151
|
Sydow JF, Cramer P. RNA polymerase fidelity and transcriptional proofreading. Curr Opin Struct Biol 2009; 19:732-9. [PMID: 19914059 DOI: 10.1016/j.sbi.2009.10.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 02/06/2023]
Abstract
Whereas mechanisms underlying the fidelity of DNA polymerases (DNAPs) have been investigated in detail, RNA polymerase (RNAP) fidelity mechanisms remained poorly understood. New functional and structural studies now suggest how RNAPs select the correct nucleoside triphosphate (NTP) substrate to prevent transcription errors, and how the enzymes detect and remove a misincorporated nucleotide during proofreading. Proofreading begins with fraying of the misincorporated nucleotide away from the DNA template, which pauses transcription. Subsequent backtracking of RNAP by one position enables nucleolytic cleavage of an RNA dinucleotide that contains the misincorporated nucleotide. Since cleavage occurs at the same active site that is used for polymerization, the RNAP proofreading mechanism differs from that used by DNAPs, which contain a distinct nuclease specific active site.
Collapse
Affiliation(s)
- Jasmin F Sydow
- Gene Center Munich and Center for Integrated Protein Science Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | |
Collapse
|
152
|
Vassylyev DG. Elongation by RNA polymerase: a race through roadblocks. Curr Opin Struct Biol 2009; 19:691-700. [PMID: 19896365 DOI: 10.1016/j.sbi.2009.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/10/2009] [Accepted: 10/07/2009] [Indexed: 01/22/2023]
Abstract
Transcription is the first and most regulated step of gene expression. RNA polymerase (RNAP) is the heart of the transcription machinery and a major target for numerous regulatory pathways in living cells. The crystal structures of transcription complexes formed by bacterial RNAP in various configurations have provided a number of breakthroughs in understanding basic, universal mechanisms of transcription and have revealed regulatory 'hot spots' in RNAP that serve as targets and anchors for auxiliary transcription factors. In combination with biochemical analyses, these structures allow feasible modeling of the regulatory complexes for which experimental structural data are still missing. The available structural information suggests a number of general mechanistic predictions that provide a reference point and direction for future studies of transcription regulation.
Collapse
Affiliation(s)
- Dmitry G Vassylyev
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 402B KAUL Genetics Building, 720 20th Street South, Birmingham, AL 35294, United States.
| |
Collapse
|
153
|
Damsma GE, Cramer P. Molecular basis of transcriptional mutagenesis at 8-oxoguanine. J Biol Chem 2009; 284:31658-63. [PMID: 19758983 DOI: 10.1074/jbc.m109.022764] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Structure-function analysis has revealed the mechanism of yeast RNA polymerase II transcription at 8-oxoguanine (8-oxoG), the major DNA lesion resulting from oxidative stress. When polymerase II encounters 8-oxoG in the DNA template strand, it can misincorporate adenine, which forms a Hoogsteen bp with 8-oxoG at the active center. This requires rotation of the 8-oxoG base from the standard anti- to an uncommon syn-conformation, which likely occurs during 8-oxoG loading into the active site. The misincorporated adenine escapes intrinsic proofreading, resulting in transcriptional mutagenesis that is observed directly by mass spectrometric RNA analysis.
Collapse
Affiliation(s)
- Gerke E Damsma
- Gene Center and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | |
Collapse
|
154
|
Dengl S, Cramer P. Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro. J Biol Chem 2009; 284:21270-9. [PMID: 19535338 PMCID: PMC2755851 DOI: 10.1074/jbc.m109.013847] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/28/2009] [Indexed: 11/06/2022] Open
Abstract
Termination of RNA polymerase (pol) II transcription in vivo requires the 5'-RNA exonuclease Rat1. It was proposed that Rat1 degrades RNA from the 5'-end that is created by transcript cleavage, catches up with elongating pol II, and acts like a Torpedo that removes pol II from DNA. Here we test the Torpedo model in an in vitro system based on bead-coupled pol II elongation complexes (ECs). Recombinant Rat1 complexes with Rai1, and with Rai1 and Rtt103, degrade RNA extending from the EC until they reach the polymerase surface but fail to terminate pol II. Instead, the EC retains an approximately 18-nucleotide RNA that remains with its 3'-end at the active site and can be elongated. Thus, pol II termination apparently requires a factor or several factors in addition to Rat1, Rai1, and Rtt103, post-translational modifications of these factors, or unusual reaction conditions.
Collapse
Affiliation(s)
- Stefan Dengl
- From the Gene Center and Center for Integrated Protein Science Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Patrick Cramer
- From the Gene Center and Center for Integrated Protein Science Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| |
Collapse
|
155
|
Sydow JF, Brueckner F, Cheung ACM, Damsma GE, Dengl S, Lehmann E, Vassylyev D, Cramer P. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol Cell 2009; 34:710-21. [PMID: 19560423 DOI: 10.1016/j.molcel.2009.06.002] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/05/2009] [Accepted: 06/05/2009] [Indexed: 11/17/2022]
Abstract
We show that RNA polymerase (Pol) II prevents erroneous transcription in vitro with different strategies that depend on the type of DNARNA base mismatch. Certain mismatches are efficiently formed but impair RNA extension. Other mismatches allow for RNA extension but are inefficiently formed and efficiently proofread by RNA cleavage. X-ray analysis reveals that a TU mismatch impairs RNA extension by forming a wobble base pair at the Pol II active center that dissociates the catalytic metal ion and misaligns the RNA 3' end. The mismatch can also stabilize a paused state of Pol II with a frayed RNA 3' nucleotide. The frayed nucleotide binds in the Pol II pore either parallel or perpendicular to the DNA-RNA hybrid axis (fraying sites I and II, respectively) and overlaps the nucleoside triphosphate (NTP) site, explaining how it halts transcription during proofreading, before backtracking and RNA cleavage.
Collapse
Affiliation(s)
- Jasmin F Sydow
- Department of Chemistry and Biochemistry, Gene Center Munich and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
After DNA damage, cells modulate pre-messenger RNA (pre-mRNA) splicing to induce an anti- or proapoptotic response. In this issue, Muñoz et al. (2009) uncover a cotranscriptional mechanism for activating alternative pre-mRNA splicing after ultraviolet irradiation that depends unexpectedly on hyperphosphorylation of the RNA polymerase II C-terminal domain and decreased rates of transcription elongation.
