151
|
In silico Analysis of qBFR4 and qLBL5 in Conferring Quantitative Resistance Against Rice Blast. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
152
|
Sun G, Elowsky C, Li G, Wilson RA. TOR-autophagy branch signaling via Imp1 dictates plant-microbe biotrophic interface longevity. PLoS Genet 2018; 14:e1007814. [PMID: 30462633 PMCID: PMC6281275 DOI: 10.1371/journal.pgen.1007814] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 12/05/2018] [Accepted: 11/06/2018] [Indexed: 01/07/2023] Open
Abstract
Like other intracellular eukaryotic phytopathogens, the devastating rice blast fungus Magnaporthe (Pyricularia) oryzae first infects living host cells by elaborating invasive hyphae (IH) surrounded by a plant-derived membrane. This forms an extended biotrophic interface enclosing an apoplastic compartment into which fungal effectors can be deployed to evade host detection. M. oryzae also forms a focal, plant membrane-rich structure, the biotrophic interfacial complex (BIC), that accumulates cytoplasmic effectors for translocation into host cells. Molecular decision-making processes integrating fungal growth and metabolism in host cells with interface function and dynamics are unknown. Here, we report unanticipated roles for the M. oryzae Target-of-Rapamycin (TOR) nutrient-signaling pathway in mediating plant-fungal biotrophic interface membrane integrity. Through a forward genetics screen for M. oryzae mutant strains resistant to the specific TOR kinase inhibitor rapamycin, we discovered IMP1 encoding a novel vacuolar protein required for membrane trafficking, V-ATPase assembly, organelle acidification and autophagy induction. During infection, Δimp1 deletants developed intracellular IH in the first infected rice cell following cuticle penetration. However, fluorescently labeled effector probes revealed that interface membrane integrity became compromised as biotrophy progressed, abolishing the BIC and releasing apoplastic effectors into host cytoplasm. Growth between rice cells was restricted. TOR-independent autophagy activation in Δimp1 deletants (following infection) remediated interface function and cell-to-cell growth. Autophagy inhibition in wild type (following infection) recapitulated Δimp1. In addition to vacuoles, Imp1GFP localized to IH membranes in an autophagy-dependent manner. Collectively, our results suggest TOR-Imp1-autophagy branch signaling mediates membrane homeostasis to prevent catastrophic erosion of the biotrophic interface, thus facilitating fungal growth in living rice cells. The significance of this work lays in elaborating a novel molecular mechanism of infection stressing the dominance of fungal metabolism and metabolic control in sustaining long-term plant-microbe interactions. This work also has implications for understanding the enigmatic biotrophy to necrotrophy transition. Plant-associated fungi can form intimate connections with living host cells. Clarifying the molecular drivers of these interactions, and which partner is dominant, might be important in understanding how beneficial plant-fungal relationships can be enhanced to improve crop yields while pathogenic interactions that threaten crop health are disrupted. In common with other symbionts and phytopathogens, the devastating rice blast fungus Magnaporthe oryzae elaborates invasive hyphae in living host cells surrounded by plant-derived membranes. Nothing is known at the molecular signaling level about how such plant-microbe biotrophic interfacial zones are maintained as the fungus grows in and between host cells. Here, we report that fungal membrane trafficking processes controlled by nutrient signaling pathways are critical for maintaining biotrophic interface integrity during M. oryzae growth in rice cells. Impairing these processes resulted in erosion of the plant-microbe interface and failure of the fungus to thrive. To our knowledge, this work presents the first evidence indicating that the fungal partner is dominant in propagating the plant-microbe boundary. This suggests that the biotrophic interface is a fungal construct and provides clues on how such interfaces might be modulated to benefit the host plant.
Collapse
Affiliation(s)
- Guangchao Sun
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Christian Elowsky
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Gang Li
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Richard A. Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
153
|
Label-Free Quantitative Proteomics of Lysine Acetylome Identifies Substrates of Gcn5 in Magnaporthe oryzae Autophagy and Epigenetic Regulation. mSystems 2018; 3:mSystems00270-18. [PMID: 30505942 PMCID: PMC6247014 DOI: 10.1128/msystems.00270-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/01/2018] [Indexed: 11/25/2022] Open
Abstract
Gcn5 is a histone acetyltransferase that was previously shown to regulate phototropic and starvation-induced autophagy in the rice blast fungus Magnaporthe oryzae, likely via modification on autophagy protein Atg7. In this study, we identified more potential substrates of Gcn5-mediated acetylation by quantitative and comparative acetylome analyses. By epifluorescence microscopy and biochemistry experiments, we verified that Gcn5 may regulate autophagy induction at both the epigenetic and posttranslational levels and regulate autophagic degradation of a critical metabolic enzyme pyruvate kinase (Pk) likely via acetylation. Overall, our findings reveal comprehensive posttranslational modification executed by Gcn5, in response to various external stimuli, to synergistically promote cellular differentiation in a fungal pathogen. The rice blast fungus Magnaporthe oryzae poses a great threat to global food security. During its conidiation (asexual spore formation) and appressorium (infecting structure) formation, autophagy is induced, serving glycogen breakdown or programmed cell death function, both essential for M. oryzae pathogenicity. Recently, we identified an M. oryzae histone acetyltransferase (HAT) Gcn5 as a key regulator in phototropic induction of autophagy and asexual spore formation while serving a cellular function other than autophagy induction during M. oryzae infection. To further understand the regulatory mechanism of Gcn5 on M. oryzae pathogenicity, we set out to identify more Gcn5 substrates by comparative acetylome between the wild-type (WT) and GCN5 overexpression (OX) mutant and between OX mutant and GCN5 deletion (knockout [KO]) mutant. Our results showed that Gcn5 regulates autophagy induction and other important aspects of fungal pathogenicity, including energy metabolism, stress response, cell toxicity and death, likely via both epigenetic regulation (histone acetylation) and posttranslational modification (nonhistone protein acetylation). IMPORTANCE Gcn5 is a histone acetyltransferase that was previously shown to regulate phototropic and starvation-induced autophagy in the rice blast fungus Magnaporthe oryzae, likely via modification on autophagy protein Atg7. In this study, we identified more potential substrates of Gcn5-mediated acetylation by quantitative and comparative acetylome analyses. By epifluorescence microscopy and biochemistry experiments, we verified that Gcn5 may regulate autophagy induction at both the epigenetic and posttranslational levels and regulate autophagic degradation of a critical metabolic enzyme pyruvate kinase (Pk) likely via acetylation. Overall, our findings reveal comprehensive posttranslational modification executed by Gcn5, in response to various external stimuli, to synergistically promote cellular differentiation in a fungal pathogen.
Collapse
|
154
|
Conidial Morphogenesis and Septin-Mediated Plant Infection Require Smo1, a Ras GTPase-Activating Protein in Magnaporthe oryzae. Genetics 2018; 211:151-167. [PMID: 30446520 PMCID: PMC6325701 DOI: 10.1534/genetics.118.301490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/12/2018] [Indexed: 01/21/2023] Open
Abstract
The pathogenic life cycle of the rice blast fungus Magnaporthe oryzae involves a series of morphogenetic changes, essential for its ability to cause disease. The smo mutation was identified > 25 years ago, and affects the shape and development of diverse cell types in M. oryzae, including conidia, appressoria, and asci. All attempts to clone the SMO1 gene by map-based cloning or complementation have failed over many years. Here, we report the identification of SMO1 by a combination of bulk segregant analysis and comparative genome analysis. SMO1 encodes a GTPase-activating protein, which regulates Ras signaling during infection-related development. Targeted deletion of SMO1 results in abnormal, nonadherent conidia, impaired in their production of spore tip mucilage. Smo1 mutants also develop smaller appressoria, with a severely reduced capacity to infect rice plants. SMO1 is necessary for the organization of microtubules and for septin-dependent remodeling of the F-actin cytoskeleton at the appressorium pore. Smo1 physically interacts with components of the Ras2 signaling complex, and a range of other signaling and cytoskeletal components, including the four core septins. SMO1 is therefore necessary for the regulation of RAS activation required for conidial morphogenesis and septin-mediated plant infection.
Collapse
|
155
|
Distinct roles of the YPEL gene family in development and pathogenicity in the ascomycete fungus Magnaporthe oryzae. Sci Rep 2018; 8:14461. [PMID: 30262874 PMCID: PMC6160453 DOI: 10.1038/s41598-018-32633-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/12/2018] [Indexed: 11/13/2022] Open
Abstract
Members of the Yippee-like (YPEL) gene family are highly conserved in eukaryotes and are homologous to the Drosophila yippee gene. In this study, we functionally characterized two YPEL-homologous genes, MoYPEL1 and MoYPEL2, in the rice blast pathogen Magnaporthe oryzae using the deletion mutants ΔMoypel1, ΔMoypel2, and ΔΔMoypel1,2. The MoYPEL1 deletion mutant was significantly defective in conidiation and unable to undergo appressorium development; however, deletion of MoYPEL2 resulted in a significant increase in conidiation and the abnormal development of two appressoria per conidium. These data demonstrate the opposite roles of each member of the YPEL gene family during the development of M. oryzae. The double mutant was phenotypically similar to the ΔMoypel1 mutant in conidiation, but similar to the ΔMoypel2 mutant in appressorium development. Subcellular localization of the MoYPEL1 protein was dynamic during appressorium development, while the MoYPEL2 protein consistently localized within the nuclei during developmental stages. Our studies indicate that the two YPEL gene family members play distinct roles in the developmental stages of M. oryzae, furthering our understanding of disease dissemination and development in fungi.
Collapse
|
156
|
Cao H, Huang P, Yan Y, Shi Y, Dong B, Liu X, Ye L, Lin F, Lu J. The basic helix-loop-helix transcription factor Crf1 is required for development and pathogenicity of the rice blast fungus by regulating carbohydrate and lipid metabolism. Environ Microbiol 2018; 20:3427-3441. [PMID: 30126031 DOI: 10.1111/1462-2920.14387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 08/12/2018] [Accepted: 08/12/2018] [Indexed: 01/22/2023]
Abstract
Pyricularia oryzae is a plant pathogen causing rice blast, a serious disease spreading in cultivated rice globally. Transcription factors play important regulatory roles in fungal development and pathogenicity. Here, we characterized the biological functions of Crf1, a basic helix-loop-helix (bHLH) transcription factor, in the development and pathogenicity of P. oryzae with functional genetics, molecular and biochemical approaches. We found that CRF1 is necessary for virulence and plays an indispensable role in the regulation of carbohydrate and lipid metabolism in P. oryzae. Deletion of CRF1 led to defects in utilization of lipids, ethanol, glycerol and L-arabinose, and down-regulation of many important genes in lipolysis, β-oxidation, gluconeogenesis, as well as glycerol and arabinose metabolism. CRF1 is also essential for peroxisome and vacuole function, and conidial cell death during appressorium formation. The appressorium turgor, penetration ability and virulence in Δcrf1 were restored by supplementation of exogenous glucose. The virulence of Crf1 mutant was also recovered by adding exogenous D-xylose, but not by addition of ethanol, pyruvate, leucine or L-arabinose. These data showed that Crf1 plays an important role in the complex regulatory network of carbohydrate and lipid metabolism that governs fungal development and pathogenicity.
