151
|
Yoon J, Matsuo E, Yamada D, Mizuno H, Morimoto T, Miyakawa H, Kinoshita S, Ishimoto H, Kamikouchi A. Selectivity and plasticity in a sound-evoked male-male interaction in Drosophila. PLoS One 2013; 8:e74289. [PMID: 24086330 PMCID: PMC3782482 DOI: 10.1371/journal.pone.0074289] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/26/2013] [Indexed: 11/18/2022] Open
Abstract
During courtship, many animals, including insects, birds, fish, and mammals, utilize acoustic signals to transmit information about species identity. Although auditory communication is crucial across phyla, the neuronal and physiologic processes are poorly understood. Sound-evoked chaining behavior, a display of homosexual courtship behavior in Drosophila males, has long been used as an excellent model for analyzing auditory behavior responses, outcomes of acoustic perception and higher-order brain functions. Here we developed a new method, termed ChaIN (Chain Index Numerator), in which we use a computer-based auto detection system for chaining behavior. The ChaIN system can systematically detect the chaining behavior induced by a series of modified courtship song playbacks. Two evolutionarily related Drosophila species, Drosophila melanogaster and Drosophila simulans, exhibited dramatic selective increases in chaining behavior when exposed to specific auditory cues, suggesting that auditory discrimination processes are involved in the acceleration of chaining behavior. Prolonged monotonous pulse sounds containing courtship song components also induced high intense chaining behavior. Interestingly, the chaining behavior was gradually suppressed over time when song playback continued. This behavioral change is likely to be a plastic behavior and not a simple sensory adaptation or fatigue, because the suppression was released by applying a different pulse pattern. This behavioral plasticity is not a form of habituation because different modality stimuli did not recover the behavioral suppression. Intriguingly, this plastic behavior partially depended on the cAMP signaling pathway controlled by the rutabaga adenylyl cyclase gene that is important for learning and memory. Taken together, this study demonstrates the selectivity and behavioral kinetics of the sound-induced interacting behavior of Drosophila males, and provides a basis for the systematic analysis of genes and neural circuits underlying complex acoustic behavior.
Collapse
Affiliation(s)
- Jeonghyeon Yoon
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Eriko Matsuo
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Daichi Yamada
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroshi Mizuno
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Takako Morimoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hiroyoshi Miyakawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | - Hiroshi Ishimoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- PRESTO, JST, Chiyoda, Tokyo, Japan
- * E-mail:
| |
Collapse
|
152
|
Fernández MP, Kravitz EA. Aggression and courtship in Drosophila: pheromonal communication and sex recognition. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:1065-76. [PMID: 24043358 DOI: 10.1007/s00359-013-0851-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/12/2013] [Accepted: 08/18/2013] [Indexed: 01/19/2023]
Abstract
Upon encountering a conspecific in the wild, males have to rapidly detect, integrate and process the most relevant signals to evoke an appropriate behavioral response. Courtship and aggression are the most important social behaviors in nature for procreation and survival: for males, making the right choice between the two depends on the ability to identify the sex of the other individual. In flies as in most species, males court females and attack other males. Although many sensory modalities are involved in sex recognition, chemosensory communication mediated by specific molecules that serve as pheromones plays a key role in helping males distinguish between courtship and aggression targets. The chemosensory signals used by flies include volatile and non-volatile compounds, detected by the olfactory and gustatory systems. Recently, several putative olfactory and gustatory receptors have been identified that play key roles in sex recognition, allowing investigators to begin to map the neuronal circuits that convey this sensory information to higher processing centers in the brain. Here, we describe how Drosophila melanogaster males use taste and smell to make correct behavioral choices.
Collapse
|
153
|
Rytz R, Croset V, Benton R. Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:888-97. [PMID: 23459169 DOI: 10.1016/j.ibmb.2013.02.007] [Citation(s) in RCA: 311] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/30/2013] [Accepted: 02/13/2013] [Indexed: 05/20/2023]
Abstract
Ionotropic Receptors (IRs) are a recently characterized family of olfactory receptors in the fruit fly, Drosophila melanogaster. IRs are not related to insect Odorant Receptors (ORs), but rather have evolved from ionotropic glutamate receptors (iGluRs), a conserved family of synaptic ligand-gated ion channels. Here, we review the expression and function of IRs in Drosophila, highlighting similarities and differences with iGluRs. We also briefly describe the organization of the neuronal circuits in which IRs function, comparing and contrasting them with the sensory pathways expressing ORs. Finally, we summarize the bioinformatic identification and initial characterization of IRs in other species, which imply an evolutionarily conserved role for these receptors in chemosensation in insects and other protostomes.
Collapse
Affiliation(s)
- Raphael Rytz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
154
|
Control of male and female fertility by the netrin axon guidance genes. PLoS One 2013; 8:e72524. [PMID: 23977313 PMCID: PMC3744485 DOI: 10.1371/journal.pone.0072524] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/17/2013] [Indexed: 01/29/2023] Open
Abstract
The netrin axon guidance genes have previously been implicated in fertility in C. elegans and in vertebrates. Here we show that adult Drosophila lacking both netrin genes, NetA and NetB, have fertility defects in both sexes together with an inability to fly and reduced viability. NetAB females produce fertilized eggs at a much lower rate than wild type. Oocyte development and ovarian innervation are unaffected in NetAB females, and the reproductive tract appears normal. A small gene, hog, that resides in an intron of NetB does not contribute to the NetAB phenotype. Restoring endogenous NetB expression rescues egg-laying, but additional genetic manipulations, such as restoration of netrin midline expression and inhibition of cell death have no effect on fertility. NetAB males induce reduced egg-laying in wild type females and display mirror movements of their wings during courtship. Measurement of courtship parameters revealed no difference compared to wild type males. Transgenic manipulations failed to rescue male fertility and mirror movements. Additional genetic manipulations, such as removal of the enabled gene, a known suppressor of the NetAB embryonic CNS phenotype, did not improve the behavioral defects. The ability to fly was rescued by inhibition of neuronal cell death and pan-neural NetA expression. Based on our results we hypothesize that the adult fertility defects of NetAB mutants are due to ovulation defects in females and a failure to properly transfer sperm proteins in males, and are likely to involve multiple neural circuits.
