bacteria and viruses possess circular DNA, whereas eukaryotes with typically very large DNA molecules have had to evolve into linear chromosomes to circumvent the problem of supercoiling circular DNA of that size. Consequently, such organisms possess telomeres to cap chromosome ends. Telomeres are essentially tandem repeats of any DNA sequence that are present at the ends of chromosomes. Their biology has been an enigmatic one, involving various molecules interacting dynamically in an evolutionarily well-trimmed fashion. Telomeres range from canonical hexameric repeats in most eukaryotes to unimaginably random retrotransposons, which attach to chromosome ends and reverse-transcribe to DNA in some plants and insects. Telomeres invariably associate with specialised protein complexes that envelop it, also regulating access of the ends to legitimate enzymes involved in telomere metabolism. They also transcribe into repetitive RNA which also seems to be playing significant roles in telomere maintenance. Telomeres thus form the intersection of DNA, protein, and RNA molecules acting in concert to maintain chromosome integrity. Telomere biology is emerging to appear ever more complex than previously envisaged, with the continual discovery of more molecules and interplays at the telomeres. This review also includes a section dedicated to the history of telomere biology, and intends to target the scientific audience new to the field by rendering an understanding of the phenomenon of chromosome end protection at large, with more emphasis on the biology of human telomeres. The review provides an update on the field and mentions the questions that need to be addressed.
Collapse
Affiliation(s)
- Shriram Venkatesan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore.
| | - Aik Kia Khaw
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore.
- Clinical Research Unit, Khoo Teck Puat Hospital, 768828 Singapore, Singapore.
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore.
- Tembusu College, National University of Singapore, 138598 Singapore, Singapore.
- VIT University, Vellore 632014, India.
- Mangalore University, Mangalore 574199, India.
| |
Collapse
|
187
|
Control of Cellular Aging, Tissue Function, and Cancer by p53 Downstream of Telomeres. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026088. [PMID: 28289249 DOI: 10.1101/cshperspect.a026088] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Telomeres, the nucleoprotein complex at the ends of eukaryotic chromosomes, perform an essential cellular role in part by preventing the chromosomal end from initiating a DNA-damage response. This function of telomeres can be compromised as telomeres erode either as a consequence of cell division in culture or as a normal part of cellular ageing in proliferative tissues. Telomere dysfunction in this context leads to DNA-damage signaling and activation of the tumor-suppressor protein p53, which then can prompt either cellular senescence or apoptosis. By culling cells with dysfunctional telomeres, p53 plays a critical role in protecting tissues against the effects of critically short telomeres. However, as telomere dysfunction worsens, p53 likely exacerbates short telomere-driven tissue failure diseases, including pulmonary fibrosis, aplastic anemia, and liver cirrhosis. In cells lacking p53, unchecked telomere shortening drives chromosomal end-to-end fusions and cycles of chromosome fusion-bridge-breakage. Incipient cancer cells confronting these telomere barriers must disable p53 signaling to avoid senescence and eventually up-regulate telomerase to achieve cellular immortality. The recent findings of highly recurrent activating mutations in the promoter for the telomerase reverse transcriptase (TERT) gene in diverse human cancers, together with the widespread mutations in p53 in cancer, provide support for the idea that circumvention of a telomere-p53 checkpoint is essential for malignant progression in human cancer.
Collapse
|
188
|
Rice C, Shastrula PK, Kossenkov AV, Hills R, Baird DM, Showe LC, Doukov T, Janicki S, Skordalakes E. Structural and functional analysis of the human POT1-TPP1 telomeric complex. Nat Commun 2017; 8:14928. [PMID: 28393830 PMCID: PMC5394233 DOI: 10.1038/ncomms14928] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/14/2017] [Indexed: 12/15/2022] Open
Abstract
POT1 and TPP1 are part of the shelterin complex and are essential for telomere length regulation and maintenance. Naturally occurring mutations of the telomeric POT1-TPP1 complex are implicated in familial glioma, melanoma and chronic lymphocytic leukaemia. Here we report the atomic structure of the interacting portion of the human telomeric POT1-TPP1 complex and suggest how several of these mutations contribute to malignant cancer. The POT1 C-terminus (POT1C) forms a bilobal structure consisting of an OB-fold and a holiday junction resolvase domain. TPP1 consists of several loops and helices involved in extensive interactions with POT1C. Biochemical data shows that several of the cancer-associated mutations, partially disrupt the POT1-TPP1 complex, which affects its ability to bind telomeric DNA efficiently. A defective POT1-TPP1 complex leads to longer and fragile telomeres, which in turn promotes genomic instability and cancer.
