151
|
Ninova M, Fejes Tóth K, Aravin AA. The control of gene expression and cell identity by H3K9 trimethylation. Development 2019; 146:dev181180. [PMID: 31540910 PMCID: PMC6803365 DOI: 10.1242/dev.181180] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Histone 3 lysine 9 trimethylation (H3K9me3) is a conserved histone modification that is best known for its role in constitutive heterochromatin formation and the repression of repetitive DNA elements. More recently, it has become evident that H3K9me3 is also deposited at certain loci in a tissue-specific manner and plays important roles in regulating cell identity. Notably, H3K9me3 can repress genes encoding silencing factors, pointing to a fundamental principle of repressive chromatin auto-regulation. Interestingly, recent studies have shown that H3K9me3 deposition requires protein SUMOylation in different contexts, suggesting that the SUMO pathway functions as an important module in gene silencing and heterochromatin formation. In this Review, we discuss the role of H3K9me3 in gene regulation in various systems and the molecular mechanisms that guide the silencing machinery to target loci.
Collapse
Affiliation(s)
- Maria Ninova
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Katalin Fejes Tóth
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alexei A Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
152
|
Abstract
In mammals, dosage compensation of sex chromosomal genes between females (XX) and males (XY) is achieved through X-chromosome inactivation (XCI). The X-linked X-inactive-specific transcript (Xist) long noncoding RNA is indispensable for XCI and initiates the process early during development by spreading in cis across the X chromosome from which it is transcribed. During XCI, Xist RNA triggers gene silencing, recruits a plethora of chromatin modifying factors, and drives a major structural reorganization of the X chromosome. Here, we review our knowledge of the multitude of epigenetic events orchestrated by Xist RNA to allow female mammals to survive through embryonic development by establishing and maintaining proper dosage compensation. In particular, we focus on recent studies characterizing the interaction partners of Xist RNA, and we discuss how they have affected the field by addressing long-standing controversies or by giving rise to new research perspectives that are currently being explored. This review is dedicated to the memory of Denise Barlow, pioneer of genomic imprinting and functional long noncoding RNAs (lncRNAs), whose work has revolutionized the epigenetics field and continues to inspire generations of scientists.
Collapse
|
153
|
Janiszewski A, Talon I, Chappell J, Collombet S, Song J, De Geest N, To SK, Bervoets G, Marin-Bejar O, Provenzano C, Vanheer L, Marine JC, Rambow F, Pasque V. Dynamic reversal of random X-Chromosome inactivation during iPSC reprogramming. Genome Res 2019; 29:1659-1672. [PMID: 31515287 PMCID: PMC6771397 DOI: 10.1101/gr.249706.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Induction and reversal of chromatin silencing is critical for successful development, tissue homeostasis, and the derivation of induced pluripotent stem cells (iPSCs). X-Chromosome inactivation (XCI) and reactivation (XCR) in female cells represent chromosome-wide transitions between active and inactive chromatin states. Although XCI has long been studied, providing important insights into gene regulation, the dynamics and mechanisms underlying the reversal of stable chromatin silencing of X-linked genes are much less understood. Here, we use allele-specific transcriptomics to study XCR during mouse iPSC reprogramming in order to elucidate the timing and mechanisms of chromosome-wide reversal of gene silencing. We show that XCR is hierarchical, with subsets of genes reactivating early, late, and very late during reprogramming. Early genes are activated before the onset of late pluripotency genes activation. Early genes are located genomically closer to genes that escape XCI, unlike genes reactivating late. Early genes also show increased pluripotency transcription factor (TF) binding. We also reveal that histone deacetylases (HDACs) restrict XCR in reprogramming intermediates and that the severe hypoacetylation state of the inactive X Chromosome (Xi) persists until late reprogramming stages. Altogether, these results reveal the timing of transcriptional activation of monoallelically repressed genes during iPSC reprogramming, and suggest that allelic activation involves the combined action of chromatin topology, pluripotency TFs, and chromatin regulators. These findings are important for our understanding of gene silencing, maintenance of cell identity, reprogramming, and disease.
Collapse
Affiliation(s)
- Adrian Janiszewski
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - Irene Talon
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - Joel Chappell
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - Samuel Collombet
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Juan Song
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - Natalie De Geest
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - San Kit To
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - Greet Bervoets
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium.,Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Oskar Marin-Bejar
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium.,Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Caterina Provenzano
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - Lotte Vanheer
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium.,Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium.,Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Vincent Pasque
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Stem Cell Institute, B-3000 Leuven, Belgium
| |
Collapse
|
154
|
Qadir MI, Bukhat S, Rasul S, Manzoor H, Manzoor M. RNA therapeutics: Identification of novel targets leading to drug discovery. J Cell Biochem 2019; 121:898-929. [DOI: 10.1002/jcb.29364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Muhammad Imran Qadir
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Sherien Bukhat
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Sumaira Rasul
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan Pakistan
| | - Majid Manzoor
- College of Pharmaceutical Sciences Zhejiang University Hangzhou China
| |
Collapse
|
155
|
Vicentini C, Galuppini F, Corbo V, Fassan M. Current role of non-coding RNAs in the clinical setting. Noncoding RNA Res 2019; 4:82-85. [PMID: 31891017 PMCID: PMC6926199 DOI: 10.1016/j.ncrna.2019.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/04/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have long been considered as "junk" material of the human genome until functional studies have exposed them as critical regulators of gene expression in both physiological and pathological conditions. Mounting evidences have also shown that ncRNAs may serve as diagnostic markers for several disorders, predictor for drugs response, and targets for new therapeutic approaches. In this mini-review, we discuss the state of the art of non-coding RNAs in drug development and their involvement in conventional treatments response.
Collapse
Affiliation(s)
| | | | - Vincenzo Corbo
- ARC-NET Research Centre, University of Verona, Verona, Italy
| | - Matteo Fassan
- Department of Medicine (DIMED), University of Padua, Padua, PD, Italy
| |
Collapse
|
156
|
Abstract
As the process that silences gene expression ensues during development, the stage is set for the activity of Polycomb-repressive complex 2 (PRC2) to maintain these repressed gene profiles. PRC2 catalyzes a specific histone posttranslational modification (hPTM) that fosters chromatin compaction. PRC2 also facilitates the inheritance of this hPTM through its self-contained "write and read" activities, key to preserving cellular identity during cell division. As these changes in gene expression occur without changes in DNA sequence and are inherited, the process is epigenetic in scope. Mutants of mammalian PRC2 or of its histone substrate contribute to the cancer process and other diseases, and research into these aberrant pathways is yielding viable candidates for therapeutic targeting. The effectiveness of PRC2 hinges on its being recruited to the proper chromatin sites; however, resolving the determinants to this process in the mammalian case was not straightforward and thus piqued the interest of many in the field. Here, we chronicle the latest advances toward exposing mammalian PRC2 and its high maintenance.
Collapse
Affiliation(s)
- Jia-Ray Yu
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Chul-Hwan Lee
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Ozgur Oksuz
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - James M Stafford
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
157
|
Nesterova TB, Wei G, Coker H, Pintacuda G, Bowness JS, Zhang T, Almeida M, Bloechl B, Moindrot B, Carter EJ, Alvarez Rodrigo I, Pan Q, Bi Y, Song CX, Brockdorff N. Systematic allelic analysis defines the interplay of key pathways in X chromosome inactivation. Nat Commun 2019; 10:3129. [PMID: 31311937 PMCID: PMC6635394 DOI: 10.1038/s41467-019-11171-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/19/2019] [Indexed: 01/05/2023] Open
Abstract
Xist RNA, the master regulator of X chromosome inactivation, acts in cis to induce chromosome-wide silencing. Whilst recent studies have defined candidate silencing factors, their relative contribution to repressing different genes, and their relationship with one another is poorly understood. Here we describe a systematic analysis of Xist-mediated allelic silencing in mouse embryonic stem cell-based models. Using a machine learning approach we identify distance to the Xist locus and prior gene expression levels as key determinants of silencing efficiency. We go on to show that Spen, recruited through the Xist A-repeat, plays a central role, being critical for silencing of all except a subset of weakly expressed genes. Polycomb, recruited through the Xist B/C-repeat, also plays a key role, favouring silencing of genes with pre-existing H3K27me3 chromatin. LBR and the Rbm15/m6A-methyltransferase complex make only minor contributions to gene silencing. Together our results provide a comprehensive model for Xist-mediated chromosome silencing.
Collapse
Affiliation(s)
- Tatyana B Nesterova
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Guifeng Wei
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Heather Coker
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Greta Pintacuda
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Joseph S Bowness
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Tianyi Zhang
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Mafalda Almeida
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Bianca Bloechl
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Benoit Moindrot
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- I2BC Paris-Sud University, Gif-Sur-Yvette, France
| | - Emma J Carter
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ines Alvarez Rodrigo
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Qi Pan
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ying Bi
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Chun-Xiao Song
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
158
|
Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 2019; 20:625-641. [PMID: 31267065 DOI: 10.1038/s41580-019-0151-1] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 12/26/2022]
Abstract
Histone methylation can occur at various sites in histone proteins, primarily on lysine and arginine residues, and it can be governed by multiple positive and negative regulators, even at a single site, to either activate or repress transcription. It is now apparent that histone methylation is critical for almost all stages of development, and its proper regulation is essential for ensuring the coordinated expression of gene networks that govern pluripotency, body patterning and differentiation along appropriate lineages and organogenesis. Notably, developmental histone methylation is highly dynamic. Early embryonic systems display unique histone methylation patterns, prominently including the presence of bivalent (both gene-activating and gene-repressive) marks at lineage-specific genes that resolve to monovalent marks during differentiation, which ensures that appropriate genes are expressed in each tissue type. Studies of the effects of methylation on embryonic stem cell pluripotency and differentiation have helped to elucidate the developmental roles of histone methylation. It has been revealed that methylation and demethylation of both activating and repressive marks are essential for establishing embryonic and extra-embryonic lineages, for ensuring gene dosage compensation via genomic imprinting and for establishing body patterning via HOX gene regulation. Not surprisingly, aberrant methylation during embryogenesis can lead to defects in body patterning and in the development of specific organs. Human genetic disorders arising from mutations in histone methylation regulators have revealed their important roles in the developing skeletal and nervous systems, and they highlight the overlapping and unique roles of different patterns of methylation in ensuring proper development.