Collapse
|
155
|
Mariette MM, Cathaud C, Chambon R, Vignal C. Juvenile social experience affects pairing success at adulthood: congruence with the loser effect? Proc Biol Sci 2013; 280:20131514. [PMID: 23902911 DOI: 10.1098/rspb.2013.1514] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Social interactions with adults are often critical for the development of mating behaviours. However, the potential role of other primary social partners such as juvenile counterparts is rarely considered. Most interestingly, it is not known whether interactions with juvenile females improve males' courtship and whether, similar to the winner and loser effects in a fighting context--outcome of these interactions shapes males' behaviour in future encounters. We investigated the combined effects of male quality and juvenile social experience on pairing success at adulthood in zebra finches (Taeniopygia guttata). We manipulated brood size to alter male quality and then placed males in either same- or mixed-sex juvenile dyads until adulthood. We found that males from reduced broods obtained more copulations and males from mixed-sex dyads had more complete courtships. Furthermore, independent of their quality, males that failed to pair with juvenile females, but not juvenile males, had a lower pairing success at adulthood. Our study shows that negative social experience with peers during adolescence may be a potent determinant of pairing success that can override the effects of early environmental conditions on male attractiveness and thereby supports the occurrence of an analogous process to the loser effect in a mating context.
Collapse
Affiliation(s)
- Mylene M Mariette
- ENES/CNPS CNRS UMR8195, Université de Saint-Etienne, Université de Lyon, 42023 Saint-Etienne, France.
| | | | | | | |
Collapse
|
156
|
Yamamoto D, Ishikawa Y. Genetic and Neural Bases for Species-Specific Behavior inDrosophilaSpecies. J Neurogenet 2013; 27:130-42. [DOI: 10.3109/01677063.2013.800060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
157
|
Latham KL, Liu YS, Taylor BJ. A small cohort of FRU(M) and Engrailed-expressing neurons mediate successful copulation in Drosophila melanogaster. BMC Neurosci 2013; 14:57. [PMID: 23688386 PMCID: PMC3664081 DOI: 10.1186/1471-2202-14-57] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 05/14/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Drosophila, male flies require the expression of the male-specific Fruitless protein (FRU(M)) within the developing pupal and adult nervous system in order to produce male courtship and copulation behaviors. Recent evidence has shown that specific subsets of FRU(M) neurons are necessary for particular steps of courtship and copulation. In these neurons, FRU(M) function has been shown to be important for determining sex-specific neuronal characteristics, such as neurotransmitter profile and morphology. RESULTS We identified a small cohort of FRU(M) interneurons in the brain and ventral nerve cord by their co-expression with the transcription factor Engrailed (En). We used an En-GAL4 driver to express a fru(M) RNAi construct in order to selectively deplete FRU(M) in these En/FRU(M) co-expressing neurons. In courtship and copulation tests, these males performed male courtship at wild-type levels but were frequently sterile. Sterility was a behavioral phenotype as these En-fru(M)RNAi males were less able to convert a copulation attempt into a stable copulation, or did not maintain copulation for long enough to transfer sperm and/or seminal fluid. CONCLUSIONS We have identified a population of interneurons necessary for successful copulation in Drosophila. These data confirm a model in which subsets of FRU(M) neurons participate in independent neuronal circuits necessary for individual steps of male behavior. In addition, we have determined that these neurons in wild-type males have homologues in females and fru mutants, with similar placement, projection patterns, and neurochemical profiles.
Collapse
Affiliation(s)
- Kristin L Latham
- Department of Zoology, Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331-2914, USA.
| | | | | |
Collapse
|
158
|
Hurtado J, Hasson E. Inter and intraspecific variation in female remating propensity in the cactophilic sibling species Drosophila buzzatii and D. koepferae. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:569-576. [PMID: 23542152 DOI: 10.1016/j.jinsphys.2013.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
Post-mating sexual selection by means of sperm competition or cryptic female choice occurs in species in which females remate before exhausting sperm supplied by previous mates. Thus, sperm competition is expected to be stronger when inseminated females remate more frequently or take longer to deplete sperm load. Previous studies comparing oviposition behavior in the pair of closely related species Drosophila buzzatii and Drosophila koepferae suggest that inseminated females of the latter deplete sperm load more rapidly. Here, we investigate female remating in D. buzzatii and D. koepferae by studying how female remating propensity changes after mating. Our study reveals that, after mating, female D. buzzatii recovers receptivity 14 times faster and remate more frequently than D. koepferae. Thus, we argue that D. buzzatii exhibits greater chances that sperm from different mates meet inside the same female suggesting more complex post-mating interactions than in its sibling. In addition, our results show that there is intraspecific genetic variation for the duration of female refractory period in both species.