Collapse
Affiliation(s)
- Cory Rice
- The Wistar Institute, 3601 Spruce St, Philadelphia, Pennsylvania 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | - Robert Hills
- The Wistar Institute, 3601 Spruce St, Philadelphia, Pennsylvania 19104, USA
| | - Duncan M. Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF10 3AT, UK
| | - Louise C. Showe
- The Wistar Institute, 3601 Spruce St, Philadelphia, Pennsylvania 19104, USA
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Susan Janicki
- The Wistar Institute, 3601 Spruce St, Philadelphia, Pennsylvania 19104, USA
| | - Emmanuel Skordalakes
- The Wistar Institute, 3601 Spruce St, Philadelphia, Pennsylvania 19104, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
189
|
Structural insights into POT1-TPP1 interaction and POT1 C-terminal mutations in human cancer. Nat Commun 2017; 8:14929. [PMID: 28393832 PMCID: PMC5394241 DOI: 10.1038/ncomms14929] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/14/2017] [Indexed: 01/01/2023] Open
Abstract
Mammalian shelterin proteins POT1 and TPP1 form a stable heterodimer that protects chromosome ends and regulates telomerase-mediated telomere extension. However, how POT1 interacts with TPP1 remains unknown. Here we present the crystal structure of the C-terminal portion of human POT1 (POT1C) complexed with the POT1-binding motif of TPP1. The structure shows that POT1C contains two domains, a third OB fold and a Holliday junction resolvase-like domain. Both domains are essential for binding to TPP1. Notably, unlike the heart-shaped structure of ciliated protozoan Oxytricha nova TEBPα–β complex, POT1–TPP1 adopts an elongated V-shaped conformation. In addition, we identify several missense mutations in human cancers that disrupt the POT1C–TPP1 interaction, resulting in POT1 instability. POT1C mutants that bind TPP1 localize to telomeres but fail to repress a DNA damage response and inappropriate repair by A-NHEJ. Our results reveal that POT1 C terminus is essential to prevent initiation of genome instability permissive for tumorigenesis. Human telomeres are protected by a specialized shelterin complex composed of six proteins. Here the authors structurally characterize the interaction between the POT1-TPP1 shelterin component and identify mutations associated with genome instability and cancer that disrupt the POT1-TPP1 interaction.
Collapse
|
190
|
Abstract
Telomere chromatin immunoprecipitation (ChIP) is an experimental method used to determine whether proteins are associated with telomere DNA inside the nuclei of cells and tissues. Telomere-associated proteins are first covalently crosslinked to telomere DNA, and then immunoprecipitated using an antibody specific for the protein of interest. This method has become one of the most indispensable tools for investigating the protein complexes that associate with telomeres.