Collapse
Affiliation(s)
- Huijuan Cao
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu Province, China
| | - Pengyun Huang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yuxin Yan
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yongkai Shi
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Bo Dong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang Province, China
| | - Xiaohong Liu
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Jianping Lu
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.,Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| |
Collapse
|
157
|
Cheng J, Yin Z, Zhang Z, Liang Y. Functional analysis of MoSnf7 in Magnaporthe oryzae. Fungal Genet Biol 2018; 121:29-45. [PMID: 30240788 DOI: 10.1016/j.fgb.2018.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
Abstract
Snf7 is the core subunit protein of the yeast endosomal sorting complex required for transport (ESCRT) complex, which plays important roles in endocytosis and autophagy. In this study, we characterized MoSnf7 in Magnaporthe oryzae, a homolog of yeast Snf7, the core protein of ESCRT-III subcomplex. Like Snf7, MoSnf7 also localizes next to the vacuoles. Deletion of MoSNF7 resulted in significant decrease in vegetative growth and pathogenicity. Further analyses of ΔMosnf7 mutants showed that they were defective in endocytosis, sexual and asexual development, turgor pressure maintenance of appressorium at hyphal tips, and cell wall integrity. Additional assays for the localization and degradation of GFP-MoAtg8 in ΔMosnf7 mutants showed that they were defective in autophagy pathway. Based on the roles of yeast Snf7 in endocytosis and autophagy, we propose that the decreased vegetative growth and pathogenicity of ΔMosnf7 rice blast fungus M. oryzae, was partly due to the conservative roles of MoSnf7 in vesicle trafficking and autophagy pathway.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Yongheng Liang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, and Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
158
|
He M, Xu Y, Chen J, Luo Y, Lv Y, Su J, Kershaw MJ, Li W, Wang J, Yin J, Zhu X, Liu X, Chern M, Ma B, Wang J, Qin P, Chen W, Wang Y, Wang W, Ren Z, Wu X, Li P, Li S, Peng Y, Lin F, Talbot NJ, Chen X. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae. Autophagy 2018; 14:1543-1561. [PMID: 29929416 DOI: 10.1080/15548627.2018.1458171] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy is essential for appressorium-mediated plant infection by Magnaporthe oryzae, the causal agent of rice blast disease and a major threat to global food security. The regulatory mechanism of pathogenicity-associated autophagy, however, remains largely unknown. Here, we report the identification and functional characterization of a plausible ortholog of yeast SNT2 in M. oryzae, which we term MoSNT2. Deletion mutants of MoSNT2 are compromised in autophagy homeostasis and display severe defects in autophagy-dependent fungal cell death and pathogenicity. These mutants are also impaired in infection structure development, conidiation, oxidative stress tolerance and cell wall integrity. MoSnt2 recognizes histone H3 acetylation through its PHD1 domain and thereby recruits the histone deacetylase complex, resulting in deacetylation of H3. MoSnt2 binds to promoters of autophagy genes MoATG6, 15, 16, and 22 to regulate their expression. In addition, MoTor controls MoSNT2 expression to regulate MoTor signaling which leads to autophagy and rice infection. Our study provides evidence of a direct link between MoSnt2 and MoTor signaling and defines a novel epigenetic mechanism by which MoSNT2 regulates infection-associated autophagy and plant infection by the rice blast fungus. ABBREVIATIONS M. oryzae: Magnaporthe oryzae; S. cerevisiae: Saccharomyces cerevisiae; F. oxysporum: Fusarium oxysporum; U. maydis: Ustilago maydis; Compl.: complemented strains of ΔMosnt2 expressing MoSNT2-GFP; ATG: autophagy-related; HDAC: histone deacetylase complex; Tor: target of rapamycin kinase; MTOR: mechanistic target of rapamycin kinase in mammals; MoSnt2: DNA binding SaNT domain protein in M. oryzae; MoTor: target of rapamycin kinase in M. oryzae; MoAtg8: autophagy-related protein 8 in M. oryzae; MoHos2: hda one similar protein in M. oryzae; MoeIf4G: eukaryotic translation initiation factor 4 G in M. oryzae; MoRs2: ribosomal protein S2 in M. oryzae; MoRs3: ribosomal protein S3 in M. oryzae; MoIcl1: isocitrate lyase in M. oryzae; MoSet1: histone H3K4 methyltransferase in M. oryzae; Asd4: ascus development 4; Abl1: AMP-activated protein kinase β subunit-like protein; Tig1: TBL1-like gene required for invasive growth; Rpd3: reduced potassium dependency; KAT8: lysine (K) acetyltransferase 8; PHD: plant homeodomain; ELM2: Egl-27 and MTA1 homology 2; GFP: green fluorescent protein; YFP: yellow fluorescent protein; YFPCTF: C-terminal fragment of YFP; YFPNTF: N-terminal fragment of YFP; GST: glutathione S-transferase; bp: base pairs; DEGs: differentially expressed genes; CM: complete medium; MM-N: minimum medium minus nitrogen; CFW: calcofluor white; CR: congo red; DAPI: 4', 6-diamidino-2-phenylindole; BiFC: bimolecular fluorescence complementation; RT: reverse transcription; PCR: polymerase chain reaction; qPCR: quantitative polymerase chain reaction; RNAi: RNA interference; ChIP: chromatin immunoprecipitation.
Collapse
Affiliation(s)
- Min He
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China.,b School of Biosciences , University of Exeter , Exeter , UK
| | - Youpin Xu
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jinhua Chen
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Yuan Luo
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Yang Lv
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jia Su
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | | | - Weitao Li
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jing Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Junjie Yin
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Xiaobo Zhu
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Xiaohong Liu
- c State Key Laboratory for Rice Biology, Biotechnology Institute , Zhejiang University , Hangzhou , China
| | - Mawsheng Chern
- d Department of Plant Pathology , University of California , Davis , CA , USA
| | - Bingtian Ma
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Jichun Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Peng Qin
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Weilan Chen
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Yuping Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Wenming Wang
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Zhenglong Ren
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Xianjun Wu
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Ping Li
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Shigui Li
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| | - Youliang Peng
- e State Key Laboratory of Agrobiotechnology and MOA, Key Laboratory of Plant Pathology , China Agricultural University , Beijing , China
| | - Fucheng Lin
- c State Key Laboratory for Rice Biology, Biotechnology Institute , Zhejiang University , Hangzhou , China
| | | | - Xuewei Chen
- a State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute , Sichuan Agricultural University , Chengdu , China
| |
Collapse
|
159
|
Ceresini PC, Castroagudín VL, Rodrigues FÁ, Rios JA, Eduardo Aucique-Pérez C, Moreira SI, Alves E, Croll D, Maciel JLN. Wheat Blast: Past, Present, and Future. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:427-456. [PMID: 29975608 DOI: 10.1146/annurev-phyto-080417-050036] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The devastating wheat blast disease first emerged in Brazil in 1985. The disease was restricted to South America until 2016, when a series of grain imports from Brazil led to a wheat blast outbreak in Bangladesh. Wheat blast is caused by Pyricularia graminis-tritici ( Pygt), a species genetically distinct from the Pyricularia oryzae species that causes rice blast. Pygt has high genetic and phenotypic diversity and a broad host range that enables it to move back and forth between wheat and other grass hosts. Recombination is thought to occur mainly on the other grass hosts, giving rise to the highly diverse Pygt population observed in wheat fields. This review brings together past and current knowledge about the history, etiology, epidemiology, physiology, and genetics of wheat blast and discusses the future need for integrated management strategies. The most urgent current need is to strengthen quarantine and biosafety regulations to avoid additional spread of the pathogen to disease-free countries. International breeding efforts will be needed to develop wheat varieties with more durable resistance.
Collapse
Affiliation(s)
- Paulo Cezar Ceresini
- Department of Crop Protection, Agricultural Engineering, and Soils, São Paulo State University, 15385-000, Ilha Solteira, São Paulo, Brazil;
| | - Vanina Lilián Castroagudín
- Department of Crop Protection, Agricultural Engineering, and Soils, São Paulo State University, 15385-000, Ilha Solteira, São Paulo, Brazil;
| | - Fabrício Ávila Rodrigues
- Laboratory of Host-Parasite Interaction, Department of Plant Pathology, Federal University of Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Jonas Alberto Rios
- Laboratory of Host-Parasite Interaction, Department of Plant Pathology, Federal University of Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Carlos Eduardo Aucique-Pérez
- Laboratory of Host-Parasite Interaction, Department of Plant Pathology, Federal University of Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Silvino Intra Moreira
- Department of Plant Pathology, Federal University of Lavras, 37200-000, Lavras, Minas Gerais, Brazil
| | - Eduardo Alves
- Department of Plant Pathology, Federal University of Lavras, 37200-000, Lavras, Minas Gerais, Brazil
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - João Leodato Nunes Maciel
- Embrapa Wheat (Embrapa Trigo), Brazilian Agricultural Research Corporation, Passo 99050-970, Fundo, Rio Grande do Sul, Brazil
| |
Collapse
|
160
|
Ribeiro GF, de Góes CG, Onorio DS, de Campos CBL, Morais FV. Autophagy in Paracoccidioides brasiliensis under normal mycelia to yeast transition and under selective nutrient deprivation. PLoS One 2018; 13:e0202529. [PMID: 30138387 PMCID: PMC6107164 DOI: 10.1371/journal.pone.0202529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/03/2018] [Indexed: 11/23/2022] Open
Abstract
Paracoccidioides spp. is a thermally dimorphic fungus endemic to Latin America and the etiological agent of paracoccidioidomycosis (PCM), a granulomatous disease acquired through fungal propagule inhalation by its mammalian host. The infection is established after successful mycelia to yeast transition in the host pulmonary alveoli. The challenging environment inside the host exposes the fungus to the need of adaptation in order to circumvent nutritional, thermal, oxidative, immunological and other stresses that can directly affect their survival. Considering that autophagy is a response to abrupt environmental changes and is induced by stress conditions, this study hypothesizes that this process might be crucially involved in the adaptation of Paracoccidioides spp. to the host and, therefore, it is essential for the proper establishment of the disease. By labelling autophagous vesicles with monodansylcadaverine, autophagy was observed as an early event in cells during the normal mycelium to yeast transition, as well as in yeast cells of P. brasiliensis under glucose deprivation, and under either rapamycin or 3-methyladenine (3-MA). Findings in this study demonstrated that autophagy is triggered in P. brasiliensis during the thermal-induced mycelium to yeast transition and by glucose-limited conditions in yeasts, both of which modulated by rapamycin or 3-MA. Certainly, further genetic and in vivo analyses are needed in order to finally address the contribution of autophagy for adaptation. Yet, our data propose that autophagy possibly plays an important role in Paracoccidioides brasiliensis virulence and pathogenicity.