Collapse
Affiliation(s)
- Juan Hurtado
- Instituto de Ecología Genética y Evolución de la ciudad de Buenos Aires, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
159
|
Sherlekar AL, Janssen A, Siehr MS, Koo PK, Caflisch L, Boggess M, Lints R. The C. elegans male exercises directional control during mating through cholinergic regulation of sex-shared command interneurons. PLoS One 2013; 8:e60597. [PMID: 23577128 PMCID: PMC3618225 DOI: 10.1371/journal.pone.0060597] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/28/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mating behaviors in simple invertebrate model organisms represent tractable paradigms for understanding the neural bases of sex-specific behaviors, decision-making and sensorimotor integration. However, there are few examples where such neural circuits have been defined at high resolution or interrogated. METHODOLOGY/PRINCIPAL FINDINGS Here we exploit the simplicity of the nematode Caenorhabditis elegans to define the neural circuits underlying the male's decision to initiate mating in response to contact with a mate. Mate contact is sensed by male-specific sensilla of the tail, the rays, which subsequently induce and guide a contact-based search of the hermaphrodite's surface for the vulva (the vulva search). Atypically, search locomotion has a backward directional bias so its implementation requires overcoming an intrinsic bias for forward movement, set by activity of the sex-shared locomotory system. Using optogenetics, cell-specific ablation- and mutant behavioral analyses, we show that the male makes this shift by manipulating the activity of command cells within this sex-shared locomotory system. The rays control the command interneurons through the male-specific, decision-making interneuron PVY and its auxiliary cell PVX. Unlike many sex-shared pathways, PVY/PVX regulate the command cells via cholinergic, rather than glutamatergic transmission, a feature that likely contributes to response specificity and coordinates directional movement with other cholinergic-dependent motor behaviors of the mating sequence. PVY/PVX preferentially activate the backward, and not forward, command cells because of a bias in synaptic inputs and the distribution of key cholinergic receptors (encoded by the genes acr-18, acr-16 and unc-29) in favor of the backward command cells. CONCLUSION/SIGNIFICANCE Our interrogation of male neural circuits reveals that a sex-specific response to the opposite sex is conferred by a male-specific pathway that renders subordinate, sex-shared motor programs responsive to mate cues. Circuit modifications of these types may make prominent contributions to natural variations in behavior that ultimately bring about speciation.
Collapse
Affiliation(s)
- Amrita L. Sherlekar
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Abbey Janssen
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Meagan S. Siehr
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Pamela K. Koo
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Laura Caflisch
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - May Boggess
- School of Mathematical and Statistical Sciences,Arizona State University, Tempe, Arizona, United States of America
| | - Robyn Lints
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| |
Collapse
|
160
|
Coevolution between male and female genitalia in the Drosophila melanogaster species subgroup. PLoS One 2013; 8:e57158. [PMID: 23451172 PMCID: PMC3581563 DOI: 10.1371/journal.pone.0057158] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/17/2013] [Indexed: 11/19/2022] Open
Abstract
In contrast to male genitalia that typically exhibit patterns of rapid and divergent evolution among internally fertilizing animals, female genitalia have been less well studied and are generally thought to evolve slowly among closely-related species. As a result, few cases of male-female genital coevolution have been documented. In Drosophila, female copulatory structures have been claimed to be mostly invariant compared to male structures. Here, we re-examined male and female genitalia in the nine species of the D. melanogaster subgroup. We describe several new species-specific female genital structures that appear to coevolve with male genital structures, and provide evidence that the coevolving structures contact each other during copulation. Several female structures might be defensive shields against apparently harmful male structures, such as cercal teeth, phallic hooks and spines. Evidence for male-female morphological coevolution in Drosophila has previously been shown at the post-copulatory level (e.g., sperm length and sperm storage organ size), and our results provide support for male-female coevolution at the copulatory level.
Collapse
|
161
|
McBride SMJ, Holloway SL, Jongens TA. Using Drosophila as a tool to identify pharmacological therapies for fragile X syndrome. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 10:e129-36. [PMID: 24050241 DOI: 10.1016/j.ddtec.2012.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite obvious differences such as the ability to fly, the fruit fly Drosophila melanogaster is similar to humans at many different levels of complexity. Studies of development, cell growth and division, metabolism and even cognition, have borne out these similarities. For example, Drosophila bearing mutations in the fly gene homologue of the known human disease fragile X are affected in fundamentally similar ways as affected humans. The ramification of this degree of similarity is that Drosophila, as a model organism, is a rich resource for learning about human cells, development and even human cognition and behavior. Drosophila has a short generation time of ten days, is cheap to propagate and maintain and has a vast array of genetic tools available to it; making Drosophila an extremely attractive organism for the study of human disease. Here, we summarize research from our lab and others using Drosophila to understand the human neurological disease, called fragile X. We focus on the Drosophila model of fragile X, its characterization, and use as a tool to identify potential drugs for the treatment of fragile X. Several clinical trials are in progress now that were motivated by this research.
Collapse
|
162
|
Durisko Z, Anderson B, Dukas R. Adult fruit fly attraction to larvae biases experience and mediates social learning. J Exp Biol 2013; 217:1193-7. [DOI: 10.1242/jeb.097683] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Summary
We investigated whether adult fruit flies (Drosophila melanogaster) use cues of larvae as social information in their food patch choice decisions. Adult male and female fruit flies showed attraction to odours emanating from foraging larvae, and females preferred to lay eggs on food patches occupied by larvae over similar unoccupied patches. Females learned and subsequently preferred to lay eggs at patches with novel flavours previously associated with feeding larvae over patches with novel flavours previously associated with no larvae. However, when we controlled for the duration of exposure to each flavoured patch, females no longer preferred the flavour previously associated with feeding larvae. This suggests that social learning in this context is indirect, due to strong social attraction biasing experience.