Collapse
|
191
|
Telomeres and Cell Senescence - Size Matters Not. EBioMedicine 2017; 21:14-20. [PMID: 28347656 PMCID: PMC5514392 DOI: 10.1016/j.ebiom.2017.03.027] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/31/2022] Open
Abstract
Telomeres are protective structures present at the ends of linear chromosomes that are important in preventing genome instability. Telomeres shorten as a result of cellular replication, leading to a permanent cell cycle arrest, also known as replicative senescence. Senescent cells have been shown to accumulate in mammalian tissue with age and in a number of age-related diseases, suggesting that they might contribute to the loss of tissue function observed with age. In this review, we will first describe evidence suggesting a key role for senescence in the ageing process and elaborate on some of the mechanisms by which telomeres can induce cellular senescence. Furthermore, we will present multiple lines of evidence suggesting that telomeres can act as sensors of both intrinsic and extrinsic stress as well as recent data indicating that telomere–induced senescence may occur irrespectively of the length of telomeres. Telomere shortening occurs with cell division and limits replicative capacity of cells, also known as replicative senescence. Senescent cells accumulate with age and in age-related diseases, and are associated with loss of tissue function with aging. Telomere damage can occur independently of length, and this has been shown to contribute to the senescent phenotype.
Collapse
|
192
|
Vancevska A, Douglass KM, Pfeiffer V, Manley S, Lingner J. The telomeric DNA damage response occurs in the absence of chromatin decompaction. Genes Dev 2017; 31:567-577. [PMID: 28381410 PMCID: PMC5393052 DOI: 10.1101/gad.294082.116] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
Telomeres are specialized nucleoprotein structures that protect chromosome ends from DNA damage response (DDR) and DNA rearrangements. The telomeric shelterin protein TRF2 suppresses the DDR, and this function has been attributed to its abilities to trigger t-loop formation or prevent massive decompaction and loss of density of telomeric chromatin. Here, we applied stochastic optical reconstruction microscopy (STORM) to measure the sizes and shapes of functional human telomeres of different lengths and dysfunctional telomeres that elicit a DDR. Telomeres have an ovoid appearance with considerable plasticity in shape. Examination of many telomeres demonstrated that depletion of TRF2, TRF1, or both affected the sizes of only a small subset of telomeres. Costaining of telomeres with DDR markers further revealed that the majority of DDR signaling telomeres retained a normal size. Thus, DDR signaling at telomeres does not require decompaction. We propose that telomeres are monitored by the DDR machinery in the absence of telomere expansion and that the DDR is triggered by changes at the molecular level in structure and protein composition.
Collapse
Affiliation(s)
- Aleksandra Vancevska
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Kyle M Douglass
- Institute of Physics, Laboratory of Experimental Biophysics, EPFL, 1015 Lausanne, Switzerland
| | - Verena Pfeiffer
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Suliana Manley
- Institute of Physics, Laboratory of Experimental Biophysics, EPFL, 1015 Lausanne, Switzerland
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
193
|
Fouquerel E, Opresko P. Convergence of The Nobel Fields of Telomere Biology and DNA Repair. Photochem Photobiol 2017; 93:229-237. [PMID: 27861975 PMCID: PMC5315637 DOI: 10.1111/php.12672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/26/2016] [Indexed: 02/02/2023]
Abstract
The fields of telomere biology and DNA repair have enjoyed a great deal of cross-fertilization and convergence in recent years. Telomeres function at chromosome ends to prevent them from being falsely recognized as chromosome breaks by the DNA damage response and repair machineries. Conversely, both canonical and nonconical functions of numerous DNA repair proteins have been found to be critical for preserving telomere structure and function. In 2009, Elizabeth Blackburn, Carol Greider and Jack Szostak were awarded the Nobel prize in Physiology or Medicine for the discovery of telomeres and telomerase. Four years later, pioneers in the field of DNA repair, Aziz Sancar, Tomas Lindahl and Paul Modrich were recognized for their seminal contributions by being awarded the Nobel Prize in Chemistry. This review is part of a special issue meant to celebrate this amazing achievement, and will focus in particular on the convergence of nucleotide excision repair and telomere biology, and will discuss the profound implications for human health.