Collapse
Affiliation(s)
- Giselle Ferreira Ribeiro
- Laboratório de Biologia Celular e Molecular de Fungos, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
| | - Caroline Gonçalves de Góes
- Laboratório de Biologia Celular e Molecular de Fungos, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
| | - Diego Santos Onorio
- Laboratório de Biologia Celular e Molecular de Fungos, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
| | - Cláudia Barbosa Ladeira de Campos
- Laboratório de Bioquímica, Biologia Celular e Molecular de Fungos, Instituto de Ciência e Tecnologia–Universidade Federal de São Paulo–UNIFESP, São José dos Campos, SP, Brazil
| | - Flavia Villaça Morais
- Laboratório de Biologia Celular e Molecular de Fungos, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, Brazil
- * E-mail:
| |
Collapse
|
161
|
Mukherjee D, Mitra A, Ghosh A. Detection of Apoptosis-like Cell Death in Ustilago maydis by Annexin V-FITC Staining. Bio Protoc 2018; 8:e2948. [PMID: 34395760 DOI: 10.21769/bioprotoc.2948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 11/02/2022] Open
Abstract
Programmed cell death (PCD) guides the transition between key developmental stages in many organisms. PCD also remains an important fate for many organisms upon exposure to different stress conditions. Therefore, an insight into the progression of PCD during the execution of a biological phenomenon can yield significant details of the underlying mechanism. Apoptosis, as well as apoptosis-like programmed cell death, constitutes one of the forms of PCD in higher and lower eukaryotes respectively. Flipping of phosphatidylserine (PS) from the inner leaflet of the plasma membrane to the outer leaflet is among the different hallmarks of apoptosis/apoptosis-like PCD that marks the initiation of the said cell death event. This flipping can be detected through staining of the target cells using annexin V-FITC that binds specifically to PS. In Ustilago maydis the staining of the externally exposed PS by annexin V-FITC is difficult due to the presence of cell wall. The key to such staining, therefore, relies on the gentle removal of the cell wall without significantly altering the underlying plasma membrane architecture/topology. This protocol highlights the dependence of the PS staining on the extent of protoplastation of the stressed cells in Ustilago maydis.
Collapse
Affiliation(s)
- Dibya Mukherjee
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, India
| | - Aroni Mitra
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, India
| | - Anupama Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, Kolkata, India
| |
Collapse
|
162
|
Abstract
This question of whether fungi undergo apoptosis-like programmed cell death can be separated into two questions. One question is about applying the term "apoptosis" to fungi, and the other is a more challenging question of whether fungi have evolved mechanisms that inflict self-injury. The answers to both questions depend on the definitions applied to "apoptosis" and "programmed cell death." Considering how these and other cell death terms originated and are currently defined for animals, some confusion arises when the terms are applied to fungi. While it is difficult to defend the concept of fungal apoptosis, the more interesting issue is whether fungi will eventually be found to encode programmed or extemporaneous self-destructive processes, as suggested by intriguing new findings.
Collapse
Affiliation(s)
- J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
163
|
Zheng H, Miao P, Lin X, Li L, Wu C, Chen X, Abubakar YS, Norvienyeku J, Li G, Zhou J, Wang Z, Zheng W. Small GTPase Rab7-mediated FgAtg9 trafficking is essential for autophagy-dependent development and pathogenicity in Fusarium graminearum. PLoS Genet 2018; 14:e1007546. [PMID: 30044782 PMCID: PMC6078321 DOI: 10.1371/journal.pgen.1007546] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/06/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022] Open
Abstract
Fusarium graminearum is a fungal pathogen that causes Fusarium head blight (FHB) in wheat and barley. Autophagy is a highly conserved vacuolar degradation pathway essential for cellular homeostasis in which Atg9 serves as a multispanning membrane protein important for generating membranes for the formation of phagophore assembly site. However, the mechanism of autophagy or autophagosome formation in phytopathogens awaits further clarifications. In this study, we identified and characterized the Atg9 homolog (FgAtg9) in F. graminearum by live cell imaging, biochemical and genetic analyses. We find that GFP-FgAtg9 localizes to late endosomes and trans-Golgi network under both nutrient-rich and nitrogen starvation conditions and also show its dynamic actin-dependent trafficking in the cell. Further targeted gene deletion of FgATG9 demonstrates that it is important for growth, aerial hyphae development, and pathogenicity in F. graminearum. Furthermore, the deletion mutant (ΔFgatg9) shows severe defects in autophagy and lipid metabolism in response to carbon starvation. Interestingly, small GTPase FgRab7 is found to be required for the dynamic trafficking of FgAtg9, and co-immunoprecipitation (Co-IP) assays show that FgAtg9 associates with FgRab7 in vivo. Finally, heterologous complementation assay shows that Atg9 is functionally conserved in F. graminearum and Magnaporthe oryzae. Taken together, we conclude that FgAtg9 is essential for autophagy-dependent development and pathogenicity of F. graminearum, which may be regulated by the small GTPase FgRab7.
Collapse
Affiliation(s)
- Huawei Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengfei Miao
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolian Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingping Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Congxian Wu
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomin Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Justice Norvienyeku
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, United States of America
| | - Jie Zhou
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
164
|
BAS2 Is Required for Conidiation and Pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis. Int J Mol Sci 2018; 19:ijms19071860. [PMID: 29941774 PMCID: PMC6073657 DOI: 10.3390/ijms19071860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/28/2018] [Accepted: 06/13/2018] [Indexed: 02/04/2023] Open
Abstract
The hemibiotrophic fungi Colletotrichum gloeosporioides can cause anthracnose in rubber trees. By searching the genome of the fungal pathogen, the BAS2 encoding a biotrophy-associated secreted protein was identified. In the present study, the knockout mutants of BAS2 were constructed and the functions of BAS2 were investigated. The in vitro assays showed that BAS2 was not necessary for vegetative growth but was important for normal asexual reproduction in C. gloeosporioides. Pathogenicity assays suggested that BAS2 was involved in the process of the pathogen penetrating into the host tissue. Subcellular localization analysis revealed that BAS2 showed secretional characteristics in the fungi, and BAS2 mainly function as a cytoplasmic protein after being secreted into the host cell. Extracellular proteomics analysis revealed that BAS2 was required for the secretion of a series of proteins, which were important for the pathogenicity of C. gloeosporioides. These data lead to a better understanding of the biotrophy-associated secreted protein in regulating the pathogenesis of C. gloeosporioides.
Collapse
|
165
|
Shlezinger N, Irmer H, Dhingra S, Beattie SR, Cramer RA, Braus GH, Sharon A, Hohl TM. Response to Comment on "Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death". Science 2018; 360:360/6395/eaas9457. [PMID: 29930111 DOI: 10.1126/science.aas9457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/10/2018] [Indexed: 12/22/2022]
Abstract
Aouacheria et al question the interpretation of contemporary assays to monitor programmed cell death with apoptosis-like features (A-PCD) in Aspergillus fumigatus Although our study focuses on fungal A-PCD for host immune surveillance and infectious outcomes, the experimental approach incorporates multiple independent A-PCD markers and genetic manipulations based on fungal rather than mammalian orthologs to circumvent the limitations associated with any single approach.
Collapse
Affiliation(s)
- Neta Shlezinger
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10075, USA
| | - Henriette Irmer
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, and Göttingen Center for Molecular Biosciences, University of Göttingen, D-37077 Göttingen, Germany
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Sarah R Beattie
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, and Göttingen Center for Molecular Biosciences, University of Göttingen, D-37077 Göttingen, Germany
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10075, USA. .,Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10075, USA
| |
Collapse
|
166
|
Pfeifer MA, Khang CH. A nuclear contortionist: the mitotic migration of Magnaporthe oryzae nuclei during plant infection. Mycology 2018; 9:202-210. [PMID: 30181926 PMCID: PMC6115875 DOI: 10.1080/21501203.2018.1482966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 01/22/2023] Open
Abstract
Magnaporthe oryzae is a filamentous fungus, which causes significant destruction to cereal crops worldwide. To infect plant cells, the fungus develops specialised constricted structures such as the penetration peg and the invasive hyphal peg. Live-cell imaging of M. oryzae during plant infection reveals that nuclear migration occurs during intermediate mitosis, in which the nuclear envelope neither completely disassembles nor remains entirely intact. Remarkably, in M. oryzae, mitotic nuclei show incredible malleability while undergoing confined migration through the constricted penetration and invasive hyphal pegs. Here, we review early events in plant infection, discuss intermediate mitosis, and summarise current knowledge of intermediate mitotic nuclear migration in M. oryzae.
Collapse
Affiliation(s)
- Mariel A Pfeifer
- Department of Plant Biology, University of Georgia, Athens, GA30602, USA
| | - Chang Hyun Khang
- Department of Plant Biology, University of Georgia, Athens, GA30602, USA
| |
Collapse
|
167
|
The oxygen concentration in cultures modulates protein expression and enzymatic antioxidant responses in Metarhizium lepidiotae conidia. Fungal Biol 2018; 122:487-496. [DOI: 10.1016/j.funbio.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 11/21/2022]
|
168
|
The Autophagy Gene BcATG8 Regulates the Vegetative Differentiation and Pathogenicity of Botrytis cinerea. Appl Environ Microbiol 2018; 84:AEM.02455-17. [PMID: 29572212 DOI: 10.1128/aem.02455-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/28/2018] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a conserved degradation process that maintains intracellular homeostasis to ensure normal cell differentiation and development in eukaryotes. ATG8 is one of the key molecular components of the autophagy pathway. In this study, we identified and characterized BcATG8, a homologue of Saccharomyces cerevisiae (yeast) ATG8 in the necrotrophic plant pathogen Botrytis cinerea Yeast complementation experiments demonstrated that BcATG8 can functionally complement the defects of the yeast ATG8 null mutant. Direct physical interaction between BcAtg8 and BcAtg4 was detected in the yeast two-hybrid system. Subcellular localization assays showed that green fluorescent protein-tagged BcAtg8 (GFP-BcAtg8) localized in the cytoplasm as preautophagosomal structures (PAS) under general conditions but mainly accumulated in the lumen of vacuoles in the case of autophagy induction. Deletion of BcATG8 (ΔBcAtg8 mutant) blocked autophagy and significantly impaired mycelial growth, conidiation, sclerotial formation, and virulence. In addition, the conidia of the ΔBcAtg8 mutant contained fewer lipid droplets (LDs), and quantitative real-time PCR (qRT-PCR) assays revealed that the basal expression levels of the LD metabolism-related genes in the mutant were significantly different from those in the wild-type (WT) strain. All of these phenotypic defects were restored by gene complementation. These results indicate that BcATG8 is essential for autophagy to regulate fungal development, pathogenesis, and lipid metabolism in B. cinereaIMPORTANCE The gray mold fungus Botrytis cinerea is an economically important plant pathogen with a broad host range. Although there are fungicides for its control, many classes of fungicides have failed due to its genetic plasticity. Exploring the fundamental biology of B. cinerea can provide the theoretical basis for sustainable and long-term disease management. Autophagy is an intracellular process for degradation and recycling of cytosolic materials in eukaryotes and is now known to be vital for fungal life. Here, we report studies of the biological role of the autophagy gene BcATG8 in B. cinerea The results suggest that autophagy plays a crucial role in vegetative differentiation and virulence of B. cinerea.
Collapse
|
169
|
Sakulkoo W, Osés-Ruiz M, Oliveira Garcia E, Soanes DM, Littlejohn GR, Hacker C, Correia A, Valent B, Talbot NJ. A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science 2018; 359:1399-1403. [DOI: 10.1126/science.aaq0892] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/24/2018] [Indexed: 01/01/2023]
|
170
|
Shlezinger N, Irmer H, Dhingra S, Beattie SR, Cramer RA, Braus GH, Sharon A, Hohl TM. Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death. Science 2018; 357:1037-1041. [PMID: 28883073 DOI: 10.1126/science.aan0365] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/22/2017] [Indexed: 01/24/2023]
Abstract
Humans inhale mold conidia daily and typically experience lifelong asymptomatic clearance. Conidial germination into tissue-invasive hyphae can occur in individuals with defects in myeloid function, although the mechanism of myeloid cell-mediated immune surveillance remains unclear. By monitoring fungal physiology in vivo, we demonstrate that lung neutrophils trigger programmed cell death with apoptosis-like features in Aspergillus fumigatus conidia, the most prevalent human mold pathogen. An antiapoptotic protein, AfBIR1, opposes this process by inhibiting fungal caspase activation and DNA fragmentation in the murine lung. Genetic and pharmacologic studies indicate that AfBIR1 expression and activity underlie conidial susceptibility to NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase-dependent killing and, in turn, host susceptibility to invasive aspergillosis. Immune surveillance exploits a fungal apoptosis-like programmed cell death pathway to maintain sterilizing immunity in the lung.