Collapse
|
163
|
Nehring V, Wyatt TD, d’Ettorre P. Noise in Chemical Communication. ANIMAL SIGNALS AND COMMUNICATION 2013. [DOI: 10.1007/978-3-642-41494-7_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
164
|
Mellert DJ, Robinett CC, Baker BS. doublesex functions early and late in gustatory sense organ development. PLoS One 2012; 7:e51489. [PMID: 23240029 PMCID: PMC3519885 DOI: 10.1371/journal.pone.0051489] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/02/2012] [Indexed: 01/05/2023] Open
Abstract
Somatic sexual dimorphisms outside of the nervous system in Drosophila melanogaster are largely controlled by the male- and female-specific Doublesex transcription factors (DSX(M) and DSX(F), respectively). The DSX proteins must act at the right times and places in development to regulate the diverse array of genes that sculpt male and female characteristics across a variety of tissues. To explore how cellular and developmental contexts integrate with doublesex (dsx) gene function, we focused on the sexually dimorphic number of gustatory sense organs (GSOs) in the foreleg. We show that DSX(M) and DSX(F) promote and repress GSO formation, respectively, and that their relative contribution to this dimorphism varies along the proximodistal axis of the foreleg. Our results suggest that the DSX proteins impact specification of the gustatory sensory organ precursors (SOPs). DSX(F) then acts later in the foreleg to regulate gustatory receptor neuron axon guidance. These results suggest that the foreleg provides a unique opportunity for examining the context-dependent functions of DSX.
Collapse
Affiliation(s)
- David J. Mellert
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Biology Department, Stanford University, Stanford, California, United States of America
| | - Carmen C. Robinett
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- * E-mail:
| | - Bruce S. Baker
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Biology Department, Stanford University, Stanford, California, United States of America
| |
Collapse
|
165
|
Two Drosophila DEG/ENaC channel subunits have distinct functions in gustatory neurons that activate male courtship. J Neurosci 2012; 32:11879-89. [PMID: 22915128 DOI: 10.1523/jneurosci.1376-12.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trimeric sodium channels of the DEG/ENaC family have important roles in neurons, but the specific functions of different subunits present in heteromeric channels are poorly understood. We previously reported that the Drosophila DEG/ENaC subunit Ppk25 is essential in a small subset of gustatory neurons for activation of male courtship behavior, likely through detection of female pheromones. Here we show that, like mutations in ppk25, mutations in another Drosophila DEG/ENaC subunit gene, nope, specifically impair male courtship of females. nope regulatory sequences drive reporter gene expression in gustatory neurons of the labellum wings, and legs, including all gustatory neurons in which ppk25 function is required for male courtship of females. In addition, gustatory-specific knockdown of nope impairs male courtship. Further, the impaired courtship response of nope mutant males to females is rescued by targeted expression of nope in the subset of gustatory neurons in which ppk25 functions. However, nope and ppk25 have nonredundant functions, as targeted expression of ppk25 does not compensate for the lack of nope and vice versa. Moreover, Nope and Ppk25 form specific complexes when coexpressed in cultured cells. Together, these data indicate that the Nope and Ppk25 polypeptides have specific, nonredundant functions in a subset of gustatory neurons required for activation of male courtship in response to females, and suggest the hypothesis that Nope and Ppk25 function as subunits of a heteromeric DEG/ENaC channel required for gustatory detection of female pheromones.
Collapse
|
166
|
Goodwin SF, O'Dell KMC. The best laid plans: analyzing courtship defects in Drosophila. Cold Spring Harb Protoc 2012; 2012:1140-5. [PMID: 23118354 DOI: 10.1101/pdb.prot071647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Courtship can be defined as behavioral interactions between males and females, the evolutionary objective of which is copulation and the ultimate perpetuation of the species. This protocol allows determination of two aspects of courtship in Drosophila: to assess whether there is a deficiency in mating frequency and, if this is the case, to resolve the nature of the specific problem. The first part of the approach provides a simple, objective, high-throughput strategy that is ideal for determining whether a specific strain has any courtship defect. Any strain that mates at a frequency comparable to that of wild-type flies must be considered reasonably fit in an evolutionary sense. If a specific strain has an abnormal mating frequency, we are then interested in determining whether there is a specific courtship defect, as described in the second half of the protocol. This requires direct live observation or digital recording of courtship.