Collapse
Affiliation(s)
- Elise Fouquerel
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, University of Pittsburgh Cancer Institute Research Pavilion, 5117 Centre Avenue, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Patricia Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, University of Pittsburgh Cancer Institute Research Pavilion, 5117 Centre Avenue, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
194
|
Sergiev PV, Artemov AA, Prokhortchouk EB, Dontsova OA, Berezkin GV. Genomes of Strongylocentrotus franciscanus and Lytechinus variegatus: are there any genomic explanations for the two order of magnitude difference in the lifespan of sea urchins? Aging (Albany NY) 2016; 8:260-71. [PMID: 26851889 PMCID: PMC4789581 DOI: 10.18632/aging.100889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sea urchins are marine invertebrates of extreme diversity of life span. Red sea urchin S. franciscanus is among the longest living creatures of the Ocean. Its lifetime is estimated to exceed a century, while the green sea urchin L. variegatus hardly survives more than four years. We sequenced and compared the genomes of these animals aiming at determination of the genetic basis of their longevity difference. List of genes related to the longevity of other animal species was created and used for homology search among the genomic data obtained in this study. Aminoacid sequences of longevity related proteins of S. franciscanus and L. variegatus as well as from a set of model species, were aligned and grouped on the basis of the species lifespan. Aminoacid residues specific for a longevity group were identified. Proteins containing aminoacids whose identity correlated with the lifespan were clustered on the basis of their function.
Collapse
Affiliation(s)
- Petr V Sergiev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Artem A Artemov
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow 119992, Russia.,Center 'Bioengineering', Russian Academy of Sciences, Moscow, 117312 Russia and National Research Center, Kurchatov Institute, Moscow 123098, Russia
| | - Egor B Prokhortchouk
- Center 'Bioengineering', Russian Academy of Sciences, Moscow, 117312 Russia and National Research Center, Kurchatov Institute, Moscow 123098, Russia
| | - Olga A Dontsova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | | |
Collapse
|
195
|
Koyama M, Nagakura W, Tanaka H, Kujirai T, Chikashige Y, Haraguchi T, Hiraoka Y, Kurumizaka H. In vitro reconstitution and biochemical analyses of the Schizosaccharomyces pombe nucleosome. Biochem Biophys Res Commun 2016; 482:896-901. [PMID: 27890612 DOI: 10.1016/j.bbrc.2016.11.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Schizosaccharomyces pombe, which has a small genome but shares many physiological functions with higher eukaryotes, is a useful single-cell, model eukaryotic organism. In particular, many features concerning chromatin structure and dynamics, including heterochromatin, centromeres, telomeres, and DNA replication origins, are well conserved between S. pombe and higher eukaryotes. However, the S. pombe nucleosome, the fundamental structural unit of chromatin, has not been reconstituted in vitro. In the present study, we established the method to purify S. pombe histones H2A, H2B, H3, and H4, and successfully reconstituted the S. pombe nucleosome in vitro. Our thermal stability assay and micrococcal nuclease treatment assay revealed that the S. pombe nucleosome is markedly unstable and its DNA ends are quite accessible, as compared to the canonical human nucleosome. These findings are important to understand the mechanisms of epigenetic genomic DNA regulation in fission yeast.
Collapse
Affiliation(s)
- Masako Koyama
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Wataru Nagakura
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroki Tanaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Tomoya Kujirai
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yuji Chikashige
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasushi Hiraoka
- Advanced ICT Research Institute Kobe, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan; Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
196
|
Pandita TK. Critical role of the POT1 OB domain in maintaining genomic stability. Oncogene 2016; 36:1908-1910. [PMID: 27869169 DOI: 10.1038/onc.2016.365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 01/14/2023]
Abstract
Oligonucleotide/oligosaccharide-binding (OB) domain-containing proteins have been identified as critical for telomere maintenance, DNA repair, transcription and other DNA metabolism processes. Protection of telomere 1 (POT1), a telomere binding protein, has an OB domain like single-strand binding protein (SSB1). In this issue of Oncogene, Gu et al. present evidence that POT1, like SSB1, is required to maintain genomic stability. This work, in conjunction with results from previous investigators, highlights the importance of POT1 in telomere metabolism. Inactivation of POT1 telomere protective functions in mouse models lacking p53 expression in the breast epithelium unleashes a torrent of DNA damage responses (DDRs) at the telomeres, culminating in karyotypic alterations with massive arrays of telomere fusions. Therefore, POT1 is not only required to promote telomere homeostasis, but also plays an essential role in maintaining a stable genome.