Collapse
|
159
|
Fila M, Pawłowska E, Blasiak J. Mitochondria in migraine pathophysiology - does epigenetics play a role? Arch Med Sci 2019; 15:944-956. [PMID: 31360189 PMCID: PMC6657237 DOI: 10.5114/aoms.2019.86061] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022] Open
Abstract
The approximately three times higher rate of migraine prevalence in women than men may result from the mitochondrial transmission of this disease. Studies with imaging techniques suggest disturbances in mitochondrial metabolism in specific regions of the brain in migraine patients. Migraine shares some clinical features with several mitochondrial diseases and many other disorders include migraine headaches. Epigenetic regulation of mitochondrial DNA (mtDNA) is a matter of debate and there are some conflicting results, especially on mtDNA methylation. Micro RNAs (miRNAs) and long-noncoding RNA (lncRNAs) have been detected in mitochondria. The regulation of the miRNA-lncRNA axis can be important for mitochondrial physiology and its impairment can result in a disease phenotype. Further studies on the role of mitochondrial epigenetic modifications in migraine are needed, but they require new methods and approaches.
Collapse
Affiliation(s)
- Michał Fila
- Department of Neurology, Polish Mother Memorial Hospital, Research Institute, Lodz, Poland
| | | | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| |
Collapse
|
160
|
Barros de Andrade E Sousa L, Jonkers I, Syx L, Dunkel I, Chaumeil J, Picard C, Foret B, Chen CJ, Lis JT, Heard E, Schulz EG, Marsico A. Kinetics of Xist-induced gene silencing can be predicted from combinations of epigenetic and genomic features. Genome Res 2019; 29:1087-1099. [PMID: 31175153 PMCID: PMC6633258 DOI: 10.1101/gr.245027.118] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/28/2019] [Indexed: 01/12/2023]
Abstract
To initiate X-Chromosome inactivation (XCI), the long noncoding RNA Xist mediates chromosome-wide gene silencing of one X Chromosome in female mammals to equalize gene dosage between the sexes. The efficiency of gene silencing is highly variable across genes, with some genes even escaping XCI in somatic cells. A gene's susceptibility to Xist-mediated silencing appears to be determined by a complex interplay of epigenetic and genomic features; however, the underlying rules remain poorly understood. We have quantified chromosome-wide gene silencing kinetics at the level of the nascent transcriptome using allele-specific Precision nuclear Run-On sequencing (PRO-seq). We have developed a Random Forest machine-learning model that can predict the measured silencing dynamics based on a large set of epigenetic and genomic features and tested its predictive power experimentally. The genomic distance to the Xist locus, followed by gene density and distance to LINE elements, are the prime determinants of the speed of gene silencing. Moreover, we find two distinct gene classes associated with different silencing pathways: a class that requires Xist-repeat A for silencing, which is known to activate the SPEN pathway, and a second class in which genes are premarked by Polycomb complexes and tend to rely on the B repeat in Xist for silencing, known to recruit Polycomb complexes during XCI. Moreover, a series of features associated with active transcriptional elongation and chromatin 3D structure are enriched at rapidly silenced genes. Our machine-learning approach can thus uncover the complex combinatorial rules underlying gene silencing during X inactivation.
Collapse
Affiliation(s)
| | - Iris Jonkers
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Laurène Syx
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 75005 Paris, France
- Institut Curie, PSL Research University, Mines Paris Tech, INSERM U900, 75005 Paris, France
| | - Ilona Dunkel
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Julie Chaumeil
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 75005 Paris, France
| | - Christel Picard
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 75005 Paris, France
| | - Benjamin Foret
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 75005 Paris, France
| | - Chong-Jian Chen
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 75005 Paris, France
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Edith Heard
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 75005 Paris, France
| | - Edda G Schulz
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Annalisa Marsico
- Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Department of Mathematics and Informatics, Free University of Berlin, 14195 Berlin, Germany
| |
Collapse
|
161
|
Yan N, Mu K, An XF, Li L, Qin Q, Song RH, Yao QM, Shao XQ, Zhang JA. Aberrant Histone Methylation in Patients with Graves' Disease. Int J Endocrinol 2019; 2019:1454617. [PMID: 31341471 PMCID: PMC6612977 DOI: 10.1155/2019/1454617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 05/01/2019] [Accepted: 05/20/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Graves' disease (GD) is an organ-specific autoimmune disease. Accumulated data have indicated that aberrant epigenetic modifications are associated with many autoimmune disorders. However, it remains unknown whether histone methylation plays a role in the pathogenesis of GD. In the present study, we aimed to assess histone modification patterns in peripheral blood mononuclear cells (PBMCs) from GD patients. The rate (degree) of H3K4 and H3K9 methylation and the expressions of histone-modifying genes were investigated. METHODS A total of 68 GD patients and 32 healthy controls were enrolled in this study. Global histone H3K4/H3K9 methylation of PBMCs was evaluated by the EpiQuik™ global histone H3K4/H3K9 methylation assay kit. The expressions of histone methyltransferases (HMTs) and histone demethylases (HDMs) at the mRNA level were determined by real-time quantitative polymerase chain reaction. RESULTS Global histone H3K9 methylation in PBMCs of GD patients was significantly decreased compared with that in the healthy controls (P=0.007). The expressions of HMTs (SUV39H1 and SUV39H2) at the mRNA level were significantly decreased in PBMCs from GD patients compared with healthy controls (P<0.001), whereas the SETD1A expression at the mRNA level was significantly increased in GD patients compared with healthy controls (P=0.004). In addition, the expressions of HDMs, including JHDM2A and JMJD2A, at the mRNA level were significantly increased in GD patients compared with healthy controls (P<0.001; P=0.007). Moreover, the mRNA expression levels of JARID1A and LSD1 did not significantly differ in GD patients and healthy controls (P>0.05). CONCLUSIONS These findings firstly suggested that the histone methylation was aberrant in PBMCs of GD patients, which could be possibly attributed to the deregulation of epigenetic modifier genes. Abnormal histone methylation modification may be involved in the pathogenesis of GD.
Collapse
Affiliation(s)
- Ni Yan
- Department of Endocrinology, Shaanxi Provincial People's Hospital, No. 256 West Youyi Road, Beilin District, Xi'an 710068, China
| | - Kaida Mu
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai 201318, China
| | - Xiao-fei An
- Department of Endocrinology, Jinshan Hospital of Fudan University, No. 1508 Longyang Road, Jinshan District, Shanghai 201508, China
- Department of Endocrinology, The Affiliated Hospital of Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Qixia District, Nanjing 210023, China
| | - Ling Li
- Department of Endocrinology, Jinshan Hospital of Fudan University, No. 1508 Longyang Road, Jinshan District, Shanghai 201508, China
| | - Qiu Qin
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai 201318, China
| | - Rong-hua Song
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai 201318, China
| | - Qiu-ming Yao
- Department of Endocrinology, Jinshan Hospital of Fudan University, No. 1508 Longyang Road, Jinshan District, Shanghai 201508, China
| | - Xiao-qing Shao
- Department of Endocrinology, Jinshan Hospital of Fudan University, No. 1508 Longyang Road, Jinshan District, Shanghai 201508, China
| | - Jin-an Zhang
- Department of Endocrinology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 Zhouyuan Road, Pudong New District, Shanghai 201318, China
| |
Collapse
|
162
|
Vidal M. Polycomb Assemblies Multitask to Regulate Transcription. EPIGENOMES 2019; 3:12. [PMID: 34968234 PMCID: PMC8594731 DOI: 10.3390/epigenomes3020012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 02/06/2023] Open
Abstract
The Polycomb system is made of an evolutionary ancient group of proteins, present throughout plants and animals. Known initially from developmental studies with the fly Drosophila melanogaster, they were associated with stable sustainment of gene repression and maintenance of cell identity. Acting as multiprotein assemblies with an ability to modify chromatin, through chemical additions to histones and organization of topological domains, they have been involved subsequently in control of developmental transitions and in cell homeostasis. Recent work has unveiled an association of Polycomb components with transcriptionally active loci and the promotion of gene expression, in clear contrast with conventional recognition as repressors. Focusing on mammalian models, I review here advances concerning roles in transcriptional control. Among new findings highlighted is the regulation of their catalytic properties, recruiting to targets, and activities in chromatin organization and compartmentalization. The need for a more integrated approach to the study of the Polycomb system, given its fundamental complexity and its adaptation to cell context, is discussed.
Collapse
Affiliation(s)
- Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
163
|
PRDM14 controls X-chromosomal and global epigenetic reprogramming of H3K27me3 in migrating mouse primordial germ cells. Epigenetics Chromatin 2019; 12:38. [PMID: 31221220 PMCID: PMC6585054 DOI: 10.1186/s13072-019-0284-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/12/2019] [Indexed: 01/18/2023] Open
Abstract
Background In order to prepare the genome for gametogenesis, primordial germ cells (PGCs) undergo extensive epigenetic reprogramming during migration toward the gonads in mammalian embryos. This includes changes on a genome-wide scale and additionally in females the remodeling of the inactive X-chromosome to enable X-chromosome reactivation (XCR). However, if global remodeling and X-chromosomal remodeling are related, how they occur in PGCs in vivo in relation to their migration progress and which factors are important are unknown. Results Here we identify the germ cell determinant PR-domain containing protein 14 (PRDM14) as the first known factor that is instrumental for both global reprogramming and X-chromosomal reprogramming in migrating mouse PGCs. We find that global upregulation of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark is PRDM14 dosage dependent in PGCs of both sexes. When focusing on XCR, we observed that PRDM14 is required for removal of H3K27me3 from the inactive X-chromosome, which, in contrast to global upregulation, takes place progressively along the PGC migration path. Furthermore, we show that global and X-chromosomal reprogramming of H3K27me3 are functionally separable, despite their common regulation by PRDM14. Conclusions In summary, here we provide new insight and spatiotemporal resolution to the progression and regulation of epigenome remodeling along mouse PGC migration in vivo and link epigenetic reprogramming to its developmental context. Electronic supplementary material The online version of this article (10.1186/s13072-019-0284-7) contains supplementary material, which is available to authorized users.
Collapse
|
164
|
Laskowski AI, Neems DS, Laster K, Strojny-Okyere C, Rice EL, Konieczna IM, Voss JH, Mathew JM, Leventhal JR, Ramsey-Goldman R, Smith ED, Kosak ST. Varying levels of X chromosome coalescence in female somatic cells alters the balance of X-linked dosage compensation and is implicated in female-dominant systemic lupus erythematosus. Sci Rep 2019; 9:8011. [PMID: 31142749 PMCID: PMC6541617 DOI: 10.1038/s41598-019-44229-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/08/2019] [Indexed: 11/25/2022] Open
Abstract
The three-dimensional organization of the genome in mammalian interphase nuclei is intrinsically linked to the regulation of gene expression. Whole chromosome territories and their encoded gene loci occupy preferential positions within the nucleus that changes according to the expression profile of a given cell lineage or stage. To further illuminate the relationship between chromosome organization, epigenetic environment, and gene expression, here we examine the functional organization of chromosome X and corresponding X-linked genes in a variety of healthy human and disease state X diploid (XX) cells. We observe high frequencies of homologous chromosome X colocalization (or coalescence), typically associated with initiation of X-chromosome inactivation, occurring in XX cells outside of early embryogenesis. Moreover, during chromosome X coalescence significant changes in Xist, H3K27me3, and X-linked gene expression occur, suggesting the potential exchange of gene regulatory information between the active and inactive X chromosomes. We also observe significant differences in chromosome X coalescence in disease-implicated lymphocytes isolated from systemic lupus erythematosus (SLE) patients compared to healthy controls. These results demonstrate that X chromosomes can functionally interact outside of embryogenesis when X inactivation is initiated and suggest a potential gene regulatory mechanism aberration underlying the increased frequency of autoimmunity in XX individuals.