Collapse
|
167
|
Pikielny CW. Sexy DEG/ENaC Channels Involved in Gustatory Detection of Fruit Fly Pheromones. Sci Signal 2012; 5:pe48. [DOI: 10.1126/scisignal.2003555] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
168
|
Fabre CCG, Hedwig B, Conduit G, Lawrence PA, Goodwin SF, Casal J. Substrate-borne vibratory communication during courtship in Drosophila melanogaster. Curr Biol 2012; 22:2180-5. [PMID: 23103187 PMCID: PMC3502867 DOI: 10.1016/j.cub.2012.09.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/07/2012] [Accepted: 09/25/2012] [Indexed: 12/02/2022]
Abstract
Courtship in Drosophila melanogaster has become an iconic example of an innate and interactive series of behaviors [1–11]. The female signals her acceptance of copulation by becoming immobile in response to a male's display of stereotyped actions. The male and female communicate via vision, air-borne sounds, and pheromones [1, 2], but what triggers the female's immobility is undetermined. Here, we describe an overlooked and important component of Drosophila courtship. Video recordings and laser vibrometry show that the male abdomen shakes (“quivers”), generating substrate-borne vibrations at about six pulses per second. We present evidence that the female becomes receptive and stops walking because she senses these vibrations, rather than as a response to air-borne songs produced by the male fluttering the wings [1, 2, 12]. We also present evidence that the neural circuits expressing the sex-determination genes fruitless and doublesex [8] drive quivering behavior. These abdominal quivers and associated vibrations, as well as their effect on female receptivity, are conserved in other Drosophila species. Substrate-borne vibrations are an ancient form of communication that is widespread in animals. Our findings in Drosophila open a door to study the neuromuscular circuitry responsible for these signals and the sensory systems needed for their reception.
Collapse
Affiliation(s)
- Caroline C G Fabre
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK.
| | | | | | | | | | | |
Collapse
|
169
|
Keleman K, Vrontou E, Krüttner S, Yu JY, Kurtovic-Kozaric A, Dickson BJ. Dopamine neurons modulate pheromone responses in Drosophila courtship learning. Nature 2012; 489:145-9. [PMID: 22902500 DOI: 10.1038/nature11345] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 06/25/2012] [Indexed: 11/09/2022]
Abstract
Learning through trial-and-error interactions allows animals to adapt innate behavioural ‘rules of thumb’ to the local environment, improving their prospects for survival and reproduction. Naive Drosophila melanogaster males, for example, court both virgin and mated females, but learn through experience to selectively suppress futile courtship towards females that have already mated. Here we show that courtship learning reflects an enhanced response to the male pheromone cis-vaccenyl acetate (cVA), which is deposited on females during mating and thus distinguishes mated females from virgins. Dissociation experiments suggest a simple learning rule in which unsuccessful courtship enhances sensitivity to cVA. The learning experience can be mimicked by artificial activation of dopaminergic neurons, and we identify a specific class of dopaminergic neuron that is critical for courtship learning. These neurons provide input to the mushroom body (MB) γ lobe, and the DopR1 dopamine receptor is required in MBγ neurons for both natural and artificial courtship learning. Our work thus reveals critical behavioural, cellular and molecular components of the learning rule by which Drosophila adjusts its innate mating strategy according to experience.
Collapse
Affiliation(s)
- Krystyna Keleman
- Research Institute of Molecular Pathology, Dr Bohrgasse 7, A-1030 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
170
|
Wolman M, Granato M. Behavioral genetics in larval zebrafish: learning from the young. Dev Neurobiol 2012; 72:366-72. [PMID: 22328273 DOI: 10.1002/dneu.20872] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Deciphering the genetic code that determines how the vertebrate nervous system assembles into neural circuits that ultimately control behavior is a fascinating and challenging question in modern neurobiology. Because of the complexity of this problem, successful strategies require a simple yet focused experimental approach without limiting the scope of the discovery. Unbiased, large-scale forward genetic screens in invertebrate organisms have yielded great insight into the genetic regulation of neural circuit assembly and function. For many reasons, this highly successful approach has been difficult to recapitulate in the behavioral neuroscience field's classic vertebrate model organisms-rodents. Here, we discuss how larval zebrafish provide a promising model system to which we can apply the design of invertebrate behavior-based screens to reveal the genetic mechanisms critical for neural circuit assembly and function in vertebrates.
Collapse
Affiliation(s)
- Marc Wolman
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | |
Collapse
|
171
|
Song choice is modulated by female movement in Drosophila males. PLoS One 2012; 7:e46025. [PMID: 23049926 PMCID: PMC3458092 DOI: 10.1371/journal.pone.0046025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 08/27/2012] [Indexed: 11/20/2022] Open
Abstract
Mate selection is critical to ensuring the survival of a species. In the fruit fly, Drosophila melanogaster, genetic and anatomical studies have focused on mate recognition and courtship initiation for decades. This model system has proven to be highly amenable for the study of neural systems controlling the decision making process. However, much less is known about how courtship quality is regulated in a temporally dynamic manner in males and how a female assesses male performance as she makes her decision of whether to accept copulation. Here, we report that the courting male dynamically adjusts the relative proportions of the song components, pulse song or sine song, by assessing female locomotion. Male flies deficient for olfaction failed to perform the locomotion-dependent song modulation, indicating that olfactory cues provide essential information regarding proximity to the target female. Olfactory mutant males also showed lower copulation success when paired with wild-type females, suggesting that the male's ability to temporally control song significantly affects female mating receptivity. These results depict the consecutive inter-sex behavioral decisions, in which a male smells the close proximity of a female as an indication of her increased receptivity and accordingly coordinates his song choice, which then enhances the probability of his successful copulation.
Collapse
|
172
|
Page RE, Rueppell O, Amdam GV. Genetics of reproduction and regulation of honeybee (Apis mellifera L.) social behavior. Annu Rev Genet 2012; 46:97-119. [PMID: 22934646 DOI: 10.1146/annurev-genet-110711-155610] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Honeybees form complex societies with a division of labor for reproduction, nutrition, nest construction and maintenance, and defense. How does it evolve? Tasks performed by worker honeybees are distributed in time and space. There is no central control over behavior and there is no central genome on which selection can act and effect adaptive change. For 22 years, we have been addressing these questions by selecting on a single social trait associated with nutrition: the amount of surplus pollen (a source of protein) that is stored in the combs of the nest. Forty-two generations of selection have revealed changes at biological levels extending from the society down to the level of the gene. We show how we constructed this vertical understanding of social evolution using behavioral and anatomical analyses, physiology, genetic mapping, and gene knockdowns. We map out the phenotypic and genetic architectures of food storage and foraging behavior and show how they are linked through broad epistasis and pleiotropy affecting a reproductive regulatory network that influences foraging behavior. This is remarkable because worker honeybees have reduced reproductive organs and are normally sterile; however, the reproductive regulatory network has been co-opted for behavioral division of labor.