Collapse
Affiliation(s)
- Matthew S Marengo
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
157
|
Meyer PA, Ye P, Suh MH, Zhang M, Fu J. Structure of the 12-subunit RNA polymerase II refined with the aid of anomalous diffraction data. J Biol Chem 2009; 284:12933-9. [PMID: 19289466 PMCID: PMC2676024 DOI: 10.1074/jbc.m809199200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/03/2009] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II (Pol II) is the central enzyme of eukaryotic gene expression machinery. Complete definition of the three-dimensional structure of Pol II is essential for understanding the mechanisms that regulate transcription via protein-protein interactions within the Pol II apparatus. To date a series of Pol II-related crystal structures have been reported. However, certain peptide regions, including several that are implicated to interact with regulatory factors, remain obscure. Here we describe conformations for two such regions that are close to the Pol II surface and assume seemingly flexible loop structures. One is located in the TFIIF-interacting Protrusion domain, whereas the other is in the TFIIE-interacting Clamp domain. This structural definition was aided by the application of an advanced crystallographic refinement approach that utilizes the single anomalous diffraction (SAD) from zinc ions bound intrinsically in Pol II. The SAD-based strategy allowed the 12-subunit Pol II model to be fully refined up to 3.8 A with excellent stereochemical properties, demonstrating the effectiveness of the SAD approach for the refinement of large structures at low-to-moderate resolutions. Our results also define additional components of the free Pol II, including the functionally critical Fork Loop-1 and Fork Loop-2 elements. As such, this refined Pol II model provides the most complete structural reference for future analyses of complex structures formed between Pol II and its regulatory factors.
Collapse
Affiliation(s)
- Peter A Meyer
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
158
|
Abstract
The genome of all organisms is constantly attacked by a variety of environmental and endogenous mutagens that cause cell death, apoptosis, senescence, genetic diseases and cancer. To mitigate these deleterious endpoints of genotoxic reactions, living organisms have evolved one or more mechanisms for repairing every type of naturally occurring DNA lesion. For example, double-strand breaks are rapidly religated by non-homologous end-joining. Homologous recombination is used for the high-fidelity repair of interstrand cross-links, double-strand breaks and other DNA injuries that disrupt the replication fork. Some genotoxic lesions inflicted by alkylating agents can be repaired by direct reversal of DNA damage. The base excision repair pathway takes advantage of multiple DNA glycosylases to remove modified or incorrect bases. Finally, the nucleotide excision repair machinery provides a versatile strategy to monitor DNA quality and eliminate all forms of helix-distorting DNA lesions, including a wide diversity of carcinogen adducts. The efficiency of DNA repair responses is enhanced by their coupling to transcription and coordination with the cell cycle circuit.
Collapse
|
159
|
Winnacker M, Breeger S, Strasser R, Carell T. Novel diazirine-containing DNA photoaffinity probes for the investigation of DNA-protein-interactions. Chembiochem 2009; 10:109-18. [PMID: 19012292 DOI: 10.1002/cbic.200800397] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An investigation of the precise interactions between damaged DNA and DNA repair enzymes is required in order to understand the lesion recognition step, which is one of the most fundamental processes in DNA repair. Most recently, photoaffinity labeling approaches have enabled the analysis of even transient protein-DNA interactions. Here we report the synthesis and evaluation of oligonucleotides that contain two photoaffinity "catcher moieties" next to incorporated DNA lesions. With these DNA constructs it is possible to analyze the interactions between DNA lesions and the appropriate repair enzymes. The probes labeled the repair protein efficiently enough to enable subsequent protein analysis by mass spectrometry.
Collapse
Affiliation(s)
- Malte Winnacker
- Ludwig-Maximilians University Munich, Center for Integrated Protein Science (CiPSM), Department for Chemistry and Biochemistry, Butenandtstrasse 5-13, Munich, Germany
| | | | | | | |
Collapse
|
160
|
Zhu Q, Wani G, Arab HH, El-Mahdy MA, Ray A, Wani AA. Chromatin restoration following nucleotide excision repair involves the incorporation of ubiquitinated H2A at damaged genomic sites. DNA Repair (Amst) 2009; 8:262-73. [PMID: 19059499 PMCID: PMC2718537 DOI: 10.1016/j.dnarep.2008.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/30/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
Restoration of functionally intact chromatin structure following DNA damage processing is crucial for maintaining genetic and epigenetic information in human cells. Here, we show the UV-induced uH2A foci formation in cells lacking XPC, DDB2, CSA or CSB, but not in cells lacking XPA, XPG or XPF indicating that uH2A incorporation relied on successful damage repair occurring through either GGR or TCR sub-pathway. In contrast, XPA, XPG or XPF were not required for formation of gammaH2AX foci in asynchronous cells. Notably, the H2A ubiquitin ligase Ring1B, a component of Polycomb repressor complex 1, did not localize at DNA damage sites. However, histone chaperone CAF-1 showed distinct localization to the damage sites. Knockdown of CAF-1 p60 abolished CAF-1 as well as uH2A foci formation. CAF-1 p150 was found to associate with NER factors TFIIH, RPA p70 and PCNA in chromatin. These data demonstrate that successful NER of genomic lesions and prompt CAF-1-mediated chromatin restoration link uH2A incorporation at the sites of damage repair within chromatin.
Collapse
Affiliation(s)
- Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Gulzar Wani
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Hany H. Arab
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Mohamed A. El-Mahdy
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Alo Ray
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
| | - Altaf A. Wani
- Department of Radiology, The Ohio State University, Columbus, OH 43210, United States
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, United States
- James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
161
|
Brueckner F, Armache KJ, Cheung A, Damsma GE, Kettenberger H, Lehmann E, Sydow J, Cramer P. Structure-function studies of the RNA polymerase II elongation complex. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2009; 65:112-20. [PMID: 19171965 PMCID: PMC2631633 DOI: 10.1107/s0907444908039875] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 11/26/2008] [Indexed: 11/23/2022]
Abstract
RNA polymerase II (Pol II) is the eukaryotic enzyme that is responsible for transcribing all protein-coding genes into messenger RNA (mRNA). The mRNA-transcription cycle can be divided into three stages: initiation, elongation and termination. During elongation, Pol II moves along a DNA template and synthesizes a complementary RNA chain in a processive manner. X-ray structural analysis has proved to be a potent tool for elucidating the mechanism of Pol II elongation. Crystallographic snapshots of different functional states of the Pol II elongation complex (EC) have elucidated mechanistic details of nucleotide addition and Pol II translocation. Further structural studies in combination with in vitro transcription experiments led to a mechanistic understanding of various additional features of the EC, including its inhibition by the fungal toxin alpha-amanitin, the tunability of the active site by the elongation factor TFIIS, the recognition of DNA lesions and the use of RNA as a template.