Collapse
Affiliation(s)
- Neta Shlezinger
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Henriette Irmer
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, D-37077 Göttingen, Germany
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Sarah R Beattie
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, D-37077 Göttingen, Germany
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
171
|
Zhou W, Shi W, Xu X, Li Z, Yin C, Peng J, Pan S, Chen X, Zhao W, Zhang Y, Yang J, Peng Y. Glutamate synthase MoGlt1-mediated glutamate homeostasis is important for autophagy, virulence and conidiation in the rice blast fungus. MOLECULAR PLANT PATHOLOGY 2018; 19:564-578. [PMID: 28142220 PMCID: PMC6638184 DOI: 10.1111/mpp.12541] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 05/23/2023]
Abstract
Glutamate homeostasis plays a vital role in central nitrogen metabolism and coordinates several key metabolic functions. However, its function in fungal pathogenesis and development has not been investigated in detail. In this study, we identified and characterized a glutamate synthase gene MoGLT1 in the rice blast fungus Magnaporthe oryzae that was important to glutamate homeostasis. MoGLT1 was constitutively expressed, but showed the highest expression level in appressoria. Deletion of MoGLT1 resulted in a significant reduction in conidiation and virulence. The ΔMoglt1 mutants were defective in appressorial penetration and the differentiation and spread of invasive hyphae in penetrated plant cells. The addition of exogenous glutamic acid partially rescued the defects of the ΔMoglt1 mutants in conidiation and plant infection. Assays for MoAtg8 expression and localization showed that the ΔMoglt1 mutants were defective in autophagy. The ΔMoglt1 mutants were delayed in the mobilization of glycogens and lipid bodies from conidia to developing appressoria. Taken together, our results show that glutamate synthase MoGlt1-mediated glutamate homeostasis is important for pathogenesis and development in the rice blast fungus, possibly via the regulation of autophagy.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
- School of Food ScienceHenan Institute of Science and TechnologyXinxiangHenan453003China
| | - Wei Shi
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Xiao‐Wen Xu
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Zhi‐Gang Li
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Chang‐Fa Yin
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Jun‐Bo Peng
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Song Pan
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Xiao‐Lin Chen
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Wen‐Sheng Zhao
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Yan Zhang
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - You‐Liang Peng
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant PathologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
172
|
Li C, Cao S, Zhang C, Zhang Y, Zhang Q, Xu J, Wang C. MoCDC14 is important for septation during conidiation and appressorium formation in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2018; 19:328-340. [PMID: 27935243 PMCID: PMC6638023 DOI: 10.1111/mpp.12523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 05/09/2023]
Abstract
As a typical foliar pathogen, appressorium formation and penetration are critical steps in the infection cycle of Magnaporthe oryzae. Because appressorium formation and penetration are closely co-regulated with the cell cycle, and Cdc14 phosphatases have an antagonistic relationship with cyclin-dependent kinases (CDKs) on proteins related to mitotic exit and cytokinesis, in this study, we functionally characterized the MoCDC14 gene in M. oryzae. The Mocdc14 deletion mutant showed significantly reduced growth rate and conidiation. It was also defective in septum formation and nuclear distribution. Septation was irregular in Mocdc14 hyphae and hyphal compartments became multi-nucleate. Mutant conidia often showed incomplete septa or lacked any septum. During appressorium formation, the septum delimiting appressoria from the rest of the germ tubes was often formed far away from the neck of the appressoria or not formed at all. Unlike the wild-type, some mutant appressoria had more than one nucleus at 24 h. In addition to appressoria, melanization occurred on parts of the germ tubes and conidia, depending on the irregular position of the appressorium-delimiting septum. The Mocdc14 mutant was also defective in glycogen degradation during appressorium formation and appressorial penetration of intact plant cells. Similar defects in septum formation, melanization and penetration were observed with appressorium-like structures formed at hyphal tips in the Mocdc14 mutant. Often a long fragment of mutant hyphae was melanized, together with the apical appressorium-like structures. These results indicate that MoCDC14 plays a critical role in septation, nuclear distribution and pathogenesis in M. oryzae, and correct septum formation during conidiogenesis and appressorium formation requires the MoCdc14 phosphatase.
Collapse
Affiliation(s)
- Chaohui Li
- NWAFU‐PU Joint Research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Shulin Cao
- NWAFU‐PU Joint Research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Chengkang Zhang
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907USA
| | - Yonghui Zhang
- NWAFU‐PU Joint Research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Qiang Zhang
- NWAFU‐PU Joint Research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jin‐Rong Xu
- NWAFU‐PU Joint Research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN47907USA
| | - Chenfang Wang
- NWAFU‐PU Joint Research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
173
|
Rise of a Cereal Killer: The Biology of Magnaporthe oryzae Biotrophic Growth. Trends Microbiol 2018; 26:582-597. [PMID: 29395728 DOI: 10.1016/j.tim.2017.12.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/16/2017] [Accepted: 12/20/2017] [Indexed: 01/24/2023]
Abstract
The rice blast fungus, Magnaporthe oryzae, causes one of the most destructive diseases of cultivated rice in the world. Infections caused by this recalcitrant pathogen lead to the annual destruction of approximately 10-30% of the rice harvested globally. The fungus undergoes extensive developmental changes to be able to break into plant cells, build elaborate infection structures, and proliferate inside host cells without causing visible disease symptoms. From a molecular standpoint, we are still in the infancy of understanding how M. oryzae manipulates the host during this complex multifaceted infection. Here, we describe recent advances in our understanding of the cell biology of M. oryzae biotrophic interaction and key molecular factors required for the disease establishment in rice cells.
Collapse
|
174
|
Lei R, Du Z, Kong J, Li G, He Y, Qiu Y, Yan J, Zhu S. Blue Native/SDS-PAGE and iTRAQ-Based Chloroplasts Proteomics Analysis of Nicotiana tabacum Leaves Infected with M Strain of Cucumber Mosaic Virus Reveals Several Proteins Involved in Chlorosis Symptoms. Proteomics 2018; 18. [PMID: 29193783 DOI: 10.1002/pmic.201700359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/16/2017] [Indexed: 01/05/2023]
Abstract
Virus infection in plants involves necrosis, chlorosis, and mosaic. The M strain of cucumber mosaic virus (M-CMV) has six distinct symptoms: vein clearing, mosaic, chlorosis, partial green recovery, complete green recovery, and secondary mosaic. Chlorosis indicates the loss of chlorophyll which is highly abundant in plant leaves and plays essential roles in photosynthesis. Blue native/SDS-PAGE combined with mass spectrum was performed to detect the location of virus, and proteomic analysis of chloroplast isolated from virus-infected plants was performed to quantify the changes of individual proteins in order to gain a global view of the total chloroplast protein dynamics during the virus infection. Among the 438 proteins quantified, 33 showed a more than twofold change in abundance, of which 22 are involved in the light-dependent reactions and five in the Calvin cycle. The dynamic change of these proteins indicates that light-dependent reactions are down-accumulated, and the Calvin cycle was up-accumulated during virus infection. In addition to the proteins involved in photosynthesis, tubulin was up-accumulated in virus-infected plant, which might contribute to the autophagic process during plant infection. In conclusion, this extensive proteomic investigation on intact chloroplasts of virus-infected tobacco leaves provided some important novel information on chlorosis mechanisms induced by virus infection.
Collapse
Affiliation(s)
- Rong Lei
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Zhixin Du
- Guangxi Entry-Exit Inspection and Quarantine Bureau, Nanning, Guangxi, P. R. China
| | - Jun Kong
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Guifen Li
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Yan He
- Animal and Plant and Food Testing Center, Tianjin Entry Exit Inspection and Quarantine Bureau, Tianjin, P. R. China
| | - Yanhong Qiu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Jin Yan
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Shuifang Zhu
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| |
Collapse
|
175
|
Xiang X. Nuclear movement in fungi. Semin Cell Dev Biol 2017; 82:3-16. [PMID: 29241689 DOI: 10.1016/j.semcdb.2017.10.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022]
Abstract
Nuclear movement within a cell occurs in a variety of eukaryotic organisms including yeasts and filamentous fungi. Fungal molecular genetic studies identified the minus-end-directed microtubule motor cytoplasmic dynein as a critical protein for nuclear movement or orientation of the mitotic spindle contained in the nucleus. Studies in the budding yeast first indicated that dynein anchored at the cortex via its anchoring protein Num1 exerts pulling force on an astral microtubule to orient the anaphase spindle across the mother-daughter axis before nuclear division. Prior to anaphase, myosin V interacts with the plus end of an astral microtubule via Kar9-Bim1/EB1 and pulls the plus end along the actin cables to move the nucleus/spindle close to the bud neck. In addition, pushing or pulling forces generated from cortex-linked polymerization or depolymerization of microtubules drive nuclear movements in yeasts and possibly also in filamentous fungi. In filamentous fungi, multiple nuclei within a hyphal segment undergo dynein-dependent back-and-forth movements and their positioning is also influenced by cytoplasmic streaming toward the hyphal tip. In addition, nuclear movement occurs at various stages of fungal development and fungal infection of plant tissues. This review discusses our current understanding on the mechanisms of nuclear movement in fungal organisms, the importance of nuclear positioning and the regulatory strategies that ensure the proper positioning of nucleus/spindle.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, USA.
| |
Collapse
|
176
|
Schuelke TA, Wu G, Westbrook A, Woeste K, Plachetzki DC, Broders K, MacManes MD. Comparative Genomics of Pathogenic and Nonpathogenic Beetle-Vectored Fungi in the Genus Geosmithia. Genome Biol Evol 2017; 9:3312-3327. [PMID: 29186370 PMCID: PMC5737690 DOI: 10.1093/gbe/evx242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2017] [Indexed: 12/29/2022] Open
Abstract
Geosmithia morbida is an emerging fungal pathogen which serves as a model for examining the evolutionary processes behind pathogenicity because it is one of two known pathogens within a genus of mostly saprophytic, beetle-associated, fungi. This pathogen causes thousand cankers disease in black walnut trees and is vectored into the host via the walnut twig beetle. Geosmithia morbida was first detected in western United States and currently threatens the timber industry concentrated in eastern United States. We sequenced the genomes of G. morbida in a previous study and two nonpathogenic Geosmithia species in this work and compared these species to other fungal pathogens and nonpathogens to identify genes under positive selection in G. morbida that may be associated with pathogenicity. Geosmithia morbida possesses one of the smallest genomes among the fungal species observed in this study, and one of the smallest fungal pathogen genomes to date. The enzymatic profile in this pathogen is very similar to its nonpathogenic relatives. Our findings indicate that genome reduction or retention of a smaller genome may be an important adaptative force during the evolution of a specialized lifestyle in fungal species that occupy a specificniche, such as beetle vectored tree pathogens. We also present potential genes under selection in G. morbida that could be important for adaptation to a pathogenic lifestyle.