Collapse
Affiliation(s)
- Agnieszka I Laskowski
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Daniel S Neems
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Kyle Laster
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Chelsee Strojny-Okyere
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ellen L Rice
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Iwona M Konieczna
- Comprehensive Transplant Center, Department of Medicine, Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jessica H Voss
- Comprehensive Transplant Center, Department of Medicine, Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - James M Mathew
- Comprehensive Transplant Center, Department of Medicine, Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joseph R Leventhal
- Comprehensive Transplant Center, Department of Medicine, Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rosalind Ramsey-Goldman
- Deparment of Medicine, Rheumatology Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Erica D Smith
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Steven T Kosak
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
165
|
Epigenetic Reprogramming of TGF-β Signaling in Breast Cancer. Cancers (Basel) 2019; 11:cancers11050726. [PMID: 31137748 PMCID: PMC6563130 DOI: 10.3390/cancers11050726] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
The Transforming Growth Factor-β (TGF-β) signaling pathway has a well-documented, context-dependent role in breast cancer development. In normal and premalignant cells, it acts as a tumor suppressor. By contrast, during the malignant phases of breast cancer progression, the TGF-β signaling pathway elicits tumor promoting effects particularly by driving the epithelial to mesenchymal transition (EMT), which enhances tumor cell migration, invasion and ultimately metastasis to distant organs. The molecular and cellular mechanisms that govern this dual capacity are being uncovered at multiple molecular levels. This review will focus on recent advances relating to how epigenetic changes such as acetylation and methylation control the outcome of TGF-β signaling and alter the fate of breast cancer cells. In addition, we will highlight how this knowledge can be further exploited to curb tumorigenesis by selective targeting of the TGF-β signaling pathway.
Collapse
|
166
|
Lang X, Zhao W, Huang D, Liu W, Shen H, Xu L, Xu S, Huang Y, Cheng W. The role of NUDT21 in microRNA-binging sites of EZH2 gene increases the of risk preeclampsia. J Cell Mol Med 2019; 23:3202-3213. [PMID: 30883033 PMCID: PMC6484293 DOI: 10.1111/jcmm.14179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Preeclampsia (PE) is a major cause of mortality and morbidity among pregnant mothers and their fetuses worldwide. Recent studies have shown that several microRNAs (miRNAs) play crucial role in pathogenesis of PE patients; however, the mechanisms responsible for differences in miRNA function in PE largely remain to be determined. MATERIALS AND METHODS We studied that NUDT21 expression was markedly increased, whereas EZH2 was decreased in placental samples from patients with PE. We identified NUDT21 as an interaction partner of enhancer of zeste homologue 2 (EZH2). NUDT21 co-localized with EZH2 in the human trophoblast cell line, HTR-8/SVneo and NUDT21 was shown to bind to EZH2 in RNA immunoprecipitation assays. NUDT21 has previously been reported to be involved in alternative polyadenylation; thus, the interaction between NUDT21 and EZH2 may play an important role in the crosstalk between alternative polyadenylation (APA) and miRNA-mediated gene silencing in PE. RESULTS In the human trophoblast cell line HTR-8/SVneo, loss-of-function assays indicated that knockdown of NUDT21 suppressed cell proliferation, migration and tube formation. Furthermore, functional studies showed that NUDT21 elongated the 3'-UTR of mRNAs thereby exposing more miRNA binding sites (including miR138 and miR363), which enhanced the efficiency of miRNA-mediated gene silencing and promoted EZH2 binding. CONCLUSIONS This is the first report about the relationship of NUDT21 and EZH2. The data indicate that the aberrant expression of NUDT21 contributes to PE by targeting 3'-UTR of EZH2 mRNA. These findings may provide novel targets for future investigations into therapeutic strategies for PE.
Collapse
Affiliation(s)
- Xiao Lang
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wenxia Zhao
- Department of Obstetrics and GynecologyJiangwan Hospital of Shanghai Hongkou DistrictShanghaiChina
| | - Ding Huang
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wei Liu
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hong Shen
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Liang Xu
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Shan Xu
- Department of Obstetrics and GynecologyJiangwan Hospital of Shanghai Hongkou DistrictShanghaiChina
| | - Yongfang Huang
- Department of Obstetrics and GynecologyJiangwan Hospital of Shanghai Hongkou DistrictShanghaiChina
| | - Weiwei Cheng
- Department of Obstetrics and Gynecology, School of MedicineInternational Peace Maternity and Child Health Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
167
|
A novel approach to differentiate rat embryonic stem cells in vitro reveals a role for RNF12 in activation of X chromosome inactivation. Sci Rep 2019; 9:6068. [PMID: 30988473 PMCID: PMC6465393 DOI: 10.1038/s41598-019-42246-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
X chromosome inactivation (XCI) is a mammalian specific, developmentally regulated process relying on several mechanisms including antisense transcription, non-coding RNA-mediated silencing, and recruitment of chromatin remodeling complexes. In vitro modeling of XCI, through differentiation of embryonic stem cells (ESCs), provides a powerful tool to study the dynamics of XCI, overcoming the need for embryos, and facilitating genetic modification of key regulatory players. However, to date, robust initiation of XCI in vitro has been mostly limited to mouse pluripotent stem cells. Here, we adapted existing protocols to establish a novel monolayer differentiation protocol for rat ESCs to study XCI. We show that differentiating rat ESCs properly downregulate pluripotency factor genes, and present female specific Xist RNA accumulation and silencing of X-linked genes. We also demonstrate that RNF12 seems to be an important player in regulation of initiation of XCI in rat, acting as an Xist activator. Our work provides the basis to investigate the mechanisms directing the XCI process in a model organism different from the mouse.
Collapse
|
168
|
Hanly DJ, Esteller M, Berdasco M. Interplay between long non-coding RNAs and epigenetic machinery: emerging targets in cancer? Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0074. [PMID: 29685978 PMCID: PMC5915718 DOI: 10.1098/rstb.2017.0074] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 12/21/2022] Open
Abstract
Of the diverse array of putative molecular and biological functions assigned to long non-coding RNAs (lncRNAs), one attractive perspective in epigenetic research has been the hypothesis that lncRNAs directly interact with the proteins involved in the modulation of chromatin conformation. Indeed, epigenetic modifiers are among the most frequent protein partners of lncRNAs that have been identified to date, of which histone methyltransferases and protein members of the Polycomb Repressive Complex PRC2 have received considerable attention. This review is focused on how lncRNAs interface with epigenetic factors to shape the outcomes of crucial biological processes such as regulation of gene transcription, modulation of nuclear architecture, X inactivation in females and pre-mRNA splicing. Because of our increasing knowledge of their role in development and cellular differentiation, more research is beginning to be done into the deregulation of lncRNAs in human disorders. Focusing on cancer, we describe some key examples of disease-focused lncRNA studies. This knowledge has significantly contributed to our ever-improving understanding of how lncRNAs interact with epigenetic factors of human disease, and has also provided a plethora of much-needed novel prognostic biomarker candidates or potential therapeutic targets. Finally, current limitations and perspectives on lncRNA research are discussed here.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- David J Hanly
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08908 Barcelona, Spain
| | - María Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| |
Collapse
|
169
|
Kuehner JN, Bruggeman EC, Wen Z, Yao B. Epigenetic Regulations in Neuropsychiatric Disorders. Front Genet 2019; 10:268. [PMID: 31019524 PMCID: PMC6458251 DOI: 10.3389/fgene.2019.00268] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Precise genetic and epigenetic spatiotemporal regulation of gene expression is critical for proper brain development, function and circuitry formation in the mammalian central nervous system. Neuronal differentiation processes are tightly regulated by epigenetic mechanisms including DNA methylation, histone modifications, chromatin remodelers and non-coding RNAs. Dysregulation of any of these pathways is detrimental to normal neuronal development and functions, which can result in devastating neuropsychiatric disorders, such as depression, schizophrenia and autism spectrum disorders. In this review, we focus on the current understanding of epigenetic regulations in brain development and functions, as well as their implications in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Janise N Kuehner
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Emily C Bruggeman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
170
|
Syrett CM, Paneru B, Sandoval-Heglund D, Wang J, Banerjee S, Sindhava V, Behrens EM, Atchison M, Anguera MC. Altered X-chromosome inactivation in T cells may promote sex-biased autoimmune diseases. JCI Insight 2019; 4:126751. [PMID: 30944248 DOI: 10.1172/jci.insight.126751] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/14/2019] [Indexed: 12/29/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder that predominantly affects women and is driven by autoreactive T cell-mediated inflammation. It is known that individuals with multiple X-chromosomes are at increased risk for developing SLE; however, the mechanisms underlying this genetic basis are unclear. Here, we use single cell imaging to determine the epigenetic features of the inactive X (Xi) in developing thymocytes, mature T cell subsets, and T cells from SLE patients and mice. We show that Xist RNA and heterochromatin modifications transiently reappear at the Xi and are missing in mature single positive T cells. Activation of mature T cells restores Xist RNA and heterochromatin marks simultaneously back to the Xi. Notably, X-chromosome inactivation (XCI) maintenance is altered in T cells of SLE patients and late-stage-disease NZB/W F1 female mice, and we show that X-linked genes are abnormally upregulated in SLE patient T cells. SLE T cells also have altered expression of XIST RNA interactome genes, accounting for perturbations of Xi epigenetic features. Thus, abnormal XCI maintenance is a feature of SLE disease, and we propose that Xist RNA localization at the Xi could be an important factor for maintaining dosage compensation of X-linked genes in T cells.