Collapse
Affiliation(s)
- Florian Brueckner
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Karim-Jean Armache
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Alan Cheung
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Gerke E. Damsma
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Hubert Kettenberger
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Elisabeth Lehmann
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Jasmin Sydow
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Patrick Cramer
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
162
|
McAndrew CW, Gastwirt RF, Donoghue DJ. The atypical CDK activator Spy1 regulates the intrinsic DNA damage response and is dependent upon p53 to inhibit apoptosis. Cell Cycle 2009; 8:66-75. [PMID: 19106603 PMCID: PMC2782695 DOI: 10.4161/cc.8.1.7451] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intrinsic damage response is activated by DNA damage that arises during the cell division process. The ability of the cell to repair this damage during proliferation is important for normal cell growth and, when disrupted, may lead to increased mutagenesis and tumorigenesis. The atypical CDK activator, Spy1, was previously shown to promote cell survival, prevent apoptosis and inhibit checkpoint activation in response to DNA damage. Prior studies have shown that Spy1 is upregulated in breast carcinomas and accelerates mammary tumorigenesis in vivo. In this report, first, we demonstrate that the ability of Spy1 to inhibit apoptosis and bypass UV-induced checkpoint activation is dependent on the presence of the gene regulatory protein p53 and the CKI p21. Second, we demonstrate that Spy1 expression has the following effects: prevents repair of cyclobutane pyrimidine dimers through bypass of nucleotide excision repair; increases the cellular mutation frequency; and reduces the formation of cyclin E induced gammaH2A.X foci. Lastly, we show that knockdown of endogenous Spy1 leads to gammaH2A.X foci formation, Chk1 phosphorylation and proliferation defects, demonstrating a functional role for Spy1 in the intrinsic DNA damage response. These results also demonstrate that Spy1 fulfills a novel regulatory role in the intrinsic DNA damage response and maintains the balance between checkpoint activation, apoptosis, repair and cell cycle progression in response to exogenous or intrinsic damage. Furthermore, the overexpression of Spy1 as a contributing factor in cancer progression will most likely be confined to p53-positive cells.
Collapse
Affiliation(s)
- Christopher W. McAndrew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California USA
| | - Randy F. Gastwirt
- Orthopedic Surgery, University of California San Diego, La Jolla, California USA
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California USA
- Moores UCSD Cancer Center, University of California San Diego, La Jolla, California USA
| |
Collapse
|
163
|
Lo YH, Tsai KL, Sun YJ, Chen WT, Huang CY, Hsiao CD. The crystal structure of a replicative hexameric helicase DnaC and its complex with single-stranded DNA. Nucleic Acids Res 2008; 37:804-14. [PMID: 19074952 PMCID: PMC2647316 DOI: 10.1093/nar/gkn999] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
DNA helicases are motor proteins that play essential roles in DNA replication, repair and recombination. In the replicative hexameric helicase, the fundamental reaction is the unwinding of duplex DNA; however, our understanding of this function remains vague due to insufficient structural information. Here, we report two crystal structures of the DnaB-family replicative helicase from Geobacillus kaustophilus HTA426 (GkDnaC) in the apo-form and bound to single-stranded DNA (ssDNA). The GkDnaC–ssDNA complex structure reveals that three symmetrical basic grooves on the interior surface of the hexamer individually encircle ssDNA. The ssDNA-binding pockets in this structure are directed toward the N-terminal domain collar of the hexameric ring, thus orienting the ssDNA toward the DnaG primase to facilitate the synthesis of short RNA primers. These findings provide insight into the mechanism of ssDNA binding and provide a working model to establish a novel mechanism for DNA translocation at the replication fork.
Collapse
Affiliation(s)
- Yu-Hua Lo
- Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan
| | | | | | | | | | | |
Collapse
|
164
|
Rumora AE, Kolodziejczak KM, Wagner AM, Núñez ME. Thymine dimer-induced structural changes to the DNA duplex examined with reactive probes (†). Biochemistry 2008; 47:13026-35. [PMID: 19006320 PMCID: PMC2891882 DOI: 10.1021/bi801417u] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite significant progress in the past decade, questions still remain about the complete structural, dynamic, and thermodynamic effect of the cis-syn cyclobutane pyrimidine dimer lesion (hereafter called the thymine dimer) on double-stranded genomic DNA. We examined a 19-mer oligodeoxynucleotide duplex containing a thymine dimer lesion using several small, base-selective reactive chemical probes. These molecules probe whether the presence of the dimer causes the base pairs to be more accessible to the solution, either globally or adjacent to the dimer. Though all of the probes confirm that the overall structure of the dimer-containing duplex is conserved compared to that of the undamaged parent duplex, reactions with both diethyl pyrocarbonate and Rh(bpy)(2)(chrysi)(3+) indicate that the duplex is locally destabilized near the lesion. Reactions with potassium permanganate and DEPC hint that the dimer-containing duplex may also be globally more accessible to the solution through a subtle shift in the double-stranded DNA ↔ single-stranded DNA equilibrium. To begin to distinguish between kinetic and thermodynamic effects, we determined the helix melting thermodynamic parameters for the dimer-containing and undamaged parent duplexes by microcalorimetry and UV melting. The presence of the thymine dimer causes this DNA duplex to be slightly less stable enthalpically but slightly less unstable entropically at 298 K, causing the overall free energy of duplex melting to remain unchanged by the dimer lesion within the error of the experiment. Here we consider these results in the context of what has been learned about the thymine dimer lesion from NMR, X-ray crystallographic, and molecular biological methods.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075
| | | | | | - Megan E. Núñez
- Department of Chemistry, Mount Holyoke College, South Hadley, Massachusetts 01075
| |
Collapse
|
165
|
Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 2008; 9:958-70. [PMID: 19023283 DOI: 10.1038/nrm2549] [Citation(s) in RCA: 804] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Expressed genes are scanned by translocating RNA polymerases, which sensitively detect DNA damage and initiate transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes lesions from the template DNA strands of actively transcribed genes. Human hereditary diseases that present a deficiency only in TCR are characterized by sunlight sensitivity without enhanced skin cancer. Although multiple gene products are implicated in TCR, we still lack an understanding of the precise signals that can trigger this pathway. Futile cycles of TCR at naturally occurring non-canonical DNA structures might contribute to genomic instability and genetic disease.
Collapse
|
166
|
Aune GJ, Takagi K, Sordet O, Guirouilh-Barbat J, Antony S, Bohr VA, Pommier Y. Von Hippel-Lindau-coupled and transcription-coupled nucleotide excision repair-dependent degradation of RNA polymerase II in response to trabectedin. Clin Cancer Res 2008; 14:6449-55. [PMID: 18927284 PMCID: PMC2662138 DOI: 10.1158/1078-0432.ccr-08-0730] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Ecteinascidin 743 (Et743; trabectedin, Yondelis) has recently been approved in Europe for the treatment of soft tissue sarcomas and is undergoing clinical trials for other solid tumors. Et743 selectively targets cells proficient for TC-NER, which sets it apart from other DNA alkylating agents. In the present study, we examined the effects of Et743 on RNA Pol II. EXPERIMENTAL DESIGN AND RESULTS We report that Et743 induces the rapid and massive degradation of transcribing Pol II in various cancer cell lines and normal fibroblasts. Pol II degradation was abrogated by the proteasome inhibitor MG132 and was dependent on TC-NER. Cockayne syndrome (CS) cells and xeroderma pigmentosum (XP) cells (XPD, XPA, XPG, and XPF) were defective in Pol II degradation, whereas XPC cells whose defect is limited to global genome NER in nontranscribing regions were proficient for Pol II degradation. Complementation of the CSB and XPD cells restored Pol II degradation. We also show that cells defective for the VHL complex were defective in Pol II degradation and that complementation of those cells restores Pol II degradation. Moreover, VHL deficiency rendered cells resistant to Et743-induced cell death, a similar effect to that of TC-NER deficiency. CONCLUSION These results suggest that both TC-NER-induced and VHL-mediated Pol II degradation play a role in cell killing by Et743.