Collapse
Affiliation(s)
- Robert E Page
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA.
| | | | | |
Collapse
|
173
|
The genetic basis of female mate preference and species isolation in Drosophila. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:328392. [PMID: 22957299 PMCID: PMC3432541 DOI: 10.1155/2012/328392] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/25/2012] [Accepted: 07/07/2012] [Indexed: 11/25/2022]
Abstract
The processes that underlie mate choice have long fascinated biologists. With the advent of increasingly refined genetic tools, we are now beginning to understand the genetic basis of how males and females discriminate among potential mates. One aspect of mate discrimination of particular interest is that which isolates one species from another. As behavioral isolation is thought to be the first step in speciation, and females are choosy more often than males in this regard, identifying the genetic variants that influence interspecies female mate choice can enhance our understanding of the process of speciation. Here, we review the literature on female mate choice in the most widely used model system for studies of species isolation Drosophila. Although females appear to use the same traits for both within- and between-species female mate choice, there seems to be a different genetic basis underlying these choices. Interestingly, most genomic regions that cause females to reject heterospecific males fall within areas of low recombination. Likely, candidate genes are those that act within the auditory or olfactory system, or within areas of the brain that process these systems.
Collapse
|
174
|
Nargeot R, Simmers J. Functional organization and adaptability of a decision-making network in aplysia. Front Neurosci 2012; 6:113. [PMID: 22855670 PMCID: PMC3405415 DOI: 10.3389/fnins.2012.00113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/08/2012] [Indexed: 12/31/2022] Open
Abstract
Whereas major insights into the neuronal basis of adaptive behavior have been gained from the study of automatic behaviors, including reflexive and rhythmic motor acts, the neural substrates for goal-directed behaviors in which decision-making about action selection and initiation are crucial, remain poorly understood. However, the mollusk Aplysia is proving to be increasingly relevant to redressing this issue. The functional properties of the central circuits that govern this animal’s goal-directed feeding behavior and particularly the neural processes underlying the selection and initiation of specific feeding actions are becoming understood. In addition to relying on the intrinsic operation of central networks, goal-directed behaviors depend on external sensory inputs that through associative learning are able to shape decision-making strategies. Here, we will review recent findings on the functional design of the central network that generates Aplysia’s feeding-related movements and the sensory-derived plasticity that through learning can modify the selection and initiation of appropriate action. The animal’s feeding behavior and the implications of decision-making will be briefly described. The functional design of the underlying buccal network will then be used to illustrate how cellular diversity and the coordination of neuronal burst activity provide substrates for decision-making. The contribution of specific synaptic and neuronal membrane properties within the buccal circuit will also be discussed in terms of their role in motor pattern selection and initiation. The ability of learning to “rigidify” these synaptic and cellular properties so as to regularize network operation and lead to the expression of stereotyped rhythmic behavior will then be described. Finally, these aspects will be drawn into a conceptual framework of how Aplysia’s goal-directed circuitry compares to the central pattern generating networks for invertebrate rhythmic behaviors.
Collapse
Affiliation(s)
- Romuald Nargeot
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université Bordeaux, UMR 5287 Bordeaux, France
| | | |
Collapse
|
175
|
Ito H, Sato K, Koganezawa M, Ote M, Matsumoto K, Hama C, Yamamoto D. Fruitless Recruits Two Antagonistic Chromatin Factors to Establish Single-Neuron Sexual Dimorphism. Cell 2012; 149:1327-38. [DOI: 10.1016/j.cell.2012.04.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 11/24/2011] [Accepted: 04/03/2012] [Indexed: 11/24/2022]
|
176
|
Toda H, Zhao X, Dickson B. The Drosophila Female Aphrodisiac Pheromone Activates ppk23+ Sensory Neurons to Elicit Male Courtship Behavior. Cell Rep 2012; 1:599-607. [DOI: 10.1016/j.celrep.2012.05.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/17/2012] [Accepted: 05/14/2012] [Indexed: 11/26/2022] Open
|
177
|
Kuo TH, Yew JY, Fedina TY, Dreisewerd K, Dierick HA, Pletcher SD. Aging modulates cuticular hydrocarbons and sexual attractiveness in Drosophila melanogaster. ACTA ACUST UNITED AC 2012; 215:814-21. [PMID: 22323204 DOI: 10.1242/jeb.064980] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Attractiveness is a major component of sexual selection that is dependent on sexual characteristics, such as pheromone production, which often reflect an individual's fitness and reproductive potential. Aging is a process that results in a steady decline in survival and reproductive output, yet little is known about its effect on specific aspects of attractiveness. In this report we asked how aging impacts pheromone production and sexual attractiveness in Drosophila melanogaster. Evidence suggests that key pheromones in Drosophila are produced as cuticular hydrocarbons (CHC), whose functions in attracting mates and influencing behavior have been widely studied. We employed gas chromatography/mass spectrometry and laser desorption/ionization mass spectrometry to show that the composition of D. melanogaster CHC is significantly affected by aging in both sexes and that these changes are robust to different genetic backgrounds. Aging affected the relative levels of many individual CHC, and it shifted overall hydrocarbon profiles to favor compounds with longer chain lengths. We also show that the observed aging-related changes in CHC profiles are responsible for a significant reduction in sexual attractiveness. These studies illuminate causal links among pheromones, aging and attractiveness and suggest that CHC production may be an honest indicator of animal health and fertility.