Collapse
Affiliation(s)
- Camille M Syrett
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bam Paneru
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donavon Sandoval-Heglund
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jianle Wang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarmistha Banerjee
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vishal Sindhava
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward M Behrens
- Division of Rheumatology, Children's Hospital of Philadelphia (CHOP), Philadelphia Pennsylvania, USA
| | - Michael Atchison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
171
|
Harris C, Cloutier M, Trotter M, Hinten M, Gayen S, Du Z, Xie W, Kalantry S. Conversion of random X-inactivation to imprinted X-inactivation by maternal PRC2. eLife 2019; 8:e44258. [PMID: 30938678 PMCID: PMC6541438 DOI: 10.7554/elife.44258] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/01/2019] [Indexed: 01/15/2023] Open
Abstract
Imprinted X-inactivation silences genes exclusively on the paternally-inherited X-chromosome and is a paradigm of transgenerational epigenetic inheritance in mammals. Here, we test the role of maternal vs. zygotic Polycomb repressive complex 2 (PRC2) protein EED in orchestrating imprinted X-inactivation in mouse embryos. In maternal-null (Eedm-/-) but not zygotic-null (Eed-/-) early embryos, the maternal X-chromosome ectopically induced Xist and underwent inactivation. Eedm-/- females subsequently stochastically silenced Xist from one of the two X-chromosomes and displayed random X-inactivation. This effect was exacerbated in embryos lacking both maternal and zygotic EED (Eedmz-/-), suggesting that zygotic EED can also contribute to the onset of imprinted X-inactivation. Xist expression dynamics in Eedm-/- embryos resemble that of early human embryos, which lack oocyte-derived maternal PRC2 and only undergo random X-inactivation. Thus, expression of PRC2 in the oocyte and transmission of the gene products to the embryo may dictate the occurrence of imprinted X-inactivation in mammals.
Collapse
Affiliation(s)
- Clair Harris
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Marissa Cloutier
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Megan Trotter
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Michael Hinten
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Srimonta Gayen
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| | - Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life ScienceTsinghua UniversityBeijingChina
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, THU-PKU Center for Life ScienceTsinghua UniversityBeijingChina
| | - Sundeep Kalantry
- Department of Human GeneticsUniversity of MichiganAnn ArborUnited States
| |
Collapse
|
172
|
Abstract
Long non-coding RNA (lncRNA) genes have recently been discovered as key regulators of developmental, physiological, and pathological processes in humans. Recent studies indicate that lncRNAs regulate every step of gene expression, and their aberrant expression can be found in the majority of cancer types. Particularly, lncRNAs were found to function in tumor development and metastasis, which is the major cause of cancer-related death. Thus, exploring key roles of lncRNAs in metastasis is predicted to enhance our knowledge of metastasis, and uncover novel therapeutic targets and biomarkers of this process. In this review, we discuss the molecular mechanisms of lncRNAs in gene expression regulation and their function in metastasis.
Collapse
Affiliation(s)
- Qihong Huang
- Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jinchun Yan
- Department of Radiation Oncology, Cancer Hospital of Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
173
|
Loss of p53 Causes Stochastic Aberrant X-Chromosome Inactivation and Female-Specific Neural Tube Defects. Cell Rep 2019; 27:442-454.e5. [DOI: 10.1016/j.celrep.2019.03.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 02/11/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
|
174
|
Hinz L, Hoekstra SD, Watanabe K, Posthuma D, Heine VM. Generation of Isogenic Controls for In Vitro Disease Modelling of X-Chromosomal Disorders. Stem Cell Rev Rep 2019; 15:276-285. [PMID: 30421281 PMCID: PMC6441401 DOI: 10.1007/s12015-018-9851-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Generation of proper controls is crucial in induced pluripotent stem cell (iPSC) studies. X-chromosomal disorders offer the potential to develop isogenic controls due to random X-chromosomal inactivation (XCI). However, the generation of such lines is currently hampered by skewed X-inactivation in fibroblast lines and X-chromosomal reactivation (XCR) after reprogramming. Here we describe a method to generate a pure iPSC population with respect to the specific inactivated X-chromosome (Xi). We used fibroblasts from Rett patients, who all have a causal mutation in the X-linked MeCP2 gene. Pre-sorting these fibroblasts followed by episomal reprogramming, allowed us to overcome skewness in fibroblast lines and to retain the X-chromosomal state, which was unpredictable with lentiviral reprogramming. This means that fibroblast pre-sorting followed by episomal reprogramming can be used to reliably generate iPSC lines with specified X-chromosomal phenotype such as Rett syndrome.
Collapse
Affiliation(s)
- Lisa Hinz
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Stephanie D Hoekstra
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Kyoko Watanabe
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
| | - Danielle Posthuma
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands
- Clinical Genetics, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Vivi M Heine
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Boelelaan 1085, 1081HV, Amsterdam, The Netherlands.
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
175
|
Heinz KS, Rapp A, Casas-Delucchi CS, Lehmkuhl A, Romero-Fernández I, Sánchez A, Krämer OH, Marchal JA, Cardoso MC. DNA replication dynamics of vole genome and its epigenetic regulation. Epigenetics Chromatin 2019; 12:18. [PMID: 30871586 PMCID: PMC6416958 DOI: 10.1186/s13072-019-0262-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/07/2019] [Indexed: 01/19/2023] Open
Abstract
Background The genome of some vole rodents exhibit large blocks of heterochromatin coupled to their sex chromosomes. The DNA composition and transcriptional activity of these heterochromatin blocks have been studied, but little is known about their DNA replication dynamics and epigenetic composition. Results Here, we show prominent epigenetic marks of the heterochromatic blocks in the giant sex chromosomes of female Microtus cabrerae cells. While the X chromosomes are hypoacetylated and cytosine hypomethylated, they are either enriched for macroH2A and H3K27me3 typical for facultative heterochromatin or for H3K9me3 and HP1 beta typical for constitutive heterochromatin. Using pulse-chase replication labeling and time-lapse microscopy, we found that the heterochromatic block enriched for macroH2A/H3K27me3 of the X chromosome is replicated during mid-S-phase, prior to the heterochromatic block enriched for H3K9me3/HP1 beta, which is replicated during late S-phase. To test whether histone acetylation level regulates its replication dynamics, we induced either global hyperacetylation by pharmacological inhibition or by targeting a histone acetyltransferase to the heterochromatic region of the X chromosomes. Our data reveal that histone acetylation level affects DNA replication dynamics of the sex chromosomes’ heterochromatin and leads to a global reduction in replication fork rate genome wide. Conclusions In conclusion, we mapped major epigenetic modifications controlling the structure of the sex chromosome-associated heterochromatin and demonstrated the occurrence of differences in the molecular mechanisms controlling the replication timing of the heterochromatic blocks at the sex chromosomes in female Microtus cabrerae cells. Furthermore, we highlighted a conserved role of histone acetylation level on replication dynamics across mammalian species. Electronic supplementary material The online version of this article (10.1186/s13072-019-0262-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathrin S Heinz
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - Alexander Rapp
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - Corella S Casas-Delucchi
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany.,Chromosome Replication Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | | | - Antonio Sánchez
- Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Oliver H Krämer
- Institute of Toxicology, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | | | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany.
| |
Collapse
|
176
|
Zhao Y, Ding L, Wang D, Ye Z, He Y, Ma L, Zhu R, Pan Y, Wu Q, Pang K, Hou X, Weroha SJ, Han C, Coleman R, Coleman I, Karnes RJ, Zhang J, Nelson PS, Wang L, Huang H. EZH2 cooperates with gain-of-function p53 mutants to promote cancer growth and metastasis. EMBO J 2019; 38:e99599. [PMID: 30723117 PMCID: PMC6396169 DOI: 10.15252/embj.201899599] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022] Open
Abstract
In light of the increasing number of identified cancer-driven gain-of-function (GOF) mutants of p53, it is important to define a common mechanism to systematically target several mutants, rather than developing strategies tailored to inhibit each mutant individually. Here, using RNA immunoprecipitation-sequencing (RIP-seq), we identified the Polycomb-group histone methyltransferase EZH2 as a p53 mRNA-binding protein. EZH2 bound to an internal ribosome entry site (IRES) in the 5'UTR of p53 mRNA and enhanced p53 protein translation in a methyltransferase-independent manner. EZH2 augmented p53 GOF mutant-mediated cancer growth and metastasis by increasing protein levels of mutant p53. EZH2 overexpression was associated with worsened outcome selectively in patients with p53-mutated cancer. Depletion of EZH2 by antisense oligonucleotides inhibited p53 GOF mutant-mediated cancer growth. Our findings reveal a non-methyltransferase function of EZH2 that controls protein translation of p53 GOF mutants, inhibition of which causes synthetic lethality in cancer cells expressing p53 GOF mutants.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Liya Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dejie Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zhenqing Ye
- Division of Medical Informatics and Statistics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Linlin Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Runzhi Zhu
- Center for Cell Therapy, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Qiang Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Pang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Urology, Xuzhou Central Hospital and Medical College affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Saravut J Weroha
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital and Medical College affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Roger Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - R Jeffery Karnes
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Liguo Wang
- Division of Medical Informatics and Statistics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
177
|
Abstract
Despite essential roles played by long noncoding RNAs (lncRNAs) in development and disease, methods to determine lncRNA cis-elements are lacking. Here, we developed a screening method named “Tiling CRISPR” to identify lncRNA functional domains. Using this approach, we identified Xist A-Repeats as the silencing domain, an observation in agreement with published work, suggesting Tiling CRISPR feasibility. Mechanistic analysis suggested a novel function for Xist A-repeats in promoting Xist transcription. Overall, our method allows mapping of lncRNA functional domains in an unbiased and potentially high-throughput manner to facilitate the understanding of lncRNA functions.
Collapse
|
178
|
Renault S, Genty M, Gabori A, Boisneau C, Esnault C, Dugé de Bernonville T, Augé-Gouillou C. The epigenetic regulation of HsMar1, a human DNA transposon. BMC Genet 2019; 20:17. [PMID: 30764754 PMCID: PMC6375154 DOI: 10.1186/s12863-019-0719-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Both classes of transposable elements (DNA and RNA) are tightly regulated at the transcriptional level leading to the inactivation of transposition via epigenetic mechanisms. Due to the high copies number of these elements, the hypothesis has emerged that their regulation can coordinate a regulatory network of genes. Herein, we investigated whether transposition regulation of HsMar1, a human DNA transposon, differs in presence or absence of endogenous HsMar1 copies. In the case where HsMar1 transposition is regulated, the number of repetitive DNA sequences issued by HsMar1 and distributed in the human genome makes HsMar1 a good candidate to regulate neighboring gene expression by epigenetic mechanisms. RESULTS A recombinant active HsMar1 copy was inserted in HeLa (human) and CHO (hamster) cells and its genomic excision monitored. We show that HsMar1 excision is blocked in HeLa cells, whereas CHO cells are competent to promote HsMar1 excision. We demonstrate that de novo HsMar1 insertions in HeLa cells (human) undergo rapid silencing by cytosine methylation and apposition of H3K9me3 marks, whereas de novo HsMar1 insertions in CHO cells (hamster) are not repressed and enriched in H3K4me3 modifications. The overall analysis of HsMar1 endogenous copies in HeLa cells indicates that neither full-length endogenous inactive copies nor their Inverted Terminal Repeats seem to be specifically silenced, and are, in contrast, devoid of epigenetic marks. Finally, the setmar gene, derived from HsMar1, presents H3K4me3 modifications as expected for a human housekeeping gene. CONCLUSIONS Our work highlights that de novo and old HsMar1 are not similarly regulated by epigenetic mechanisms. Old HsMar1 are generally detected as lacking epigenetic marks, irrespective their localisation relative to the genes. Considering the putative existence of a network associating HsMar1 old copies and SETMAR, two non-mutually exclusive hypotheses are proposed: active and inactive HsMar1 copies are not similarly regulated or/and regulations concern only few loci (and few genes) that cannot be detected at the whole genome level.