Collapse
Affiliation(s)
- T K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
197
|
Gu P, Wang Y, Bisht KK, Wu L, Kukova L, Smith EM, Xiao Y, Bailey SM, Lei M, Nandakumar J, Chang S. Pot1 OB-fold mutations unleash telomere instability to initiate tumorigenesis. Oncogene 2016; 36:1939-1951. [PMID: 27869160 PMCID: PMC5383532 DOI: 10.1038/onc.2016.405] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/02/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023]
Abstract
Chromosomal aberrations are a hallmark of human cancers, with complex cytogenetic rearrangements leading to genetic changes permissive for cancer initiation and progression. Protection of Telomere 1 (POT1) is an essential component of the shelterin complex and functions to maintain chromosome stability by repressing the activation of aberrant DNA damage and repair responses at telomeres. Sporadic and familial mutations in the oligosaccharide-oligonucleotide (OB) folds of POT1 have been identified in many human cancers, but the mechanism underlying how hPOT1 mutations initiate tumorigenesis has remained unclear. Here we show that the human POT1’s OB-folds are essential for the protection of newly replicated telomeres. Oncogenic mutations in hPOT1 OB-fold fail to bind to ss telomeric DNA, eliciting a DNA damage response at telomeres that promote inappropriate chromosome fusions via the mutagenic alternative non-homologous end joining (A-NHEJ) pathway. hPOT1 mutations also result in telomere elongation and the formation of transplantable hematopoietic malignancies. Strikingly, conditional deletion of both mPot1a and p53 in mouse mammary epithelium resulted in development of highly invasive breast carcinomas and the formation of whole chromosomes containing massive arrays of telomeric fusions reminiscent of chromothripsis. Our results reveal that hPOT1 OB-folds are required to protect and prevent newly replicated telomeres from engaging in A-NHEJ mediated fusions that would otherwise promote genome instability to fuel tumorigenesis.
Collapse
Affiliation(s)
- P Gu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Y Wang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - K K Bisht
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - L Wu
- Department of GI Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - L Kukova
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - E M Smith
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Y Xiao
- Section of Hematology-Oncology, Department of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - S M Bailey
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - M Lei
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - J Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - S Chang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
198
|
Arora A, Beilstein MA, Shippen DE. Evolution of Arabidopsis protection of telomeres 1 alters nucleic acid recognition and telomerase regulation. Nucleic Acids Res 2016; 44:9821-9830. [PMID: 27651456 PMCID: PMC5175356 DOI: 10.1093/nar/gkw807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/01/2016] [Accepted: 09/03/2016] [Indexed: 11/14/2022] Open
Abstract
Protection of telomeres (POT1) binds chromosome ends, recognizing single-strand telomeric DNA via two oligonucleotide/oligosaccharide binding folds (OB-folds). The Arabidopsis thaliana POT1a and POT1b paralogs are atypical: they do not exhibit telomeric DNA binding, and they have opposing roles in regulating telomerase activity. AtPOT1a stimulates repeat addition processivity of the canonical telomerase enzyme, while AtPOT1b interacts with a regulatory lncRNA that represses telomerase activity. Here, we show that OB1 of POT1a, but not POT1b, has an intrinsic affinity for telomeric DNA. DNA binding was dependent upon a highly conserved Phe residue (F65) that in human POT1 directly contacts telomeric DNA. F65A mutation of POT1aOB1 abolished DNA binding and diminished telomerase repeat addition processivity. Conversely, AtPOT1b and other POT1b homologs from Brassicaceae and its sister family, Cleomaceae, naturally bear a non-aromatic amino acid at this position. By swapping Val (V63) with Phe, AtPOT1bOB1 gained the capacity to bind telomeric DNA and to stimulate telomerase repeat addition processivity. We conclude that, in the context of DNA binding, variation at a single amino acid position promotes divergence of the AtPOT1b paralog from the ancestral POT1 protein.