Collapse
Affiliation(s)
- Tsung-Han Kuo
- Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
178
|
Joint control of Drosophila male courtship behavior by motion cues and activation of male-specific P1 neurons. Proc Natl Acad Sci U S A 2012; 109:10065-70. [PMID: 22645338 DOI: 10.1073/pnas.1207107109] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sexual behaviors in animals are governed by inputs from multiple external sensory modalities. However, how these inputs are integrated to jointly control animal behavior is still poorly understood. Whereas visual information alone is not sufficient to induce courtship behavior in Drosophila melanogaster males, when a subset of male-specific fruitless (fru)- and doublesex (dsx)-expressing neurons that respond to chemosensory cues (P1 neurons) were artificially activated via a temperature-sensitive cation channel (dTRPA1), males followed and extended their wing toward moving objects (even a moving piece of rubber band) intensively. When stationary, these objects were not courted. Our results indicate that motion input and activation of P1 neurons are individually necessary, and under our assay conditions, jointly sufficient to elicit early courtship behaviors, and provide insights into how courtship decisions are made via sensory integration.
Collapse
|
179
|
Yao Z, Macara AM, Lelito KR, Minosyan TY, Shafer OT. Analysis of functional neuronal connectivity in the Drosophila brain. J Neurophysiol 2012; 108:684-96. [PMID: 22539819 DOI: 10.1152/jn.00110.2012] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Drosophila melanogaster is a valuable model system for the neural basis of complex behavior, but an inability to routinely interrogate physiologic connections within central neural networks of the fly brain remains a fundamental barrier to progress in the field. To address this problem, we have introduced a simple method of measuring functional connectivity based on the independent expression of the mammalian P2X2 purinoreceptor and genetically encoded Ca(2+) and cAMP sensors within separate genetically defined subsets of neurons in the adult brain. We show that such independent expression is capable of specifically rendering defined sets of neurons excitable by pulses of bath-applied ATP in a manner compatible with high-resolution Ca(2+) and cAMP imaging in putative follower neurons. Furthermore, we establish that this approach is sufficiently sensitive for the detection of excitatory and modulatory connections deep within larval and adult brains. This technically facile approach can now be used in wild-type and mutant genetic backgrounds to address functional connectivity within neuronal networks governing a wide range of complex behaviors in the fly. Furthermore, the effectiveness of this approach in the fly brain suggests that similar methods using appropriate heterologous receptors might be adopted for other widely used model systems.
Collapse
Affiliation(s)
- Zepeng Yao
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | | | | | |
Collapse
|
180
|
Tsai HY, Huang YW. Image tracking study on courtship behavior of Drosophila. PLoS One 2012; 7:e34784. [PMID: 22496861 PMCID: PMC3319603 DOI: 10.1371/journal.pone.0034784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 03/09/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In recent years, there have been extensive studies aimed at decoding the DNA. Identifying the genetic cause of specific changes in a simple organism like Drosophila may help scientists recognize how multiple gene interactions may make some people more susceptible to heart disease or cancer. Investigators have devised experiments to observe changes in the gene networks in mutant Drosophila that responds differently to light, or have lower or higher locomotor activity. However, these studies focused on the behavior of the individual fly or on pair-wise interactions in the study of aggression or courtship. The behavior of these activities has been captured on film and inspected by a well-trained researcher after repeatedly watching the recorded film. Some studies also focused on ways to reduce the inspection time and increase the accuracy of the behavior experiment. METHODOLOGY In this study, the behavior of drosophila during courtship was analyzed automatically by machine vision. We investigated the position and behavior discrimination during courtship using the captured images. Identification of the characteristics of drosophila, including sex, size, heading direction, and wing angles, can be computed using image analysis techniques that employ the Gaussian mixture model. The behavior of multiple drosophilae can also be analyzed simultaneously using the motion-prediction model and the variation constraint of heading direction. CONCLUSIONS The overlapped fruit flies can be identified based on the relationship between body centers. Moreover, the behaviors and profiles can be correctly recognized by image processing based on the constraints of the wing angle and the size of the body. Therefore, the behavior of the male fruit flies can be discriminated when two or three fruit flies form a close cluster. In this study, the courtship behavior, including wing songs and attempts, can currently be distinguished with accuracies of 95.8% and 90%, respectively.