Collapse
Affiliation(s)
- Sylvaine Renault
- EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France
- UMR 1253, iBrain, University of Tours, INSERM, Tours, France
| | - Murielle Genty
- EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France
- UMR 1253, iBrain, University of Tours, INSERM, Tours, France
| | - Alison Gabori
- EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | - Catherine Boisneau
- UMR CITERES CNRS 7324, Université de Tours, 35 Allée Ferdinand de Lesseps, 37200 Tours, France
| | - Charles Esnault
- EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France
| | | | - Corinne Augé-Gouillou
- EA 6306 Instabilité génétique et cancer, Université de Tours, UFR Sciences et Techniques, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France
- UMR 1253, iBrain, University of Tours, INSERM, Tours, France
| |
Collapse
|
179
|
Baek SK, Cho YS, Kim IS, Jeon SB, Moon DK, Hwangbo C, Choi JW, Kim TS, Lee JH. A Rho-Associated Coiled-Coil Containing Kinase Inhibitor, Y-27632, Improves Viability of Dissociated Single Cells, Efficiency of Colony Formation, and Cryopreservation in Porcine Pluripotent Stem Cells. Cell Reprogram 2019; 21:37-50. [DOI: 10.1089/cell.2018.0020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Sang-Ki Baek
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Plus), IALS, PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Soo Cho
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Plus), IALS, PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Ik-Sung Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Soo-Been Jeon
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Dae-Ky Moon
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21 Plus), IALS, PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Woo Choi
- College of Animal Life Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Tae-Suk Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
180
|
Li Y, Guo D, Sun R, Chen P, Qian Q, Fan H. Methylation Patterns of Lys9 and Lys27 on Histone H3 Correlate with Patient Outcome in Gastric Cancer. Dig Dis Sci 2019; 64:439-446. [PMID: 30350241 DOI: 10.1007/s10620-018-5341-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Histone methylation has been considered as one of the epigenetic mechanisms of carcinogenesis and progression. Researches on the correlation between histone lysine methylation and gastric cancer (GC) will help in finding novel epigenetic biomarkers for monitoring cancers. AIMS The study detected the expression patterns of histone 3 lysine 9 dimethylation (H3K9me2), histone 3 lysine 9 trimethylation (H3K9me3), and histone 3 lysine 27 trimethylation (H3K27me3) in GC tissues and evaluated their clinical merit for GC patients. METHODS One hundred thirty-three paraffin-embedded GC samples were examined by immunohistochemistry for the histone markers: H3K9me2, H3K9me3, and H3K27me3. The relationship and clinicopathological significance of the three lysine methylations on histone H3 with GC were assessed by Paired t test, Chi-square test, Kaplan-Meier analysis with log-rank test, and Cox proportional hazard analyses. RESULTS Strong positive immunostaining of H3K9me2, H3K9me3, and H3K27me3 was observed in cancerous tissues than in their counterpart non-cancer tissues. Higher expression patterns of H3K9me2, H3K9me3, and H3K27me3 significantly related to differentiation degree, lymph nodes metastases, and pathological TNM staging in GC. The GC patients with low scoring of the three markers implied long survival period and best prognosis. In contrast, the patients' survival time was significantly shorter if their cancerous tissues presented high expression of the three markers. CONCLUSIONS H3K9me2, H3K9me3, and H3K27me3 expression patterns closely relate to clinicopathological features and may be the independent risk factors for the survival of GC patients. The combined pattern of the three markers rather than an individual marker is considered to more accurately evaluate the outcome of GC patients.
Collapse
Affiliation(s)
- Yiping Li
- Department of Medical Genetics and Developmental Biology, Medical School, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China.,Department of Pathology, Medical School, Southeast University, Nanjing, 210009, China
| | - Didi Guo
- Institute of Life Science, The Key Laboratory of Developmental Genes and Human Diseases, Southeast University, Nanjing, 210018, China
| | - Rui Sun
- Department of Medical Genetics and Developmental Biology, Medical School, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Ping Chen
- Department of Oncology, Yancheng First People's Hospital, Yancheng, 224005, China
| | - Qi Qian
- Department of Oncology, Yancheng First People's Hospital, Yancheng, 224005, China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, Medical School, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
181
|
Ramos-Ibeas P, Sang F, Zhu Q, Tang WWC, Withey S, Klisch D, Wood L, Loose M, Surani MA, Alberio R. Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nat Commun 2019; 10:500. [PMID: 30700715 PMCID: PMC6353908 DOI: 10.1038/s41467-019-08387-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023] Open
Abstract
High-resolution molecular programmes delineating the cellular foundations of mammalian embryogenesis have emerged recently. Similar analysis of human embryos is limited to pre-implantation stages, since early post-implantation embryos are largely inaccessible. Notwithstanding, we previously suggested conserved principles of pig and human early development. For further insight on pluripotent states and lineage delineation, we analysed pig embryos at single cell resolution. Here we show progressive segregation of inner cell mass and trophectoderm in early blastocysts, and of epiblast and hypoblast in late blastocysts. We show that following an emergent short naive pluripotent signature in early embryos, there is a protracted appearance of a primed signature in advanced embryonic stages. Dosage compensation with respect to the X-chromosome in females is attained via X-inactivation in late epiblasts. Detailed human-pig comparison is a basis towards comprehending early human development and a foundation for further studies of human pluripotent stem cell differentiation in pig interspecies chimeras. Lineage segregation from conception to gastrulation has been mapped at the single cell level in mouse, human and monkey. Here, the authors provide a comprehensive analysis of porcine preimplantation development using single cell RNA-seq; mapping metabolic changes, X chromosome inactivation and signalling pathways.
Collapse
Affiliation(s)
- Priscila Ramos-Ibeas
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.,Animal Reproduction Department, National Institute for Agricultural and Food Research and Technology, 28040, Madrid, Spain
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Qifan Zhu
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Walfred W C Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Sarah Withey
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.,Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Building 75, St Lucia, QLD, 4072, Australia
| | - Doris Klisch
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Liam Wood
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK
| | - Matt Loose
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK. .,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Nottingham, LE12 5RD, UK.
| |
Collapse
|
182
|
Jégu T, Blum R, Cochrane JC, Yang L, Wang CY, Gilles ME, Colognori D, Szanto A, Marr SK, Kingston RE, Lee JT. Xist RNA antagonizes the SWI/SNF chromatin remodeler BRG1 on the inactive X chromosome. Nat Struct Mol Biol 2019; 26:96-109. [PMID: 30664740 PMCID: PMC6421574 DOI: 10.1038/s41594-018-0176-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023]
Abstract
The noncoding RNA Xist recruits silencing factors to the inactive X chromosome (Xi) and facilitates re-organization of Xi structure. Here, we examine the mouse epigenomic landscape of Xi and assess how Xist alters chromatin accessibility. Interestingly, Xist deletion triggers a gain of accessibility of selective chromatin regions that is regulated by BRG1, an ATPase subunit of the SWI/SNF chromatin remodeling complex. In vitro, RNA binding inhibits nucleosome remodeling and ATPase activities of BRG1, while in cell culture Xist directly interacts with BRG1 and expels BRG1 from the Xi. Xist ablation leads to a selective return of BRG1 in cis, starting from pre-existing BRG1 sites that are free of Xist. BRG1 re-association correlates with cohesin binding and restoration of topologically associated domains (TADs), and results in formation of de novo Xi “superloops.” Thus, Xist binding inhibits BRG1’s nucleosome remodeling activity and results in expulsion of the SWI/SNF complex from the Xi.
Collapse
Affiliation(s)
- Teddy Jégu
- Howard Hughes Medical Institute, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Roy Blum
- Howard Hughes Medical Institute, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jesse C Cochrane
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lin Yang
- Howard Hughes Medical Institute, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chen-Yu Wang
- Howard Hughes Medical Institute, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maud-Emmanuelle Gilles
- Institute for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Colognori
- Howard Hughes Medical Institute, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Attila Szanto
- Howard Hughes Medical Institute, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sharon K Marr
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Boston, MA, USA. .,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
183
|
Yamada T, Nabe S, Toriyama K, Suzuki J, Inoue K, Imai Y, Shiraishi A, Takenaka K, Yasukawa M, Yamashita M. Histone H3K27 Demethylase Negatively Controls the Memory Formation of Antigen-Stimulated CD8 + T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:1088-1098. [PMID: 30626691 DOI: 10.4049/jimmunol.1801083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
Abstract
Although the methylation status of histone H3K27 plays a critical role in CD4+ T cell differentiation and its function, the role of Utx histone H3K27 demethylase in the CD8+ T cell-dependent immune response remains unclear. We therefore generated T cell-specific Utx flox/flox Cd4-Cre Tg (Utx KO) mice to determine the role of Utx in CD8+ T cells. Wild-type (WT) and Utx KO mice were infected with Listeria monocytogenes expressing OVA to analyze the immune response of Ag-specific CD8+ T cells. There was no significant difference in the number of Ag-specific CD8+ T cells upon primary infection between WT and Utx KO mice. However, Utx deficiency resulted in more Ag-specific CD8+ T cells upon secondary infection. Adoptive transfer of Utx KO CD8+ T cells resulted in a larger number of memory cells in the primary response than in WT. We observed a decreased gene expression of effector-associated transcription factors, including Prdm1 encoding Blimp1, in Utx KO CD8+ T cells. We confirmed that the trimethylation level of histone H3K27 in the Prdm1 gene loci in the Utx KO cells was higher than in the WT cells. The treatment of CD8+ T cells with Utx-cofactor α-ketoglutarate hampered the memory formation, whereas Utx inhibitor GSK-J4 enhanced the memory formation in WT CD8+ T cells. These data suggest that Utx negatively controls the memory formation of Ag-stimulated CD8+ T cells by epigenetically regulating the gene expression. Based on these findings, we identified a critical link between Utx and the differentiation of Ag-stimulated CD8+ T cells.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, Tobe, Ehime 791-2101, Japan; .,Department of Infection and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Shogo Nabe
- Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Koji Toriyama
- Department of Ophthalmology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Junpei Suzuki
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan.,Department of Translational Immunology, Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Kazuki Inoue
- Division of Integrative Pathophysiology, Department of Proteo-Inovation, Proteo-Science Center, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; and
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Department of Proteo-Inovation, Proteo-Science Center, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; and
| | - Atsushi Shiraishi
- Department of Ophthalmology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Katsuto Takenaka
- Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Masaki Yasukawa
- Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan.,Division of Immune Regulation, Department of Proteo-Innovation, Proteo-Science Center, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan; .,Department of Translational Immunology, Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan.,Division of Immune Regulation, Department of Proteo-Innovation, Proteo-Science Center, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| |
Collapse
|
184
|
Abstract
Polycomb repressive complex 2 (PRC2) and its methylation of histone 3 at lysine 27 (H3K27me3) play a crucial role in epigenetic regulation of normal development and malignancy. Several factors regulate the recruitment of PRC2 and affects its chromatin modification function. Over the past years, emerging discoveries have portrayed the association of RNA (protein-coding and non-coding) with PRC2 as a critical factor in understanding PRC2 function. With PRC2 being a macromolecular complex of interest in development and diseases, further studies are needed to relate the rapidly evolving PRC2:RNA biology in that scenario. In this review, we summarize the current understanding of different modes of RNA binding by PRC2, and further discuss perspectives, key questions and therapeutic applications of PRC2 binding to RNAs.