Collapse
Affiliation(s)
- Amit Arora
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| | - Mark A Beilstein
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| |
Collapse
|
199
|
Lloyd NR, Dickey TH, Hom RA, Wuttke DS. Tying up the Ends: Plasticity in the Recognition of Single-Stranded DNA at Telomeres. Biochemistry 2016; 55:5326-40. [PMID: 27575340 PMCID: PMC5656232 DOI: 10.1021/acs.biochem.6b00496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Telomeres terminate nearly exclusively in single-stranded DNA (ssDNA) overhangs comprised of the G-rich 3' end. This overhang varies widely in length from species to species, ranging from just a few bases to several hundred nucleotides. These overhangs are not merely a remnant of DNA replication but rather are the result of complex further processing. Proper management of the telomeric overhang is required both to deter the action of the DNA damage machinery and to present the ends properly to the replicative enzyme telomerase. This Current Topic addresses the biochemical and structural features used by the proteins that manage these variable telomeric overhangs. The Pot1 protein tightly binds the single-stranded overhang, preventing DNA damage sensors from binding. Pot1 also orchestrates the access of telomerase to that same substrate. The remarkable plasticity of the binding interface exhibited by the Schizosaccharomyces pombe Pot1 provides mechanistic insight into how these roles may be accomplished, and disease-associated mutations clustered around the DNA-binding interface in the hPOT1 highlight the importance of this function. The budding yeast Cdc13-Stn1-Ten1, a telomeric RPA complex closely associated with telomere function, also interacts with ssDNA in a fashion that allows degenerate sequences to be recognized. A related human complex composed of hCTC1, hSTN1, and hTEN1 has recently emerged with links to both telomere maintenance and general DNA replication and also exhibits mutations associated with telomere pathologies. Overall, these sequence-specific ssDNA binders exhibit a range of recognition properties that allow them to perform their unique biological functions.
Collapse
Affiliation(s)
- Neil R. Lloyd
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309-0596, USADepartment of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Robert A. Hom
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309-0596, USADepartment of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Deborah S. Wuttke
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309-0596, USADepartment of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
200
|
Yin S, Huang Y, Zhangfang Y, Zhong X, Li P, Huang J, Liu D, Songyang Z. SmedOB1 is Required for Planarian Homeostasis and Regeneration. Sci Rep 2016; 6:34013. [PMID: 27654173 PMCID: PMC5032016 DOI: 10.1038/srep34013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022] Open
Abstract
The planarian flatworm is an emerging model that is useful for studying homeostasis and regeneration due to its unique adult stem cells (ASCs). Previously, planaria were found to share mammalian TTAGGG chromosome ends and telomerases; however, their telomere protection proteins have not yet been identified. In Schmidtea mediterranea, we identified a homologue of the human protection of telomeres 1 (POT1) with an OB-fold (SmedOB1). SmedOB1 is evolutionarily conserved among species and is ubiquitously expressed throughout the whole body. Feeding with SmedOB1 double-stranded RNAs (dsRNAs) led to homeostasis abnormalities in the head and pharynx. Furthermore, several ASC progeny markers were downregulated, and regeneration was impaired. Here we found that SmedOB1 is required for telomeric DNA-protein complex formation and it associates with the telomere TTAGGG sequence in vitro. Moreover, DNA damage and apoptosis signals in planarian were significantly affected by SmedOB1 RNAi. We also confirmed these phenotypes in Dugesia japonica, another flatworm species. Our work identified a novel telomere-associated protein SmedOB1 in planarian, which is required for planarian homeostasis and regeneration. The phylogenetic and functional conservations of SmedOB1 provide one mechanism by which planarians maintain telomere and genome stability to ensure their immortality and shed light on the regeneration medicine of humans.
Collapse
Affiliation(s)
- Shanshan Yin
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingnan Zhangfang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqin Zhong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pengqing Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, USA
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, USA
| |
Collapse
|