Collapse
Affiliation(s)
- Taruna A Schuelke
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire
| | - Guangxi Wu
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
| | | | - Keith Woeste
- USDA Forest Service Hardwood Tree Improvement and Regeneration Center, Department of Forestry and Natural Resources, Purdue University
| | - David C Plachetzki
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire
| | - Kirk Broders
- Department of Bioagricultural Sciences and Pest Management, Colorado State University
| | - Matthew D MacManes
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire
| |
Collapse
|
177
|
Selvaraj P, Shen Q, Yang F, Naqvi NI. Cpk2, a Catalytic Subunit of Cyclic AMP-PKA, Regulates Growth and Pathogenesis in Rice Blast. Front Microbiol 2017; 8:2289. [PMID: 29209297 PMCID: PMC5702331 DOI: 10.3389/fmicb.2017.02289] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022] Open
Abstract
The cAMP-Protein Kinase A signaling, anchored on CpkA, is necessary for appressorium development and host penetration, but indispensable for infectious growth in Magnaporthe oryzae. In this study, we identified and characterized the gene encoding the second catalytic subunit, CPK2, whose expression was found to be lower compared to CPKA at various stages of pathogenic growth in M. oryzae. Deletion of CPK2 caused no alterations in vegetative growth, conidiation, appressorium formation, or pathogenicity. Surprisingly, the cpkAΔcpk2Δ double deletion strain displayed significant reduction in growth rate and conidiation compared to the single deletion mutants. Interestingly, loss of CPKA and CPK2 resulted in morphogenetic defects in germ tubes (with curled/wavy and serpentine growth pattern) on hydrophobic surfaces, and a complete failure to produce appressoria therein, thus suggesting an important role for CPK2-mediated cAMP-PKA in surface sensing and response pathway. CPKA promoter-driven expression of CPK2 partially suppressed the defects in host penetration and pathogenicity in the cpkAΔ. Such ectopic CPK2 expressing strain successfully penetrated the rice leaves, but was unable to produce proper secondary invasive hyphae, thus underscoring the importance of CpkA in growth and differentiation in planta. The Cpk2-GFP localized to the nuclei and cytoplasmic vesicles in conidia and germ tubes. The Cpk2-GFP colocalized with CpkA-mCherry on vesicles in the cytosol, but such overlap was not evident in the nuclei. Our studies indicate that CpkA and Cpk2 share overlapping functions, but also play distinct roles during pathogenesis-associated signaling and morphogenesis in the rice blast fungus.
Collapse
Affiliation(s)
- Poonguzhali Selvaraj
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Qing Shen
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Fan Yang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, Singapore
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
178
|
Mukherjee D, Gupta S, Saran N, Datta R, Ghosh A. Induction of apoptosis-like cell death and clearance of stress-induced intracellular protein aggregates: dual roles for Ustilago maydis metacaspase Mca1. Mol Microbiol 2017; 106:815-831. [PMID: 28941233 DOI: 10.1111/mmi.13848] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 01/01/2023]
Abstract
Metacaspases primarily associate with induction and execution of programmed cell death in protozoa, fungi and plants. In the recent past, several studies have also demonstrated cellular functions of metacaspases other than cell death in different organisms including yeast and protozoa. This study shows similar dual function for the only metacaspase of a biotrophic phytopathogen, Ustilago maydis. In addition to a conventional role in the induction of cell death, Mca1 has been demonstrated to play a key role in maintaining the quality of the cellular proteome. On one hand, Mca1 could be shown to bring about apoptosis-like phenotypic changes in U. maydis on exposure to oxidative stress, on the other hand, the protein was found to regulate cellular protein quality control. U. maydis metacaspase has been found to remain closely associated with the insoluble intracellular protein aggregates, generated during an event of stress exposure to the fungus. The study, therefore, provides direct evidence for a role of U. maydis metacaspase in the clearance of the stress-induced intracellular insoluble protein aggregates. Furthermore, host infection assays with mca1 deletion strain also revealed a role of the protein in the virulence of the fungus.
Collapse
Affiliation(s)
- Dibya Mukherjee
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12 C.I.T. Road, Scheme VIIM, Kolkata 700054, India
| | - Sayandeep Gupta
- Department of Biochemistry, Bose Institute, Centenary Campus, P1/12 C.I.T. Road, Scheme VIIM, Kolkata 700054, India
| | - N Saran
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12 C.I.T. Road, Scheme VIIM, Kolkata 700054, India
| | - Rahul Datta
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12 C.I.T. Road, Scheme VIIM, Kolkata 700054, India
| | - Anupama Ghosh
- Division of Plant Biology, Bose Institute, Centenary Campus, P1/12 C.I.T. Road, Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
179
|
Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL. Regulated Forms of Cell Death in Fungi. Front Microbiol 2017; 8:1837. [PMID: 28983298 PMCID: PMC5613156 DOI: 10.3389/fmicb.2017.01837] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Cell death occurs in all domains of life. While some cells die in an uncontrolled way due to exposure to external cues, other cells die in a regulated manner as part of a genetically encoded developmental program. Like other eukaryotic species, fungi undergo programmed cell death (PCD) in response to various triggers. For example, exposure to external stress conditions can activate PCD pathways in fungi. Calcium redistribution between the extracellular space, the cytoplasm and intracellular storage organelles appears to be pivotal for this kind of cell death. PCD is also part of the fungal life cycle, in which it occurs during sexual and asexual reproduction, aging, and as part of development associated with infection in phytopathogenic fungi. Additionally, a fungal non-self-recognition mechanism termed heterokaryon incompatibility (HI) also involves PCD. Some of the molecular players mediating PCD during HI show remarkable similarities to major constituents involved in innate immunity in metazoans and plants. In this review we discuss recent research on fungal PCD mechanisms in comparison to more characterized mechanisms in metazoans. We highlight the role of PCD in fungi in response to exogenic compounds, fungal development and non-self-recognition processes and discuss identified intracellular signaling pathways and molecules that regulate fungal PCD.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Jens Heller
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Asen Daskalov
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Arnaldo Videira
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoPorto, Portugal.,I3S - Instituto de Investigação e Inovação em SaúdePorto, Portugal
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
180
|
Norvienyeku J, Zhong Z, Lin L, Dang X, Chen M, Lin X, Zhang H, Anjago WM, Lin L, Abdul W, Wang Z. Methylmalonate-semialdehyde dehydrogenase mediated metabolite homeostasis essentially regulate conidiation, polarized germination and pathogenesis in Magnaporthe oryzae. Environ Microbiol 2017; 19:4256-4277. [PMID: 28799697 DOI: 10.1111/1462-2920.13888] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/22/2017] [Accepted: 08/05/2017] [Indexed: 11/28/2022]
Abstract
Plants generate multitude of aldehydes under abiotic and biotic stress conditions. Ample demonstrations have shown that rice-derived aldehydes enhance the resistance of rice against the rice-blast fungus Magnaporthe oryzae. However, how the fungal pathogen nullifies the inhibitory effects of host aldehydes to establish compatible interaction remains unknown. Here we identified and evaluated the in vivo transcriptional activities of M. oryzae aldehyde dehydrogenase (ALDH) genes. Transcriptional analysis of M. oryzae ALDH genes revealed that the acetylating enzyme Methylmalonate-Semialdehyde Dehydrogenase (MoMsdh/MoMmsdh) elevated activities during host invasion and colonization of the fungus. We further examined the pathophysiological importance of MoMSDH by deploying integrated functional genetics, and biochemical approaches. MoMSDH deletion mutant ΔMomsdh exhibited germination defect, hyper-branching of germ tube and failed to form appressoria on hydrophobic and hydrophilic surface. The MoMSDH disruption caused accumulation of small branch-chain amino acids, pyridoxine and AMP/cAMP in the ΔMomsdh mutant and altered Spitzenkörper organization in the conidia. We concluded that MoMSDH contribute significantly to the pathogenesis of M. oryzae by regulating the mobilization of Spitzenkörper during germ tube morphogenesis, appressoria formation by acting as metabolic switch regulating small branch-chain amino acids, inositol, pyridoxine and AMP/cAMP homeostasis.
Collapse
Affiliation(s)
- Justice Norvienyeku
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhui Zhong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lili Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xie Dang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meilian Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolian Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Honghong Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wilfred M Anjago
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianyu Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Waheed Abdul
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Ocean Science Minjiang University, Fuzhou 350108, China
| |
Collapse
|
181
|
Lv W, Wang C, Yang N, Que Y, Talbot NJ, Wang Z. Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum. Sci Rep 2017; 7:11062. [PMID: 28894236 PMCID: PMC5594004 DOI: 10.1038/s41598-017-11640-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a conserved cellular recycling and trafficking pathway in eukaryotic cells and has been reported to be important in the virulence of a number of microbial pathogens. Here, we report genome-wide identification and characterization of autophagy-related genes (ATGs) in the wheat pathogenic fungus Fusarium graminearum. We identified twenty-eight genes associated with the regulation and operation of autophagy in F. graminearum. Using targeted gene deletion, we generated a set of 28 isogenic mutants. Autophagy mutants were classified into two groups by differences in their growth patterns. Radial growth of 18 Group 1 ATG mutants was significantly reduced compared to the wild-type strain PH-1, while 10 Group 2 mutants grew normally. Loss of any of the ATG genes, except FgATG17, prevented the fungus from causing Fusarium head blight disease. Moreover, subsets of autophagy genes were necessary for asexual/sexual differentiation and deoxynivalenol (DON) production, respectively. FgATG1 and FgATG5 were investigated in detail and showed severe defects in autophagy. Taken together, we conclude that autophagy plays a critical role in growth, asexual/sexual sporulation, deoxynivalenol production and virulence in F. graminearum.
Collapse
Affiliation(s)
- Wuyun Lv
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Chunyan Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Nan Yang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Yawei Que
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, China
| | - Nicholas J Talbot
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, United Kingdom
| | - Zhengyi Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
182
|
Sumita T, Izumitsu K, Tanaka C. Characterization of the autophagy-related gene BmATG8 in Bipolaris maydis. Fungal Biol 2017; 121:785-797. [PMID: 28800850 DOI: 10.1016/j.funbio.2017.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
Abstract
Autophagy is involved in cellular development and the maintenance of viability under nutrient deprivation in a wide range of eukaryotes. A filamentous ascomycete Bipolaris maydis, responsible for southern corn leaf blight, is also studied as a model fungus for sexual reproduction in filamentous ascomycetes that form filiform ascospores. In order to clarify the roles of autophagy in various stages of the life cycle of B. maydis, we constructed null mutants of BmATG8, an orthologue of the Saccharomyces cerevisiae autophagy gene ATG8 in B. maydis. Deletion of BmATG8 impaired localization of cytosolic components to the vacuole under nitrogen starvation, suggesting that autophagy was deficient in the null mutants. Additionally, fluorescent microscopic observations on a eGFP-fused BmATG8 expressing strain showed that BmATG8 is associated with autophagy-related structures. In vegetative growth, ΔBmATG8 strains showed a reduction in conidiation and aerial mycelial growth. Interestingly, the mutant conidia indicated loss of the germination rate under starvation conditions and affected longevity. However, germinated mutant conidia were still capable of infecting the host plant via appressoria. In sexual reproduction, ascospores with ΔBmATG8 genetic background were aborted. Our results revealed that autophagy plays a crucial role in the function of conidia, not in host infection via appressoria in B. maydis. In addition, conservation of the importance of autophagy in ascospore development is suggested among ascomycetes including species that form bitunicate ascus.