Collapse
Affiliation(s)
- Junli Yan
- a Cancer Science Institute of Singapore , National University of Singapore , Singapore , Singapore
| | - Bibek Dutta
- b Department of Medicine , Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore
| | - Yan Ting Hee
- c Lee Kong Chian School of Medicine , Nanyang Technological University , Singapore , Singapore
| | - Wee-Joo Chng
- a Cancer Science Institute of Singapore , National University of Singapore , Singapore , Singapore.,b Department of Medicine , Yong Loo Lin School of Medicine, National University of Singapore , Singapore , Singapore.,d Department of Hematology-Oncology , National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS) , Singapore , Singapore
| |
Collapse
|
185
|
Syrett CM, Sindhava V, Sierra I, Dubin AH, Atchison M, Anguera MC. Diversity of Epigenetic Features of the Inactive X-Chromosome in NK Cells, Dendritic Cells, and Macrophages. Front Immunol 2019; 9:3087. [PMID: 30671059 PMCID: PMC6331414 DOI: 10.3389/fimmu.2018.03087] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/13/2018] [Indexed: 12/22/2022] Open
Abstract
In females, the long non-coding RNA Xist drives X-chromosome Inactivation (XCI) to equalize X-linked gene dosage between sexes. Unlike other somatic cells, dynamic regulation of Xist RNA and heterochromatin marks on the inactive X (Xi) in female lymphocytes results in biallelic expression of some X-linked genes, including Tlr7, Cxcr3, and Cd40l, implicated in sex-biased autoimmune diseases. We now find that while Xist RNA is dispersed across the nucleus in NK cells and dendritic cells (DCs) and partially co-localizes with H3K27me3 in bone marrow-derived macrophages, it is virtually absent in plasmacytoid DCs (p-DCs). Moreover, H3K27me3 foci are present in only 10–20% of cells and we observed biallelic expression of Tlr7 in p-DCs from wildtype mice and NZB/W F1 mice. Unlike in humans, mouse p-DCs do not exhibit sex differences with interferon alpha production, and interferon signature gene expression in p-DCs is similar between males and females. Despite the absence of Xist RNA from the Xi, female p-DCs maintain dosage compensation of six immunity-related X-linked genes. Thus, immune cells use diverse mechanisms to maintain XCI which could contribute to sex-linked autoimmune diseases.
Collapse
Affiliation(s)
- Camille M Syrett
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Vishal Sindhava
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Isabel Sierra
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Aimee H Dubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael Atchison
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
186
|
The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome. Nat Commun 2019; 10:30. [PMID: 30604745 PMCID: PMC6318279 DOI: 10.1038/s41467-018-07907-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
The inactive X chromosome (Xi) in female mammals adopts an atypical higher-order chromatin structure, manifested as a global loss of local topologically associated domains (TADs), A/B compartments and formation of two mega-domains. Here we demonstrate that the non-canonical SMC family protein, SmcHD1, which is important for gene silencing on Xi, contributes to this unique chromosome architecture. Specifically, allelic mapping of the transcriptome and epigenome in SmcHD1 mutant cells reveals the appearance of sub-megabase domains defined by gene activation, CpG hypermethylation and depletion of Polycomb-mediated H3K27me3. These domains, which correlate with sites of SmcHD1 enrichment on Xi in wild-type cells, additionally adopt features of active X chromosome higher-order chromosome architecture, including A/B compartments and partial restoration of TAD boundaries. Xi chromosome architecture changes also occurred following SmcHD1 knockout in a somatic cell model, but in this case, independent of Xi gene derepression. We conclude that SmcHD1 is a key factor in defining the unique chromosome architecture of Xi. The inactive X chromosome (Xi) has an atypical structure, with global loss of TADs, A/B compartments and formation of mega-domains. Here the authors show that the non-canonical SMC family protein, SmcHD1, important for developmental gene silencing on Xi, antagonises TAD formation and compartmentalization on the Xi in a transcription independent way.
Collapse
|
187
|
Sauvageau M. Diverging RNPs: Toward Understanding lncRNA-Protein Interactions and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:285-312. [PMID: 31811638 DOI: 10.1007/978-3-030-31434-7_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA-protein interactions are essential to a variety of biological processes. The realization that mammalian genomes are pervasively transcribed brought a tidal wave of tens of thousands of newly identified long noncoding RNAs (lncRNAs) and raised questions about their purpose in cells. The vast majority of lncRNAs have yet to be studied, and it remains to be determined to how many of these transcripts a function can be ascribed. However, results gleaned from studying a handful of these macromolecules have started to reveal common themes of biological function and mechanism of action involving intricate RNA-protein interactions. Some lncRNAs were shown to regulate the chromatin and transcription of distant and neighboring genes in the nucleus, while others regulate the translation or localization of proteins in the cytoplasm. Some lncRNAs were found to be crucial during development, while mutations and aberrant expression of others have been associated with several types of cancer and a plethora of diseases. Over the last few years, the establishment of new technologies has been key in providing the tools to decode the rules governing lncRNA-protein interactions and functions. This chapter will highlight the general characteristics of lncRNAs, their function, and their mode of action, with a special focus on protein interactions. It will also describe the methods at the disposition of scientists to help them cross this next frontier in our understanding of lncRNA biology.
Collapse
Affiliation(s)
- Martin Sauvageau
- Montreal Clinical Research Institute (IRCM), Montréal, QC, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
188
|
Sierant ML, Davey SK. Identification and characterization of a novel nuclear structure containing members of the homologous recombination and DNA damage response pathways. Cancer Genet 2018; 228-229:98-109. [DOI: 10.1016/j.cancergen.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/06/2018] [Accepted: 10/12/2018] [Indexed: 12/22/2022]
|
189
|
Xu C, Guo Y, Liu H, Chen G, Yan Y, Liu T. TUG1 confers cisplatin resistance in esophageal squamous cell carcinoma by epigenetically suppressing PDCD4 expression via EZH2. Cell Biosci 2018; 8:61. [PMID: 30519392 PMCID: PMC6263046 DOI: 10.1186/s13578-018-0260-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Increasing evidence has suggested the involvement of long non-coding RNA taurine upregulated gene 1 (TUG1) in chemoresistance of cancer treatment. However, its function and molecular mechanisms in esophageal squamous cell carcinoma (ESCC) chemoresistance are still not well elucidated. In the present study, we investigate the functional role of TUG1 in cisplatin (DDP) resistance of ESCC and discover the underlying molecular mechanism. RESULTS Our study revealed that TUG1 was up-regulated in DDP-resistant ESCC tissues and cells. High TUG1 expression was correlated with poor prognosis of ESCC patients. TUG1 knockdown improved the sensitivity of ECA109/DDP and EC9706/DDP cells to DDP. Moreover, TUG1 could epigenetically suppress PDCD4 expression via recruiting enhancer of zeste homolog 2. PDCD4 overexpression could mimic the functional role of down-regulated TUG1 in DDP resistance. PDCD4 knockdown counteracted the inductive effect of TUG1 inhibition on DDP sensitivity of ECA109/DDP and EC9706/DDP cells. Furthermore, TUG1 knockdown facilitated DDP sensitivity of DDP-resistant ESCC cells in vivo. CONCLUSION TUG1 knockdown overcame DDP resistance of ESCC by epigenetically silencing PDCD4, providing a novel therapeutic target for ESCC.
Collapse
Affiliation(s)
- Caihui Xu
- Department of Oncology, Shangqiu First People’s Hospital, No. 292 Kaixuan South Road, Shangqiu, 476100 China
| | - Yinmou Guo
- Department of Oncology, Shangqiu First People’s Hospital, No. 292 Kaixuan South Road, Shangqiu, 476100 China
| | - Haiyan Liu
- Department of Oncology, Shangqiu First People’s Hospital, No. 292 Kaixuan South Road, Shangqiu, 476100 China
| | - Gongbin Chen
- Department of Oncology, Shangqiu First People’s Hospital, No. 292 Kaixuan South Road, Shangqiu, 476100 China
| | - Yanju Yan
- Department of Oncology, Shangqiu First People’s Hospital, No. 292 Kaixuan South Road, Shangqiu, 476100 China
| | - Teng Liu
- Department of Oncology, Xinxiang Medical College, No. 601 Jinsui Avenue, Hongqi District, Xinxiang, 453003 China
| |
Collapse
|
190
|
Abstract
Fundamental differences exist between males and females, encompassing anatomy, physiology, behaviour, and genetics. Such differences undoubtedly play a part in the well documented, yet poorly understood, disparity in disease susceptibility between the sexes. Although traditionally attributed to gonadal sex hormone effects, recent work has begun to shed more light on the contribution of genetics - and in particular the sex chromosomes - to these sexual dimorphisms. Here, we explore the accumulating evidence for a significant genetic component to mammalian sexual dimorphism through the paradigm of sex chromosome evolution. The differences between the extant X and Y chromosomes, at both a sequence and regulatory level, arose across 166 million years. A functional result of these differences is cell autonomous sexual dimorphism. By understanding the process that changed a pair of homologous ancestral autosomes into the extant mammalian X and Y, we believe it easier to consider the mechanisms that may contribute to hormone-independent male-female differences. We highlight key roles for genes with homologues present on both sex chromosomes, where the X-linked copy escapes X chromosome inactivation. Finally, we summarise current experimental paradigms and suggest areas for developments to further increase our understanding of cell autonomous sexual dimorphism in the context of health and disease.