Collapse
Affiliation(s)
- Gregory J. Aune
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kazutaka Takagi
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Olivier Sordet
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jose Guirouilh-Barbat
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Smitha Antony
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute of A ging, NIH, Baltimore, Maryland
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
167
|
Dimitri A, Burns JA, Broyde S, Scicchitano DA. Transcription elongation past O6-methylguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase. Nucleic Acids Res 2008; 36:6459-71. [PMID: 18854351 PMCID: PMC2582612 DOI: 10.1093/nar/gkn657] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O6-Methylguanine (O6-meG) is a major mutagenic, carcinogenic and cytotoxic DNA adduct produced by various endogenous and exogenous methylating agents. We report the results of transcription past a site-specifically modified O6-meG DNA template by bacteriophage T7 RNA polymerase and human RNA polymerase II. These data show that O6-meG partially blocks T7 RNA polymerase and human RNA polymerase II elongation. In both cases, the sequences of the truncated transcripts indicate that both polymerases stop precisely at the damaged site without nucleotide incorporation opposite the lesion, while extensive misincorporation of uracil is observed in the full-length RNA. For both polymerases, computer models suggest that bypass occurs only when O6-meG adopts an anti conformation around its glycosidic bond, with the methyl group in the proximal orientation; in contrast, blockage requires the methyl group to adopt a distal conformation. Furthermore, the selection of cytosine and uracil partners opposite O6-meG is rationalized with modeled hydrogen-bonding patterns that agree with experimentally observed O6-meG:C and O6-meG:U pairing schemes. Thus, in vitro, O6-meG contributes substantially to transcriptional mutagenesis. In addition, the partial blockage of RNA polymerase II suggests that transcription-coupled DNA repair could play an auxiliary role in the clearance of this lesion.
Collapse
Affiliation(s)
- Alexandra Dimitri
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | |
Collapse
|
168
|
Sordet O, Larochelle S, Nicolas E, Stevens EV, Zhang C, Shokat KM, Fisher RP, Pommier Y. Hyperphosphorylation of RNA polymerase II in response to topoisomerase I cleavage complexes and its association with transcription- and BRCA1-dependent degradation of topoisomerase I. J Mol Biol 2008; 381:540-9. [PMID: 18588899 PMCID: PMC2754794 DOI: 10.1016/j.jmb.2008.06.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/05/2008] [Accepted: 06/11/2008] [Indexed: 02/06/2023]
Abstract
The progression of RNA polymerase II can be blocked by lesions on the DNA template. In this study, we focused on the modifications of the largest subunit of RNA polymerase II, Rpb1, in response to stabilized topoisomerase I (Top1)-DNA cleavage complexes. In addition to DNA modifications (base damages and strand breaks), Top1 cleavage complexes can be trapped by camptothecin (CPT) and its derivatives used in cancer treatment. We found that, within a few minutes, CPT produces the complete hyperphosphorylation of Rpb1 in both primary and transformed cancer cells. Hyperphosphorylation is rapidly reversible following CPT removal. Hyperphosphorylation occurs selectively on the serine 5 residue of the conserved heptapeptide repeats in the Rpb1 carboxy-terminal domain and is mediated principally by the transcription factor IIH-associated cyclin-dependent kinase Cdk7. Hyperphosphorylated Rpb1 is not primarily targeted for proteosomal degradation and instead is subjected to cycles of phosphorylation and dephosphorylation as long as Top1 cleavage complexes are trapped by CPT. Finally, we show that transcription-induced degradation of Top1 is Brca1 dependent, suggesting a role for Brca1 in the repair or removal of transcription-blocking Top1-DNA cleavage complexes.
Collapse
Affiliation(s)
- Olivier Sordet
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD 20892-4255, USA
| | - Stéphane Larochelle
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Estelle Nicolas
- LBCMCP, UMR5088 CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | - Ellen V. Stevens
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD 20892-4255, USA
| | - Chao Zhang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA
| | - Robert P. Fisher
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD 20892-4255, USA
| |
Collapse
|
169
|
Tachikawa H, Kawabata H. A direct ab initio molecular dynamics (MD) study on the repair reactions of stacked thymine dimer. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.07.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
170
|
Dimitri A, Jia L, Shafirovich V, Geacintov NE, Broyde S, Scicchitano DA. Transcription of DNA containing the 5-guanidino-4-nitroimidazole lesion by human RNA polymerase II and bacteriophage T7 RNA polymerase. DNA Repair (Amst) 2008; 7:1276-88. [PMID: 18555749 PMCID: PMC2572817 DOI: 10.1016/j.dnarep.2008.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 04/03/2008] [Accepted: 04/09/2008] [Indexed: 12/24/2022]
Abstract
Damage in transcribed DNA presents a challenge to the cell because it can partially or completely block the progression of an RNA polymerase, interfering with transcription and compromising gene expression. While blockage of RNA polymerase progression is thought to trigger the recruitment of transcription-coupled DNA repair (TCR), bypass of the lesion can also occur, either error-prone or error-free. Error-prone transcription is often referred to as transcriptional mutagenesis (TM). Elucidating why some lesions pose blocks to transcription elongation while others do not remains a challenging problem. As part of an effort to understand this, we studied transcription past a 5-guanidino-4-nitroimidazole (NI) lesion, using two structurally different RNA polymerases, human RNA polymerase II (hRNAPII) and bacteriophage T7 RNA polymerase (T7RNAP). The NI damage results from the oxidation of guanine in DNA by peroxynitrite, a well known, biologically important oxidant. It is of structural interest because it is a ring-opened and conformationally flexible guanine lesion. Our results show that NI acts as a partial block to T7RNAP while posing a major block to hRNAPII, which has a more constrained active site than T7RNAP. Lesion bypass by T7RNAP induces base misincorporations and deletions opposite the lesion (C>A>-1 deletion >G >>> U), but hRNAPII exhibits error-free transcription although lesion bypass is a rare event. We employed molecular modeling methods to explain the observed blockage or bypass accompanied by nucleotide incorporation opposite the lesion. The results of the modeling studies indicate that NI's multiple hydrogen-bonding capabilities and torsional flexibility are important determinants of its effect on transcription in both enzymes. These influence the kinetics of lesion bypass and may well play a role in TM and TCR in cells.