Collapse
Affiliation(s)
- Takuya Sumita
- Laboratory of Environmental Mycoscience, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kosuke Izumitsu
- Laboratory of Environmental Mycoscience, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Chihiro Tanaka
- Laboratory of Environmental Mycoscience, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
183
|
Galhano R, Illana A, Ryder LS, Rodríguez-Romero J, Demuez M, Badaruddin M, Martinez-Rocha AL, Soanes DM, Studholme DJ, Talbot NJ, Sesma A. Tpc1 is an important Zn(II)2Cys6 transcriptional regulator required for polarized growth and virulence in the rice blast fungus. PLoS Pathog 2017; 13:e1006516. [PMID: 28742127 PMCID: PMC5542705 DOI: 10.1371/journal.ppat.1006516] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/03/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023] Open
Abstract
The establishment of polarity is a critical process in pathogenic fungi, mediating infection-related morphogenesis and host tissue invasion. Here, we report the identification of TPC1 (Transcription factor for Polarity Control 1), which regulates invasive polarized growth in the rice blast fungus Magnaporthe oryzae. TPC1 encodes a putative transcription factor of the fungal Zn(II)2Cys6 family, exclusive to filamentous fungi. Tpc1-deficient mutants show severe defects in conidiogenesis, infection-associated autophagy, glycogen and lipid metabolism, and plant tissue colonisation. By tracking actin-binding proteins, septin-5 and autophagosome components, we show that Tpc1 regulates cytoskeletal dynamics and infection-associated autophagy during appressorium-mediated plant penetration. We found that Tpc1 interacts with Mst12 and modulates its DNA-binding activity, while Tpc1 nuclear localisation also depends on the MAP kinase Pmk1, consistent with the involvement of Tpc1 in this signalling pathway, which is critical for appressorium development. Importantly, Tpc1 directly regulates NOXD expression, the p22phox subunit of the fungal NADPH oxidase complex via an interaction with Mst12. Tpc1 therefore controls spatial and temporal regulation of cortical F-actin through regulation of the NADPH oxidase complex during appressorium re-polarisation. Consequently, Tpc1 is a core developmental regulator in filamentous fungi, linking the regulated synthesis of reactive oxygen species and the Pmk1 pathway, with polarity control during host invasion. Cellular polarity is an intrinsic feature of filamentous fungal growth and pathogenesis. In this study, we identified a gene required for fungal polar growth and virulence in the rice blast fungus Magnaporthe oryzae. This gene has been named TPC1 (Transcription factor for Polarity Control 1). The Tpc1 protein belongs to the fungal Zn(II)2Cys6 binuclear cluster family. This DNA-binding motif is present exclusively in the fungal kingdom. We have characterised defects associated with lack of Tpc1 in M. oryzae. We show that Tpc1 is involved in polarised growth and virulence. The M. oryzae Δtpc1 mutant shows a delay in glycogen and lipid metabolism, and infection-associated autophagy–processes that regulate appressorium-mediated M. oryzae plant infection. The saprophytic fungus Neurospora crassa contains a Tpc1 homolog (NcTpc1) involved in vegetative growth and sustained tip elongation, suggesting that Tpc1-like proteins act as core regulators of polarised growth and development in filamentous fungi. A comparative transcriptome analysis has allowed us to identify genes regulated by Tpc1 in M. oryzae including NoxD, an important component of the fungal NADPH complex. Significantly, Tpc1 interacts with Mst12, a component of the Pmk1 signalling pathway essential for appressorium development, and modulates Mst12 binding affinity to NOXD promoter region. We conclude that Tpc1 is a key regulator of polarity in M. oryzae that regulates growth, autophagy and septin-mediated reorientation of the F-actin cytoskeleton to facilitate plant cell invasion.
Collapse
Affiliation(s)
- Rita Galhano
- Disease & Stress Biology Dept. John Innes Centre, Norwich, United Kingdom
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Adriana Illana
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
| | - Lauren S. Ryder
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Julio Rodríguez-Romero
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
| | - Marie Demuez
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
| | - Muhammad Badaruddin
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | | | - Darren M. Soanes
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - David J. Studholme
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Nicholas J. Talbot
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, United Kingdom
| | - Ane Sesma
- Disease & Stress Biology Dept. John Innes Centre, Norwich, United Kingdom
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid, (UPM) – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Madrid, Spain
- Dept. Biotecnología y Biología Vegetal, UPM, Madrid, Spain
- * E-mail:
| |
Collapse
|
184
|
Zhou T, Qin L, Zhu X, Shen W, Zou J, Wang Z, Wei Y. The D-lactate dehydrogenase MoDLD1 is essential for growth and infection-related development in Magnaporthe oryzae. Environ Microbiol 2017; 19:3938-3958. [PMID: 28654182 DOI: 10.1111/1462-2920.13794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 12/28/2022]
Abstract
Rice blast disease caused by Magnaporthe oryzae is initiated by the attachment of conidia to plant surfaces. Germ tubes emerging from conidia develop melanized appressoria to physically penetrate the host surface. Previous studies revealed that appressorium development requires the breakdown of storage lipids and glycogen that occur in peroxisomes and the cytosol respectively, culminating in production of pyruvate. However, the downstream product(s) entering the mitochondria for further oxidation is unclear. In this study, we aimed to investigate the molecular basis underlying the metabolic flux towards the mitochondria associated with the infectious-related development in M. oryzae. We showed that D-lactate is a key intermediate metabolite of the mobilization of lipids and glycogen, and its oxidative conversion to pyruvate is catalysed by a mitochondrial D-lactate dehydrogenase MoDLD1. Deletion of MoDLD1 caused defects in conidiogenesis and appressorium formation, and subsequently the loss of fungal pathogenicity. Further analyses demonstrated that MoDLD1 activity is involved in the maintenance of redox homeostasis during conidial germination. Thus, MoDLD1 is a critical modulator that channels metabolite flow to the mitochondrion coupling cellular redox state, and contributes to development and virulence of M. oryzae.
Collapse
Affiliation(s)
- Tengsheng Zhou
- Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Li Qin
- Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Xiaohan Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenyun Shen
- National Research Council of Canada, Plant Biotechnology Institute, Saskatoon SK, S7N 0W9, Canada
| | - Jitao Zou
- National Research Council of Canada, Plant Biotechnology Institute, Saskatoon SK, S7N 0W9, Canada
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yangdou Wei
- Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
185
|
Yue X, Que Y, Deng S, Xu L, Oses-Ruiz M, Talbot NJ, Peng Y, Wang Z. The cyclin dependent kinase subunit Cks1 is required for infection-associated development of the rice blast fungusMagnaporthe oryzae. Environ Microbiol 2017; 19:3959-3981. [DOI: 10.1111/1462-2920.13796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 03/30/2017] [Accepted: 05/08/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaofeng Yue
- State Key Laboratory for Rice Biology; Institute of Biotechnology, Zhejiang University; Hangzhou 310058, China
| | - Yawei Que
- State Key Laboratory for Rice Biology; Institute of Biotechnology, Zhejiang University; Hangzhou 310058, China
| | - Shuzhen Deng
- State Key Laboratory for Rice Biology; Institute of Biotechnology, Zhejiang University; Hangzhou 310058, China
| | - Lin Xu
- State Key Laboratory for Rice Biology; Institute of Biotechnology, Zhejiang University; Hangzhou 310058, China
| | - Miriam Oses-Ruiz
- School of Biosciences; University of Exeter, Geoffrey Pope Building; Exeter EX4 4QD UK
| | - Nicholas J. Talbot
- School of Biosciences; University of Exeter, Geoffrey Pope Building; Exeter EX4 4QD UK
| | - Youliang Peng
- State Key Laboratory of Agribiotechnology and MOA Key Laboratory of Plant Pathology; China Agricultural University; Beijing 100193, People's Republic of China
| | - Zhengyi Wang
- State Key Laboratory for Rice Biology; Institute of Biotechnology, Zhejiang University; Hangzhou 310058, China
| |
Collapse
|
186
|
MoEnd3 regulates appressorium formation and virulence through mediating endocytosis in rice blast fungus Magnaporthe oryzae. PLoS Pathog 2017. [PMID: 28628655 PMCID: PMC5491321 DOI: 10.1371/journal.ppat.1006449] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic cells respond to environmental stimuli when cell surface receptors are bound by environmental ligands. The binding initiates a signal transduction cascade that results in the appropriate intracellular responses. Studies have shown that endocytosis is critical for receptor internalization and signaling activation. In the rice blast fungus Magnaporthe oryzae, a non-canonical G-protein coupled receptor, Pth11, and membrane sensors MoMsb2 and MoSho1 are thought to function upstream of G-protein/cAMP signaling and the Pmk1 MAPK pathway to regulate appressorium formation and pathogenesis. However, little is known about how these receptors or sensors are internalized and transported into intracellular compartments. We found that the MoEnd3 protein is important for endocytic transport and that the ΔMoend3 mutant exhibited defects in efficient internalization of Pth11 and MoSho1. The ΔMoend3 mutant was also defective in Pmk1 phosphorylation, autophagy, appressorium formation and function. Intriguingly, restoring Pmk1 phosphorylation levels in ΔMoend3 suppressed most of these defects. Moreover, we demonstrated that MoEnd3 is subject to regulation by MoArk1 through protein phosphorylation. We also found that MoEnd3 has additional functions in facilitating the secretion of effectors, including Avr-Pia and AvrPiz-t that suppress rice immunity. Taken together, our findings suggest that MoEnd3 plays a critical role in mediating receptor endocytosis that is critical for the signal transduction-regulated development and virulence of M. oryzae.
Collapse
|
187
|
Zhang S, Liang M, Naqvi NI, Lin C, Qian W, Zhang LH, Deng YZ. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae. Autophagy 2017; 13:1318-1330. [PMID: 28594263 PMCID: PMC5584857 DOI: 10.1080/15548627.2017.1327103] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Magnaporthe oryzae, the ascomycete fungus that causes rice blast disease, initiates conidiation in response to light when grown on Prune-Agar medium containing both carbon and nitrogen sources. Macroautophagy/autophagy was shown to be essential for M. oryzae conidiation and induced specifically upon exposure to light but is undetectable in the dark. Therefore, it is inferred that autophagy is naturally induced by light, rather than by starvation during M. oryzae conidiation. However, the signaling pathway(s) involved in such phototropic induction of autophagy remains unknown. We identified an M. oryzae ortholog of GCN5 (MGG_03677), encoding a histone acetyltransferase (HAT) that negatively regulates light- and nitrogen-starvation-induced autophagy, by acetylating the autophagy protein Atg7. Furthermore, we unveiled novel regulatory mechanisms on Gcn5 at both transcriptional and post-translational levels, governing its function associated with the unique phototropic response of autophagy in this pathogenic fungus. Thus, our study depicts a signaling network and regulatory mechanism underlying the autophagy induction by important environmental clues such as light and nutrients.