Collapse
Affiliation(s)
- Daniel M Snell
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
191
|
Qiao E, Chen D, Li Q, Feng W, Yu X, Zhang X, Xia L, Jin J, Yang H. Long noncoding RNA TALNEC2 plays an oncogenic role in breast cancer by binding to EZH2 to target p57 KIP2 and involving in p-p38 MAPK and NF-κB pathways. J Cell Biochem 2018; 120:3978-3988. [PMID: 30378143 DOI: 10.1002/jcb.27680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 08/21/2018] [Indexed: 12/22/2022]
Abstract
We aimed to investigate the potential role and regulatory mechanism of long noncoding RNA tumor-associated lncRNA expressed in chromosome 2 (TALNEC2) in breast cancer. The expression of TALNEC2 in breast cancer tissues and cells were investigated. MCF-7 and MDA-MB-231 cells were transfected with small interfering RNA (siRNA) duplexes for targeting TALNEC2 (si-TALNEC2), enhancer of zeste homolog 2 (EZH2; si-EZH2) and p57KIP2 (si-p57 KIP2 ), and their corresponding controls (si-NC). The viability, colony forming ability, cell cycle, apoptosis, and autophagy of transfected cells were assessed. The expressions of p-p38 mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathway-related proteins were investigated. The results showed that TALNEC2 was highly expressed in breast cancer tissues and cells. Knockdown of TALNEC2 significantly inhibited the malignant behaviors of MCF-7 and MDA-MB-231 cells, including inhibiting cell viability and colony forming, arresting cell cycle at G0/G1 phase, inducing cell apoptosis, and promoting cell autophagy. EZH2 was a TALNEC2 binding protein, which was upregulated in breast cancer tissues and cells and could negatively regulate p57 KIP2 . Effects of TALNEC2 knockdown on malignant behaviors of MCF-7 cells were reversed by p57 KIP2 knockdown. The expressions of p-p38, RelA, and RelB in MCF-7 cells were decreased after knockdown of TALNEC2 or EZH2, which were reversed by knockdown of p57 KIP2 concurrently. In conclusion, TALNEC2 may play an oncogenic role in breast cancer by binding to EZH2 to target p57 KIP2 . Activation of p-p38 MAPK and NF-κB pathways may be key mechanisms mediating the oncogenic role of TALNEC2 in breast cancer. TALNEC2 may serve as a promising target in the therapy of breast cancer.
Collapse
Affiliation(s)
- Enqi Qiao
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Daobao Chen
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qinglin Li
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Weiliang Feng
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xingfei Yu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiping Zhang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Liang Xia
- Department of Cerebral Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ju Jin
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Hongjian Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
192
|
Nishitani K, Hayakawa K, Tanaka S. Extracellular glucose levels in cultures of undifferentiated mouse trophoblast stem cells affect gene expression during subsequent differentiation with replicable cell line-dependent variation. J Reprod Dev 2018; 65:19-27. [PMID: 30318498 PMCID: PMC6379769 DOI: 10.1262/jrd.2018-083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mouse trophoblast stem cells (TSCs) have been established and maintained using hyperglycemic conditions (11 mM glucose) for no apparent good reason. Because glucose metabolites are used as
resources for cellular energy production, biosynthesis, and epigenetic modifications, differences in extracellular glucose levels may widely affect cellular function. Since the hyperglycemic
culture conditions used for TSC culture have not been fully validated, the effect of extracellular glucose levels on the properties of TSCs remains unclear. To address this issue, we
investigated the gene expression of stemness-related transcription factors in TSCs cultured in the undifferentiated state under various glucose concentrations. We also examined the
expression of trophoblast subtype markers during differentiation, after returning the glucose concentration to the conventional culture concentration (11 mM). As a result, it appeared that
the extracellular glucose conditions in the stem state not only affected the gene expression of stemness-related transcription factors before differentiation but also affected the expression
of marker genes after differentiation, with some line-to-line variation. In the TS4 cell line, which showed the largest glucose concentration-dependent fluctuations in gene expression among
all the lines examined, low glucose (1 mM glucose, LG) augmented H3K27me3 levels. An Ezh2 inhibitor prevented these LG-induced changes in gene expression, suggesting the possible involvement
of H3K27me3 in the changes in gene expression seen in LG. These results collectively indicate that the response of the TSCs to the change in the extracellular glucose concentration is cell
line-dependent and a part of which may be epigenetically memorized.
Collapse
Affiliation(s)
- Kenta Nishitani
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Koji Hayakawa
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Satoshi Tanaka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
193
|
Jowhar Z, Shachar S, Gudla PR, Wangsa D, Torres E, Russ JL, Pegoraro G, Ried T, Raznahan A, Misteli T. Effects of human sex chromosome dosage on spatial chromosome organization. Mol Biol Cell 2018; 29:2458-2469. [PMID: 30091656 PMCID: PMC6233059 DOI: 10.1091/mbc.e18-06-0359] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 01/08/2023] Open
Abstract
Sex chromosome aneuploidies (SCAs) are common genetic syndromes characterized by the presence of an aberrant number of X and Y chromosomes due to meiotic defects. These conditions impact the structure and function of diverse tissues, but the proximal effects of SCAs on genome organization are unknown. Here, to determine the consequences of SCAs on global genome organization, we have analyzed multiple architectural features of chromosome organization in a comprehensive set of primary cells from SCA patients with various ratios of X and Y chromosomes by use of imaging-based high-throughput chromosome territory mapping (HiCTMap). We find that X chromosome supernumeracy does not affect the size, volume, or nuclear position of the Y chromosome or an autosomal chromosome. In contrast, the active X chromosome undergoes architectural changes as a function of increasing X copy number as measured by a decrease in size and an increase in circularity, which is indicative of chromatin compaction. In Y chromosome supernumeracy, Y chromosome size is reduced suggesting higher chromatin condensation. The radial positioning of chromosomes is unaffected in SCA karyotypes. Taken together, these observations document changes in genome architecture in response to alterations in sex chromosome numbers and point to trans-effects of dosage compensation on chromosome organization.
Collapse
Affiliation(s)
- Ziad Jowhar
- Cell Biology of Genomes Group, National Institutes of Health, Bethesda, MD 20892
| | - Sigal Shachar
- Cell Biology of Genomes Group, National Institutes of Health, Bethesda, MD 20892
| | - Prabhakar R. Gudla
- High-Throughput Imaging Facility, National Institutes of Health, Bethesda, MD 20892
| | - Darawalee Wangsa
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Erin Torres
- Human Genetics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Jill L. Russ
- Human Genetics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Institutes of Health, Bethesda, MD 20892
| | - Thomas Ried
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Armin Raznahan
- Human Genetics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Tom Misteli
- Cell Biology of Genomes Group, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
194
|
Sakakibara Y, Nagao K, Blewitt M, Sasaki H, Obuse C, Sado T. Role of SmcHD1 in establishment of epigenetic states required for the maintenance of the X-inactivated state in mice. Development 2018; 145:dev.166462. [PMID: 30126901 DOI: 10.1242/dev.166462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/10/2018] [Indexed: 01/01/2023]
Abstract
X inactivation in mammals is regulated by epigenetic modifications. Functional deficiency of SmcHD1 has been shown to cause de-repression of X-inactivated genes in post-implantation female mouse embryos, suggesting a role of SmcHD1 in the maintenance of X inactivation. Here, we show that de-repression of X-inactivated genes accompanied a local reduction in the enrichment of H3K27me3 in mouse embryonic fibroblasts deficient for SmcHD1. Furthermore, many of these genes overlapped with those having a significantly lower enrichment of H3K27me3 at the blastocyst stage in wild type. Intriguingly, however, depletion of SmcHD1 did not compromise the X-inactivated state in immortalized female mouse embryonic fibroblasts, in which X inactivation had been established and maintained. Taking all these findings together, we suggest that SmcHD1 facilitates the incorporation of H3K27me3 and perhaps other epigenetic modifications at gene loci that are silenced even with the lower enrichment of H3K27me3 at the early stage of X inactivation. The epigenetic state at these loci would, however, remain as it is at the blastocyst stage in the absence of SmcHD1 after implantation, which would eventually compromise the maintenance of the X-inactivated state at later stages.
Collapse
Affiliation(s)
- Yuki Sakakibara
- Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Nagao
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Marnie Blewitt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052 VIC, Australia; The Department of Medical Biology, University of Melbourne, Parkville 3052, VIC, Australia
| | - Hiroyuki Sasaki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chikashi Obuse
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takashi Sado
- Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan .,Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, 3327-204, Nakamachi, Nara, 630-8505, Japan
| |
Collapse
|
195
|
Luijk R, Wu H, Ward-Caviness CK, Hannon E, Carnero-Montoro E, Min JL, Mandaviya P, Müller-Nurasyid M, Mei H, van der Maarel SM, Relton C, Mill J, Waldenberger M, Bell JT, Jansen R, Zhernakova A, Franke L, 't Hoen PAC, Boomsma DI, van Duijn CM, van Greevenbroek MMJ, Veldink JH, Wijmenga C, van Meurs J, Daxinger L, Slagboom PE, van Zwet EW, Heijmans BT. Autosomal genetic variation is associated with DNA methylation in regions variably escaping X-chromosome inactivation. Nat Commun 2018; 9:3738. [PMID: 30218040 PMCID: PMC6138682 DOI: 10.1038/s41467-018-05714-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/23/2018] [Indexed: 12/28/2022] Open
Abstract
X-chromosome inactivation (XCI), i.e., the inactivation of one of the female X chromosomes, restores equal expression of X-chromosomal genes between females and males. However, ~10% of genes show variable degrees of escape from XCI between females, although little is known about the causes of variable XCI. Using a discovery data-set of 1867 females and 1398 males and a replication sample of 3351 females, we show that genetic variation at three autosomal loci is associated with female-specific changes in X-chromosome methylation. Through cis-eQTL expression analysis, we map these loci to the genes SMCHD1/METTL4, TRIM6/HBG2, and ZSCAN9. Low-expression alleles of the loci are predominantly associated with mild hypomethylation of CpG islands near genes known to variably escape XCI, implicating the autosomal genes in variable XCI. Together, these results suggest a genetic basis for variable escape from XCI and highlight the potential of a population genomics approach to identify genes involved in XCI.