Collapse
Affiliation(s)
- Alexandra Dimitri
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, New York 10003
| | - Lei Jia
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, New York 10003
| | - Vladimir Shafirovich
- Department of Chemistry, New York University, 1001 Silver Center, 100 Washington Square East, New York, New York 10003
| | - Nicholas E. Geacintov
- Department of Chemistry, New York University, 1001 Silver Center, 100 Washington Square East, New York, New York 10003
| | - Suse Broyde
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, New York 10003
| | - David A. Scicchitano
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, New York 10003
| |
Collapse
|
171
|
Cramer P, Armache KJ, Baumli S, Benkert S, Brueckner F, Buchen C, Damsma GE, Dengl S, Geiger SR, Jasiak AJ, Jawhari A, Jennebach S, Kamenski T, Kettenberger H, Kuhn CD, Lehmann E, Leike K, Sydow JF, Vannini A. Structure of eukaryotic RNA polymerases. Annu Rev Biophys 2008; 37:337-52. [PMID: 18573085 DOI: 10.1146/annurev.biophys.37.032807.130008] [Citation(s) in RCA: 224] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eukaryotic RNA polymerases Pol I, Pol II, and Pol III are the central multiprotein machines that synthesize ribosomal, messenger, and transfer RNA, respectively. Here we provide a catalog of available structural information for these three enzymes. Most structural data have been accumulated for Pol II and its functional complexes. These studies have provided insights into many aspects of the transcription mechanism, including initiation at promoter DNA, elongation of the mRNA chain, tunability of the polymerase active site, which supports RNA synthesis and cleavage, and the response of Pol II to DNA lesions. Detailed structural studies of Pol I and Pol III were reported recently and showed that the active center region and core enzymes are similar to Pol II and that strong structural differences on the surfaces account for gene class-specific functions.
Collapse
Affiliation(s)
- P Cramer
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Brueckner F, Cramer P. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. Nat Struct Mol Biol 2008; 15:811-8. [PMID: 18552824 DOI: 10.1038/nsmb.1458] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 06/05/2008] [Indexed: 12/28/2022]
Abstract
To study how RNA polymerase II translocates after nucleotide incorporation, we prepared elongation complex crystals in which pre- and post-translocation states interconvert. Crystal soaking with the inhibitor alpha-amanitin locked the elongation complex in a new state, which was refined at 3.4-A resolution and identified as a possible translocation intermediate. The DNA base entering the active site occupies a 'pretemplating' position above the central bridge helix, which is shifted and occludes the templating position. A leucine residue in the trigger loop forms a wedge at the shifted bridge helix, but moves by 13 A to close the active site during nucleotide incorporation. Our results support a Brownian ratchet mechanism that involves swinging of the trigger loop between open, wedged and closed positions, and suggest that alpha-amanitin impairs nucleotide incorporation and translocation by trapping the trigger loop and bridge helix.
Collapse
Affiliation(s)
- Florian Brueckner
- Gene Center and Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | |
Collapse
|
173
|
Tachikawa H, Kawabata H. Interaction between thymine dimer and flavin-adenine dinucleotide: a DFT and direct ab initio molecular dynamics study. J Phys Chem B 2008; 112:7315-9. [PMID: 18503272 DOI: 10.1021/jp801564t] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The interaction between the fully reduced flavin-adenine dinucleotide (FADH (-)) and thymine dimer (T) 2 has been investigated by means of density functional theory (DFT) calculations. The charges of FADH (-) and (T) 2 were calculated to be -0.9 and -0.1, respectively, at the ground state. By photoirradiation, an electron transfer occurred from FADH (-) to (T) 2 at the first excited state. Next, the reaction dynamics of electron capture of (T) 2 have been investigated by means of the direct ab initio molecular dynamics (MD) method (HF/3-21G(d) and B3LYP/6-31G(d) levels) in order to elucidate the mechanism of the repair process of thymine dimer caused by the photoenzyme. The thymine dimer has two C-C single bonds between thymine rings (C 5-C 5' and C 6-C 6' bonds) at the neutral state, which is expressed by (T) 2. After the electron capture of (T) 2, the C 5-C 5' bond was gradually elongated and then it was preferentially broken. The time scale of the C-C bond breaking and formation of the intermediate with a single bond (T) 2 (-) was estimated to be 100-150 fs. The present calculations confirmed that the repair reaction of thymine dimer takes place efficiently via an electron-transfer process from the FADH (-) enzyme.
Collapse
Affiliation(s)
- Hiroto Tachikawa
- Division of Materials Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | | |
Collapse
|
174
|
Ghodgaonkar MM, Zacal N, Kassam S, Rainbow AJ, Shah GM. Depletion of poly(ADP-ribose) polymerase-1 reduces host cell reactivation of a UV-damaged adenovirus-encoded reporter gene in human dermal fibroblasts. DNA Repair (Amst) 2008; 7:617-32. [PMID: 18289944 DOI: 10.1016/j.dnarep.2008.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 01/04/2008] [Accepted: 01/05/2008] [Indexed: 12/19/2022]
Abstract
In response to ultraviolet radiation (UV), mammalian cells rapidly activate a nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP), and we recently showed that one of the causes for PARP-activation is UV-induced direct DNA photolesions which are repaired by nucleotide excision repair process (NER). To determine whether PARP can play a role in NER, we stably depleted PARP in NER-proficient human skin fibroblasts GM637 by DNA vector-based RNAi. In these cells, we examined host cell reactivation (HCR) of UVB or UVC-irradiated recombinant adenovirus AdCA35lacZ, encoding a beta-galactosidase (beta-gal) reporter gene. The depletion of PARP decreased the HCR of UVB- or UVC-damaged reporter gene to a similar extent, indicating the role of PARP in NER. Moreover, PARP-depletion reduced the HCR capacity of the NER-competent GM637 cells to a level closer to that in the XP-C and CS-B cell lines, which are deficient in the lesion recognition steps of the global genome repair (GGR) and transcription-coupled repair (TCR) sub-pathways of NER, respectively. In order to identify the potential role of PARP in these two sub-pathways of NER from that of its known role in base excision repair (BER) of UVB-induced oxidant damage, we depleted PARP from XP-C and CS-B cells and examined HCR of the reporter gene damaged by UVB, UVC or photoactivated methylene blue, the latter causing predominantly 8-oxo-2'-deoxyguanosine damage that is repaired by BER. Interestingly, a decreased HCR due to PARP-depletion was observed in both the NER-deficient cell lines in response to virus damaged by these three agents, albeit with different kinetics from 12 to 44h after infection. The role of PARP in NER was highlighted by a decreased clonogenic survival of UV-irradiated NER-competent GM637 cells depleted of PARP. Our results, while confirming the role of PARP in base excision repair, suggest a novel role of PARP in both the GGR and TCR sub-pathways of NER.