Collapse
Affiliation(s)
- Shulin Zhang
- a Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture , South China Agricultural University , Guangzhou , China.,b Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , China
| | - Meiling Liang
- a Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture , South China Agricultural University , Guangzhou , China.,b Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , China
| | - Naweed I Naqvi
- c Temasek Life Sciences Laboratory, and Department of Biological Sciences , National University of Singapore , Singapore
| | - Chaoxiang Lin
- a Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture , South China Agricultural University , Guangzhou , China.,b Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , China
| | - Wanqiang Qian
- d The New Countryside Development Institute of South China Agricultural University , Guangzhou , China
| | - Lian-Hui Zhang
- a Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture , South China Agricultural University , Guangzhou , China.,b Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , China
| | - Yi Zhen Deng
- a Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture , South China Agricultural University , Guangzhou , China.,b Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , China
| |
Collapse
|
188
|
Chen L, Zhang X, Wang W, Geng X, Shi Y, Na R, Dou D, Li H. Network and role analysis of autophagy in Phytophthora sojae. Sci Rep 2017; 7:1879. [PMID: 28500315 PMCID: PMC5431975 DOI: 10.1038/s41598-017-01988-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
Autophagy is an evolutionarily conserved mechanism in eukaryotes with roles in development and the virulence of plant fungal pathogens. However, few reports on autophagy in oomycete species have been published. Here, we identified 26 autophagy-related genes (ATGs) belonging to 20 different groups in Phytophthora sojae using a genome-wide survey, and core ATGs in oomycetes were used to construct a preliminary autophagy pathway model. Expression profile analysis revealed that these ATGs are broadly expressed and that the majority of them significantly increase during infection stages, suggesting a central role for autophagy in virulence. Autophagy in P. sojae was detected using a GFP-PsAtg8 fusion protein and the fluorescent dye MDC during rapamycin and starvation treatment. In addition, autophagy was significantly induced during sporangium formation and cyst germination. Silencing PsAtg6a in P. sojae significantly reduced sporulation and pathogenicity. Furthermore, a PsAtg6a-silenced strain showed haustorial formation defects. These results suggested that autophagy might play essential roles in both the development and infection mechanism of P. sojae.
Collapse
Affiliation(s)
- Linlin Chen
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuejing Geng
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yan Shi
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Risong Na
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honglian Li
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
189
|
Verwaaijen B, Wibberg D, Kröber M, Winkler A, Zrenner R, Bednarz H, Niehaus K, Grosch R, Pühler A, Schlüter A. The Rhizoctonia solani AG1-IB (isolate 7/3/14) transcriptome during interaction with the host plant lettuce (Lactuca sativa L.). PLoS One 2017; 12:e0177278. [PMID: 28486484 PMCID: PMC5423683 DOI: 10.1371/journal.pone.0177278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
The necrotrophic pathogen Rhizoctonia solani is one of the most economically important soil-borne pathogens of crop plants. Isolates of R. solani AG1-IB are the major pathogens responsible for bottom-rot of lettuce (Lactuca sativa L.) and are also responsible for diseases in other plant species. Currently, there is lack of information regarding the molecular responses in R. solani during the pathogenic interaction between the necrotrophic soil-borne pathogen and its host plant. The genome of R. solani AG1-IB (isolate 7/3/14) was recently established to obtain insights into its putative pathogenicity determinants. In this study, the transcriptional activity of R. solani AG1-IB was followed during the course of its pathogenic interaction with the host plant lettuce under controlled conditions. Based on visual observations, three distinct pathogen-host interaction zones on lettuce leaves were defined which covered different phases of disease progression on tissue inoculated with the AG1-IB (isolate 7/3/14). The zones were defined as: Zone 1-symptomless, Zone 2-light brown discoloration, and Zone 3-dark brown, necrotic lesions. Differences in R. solani hyphae structure in these three zones were investigated by microscopic observation. Transcriptional activity within these three interaction zones was used to represent the course of R. solani disease progression applying high-throughput RNA sequencing (RNA-Seq) analysis of samples collected from each Zone. The resulting three transcriptome data sets were analyzed for their highest expressed genes and for differentially transcribed genes between the respective interaction zones. Among the highest expressed genes was a group of not previously described genes which were transcribed exclusively during early stages of interaction, in Zones 1 and 2. Previously described importance of up-regulation in R. solani agglutinin genes during disease progression could be further confirmed; here, the corresponding genes exhibited extremely high transcription levels. Most differentially higher expressed transcripts were found within Zone 2. In Zone 3, the zone with the strongest degree of interaction, gene transcripts indicative of apoptotic activity were highly abundant. The transcriptome data presented in this work support previous models of the disease and interaction cycle of R. solani and lettuce and may influence effective techniques for control of this pathogen.
Collapse
Affiliation(s)
- Bart Verwaaijen
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Daniel Wibberg
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Magdalena Kröber
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Anika Winkler
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Rita Zrenner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Hanna Bednarz
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Rita Grosch
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Alfred Pühler
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
190
|
Guo M, Tan L, Nie X, Zhang Z. A class-II myosin is required for growth, conidiation, cell wall integrity and pathogenicity of Magnaporthe oryzae. Virulence 2017; 8:1335-1354. [PMID: 28448785 DOI: 10.1080/21505594.2017.1323156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In eukaryotic organisms, myosin proteins are the major ring components that are involved in cytokinesis. To date, little is known about the biologic functions of myosin proteins in Magnaporthe oryzae. In this study, insertional mutagenesis conducted in M. oryzae led to identification of Momyo2, a pathogenicity gene predicted to encode a class-II myosin protein homologous to Saccharomyces cerevisiae Myo1. According to qRT-PCR, Momyo2 is highly expressed during early infectious stage. When this gene was disrupted, the resultant mutant isolates were attenuated in virulence on rice and barley. These were likely caused by defective mycelial growth and frequent emergence of branch hyphae and septum. The Momyo2 mutants were also defective in conidial and appressorial development, characterized by abnormal conidia and appressoria. These consequently resulted in plant tissue penetration defects that the wild type strain lacked, and mutants being less pathogenic. Cytorrhysis assay, CFW staining of appressorium and monitoring of protoplast release suggested that appressorial wall was altered, presumably affecting the level of turgor pressure within appressorium. Furthermore, impairments in conidial germination, glycogen metabolites, tolerance to exogenous stresses and scavenging of host-derived reactive oxygen species were associated with defects on appressorium mediated penetration, and therefore attenuated the virulence of Momyo2 mutants. Taken together, these results suggest that Momyo2 plays pleiotropic roles in fungal development, and is required for the full pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Min Guo
- a Department of Plant Pathology , College of Plant Protection, Anhui Agricultural University , Hefei , China
| | - Leyong Tan
- a Department of Plant Pathology , College of Plant Protection, Anhui Agricultural University , Hefei , China
| | - Xiang Nie
- a Department of Plant Pathology , College of Plant Protection, Anhui Agricultural University , Hefei , China
| | - Zhengguang Zhang
- b Department of Plant Pathology , College of Plant Protection, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
191
|
Foster AJ, Ryder LS, Kershaw MJ, Talbot NJ. The role of glycerol in the pathogenic lifestyle of the rice blast fungus Magnaporthe oryzae. Environ Microbiol 2017; 19:1008-1016. [PMID: 28165657 DOI: 10.1111/1462-2920.13688] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The rice blast fungus Magnaporthe oryzae elaborates a specialized cell called an appressorium, which is used to breach the tough outer cuticle of a rice leaf, enabling the fungus entry to host plant cells. The appressorium generates enormous turgor by accumulating glycerol to very high concentrations within the cell. Glycerol accumulation and melanization of the appressorium cell wall collectively drive turgor-mediated penetration of the rice leaf. In this review, we discuss the potential metabolic sources of glycerol in the rice blast fungus and how appressorium turgor is focused as physical force at the base of the infection cell, leading to the formation of a rigid penetration peg. We review recent studies of M. oryzae and other relevant appressorium-forming fungi which shed light on how glycerol is synthesized and how appressorium turgor is regulated. Finally, we provide some questions to guide avenues of future research that will be important in fully understanding the role of glycerol in rice blast disease.
Collapse
Affiliation(s)
- Andrew J Foster
- School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Lauren S Ryder
- School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Michael J Kershaw
- School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Nicholas J Talbot
- School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
192
|
Shipman EN, Jones K, Jenkinson CB, Kim DW, Zhu J, Khang CH. Nuclear and structural dynamics during the establishment of a specialized effector-secreting cell by Magnaporthe oryzae in living rice cells. BMC Cell Biol 2017; 18:11. [PMID: 28125974 PMCID: PMC5270211 DOI: 10.1186/s12860-017-0126-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/18/2017] [Indexed: 11/21/2022] Open
Abstract
Background To cause an economically important blast disease on rice, the filamentous fungus Magnaporthe oryzae forms a specialized infection structure, called an appressorium, to penetrate host cells. Once inside host cells, the fungus produces a filamentous primary hypha that differentiates into multicellular bulbous invasive hyphae (IH), which are surrounded by a host-derived membrane. These hyphae secrete cytoplasmic effectors that enter host cells presumably via the biotrophic interfacial complex (BIC). The first IH cell, also known as the side BIC-associated cell, is a specialized effector-secreting cell essential for a successful infection. This study aims to determine cellular processes that lead to the development of this effector-secreting first IH cell inside susceptible rice cells. Results Using live-cell confocal imaging, we determined a series of cellular events by which the appressorium gives rise to the first IH cell in live rice cells. The filamentous primary hypha extended from the appressorium and underwent asymmetric swelling at its apex. The single nucleus in the appressorium divided, and then one nucleus migrated into the swollen apex. Septation occurred in the filamentous region of the primary hypha, establishing the first IH cell. The tip BIC that was initially associated with the primary hypha became the side BIC on the swollen apex prior to nuclear division in the appressorium. The average distance between the early side BIC and the nearest nucleus in the appressorium was estimated to be more than 32 μm. These results suggest an unknown mechanism by which effectors that are expressed in the appressorium are transported through the primary hypha for their secretion into the distantly located BIC. When M. oryzae was inoculated on heat-killed rice cells, penetration proceeded as normal, but there was no differentiation of a bulbous IH cell, suggesting its specialization for establishment of biotrophic infection. Conclusions Our studies reveal cellular dynamics associated with the development of the effector-secreting first IH cell. Our data raise new mechanistic questions concerning hyphal differentiation in response to host environmental cues and effector trafficking from the appressorium to the BIC. Electronic supplementary material The online version of this article (doi:10.1186/s12860-017-0126-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emma N Shipman
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Kiersun Jones
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Cory B Jenkinson
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dong Won Kim
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Jie Zhu
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Chang Hyun Khang
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
193
|
Using Network Extracted Ontologies to Identify Novel Genes with Roles in Appressorium Development in the Rice Blast Fungus Magnaporthe oryzae. Microorganisms 2017; 5:microorganisms5010003. [PMID: 28106722 PMCID: PMC5374380 DOI: 10.3390/microorganisms5010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 11/17/2022] Open
Abstract
Magnaporthe oryzae is the causal agent of rice blast disease, the most important infection of rice worldwide. Half the world's population depends on rice for its primary caloric intake and, as such, rice blast poses a serious threat to food security. The stages of M. oryzae infection are well defined, with the formation of an appressorium, a cell type that allows penetration of the plant cuticle, particularly well studied. However, many of the key pathways and genes involved in this disease stage are yet to be identified. In this study, I have used network-extracted ontologies (NeXOs), hierarchical structures inferred from RNA-Seq data, to identify pathways involved in appressorium development, which in turn highlights novel genes with potential roles in this process. This study illustrates the use of NeXOs for pathway identification from large-scale genomics data and also identifies novel genes with potential roles in disease. The methods presented here will be useful to study disease processes in other pathogenic species and these data represent predictions of novel targets for intervention in M. oryzae.