Collapse
Affiliation(s)
- René Luijk
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Haoyu Wu
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Cavin K Ward-Caviness
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, 85764, Oberschleißheim, Germany
| | - Eilis Hannon
- University of Exeter Medical School, Exeter, EX4 4QD, UK
| | - Elena Carnero-Montoro
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
- Pfizer - University of Granada - Andalusian Government Center for Genomics and Oncological Research (GENYO), Granada, 18016, Spain
| | - Josine L Min
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 1TH, UK
- Bristol Medical School, University of Bristol, Bristol, BS8 1UD, UK
| | - Pooja Mandaviya
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, 3015 CE, The Netherlands
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Martina Müller-Nurasyid
- DZHK (German Centre for Cardiovascular Research), partner site: Munich Heart Alliance, Munich, 80802, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, D-85764, Germany
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - Hailiang Mei
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Silvere M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 1TH, UK
| | - Jonathan Mill
- University of Exeter Medical School, Exeter, EX4 4QD, UK
| | - Melanie Waldenberger
- Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, 85764, Oberschleißheim, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, D-85764, Germany
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Rick Jansen
- Department of Psychiatry, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, 9713 AV, The Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, 9713 AV, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Neuroscience Campus Amsterdam, Amsterdam, 1081 TB, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Genetic Epidemiology Unit, ErasmusMC, Rotterdam, 3015 GE, The Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, 6211 LK, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, Maastricht, 6229 ER, The Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, 9713 AV, The Netherlands
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, 3015 CE, The Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Erik W van Zwet
- Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands.
| |
Collapse
|
196
|
Live-Cell Imaging and Functional Dissection of Xist RNA Reveal Mechanisms of X Chromosome Inactivation and Reactivation. iScience 2018; 8:1-14. [PMID: 30266032 PMCID: PMC6159346 DOI: 10.1016/j.isci.2018.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 11/24/2022] Open
Abstract
We double-tagged Xist (inactivated X chromosome-specific transcript), a prototype long non-coding RNA pivotal for X chromosome inactivation (XCI), using the programmable RNA sequence binding domain of Pumilio protein, one tag for live-cell imaging and the other replacing A-repeat (a critical domain of Xist) to generate “ΔA mutant” and to tether effector proteins for dissecting Xist functionality. Based on the observation in live cells that the induced XCI in undifferentiated embryonic stem (ES) cells is counteracted by the intrinsic X chromosome reactivation (XCR), we identified Kat8 and Msl2, homologs of Drosophila dosage compensation proteins, as players involved in mammalian XCR. Furthermore, live-cell imaging revealed the obviously undersized ΔA Xist cloud signals, clarifying an issue regarding the previous RNA fluorescence in situ hybridization results. Tethering candidate proteins onto the ΔA mutant reveals the significant roles of Ythdc1, Ezh2, and SPOC (Spen) in Xist-mediated gene silencing and the significant role of Ezh2 in Xist RNA spreading. A Pumilio-based system allows efficient double-tagging of Xist RNA in live cells Induced XCI in undifferentiated ES cells reveals the roles of Kat8 and Msl2 in XCR Live-cell imaging reveals the undersized “ΔA mutant” Xist signals Tethering proteins onto “ΔA mutant” reveals their role in Xist-mediated silencing
Collapse
|
197
|
Westervelt N, Chadwick BP. Characterization of the ICCE Repeat in Mammals Reveals an Evolutionary Relationship with the DXZ4 Macrosatellite through Conserved CTCF Binding Motifs. Genome Biol Evol 2018; 10:2190-2204. [PMID: 30102341 PMCID: PMC6125249 DOI: 10.1093/gbe/evy176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
Appreciation is growing for how chromosomes are organized in three-dimensional space at interphase. Microscopic and high throughput sequence-based studies have established that the mammalian inactive X chromosome (Xi) adopts an alternate conformation relative to the active X chromosome. The Xi is organized into several multi-megabase chromatin loops called superloops. At the base of these loops are superloop anchors, and in humans three of these anchors are composed of large tandem repeat DNA that include DXZ4, Functional Intergenic Repeating RNA Element, and Inactive-X CTCF-binding Contact Element (ICCE). Each repeat contains a high density of binding sites for the architectural organization protein CCCTC-binding factor (CTCF) which exclusively associates with the Xi allele in normal cells. Removal of DXZ4 from the Xi compromises proper folding of the chromosome. In this study, we report the characterization of the ICCE tandem repeat, for which very little is known. ICCE is embedded within an intron of the Nobody (NBDY) gene locus at Xp11.21. We find that primary DNA sequence conservation of ICCE is only retained in higher primates, but that ICCE orthologs exist beyond the primate lineage. Like DXZ4, what is conserved is organization of the underlying DNA into a large tandem repeat, physical location within the NBDY locus and conservation of short DNA sequences corresponding to specific CTCF and Yin Yang 1 binding motifs that correlate with female-specific DNA hypomethylation. Unlike DXZ4, ICCE is not common to all eutherian mammals. Analysis of certain ICCE CTCF motifs reveal striking similarity with the DXZ4 motif and support an evolutionary relationship between DXZ4 and ICCE.
Collapse
Affiliation(s)
- Natalia Westervelt
- Department of Biological Science, Florida State University, King Life Science Building
| | - Brian P Chadwick
- Department of Biological Science, Florida State University, King Life Science Building
| |
Collapse
|
198
|
Adrianse RL, Smith K, Gatbonton-Schwager T, Sripathy SP, Lao U, Foss EJ, Boers RG, Boers JB, Gribnau J, Bedalov A. Perturbed maintenance of transcriptional repression on the inactive X-chromosome in the mouse brain after Xist deletion. Epigenetics Chromatin 2018; 11:50. [PMID: 30170615 PMCID: PMC6118007 DOI: 10.1186/s13072-018-0219-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/16/2018] [Indexed: 01/22/2023] Open
Abstract
Background The long noncoding RNA Xist is critical for initiation and establishment of X-chromosome inactivation during embryogenesis in mammals, but it is unclear whether its continued expression is required for maintaining X-inactivation in vivo. Results By using an inactive X-chromosome-linked MeCP2-GFP reporter, which allowed us to enumerate reactivation events in the mouse brain even when they occur in very few cells, we found that deletion of Xist in the brain after establishment of X-chromosome inactivation leads to reactivation in 2–5% of neurons and in a smaller fraction of astrocytes. In contrast to global loss of both H3 lysine 27 trimethylation (H3K27m3) and histone H2A lysine 119 monoubiquitylation (H2AK119ub1) we observed upon Xist deletion, alterations in CpG methylation were subtle, and this was mirrored by only minor alterations in X-chromosome-wide gene expression levels, with highly expressed genes more prone to both derepression and demethylation compared to genes with low expression level. Conclusion Our results demonstrate that Xist plays a role in the maintenance of histone repressive marks, DNA methylation and transcriptional repression on the inactive X-chromosome, but that partial loss of X-dosage compensation in the absence of Xist in the brain is well tolerated. Electronic supplementary material The online version of this article (10.1186/s13072-018-0219-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robin L Adrianse
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA, 98109, USA
| | - Kaleb Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA, 98109, USA
| | - Tonibelle Gatbonton-Schwager
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA, 98109, USA
| | - Smitha P Sripathy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA, 98109, USA
| | - Uyen Lao
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA, 98109, USA
| | - Eric J Foss
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA, 98109, USA
| | - Ruben G Boers
- Department of Developmental Biology, Erasmus MC, 3015 CN, Rotterdam, The Netherlands.,Department of Obstetrics and Gynaecology, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Joachim B Boers
- Department of Developmental Biology, Erasmus MC, 3015 CN, Rotterdam, The Netherlands.,Delft Diagnostic Laboratories, 2288 ER, Rijswijk, The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA, 98109, USA. .,Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA. .,Department of Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
199
|
Syrett CM, Sierra I, Berry CL, Beiting D, Anguera MC. Sex-Specific Gene Expression Differences Are Evident in Human Embryonic Stem Cells and During In Vitro Differentiation of Human Placental Progenitor Cells. Stem Cells Dev 2018; 27:1360-1375. [PMID: 29993333 DOI: 10.1089/scd.2018.0081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The placenta is a short-lived tissue required for embryonic growth and survival, and it is fetal derived. Fetal sex influences gestation, and many sexual dimorphic diseases have origins in utero. There is sex-biased gene expression in third-trimester human placentas, yet the origin of sex-specific expression is unknown. Here, we used an in vitro differentiation model to convert human embryonic stem cells (hESCs) into trophoblastic progenitor cells of the first-trimester placenta, which will eventually become mature extravillous trophoblasts and syncytiotrophoblasts. We observed significant sex differences in transcriptomic profiles of hESCs and trophoblastic progenitors, and also with the differentiation process itself. Male cells had higher dosage of X/Y gene pairs relative to female samples, supporting functions for Y-linked genes beyond spermatogenesis in the hESCs and in the early placenta. Female-specific differentiation altered the expression of several thousand genes compared with male cells, and female cells specifically upregulated numerous autosomal genes with known roles in trophoblast function. Sex-biased upregulation of cellular pathways during trophoblast differentiation was also evident. This study is the first to identify sex differences in trophoblastic progenitor cells of the first-trimester human placenta, and reveal early origins for sexual dimorphism.
Collapse
Affiliation(s)
- Camille M Syrett
- 1 Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Isabel Sierra
- 1 Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Corbett L Berry
- 2 Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Daniel Beiting
- 2 Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Montserrat C Anguera
- 1 Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
200
|
Sun Z, Chadwick BP. Loss of SETDB1 decompacts the inactive X chromosome in part through reactivation of an enhancer in the IL1RAPL1 gene. Epigenetics Chromatin 2018; 11:45. [PMID: 30103804 PMCID: PMC6088404 DOI: 10.1186/s13072-018-0218-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/10/2018] [Indexed: 01/04/2023] Open
Abstract
Background The product of dosage compensation in female mammals is the inactive X chromosome (Xi). Xi facultative heterochromatin is organized into two different types, one of which is defined by histone H3 trimethylated at lysine 9 (H3K9me3). The rationale for this study was to assess SET domain bifurcated 1 (SETDB1) as a candidate for maintaining this repressive modification at the human Xi. Results Here, we show that loss of SETDB1 does not result in large-scale H3K9me3 changes at the Xi, but unexpectedly we observed striking decompaction of the Xi territory. Close examination revealed a 0.5 Mb region of the Xi that transitioned from H3K9me3 heterochromatin to euchromatin within the 3′ end of the IL1RAPL1 gene that is part of a common chromosome fragile site that is frequently deleted or rearranged in patients afflicted with intellectual disability and other neurological ailments. Centrally located within this interval is a powerful enhancer adjacent to an ERVL-MaLR element. In the absence of SETDB1, the enhancer is reactivated on the Xi coupled with bidirectional transcription from the ERVL-MaLR element. Xa deletion of the enhancer/ERVL-MaLR resulted in loss of full-length IL1RAPL1 transcript in cis, coupled with trans decompaction of the Xi chromosome territory, whereas Xi deletion increased detection of full-length IL1RAPL1 transcript in trans, but did not impact Xi compaction. Conclusions These data support a critical role for SETDB1 in maintaining the ERVL-MaLR element and adjacent enhancer in the 3′ end of the IL1RAPL1 gene in a silent state to facilitate Xi compaction. Electronic supplementary material The online version of this article (10.1186/s13072-018-0218-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhuo Sun
- Department of Biological Science, Florida State University, 319 Stadium Drive, King 3076, Tallahassee, FL, 32306-4295, USA
| | - Brian P Chadwick
- Department of Biological Science, Florida State University, 319 Stadium Drive, King 3076, Tallahassee, FL, 32306-4295, USA.
| |
Collapse
|