Collapse
Affiliation(s)
- Medini M Ghodgaonkar
- Laboratory for Skin Cancer Research, CHUL Research Centre (CHUQ), Faculty of Medicine, Laval University, Quebec, Quebec G1V 4G2, Canada
| | | | | | | | | |
Collapse
|
175
|
Schärer OD. A molecular basis for damage recognition in eukaryotic nucleotide excision repair. Chembiochem 2008; 9:21-3. [PMID: 18033706 DOI: 10.1002/cbic.200700619] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Orlando D Schärer
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11974-3400, USA.
| |
Collapse
|
176
|
Kuhn CD, Geiger SR, Baumli S, Gartmann M, Gerber J, Jennebach S, Mielke T, Tschochner H, Beckmann R, Cramer P. Functional architecture of RNA polymerase I. Cell 2008; 131:1260-72. [PMID: 18160037 DOI: 10.1016/j.cell.2007.10.051] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/02/2007] [Accepted: 10/26/2007] [Indexed: 01/10/2023]
Abstract
Synthesis of ribosomal RNA (rRNA) by RNA polymerase (Pol) I is the first step in ribosome biogenesis and a regulatory switch in eukaryotic cell growth. Here we report the 12 A cryo-electron microscopic structure for the complete 14-subunit yeast Pol I, a homology model for the core enzyme, and the crystal structure of the subcomplex A14/43. In the resulting hybrid structure of Pol I, A14/43, the clamp, and the dock domain contribute to a unique surface interacting with promoter-specific initiation factors. The Pol I-specific subunits A49 and A34.5 form a heterodimer near the enzyme funnel that acts as a built-in elongation factor and is related to the Pol II-associated factor TFIIF. In contrast to Pol II, Pol I has a strong intrinsic 3'-RNA cleavage activity, which requires the C-terminal domain of subunit A12.2 and, apparently, enables ribosomal RNA proofreading and 3'-end trimming.
Collapse
MESH Headings
- Binding Sites
- Cryoelectron Microscopy
- Crystallography, X-Ray
- DNA Polymerase I/chemistry
- DNA Polymerase I/genetics
- DNA Polymerase I/metabolism
- Models, Molecular
- Mutation
- Peptide Elongation Factors/chemistry
- Peptide Elongation Factors/metabolism
- Peptide Initiation Factors/chemistry
- Peptide Initiation Factors/metabolism
- Promoter Regions, Genetic
- Protein Conformation
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping
- Protein Structure, Tertiary
- Protein Subunits
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Structure-Activity Relationship
- Transcription Factors, TFII/chemistry
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
- Transcriptional Elongation Factors/chemistry
- Transcriptional Elongation Factors/metabolism
Collapse
Affiliation(s)
- Claus-D Kuhn
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Mirkin N, Fonseca D, Mohammed S, Cevher MA, Manley JL, Kleiman FE. The 3' processing factor CstF functions in the DNA repair response. Nucleic Acids Res 2008; 36:1792-804. [PMID: 18252771 PMCID: PMC2330234 DOI: 10.1093/nar/gkn005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Following DNA damage, mRNA levels decrease, reflecting a coordinated interaction of the DNA repair, transcription and RNA processing machineries. In this study, we provide evidence that transcription and polyadenylation of mRNA precursors are both affected in vivo by UV treatment. We next show that the polyadenylation factor CstF, plays a direct role in the DNA damage response. Cells with reduced levels of CstF display decreased viability following UV treatment, reduced ability to ubiquitinate RNA polymerase II (RNAP II), and defects in repair of DNA damage. Furthermore, we show that CstF, RNAP II and BARD1 are all found at sites of repaired DNA. Our results indicate that CstF plays an active role in the response to DNA damage, providing a link between transcription-coupled RNA processing and DNA repair.
Collapse
Affiliation(s)
- Nurit Mirkin
- Chemistry Department, Hunter College, City University of New York, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
178
|
Maillard O, Camenisch U, Blagoev KB, Naegeli H. Versatile protection from mutagenic DNA lesions conferred by bipartite recognition in nucleotide excision repair. Mutat Res 2008; 658:271-86. [PMID: 18321768 DOI: 10.1016/j.mrrev.2008.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 01/11/2008] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
Nucleotide excision repair is a cut-and-patch pathway that eliminates potentially mutagenic DNA lesions caused by ultraviolet light, electrophilic chemicals, oxygen radicals and many other genetic insults. Unlike antigen recognition by the immune system, which employs billions of immunoglobulins and T-cell receptors, the nucleotide excision repair complex relies on just a few generic factors to detect an extremely wide range of DNA adducts. This molecular versatility is achieved by a bipartite strategy initiated by the detection of abnormal strand fluctuations, followed by the localization of injured residues through an enzymatic scanning process coupled to DNA unwinding. The early recognition subunits are able to probe the thermodynamic properties of nucleic acid substrates but avoid direct contacts with chemically altered bases. Only downstream subunits of the bipartite recognition process interact more closely with damaged bases to delineate the sites of DNA incision. Thus, consecutive factors expand the spectrum of deleterious genetic lesions conveyed to DNA repair by detecting distinct molecular features of target substrates.
Collapse
Affiliation(s)
- Olivier Maillard
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Winterthurerstrasse 260, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
179
|
Dimitri A, Goodenough AK, Guengerich FP, Broyde S, Scicchitano DA. Transcription processing at 1,N2-ethenoguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase. J Mol Biol 2008; 375:353-66. [PMID: 18022639 PMCID: PMC2262288 DOI: 10.1016/j.jmb.2007.10.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/16/2007] [Accepted: 10/18/2007] [Indexed: 10/22/2022]
Abstract
The DNA lesion 1,N(2)-ethenoguanine (1,N(2)-epsilon G) is formed endogenously as a by-product of lipid peroxidation or by reaction with epoxides that result from the metabolism of the industrial pollutant vinyl chloride, a known human carcinogen. DNA replication past 1,N(2)-epsilon G and site-specific mutagenesis studies on mammalian cells have established the highly mutagenic and genotoxic properties of the damaged base. However, there is as yet no information on the processing of this lesion during transcription. Here, we report the results of transcription past a site-specifically modified 1,N(2)-epsilon G DNA template. This lesion contains an exocyclic ring obstructing the Watson-Crick hydrogen-bonding edge of guanine. Our results show that 1,N(2)-epsilon G acts as a partial block to the bacteriophage T7 RNA polymerase (RNAP), which allows nucleotide incorporation in the growing RNA with the selectivity A>G>(C=-1 deletion)>>U. In contrast, 1,N(2)-epsilon G poses an absolute block to human RNAP II elongation, and nucleotide incorporation opposite the lesion is not observed. Computer modeling studies show that the more open active site of T7 RNAP allows lesion bypass when the 1,N(2)-epsilon G adopts the syn-conformation. This orientation places the exocyclic ring in a collision-free empty pocket of the polymerase, and the observed base incorporation preferences are in agreement with hydrogen-bonding possibilities between the incoming nucleotides and the Hoogsteen edge of the lesion. On the other hand, in the more crowded active site of the human RNAP II, the modeling studies show that both syn- and anti-conformations of the 1,N(2)-epsilon G are sterically impermissible. Polymerase stalling is currently believed to trigger the transcription-coupled nucleotide excision repair machinery. Thus, our data suggest that this repair pathway is likely engaged in the clearance of the 1,N(2)-epsilon G from actively transcribed DNA.