Collapse
|
194
|
Marroquin-Guzman M, Sun G, Wilson RA. Glucose-ABL1-TOR Signaling Modulates Cell Cycle Tuning to Control Terminal Appressorial Cell Differentiation. PLoS Genet 2017; 13:e1006557. [PMID: 28072818 PMCID: PMC5266329 DOI: 10.1371/journal.pgen.1006557] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/25/2017] [Accepted: 12/29/2016] [Indexed: 01/02/2023] Open
Abstract
The conserved target of rapamycin (TOR) pathway integrates growth and development with available nutrients, but how cellular glucose controls TOR function and signaling is poorly understood. Here, we provide functional evidence from the devastating rice blast fungus Magnaporthe oryzae that glucose can mediate TOR activity via the product of a novel carbon-responsive gene, ABL1, in order to tune cell cycle progression during infection-related development. Under nutrient-free conditions, wild type (WT) M. oryzae strains form terminal plant-infecting cells (appressoria) at the tips of germ tubes emerging from three-celled spores (conidia). WT appressorial development is accompanied by one round of mitosis followed by autophagic cell death of the conidium. In contrast, Δabl1 mutant strains undergo multiple rounds of accelerated mitosis in elongated germ tubes, produce few appressoria, and are abolished for autophagy. Treating WT spores with glucose or 2-deoxyglucose phenocopied Δabl1. Inactivating TOR in Δabl1 mutants or glucose-treated WT strains restored appressorium formation by promoting mitotic arrest at G1/G0 via an appressorium- and autophagy-inducing cell cycle delay at G2/M. Collectively, this work uncovers a novel glucose-ABL1-TOR signaling axis and shows it engages two metabolic checkpoints in order to modulate cell cycle tuning and mediate terminal appressorial cell differentiation. We thus provide new molecular insights into TOR regulation and cell development in response to glucose.
Collapse
Affiliation(s)
- Margarita Marroquin-Guzman
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Guangchao Sun
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Richard A. Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
195
|
Osés-Ruiz M, Sakulkoo W, Littlejohn GR, Martin-Urdiroz M, Talbot NJ. Two independent S-phase checkpoints regulate appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. Proc Natl Acad Sci U S A 2017; 114:E237-E244. [PMID: 28028232 PMCID: PMC5240714 DOI: 10.1073/pnas.1611307114] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
To cause rice blast disease, the fungal pathogen Magnaporthe oryzae develops a specialized infection structure called an appressorium. This dome-shaped, melanin-pigmented cell generates enormous turgor and applies physical force to rupture the rice leaf cuticle using a rigid penetration peg. Appressorium-mediated infection requires septin-dependent reorientation of the F-actin cytoskeleton at the base of the infection cell, which organizes polarity determinants necessary for plant cell invasion. Here, we show that plant infection by M. oryzae requires two independent S-phase cell-cycle checkpoints. Initial formation of appressoria on the rice leaf surface requires an S-phase checkpoint that acts through the DNA damage response (DDR) pathway, involving the Cds1 kinase. By contrast, appressorium repolarization involves a novel, DDR-independent S-phase checkpoint, triggered by appressorium turgor generation and melanization. This second checkpoint specifically regulates septin-dependent, NADPH oxidase-regulated F-actin dynamics to organize the appressorium pore and facilitate entry of the fungus into host tissue.
Collapse
Affiliation(s)
- Míriam Osés-Ruiz
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Wasin Sakulkoo
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | | | | | - Nicholas J Talbot
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
196
|
Liu XH, Zhao YH, Zhu XM, Zeng XQ, Huang LY, Dong B, Su ZZ, Wang Y, Lu JP, Lin FC. Autophagy-related protein MoAtg14 is involved in differentiation, development and pathogenicity in the rice blast fungus Magnaporthe oryzae. Sci Rep 2017; 7:40018. [PMID: 28067330 PMCID: PMC5220305 DOI: 10.1038/srep40018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 12/01/2016] [Indexed: 11/09/2022] Open
Abstract
Autophagy is the major intracellular degradation system by which cytoplasmic materials are delivered to and degraded in the vacuole/lysosome in eukaryotic cells. MoAtg14 in M. oryzae, a hitherto uncharacterized protein, is the highly divergent homolog of the yeast Atg14 and the mammal BARKOR. The MoATG14 deletion mutant exhibited collapse in the center of the colonies, poor conidiation and a complete loss of virulence. Significantly, the ΔMoatg14 mutant showed delayed breakdown of glycogen, less lipid bodies, reduced turgor pressure in the appressorium and impaired conidial autophagic cell death. The autophagic process was blocked in the ΔMoatg14 mutant, and the autophagic degradation of the marker protein GFP-MoAtg8 was interrupted. GFP-MoAtg14 co-localized with mCherry-MoAtg8 in the aerial hypha. In addition, a conserved coiled-coil domain was predicted in the N-terminal region of the MoAtg14 protein, a domain which could mediate the interaction between MoAtg14 and MoAtg6. The coiled-coil domain of the MoAtg14 protein is essential for its function in autophagy and pathogenicity.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Ya-Hui Zhao
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ming Zhu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Qing Zeng
- State Intellectual Property Office of the People's Republic of China, Beijing, 100080, China
| | - Lu-Yao Huang
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Bo Dong
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang Province, China
| | - Zhen-Zhu Su
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China.,Agricultural Technology Extension Center, Zhejiang University, Hangzhou, 310058, China
| | - Yao Wang
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
197
|
Yan M, Cai E, Zhou J, Chang C, Xi P, Shen W, Li L, Jiang Z, Deng YZ, Zhang LH. A Dual-Color Imaging System for Sugarcane Smut Fungus Sporisorium scitamineum. PLANT DISEASE 2016; 100:2357-2362. [PMID: 30686163 DOI: 10.1094/pdis-02-16-0257-sr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The life cycle of the sugarcane smut fungus Sporisorium scitamineum is a multistep process. Haploid sporidia of compatible (MAT-1 versus MAT-2) mating types fuse to generate pathogenic dikaryotic hyphae to infect the host. Within the host tissues, diploid teliospores are formed and induce a characteristic sorus that looks like a black whip. The diploid teliospores germinate to form haploid sporidia by meiosis. In order to monitor fungal development throughout the whole life cycle, we expressed the green fluorescent protein (GFP) and red fluorescent protein (RFP) in S. scitamineum MAT-1 and MAT-2 sporidia, respectively. Observation by epifluorescence microscope showed that conjugation tube formation and sporidia fusion occurred at 4 to 8 h, and formation of dikaryotic filaments was detected at 12 h after mating. The resultant teliospores, with diffused GFP and RFP, underwent meiosis as demonstrated by septated hypha with single fluorescent signal. We demonstrated that GFP- and RFP-tagged strains can be used to study the life cycle development of the fungal pathogen S. scitamineum, including the sexual mating and meiosis events. This dual-color imaging system would be a valuable tool for investigation of biotic and abiotic factors that might affect the fungal life cycle development and pathogenesis.
Collapse
Affiliation(s)
- Meixin Yan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China, and Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi, P. R. China
| | - Enping Cai
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| | - Changqing Chang
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology, and Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, P. R. China
| | - Pinggen Xi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| | - Wankuan Shen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| | - Lingyu Li
- Guangdong Innovative and Entrepreneurial Research Team of Sociomicrobiology Basic Science and Frontier Technology
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| | - Yi Zhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
198
|
Jenkinson CB, Jones K, Zhu J, Dorhmi S, Khang CH. The appressorium of the rice blast fungus Magnaporthe oryzae remains mitotically active during post-penetration hyphal growth. Fungal Genet Biol 2016; 98:35-38. [PMID: 27890626 DOI: 10.1016/j.fgb.2016.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/09/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
To investigate the mitotic dynamics of an appressorium, we used live-cell confocal imaging of a fluorescence-based mitotic reporter strain of Magnaporthe oryzae. We present evidence that the M. oryzae appressorium remains viable and mitotically active well after host penetration. These results suggest the potential roles of the appressorium during post-penetration proliferation of invasive hyphae. Our studies also revealed that a mitotic appressorial nucleus undergoes extreme constriction and elongation as it migrates through the penetration peg in a manner analogous to mitosis during cell-to-cell movement of invasive hyphae. Understanding the mechanisms underlying these pathogen-specific nuclear dynamics may provide new targets for disease control.
Collapse
Affiliation(s)
- Cory B Jenkinson
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Kiersun Jones
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Jie Zhu
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Sara Dorhmi
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Chang Hyun Khang
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
199
|
Shalaby S, Larkov O, Lamdan NL, Goldshmidt-Tran O, Horwitz BA. Plant phenolic acids induce programmed cell death of a fungal pathogen: MAPK signaling and survival of Cochliobolus heterostrophus. Environ Microbiol 2016; 18:4188-4199. [PMID: 27631532 DOI: 10.1111/1462-2920.13528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/09/2016] [Indexed: 11/29/2022]
Abstract
Plant aromatic compounds provide signals and a nutrient source to pathogens, and also act as stressors. Structure-activity relationships suggest two pathways sensing these compounds in the maize pathogen Cochliobolus heterostrophus, one triggering a stress response, and one inducing enzymes for their degradation. Focusing on the stress pathway, we found that ferulic acid causes rapid appearance of TUNEL-positive nuclei, dispersion of histone H1:GFP, hyphal shrinkage, and eventually membrane damage. These hallmarks of programmed cell death (PCD) were not seen upon exposure to caffeic acid, a very similar compound. Exposure to ferulic acid dephosphorylated two MAP kinases: Hog1 (stress activated) and Chk1 (pathogenicity related), while increasing phosphorylation of Mps1 (cell integrity related). Mutants lacking Hog1 or Chk1 are hypersensitive to ferulic acid while Mps1 mutants are not. These results implicate three MAPK pathways in the stress response. Ferulic acid and the antifungal fludioxonil have opposite additive effects on survival and on dephosphorylation of Hog1, which is thus implicated in survival. The results may explain why some fungal pathogens of plants undergo cell death early in host invasion, when phenolics are released from plant tissue.
Collapse
Affiliation(s)
- Samer Shalaby
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Olga Larkov
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Netta-Li Lamdan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Orit Goldshmidt-Tran
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| | - Benjamin A Horwitz
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200000, Israel
| |
Collapse
|
200
|
Samalova M, Mélida H, Vilaplana F, Bulone V, Soanes DM, Talbot NJ, Gurr SJ. The β-1,3-glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressorium-mediated plant infection. Cell Microbiol 2016; 19. [PMID: 27568483 PMCID: PMC5396357 DOI: 10.1111/cmi.12659] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/02/2022]
Abstract
The fungal wall is pivotal for cell shape and function, and in interfacial protection during host infection and environmental challenge. Here, we provide the first description of the carbohydrate composition and structure of the cell wall of the rice blast fungus Magnaporthe oryzae. We focus on the family of glucan elongation proteins (Gels) and characterize five putative β‐1,3‐glucan glucanosyltransferases that each carry the Glycoside Hydrolase 72 signature. We generated targeted deletion mutants of all Gel isoforms, that is, the GH72+, which carry a putative carbohydrate‐binding module, and the GH72− Gels, without this motif. We reveal that M. oryzaeGH72+GELs are expressed in spores and during both infective and vegetative growth, but each individual Gel enzymes are dispensable for pathogenicity. Further, we demonstrated that a Δgel1Δgel3Δgel4 null mutant has a modified cell wall in which 1,3‐glucans have a higher degree of polymerization and are less branched than the wild‐type strain. The mutant showed significant differences in global patterns of gene expression, a hyper‐branching phenotype and no sporulation, and thus was unable to cause rice blast lesions (except via wounded tissues). We conclude that Gel proteins play significant roles in structural modification of the fungal cell wall during appressorium‐mediated plant infection.
Collapse
Affiliation(s)
| | - Hugo Mélida
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden.,Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid, Madrid, Spain
| | - Francisco Vilaplana
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden.,ARC Centre of Excellence in Plant Cell Walls and School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Darren M Soanes
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Nicholas J Talbot
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Sarah J Gurr
- Department of Plant Sciences, University of Oxford, Oxford, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|