Collapse
Affiliation(s)
| | - Angela K. Goodenough
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232
| | - F. Peter Guengerich
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232
- Department of Center in Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37232
| | - Suse Broyde
- Department of Biology, New York University, NY, NY, 10003, USA
| | | |
Collapse
|
180
|
Kuraoka I. Effects of DNA Lesions on Transcription Elongation by RNA Polymerases. Genes Environ 2008. [DOI: 10.3123/jemsge.30.63] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
181
|
Song EJ, Babar SME, Oh E, Hasan MN, Hong HM, Yoo YS. CE at the omics level: Towards systems biology – An update. Electrophoresis 2008; 29:129-42. [DOI: 10.1002/elps.200700467] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
182
|
Abstract
Single-pair fluorescence resonance energy transfer was used to track RNA exiting from RNA polymerase II (Pol II) in elongation complexes. Measuring the distance between the RNA 5' end and three known locations within the elongation complex allows us determine its position by means of triangulation. RNA leaves the polymerase active center cleft via the previously proposed exit tunnel and then disengages from the enzyme surface. When the RNA reaches lengths of 26 and 29 nt, its 5' end associates with Pol II at the base of the dock domain. Because the initiation factor TFIIB binds to the dock domain and exit tunnel, exiting RNA may prevent TFIIB reassociation during elongation. RNA further extends toward the linker connecting to the polymerase C-terminal repeat domain (CTD), which binds the 5'-capping enzyme and other RNA processing factors.
Collapse
|
183
|
Molecular basis of RNA-dependent RNA polymerase II activity. Nature 2007; 450:445-9. [PMID: 18004386 DOI: 10.1038/nature06290] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/21/2007] [Indexed: 12/28/2022]
Abstract
RNA polymerase (Pol) II catalyses DNA-dependent RNA synthesis during gene transcription. There is, however, evidence that Pol II also possesses RNA-dependent RNA polymerase (RdRP) activity. Pol II can use a homopolymeric RNA template, can extend RNA by several nucleotides in the absence of DNA, and has been implicated in the replication of the RNA genomes of hepatitis delta virus (HDV) and plant viroids. Here we show the intrinsic RdRP activity of Pol II with only pure polymerase, an RNA template-product scaffold and nucleoside triphosphates (NTPs). Crystallography reveals the template-product duplex in the site occupied by the DNA-RNA hybrid during transcription. RdRP activity resides at the active site used during transcription, but it is slower and less processive than DNA-dependent activity. RdRP activity is also obtained with part of the HDV antigenome. The complex of transcription factor IIS (TFIIS) with Pol II can cleave one HDV strand, create a reactive stem-loop in the hybrid site, and extend the new RNA 3' end. Short RNA stem-loops with a 5' extension suffice for activity, but their growth to a critical length apparently impairs processivity. The RdRP activity of Pol II provides a missing link in molecular evolution, because it suggests that Pol II evolved from an ancient replicase that duplicated RNA genomes.
Collapse
|
184
|
Lorenzen K, Vannini A, Cramer P, Heck AJR. Structural biology of RNA polymerase III: mass spectrometry elucidates subcomplex architecture. Structure 2007; 15:1237-45. [PMID: 17937913 DOI: 10.1016/j.str.2007.07.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/09/2007] [Accepted: 07/31/2007] [Indexed: 12/01/2022]
Abstract
RNA polymerases (Pol) II and III synthesize eukaryotic mRNAs and tRNAs, respectively. The crystal structure of the 12 subunit Pol II is known, but only limited structural information is available for the 17 subunit Pol III. Using mass spectrometry (MS), we correlated masses of Pol II complexes with the Pol II structure. Analysis of Pol III showed that the complete enzyme contains a single copy of each subunit and revealed a 15 subunit form lacking the Pol III-specific subcomplex C53/37. DMSO treatment dissociated the C17/25 heterodimer of Pol III, confirming a peripheral location as its counterpart in Pol II. Tandem MS revealed the Pol III-specific subunits C82 and C34 dissociating as a heterodimer. C11 was retained, arguing against a stable trimeric subcomplex, C53/37/11. These data suggest that Pol III consists of a 10 subunit Pol II-like core; the peripheral heterodimers C17/25, C53/37, and C82/34; and subunit C31, which bridges between C82/34, C17/25, and the core.
Collapse
Affiliation(s)
- Kristina Lorenzen
- Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research and Utrecht Institute for Chemistry, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | |
Collapse
|
185
|
Damsma GE, Alt A, Brueckner F, Carell T, Cramer P. Mechanism of transcriptional stalling at cisplatin-damaged DNA. Nat Struct Mol Biol 2007; 14:1127-33. [PMID: 17994106 DOI: 10.1038/nsmb1314] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/18/2007] [Indexed: 11/09/2022]
Abstract
The anticancer drug cisplatin forms 1,2-d(GpG) DNA intrastrand cross-links (cisplatin lesions) that stall RNA polymerase II (Pol II) and trigger transcription-coupled DNA repair. Here we present a structure-function analysis of Pol II stalling at a cisplatin lesion in the DNA template. Pol II stalling results from a translocation barrier that prevents delivery of the lesion to the active site. AMP misincorporation occurs at the barrier and also at an abasic site, suggesting that it arises from nontemplated synthesis according to an 'A-rule' known for DNA polymerases. Pol II can bypass a cisplatin lesion that is artificially placed beyond the translocation barrier, even in the presence of a G.A mismatch. Thus, the barrier prevents transcriptional mutagenesis. The stalling mechanism differs from that of Pol II stalling at a photolesion, which involves delivery of the lesion to the active site and lesion-templated misincorporation that blocks transcription.
Collapse
Affiliation(s)
- Gerke E Damsma
- Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
186
|
Ding B, Ruggiero C, Chen X, Li S. Tfb5 is partially dispensable for Rad26 mediated transcription coupled nucleotide excision repair in yeast. DNA Repair (Amst) 2007; 6:1661-9. [PMID: 17644494 PMCID: PMC2096704 DOI: 10.1016/j.dnarep.2007.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 06/08/2007] [Indexed: 11/18/2022]
Abstract
Nucleotide excision repair (NER) is a conserved DNA repair mechanism capable of removing a variety of helix-distorting DNA lesions. A specialized NER pathway, called transcription coupled NER (TC-NER), refers to preferential repair in the transcribed strand of an actively transcribed gene. To be distinguished from TCR-NER, the genome-wide NER process is termed as global genomic NER (GG-NER). In Saccharomyces cerevisiae, GG-NER is dependent on Rad7, whereas TC-NER is mediated by Rad26, the homolog of the human Cockayne syndrome group B protein, and by Rpb9, a non-essential subunit of RNA polymerase II. Tfb5, the tenth subunit of the transcription/repair factor TFIIH, is implicated in one group of the human syndrome trichothiodystrophy. Here, we show that Tfb5 plays different roles in different NER pathways in yeast. No repair takes place in the non-transcribed strand of a gene in tfb5 cells, or in both strands of a gene in rad26 rpb9 tfb5 cells, indicating that Tfb5 is essential for GG-NER. However, residual repair occurs in the transcribed strand of a gene in tfb5 cells, suggesting that Tfb5 is important, but not absolutely required for TC-NER. Interestingly, substantial repair occurs in the transcribed strand of a gene in rad7 tfb5 and rad7 rpb9 tfb5 cells, indicating that, in the absence of GG-NER, Tfb5 is largely dispensable for Rad26 mediated TC-NER. Furthermore, we show that no repair takes place in the transcribed strand of a gene in rad7 rad26 tfb5 cells, suggesting that Tfb5 is required for Rpb9 mediated TC-NER. Taken together, our results indicate that Tfb5 is partially dispensable for Rad26 mediated TC-NER, especially in GG-NER deficient cells. However, this TFIIH subunit is required for other NER pathways.
Collapse
Affiliation(s)
- Baojin Ding
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Christine Ruggiero
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Xuefeng Chen
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
187
|
Ganesan AK, Smith AJ, Savery NJ, Zamos P, Hanawalt PC. Transcription coupled nucleotide excision repair in Escherichia coli can be affected by changing the arginine at position 529 of the beta subunit of RNA polymerase. DNA Repair (Amst) 2007; 6:1434-40. [PMID: 17532270 PMCID: PMC2578841 DOI: 10.1016/j.dnarep.2007.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 04/04/2007] [Accepted: 04/05/2007] [Indexed: 11/25/2022]
Abstract
The proposed mechanism for transcription coupled nucleotide excision repair (TCR) invokes RNA polymerase (RNAP) blocked at a DNA lesion as a signal to initiate repair. In Escherichia coli, TCR requires the interaction of RNAP with a transcription-repair coupling factor encoded by the mfd gene. The interaction between RNAP and Mfd depends upon amino acids 117, 118, and 119 of the beta subunit of RNAP; changing any one of these to alanine diminishes the interaction [1]. Using direct assays for TCR, and the lac operon of E. coli containing UV induced cyclobutane pyrimidine dimers (CPDs) as substrate, we have found that a change from arginine to cysteine at amino acid 529 of the beta subunit of the RNAP inactivates TCR, but does not prevent the interaction of RNAP with Mfd. Our results suggest that this interaction may be necessary but not sufficient to facilitate TCR.
Collapse
Affiliation(s)
- Ann K Ganesan
- Department of Biological Sciences, Stanford University, Stanford, CA 94303-5020, USA.
| | | | | | | | | |
Collapse
|
188
|
Frosina G. The current evidence for defective repair of oxidatively damaged DNA in Cockayne syndrome. Free Radic Biol Med 2007; 43:165-77. [PMID: 17603927 DOI: 10.1016/j.freeradbiomed.2007.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 03/31/2007] [Accepted: 04/02/2007] [Indexed: 12/21/2022]
Abstract
Cockayne syndrome (CS) is a rare recessive disorder characterized by a number of developmental abnormalities and premature aging. Two complementation groups (A and B) have been identified so far in CS cases. Defective transcription-coupled nucleotide excision repair is the hallmark of these patients, but in recent years evidence has been presented for a possible defect in the base excision repair pathway that removes oxidized bases. Recent results indicate that both A and B complementation groups are involved but the phenotypical consequences of this flaw remain undetermined.
Collapse
Affiliation(s)
- Guido Frosina
- Department of Translational Oncology, Experimental Oncology "B" Laboratory, Istituto Nazionale Ricerca Cancro, Largo Rosanna Benzi n. 10, 16132 Genova, Italy.
| |
Collapse
|
189
|
Savery NJ. The molecular mechanism of transcription-coupled DNA repair. Trends Microbiol 2007; 15:326-33. [PMID: 17572090 DOI: 10.1016/j.tim.2007.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/11/2007] [Accepted: 05/25/2007] [Indexed: 02/04/2023]
Abstract
DNA damage that blocks the transcription of genes is prioritized for repair by transcription-coupled DNA repair pathways. RNA polymerases stalled at DNA lesions obstruct repair enzymes, but this situation is turned to the advantage of the cell by transcription-repair coupling factors that remove the stalled RNA polymerase from DNA and increase the rate at which the lesion is repaired. Recent structural studies of the bacterial transcription-repair coupling factor, Mfd, have revealed a modular architecture in which an ATP-dependent DNA-based motor is coupled to protein-protein interaction domains that can attach the motor to RNA polymerase and the DNA repair protein UvrA. Here I review the key features of this multifunctional protein and discuss how recent mechanistic and structural findings have advanced our understanding of transcription-coupled DNA repair in bacteria.
Collapse
Affiliation(s)
- Nigel J Savery
- DNA-Protein Interactions Unit, Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
190
|
Brueckner F, Cramer P. DNA photodamage recognition by RNA polymerase II. FEBS Lett 2007; 581:2757-60. [PMID: 17521634 DOI: 10.1016/j.febslet.2007.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 05/06/2007] [Indexed: 01/22/2023]
Abstract
During gene transcription, RNA polymerase (Pol) II encounters obstacles, including lesions in the DNA template. Here, we review a recent structure-function analysis of Pol II transcribing DNA with a bulky photo-lesion in the template strand. The study provided the molecular basis for recognition of a damaged DNA by Pol II, which is the first step in transcription-coupled DNA repair (TCR). The results have general implications for damage recognition and the TCR mechanism.
Collapse
Affiliation(s)
- Florian Brueckner
- Gene Center Munich, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany
| | | |
Collapse
|
191
|
Marietta C, Brooks PJ. Transcriptional bypass of bulky DNA lesions causes new mutant RNA transcripts in human cells. EMBO Rep 2007; 8:388-93. [PMID: 17363972 PMCID: PMC1852755 DOI: 10.1038/sj.embor.7400932] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 12/22/2022] Open
Abstract
Here, we characterize the mutant transcripts resulting from bypass of an 8,5'-cyclo-2'-deoxyadenosine (cyclo-dA) or cyclobutane pyrimidine dimer (CPD) by human RNA polymerase II (Pol II) in vivo. With the cyclo-dA lesion, we observed two new types of mutant transcripts. In the first type, the polymerase inserted uridine opposite the lesion and then misincorporated adenosine opposite the template deoxyadenosine downstream (5') of the lesion. The second type contained deletions of 7, 13 or 21 nucleotides (nt) after uridine incorporation opposite the lesion. The frequency of the different types of transcript from the cyclo-dA lesion in mutant human cell lines suggests that the Cockayne syndrome B protein affects the probability of deletion transcript formation. With the CPD-containing construct, we also detected rare transcripts containing 12 nt deletions. These results indicate that RNA pol II in living human cells can bypass helix-distorting DNA lesions that are substrates for nucleotide excision repair, resulting in transcriptional mutagenesis.
Collapse
Affiliation(s)
- Cheryl Marietta
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Room 3S-32, MSC 9412, Bethesda, Maryland 20892, USA
| | - Philip J Brooks
- Section on Molecular Neurobiology, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Room 3S-32, MSC 9412, Bethesda, Maryland 20892, USA
| |
Collapse
|
192
|
|