Collapse
Affiliation(s)
- Hung-Yin Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| | | |
Collapse
|
181
|
Xu X, Coats JK, Yang CF, Wang A, Ahmed OM, Alvarado M, Izumi T, Shah NM. Modular genetic control of sexually dimorphic behaviors. Cell 2012; 148:596-607. [PMID: 22304924 DOI: 10.1016/j.cell.2011.12.018] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 09/22/2011] [Accepted: 12/16/2011] [Indexed: 12/18/2022]
Abstract
Sex hormones such as estrogen and testosterone are essential for sexually dimorphic behaviors in vertebrates. However, the hormone-activated molecular mechanisms that control the development and function of the underlying neural circuits remain poorly defined. We have identified numerous sexually dimorphic gene expression patterns in the adult mouse hypothalamus and amygdala. We find that adult sex hormones regulate these expression patterns in a sex-specific, regionally restricted manner, suggesting that these genes regulate sex typical behaviors. Indeed, we find that mice with targeted disruptions of each of four of these genes (Brs3, Cckar, Irs4, Sytl4) exhibit extremely specific deficits in sex specific behaviors, with single genes controlling the pattern or extent of male sexual behavior, male aggression, maternal behavior, or female sexual behavior. Taken together, our findings demonstrate that various components of sexually dimorphic behaviors are governed by separable genetic programs.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Abstract
I propose a reconceptualization of key phenomena important in the study of emotion-those phenomena that reflect functions and circuits related to survival, and that are shared by humans and other animals. The approach shifts the focus from questions about whether emotions that humans consciously feel are also present in other animals, and toward questions about the extent to which circuits and corresponding functions that are present in other animals (survival circuits and functions) are also present in humans. Survival circuit functions are not causally related to emotional feelings but obviously contribute to these, at least indirectly. The survival circuit concept integrates ideas about emotion, motivation, reinforcement, and arousal in the effort to understand how organisms survive and thrive by detecting and responding to challenges and opportunities in daily life.
Collapse
Affiliation(s)
- Joseph LeDoux
- Center for Neural Science and Department of Psychology, New York University, New York, NY 10003, USA.
| |
Collapse
|
183
|
Abstract
Most animals exhibit innate auditory behaviors driven by genetically hardwired neural circuits. In Drosophila, acoustic information is relayed by Johnston organ neurons from the antenna to the antennal mechanosensory and motor center (AMMC) in the brain. Here, by using structural connectivity analysis, we identified five distinct types of auditory projection neurons (PNs) interconnecting the AMMC, inferior ventrolateral protocerebrum (IVLP), and ventrolateral protocerebrum (VLP) regions of the central brain. These auditory PNs are also functionally distinct; AMMC-B1a, AMMC-B1b, and AMMC-A2 neurons differ in their responses to sound (i.e., they are narrowly tuned or broadly tuned); one type of audioresponsive IVLP commissural PN connecting the two hemispheres is GABAergic; and one type of IVLP-VLP PN acts as a generalist responding to all tested audio frequencies. Our findings delineate an auditory processing pathway involving AMMC→IVLP→VLP in the Drosophila brain.
Collapse
|
184
|
Gomulski LM, Dimopoulos G, Xi Z, Scolari F, Gabrieli P, Siciliano P, Clarke AR, Malacrida AR, Gasperi G. Transcriptome profiling of sexual maturation and mating in the Mediterranean fruit fly, Ceratitis capitata. PLoS One 2012; 7:e30857. [PMID: 22303464 PMCID: PMC3267753 DOI: 10.1371/journal.pone.0030857] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/22/2011] [Indexed: 12/26/2022] Open
Abstract
Sexual maturation and mating in insects are generally accompanied by major physiological and behavioural changes. Many of these changes are related to the need to locate a mate and subsequently, in the case of females, to switch from mate searching to oviposition behaviour. The prodigious reproductive capacity of the Mediterranean fruit fly, Ceratitis capitata, is one of the factors that has led to its success as an invasive pest species. To identify the molecular changes related to maturation and mating status in male and female medfly, a microarray-based gene expression approach was used to compare the head transcriptomes of sexually immature, mature virgin, and mated individuals. Attention was focused on the changes in abundance of transcripts related to reproduction, behaviour, sensory perception of chemical stimulus, and immune system processes. Broad transcriptional changes were recorded during female maturation, while post-mating transcriptional changes in females were, by contrast, modest. In male medfly, transcriptional changes were consistent both during maturation and as a consequence of mating. Of particular note was the lack of the mating-induced immune responses that have been recorded for Drosophila melanogaster, that may be due to the different reproductive strategies of these species. This study, in addition to increasing our understanding of the molecular machinery behind maturation and mating in the medfly, has identified important gene targets that might be useful in the future management of this pest.
Collapse
Affiliation(s)
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Zhiyong Xi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Paolo Gabrieli
- Department of Animal Biology, University of Pavia, Pavia, Italy
| | - Paolo Siciliano
- Department of Animal Biology, University of Pavia, Pavia, Italy
| | - Anthony R. Clarke
- Discipline of Biogeosciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Giuliano Gasperi
- Department of Animal Biology, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
185
|
Masuyama K, Zhang Y, Rao Y, Wang JW. Mapping neural circuits with activity-dependent nuclear import of a transcription factor. J Neurogenet 2012; 26:89-102. [PMID: 22236090 PMCID: PMC3357894 DOI: 10.3109/01677063.2011.642910] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nuclear factor of activated T cells (NFAT) is a calcium-responsive transcription factor. We describe here an NFAT-based neural tracing method—CaLexA (calcium-dependent nuclear import of Lex A)—for labeling active neurons in behaving animals. In this system, sustained neural activity induces nuclear import of the chimeric transcription factor LexA-VP16-NFAT, which in turn drives green fluorescent protein (GFP) reporter expression only in active neurons. We tested this system in Drosophila and found that volatile sex pheromones excite specific neurons in the olfactory circuit. Furthermore, complex courtship behavior associated with multi-modal sensory inputs activated neurons in the ventral nerve cord. This method harnessing the mechanism of activity-dependent nuclear import of a transcription factor can be used to identify active neurons in specific neuronal population in behaving animals.
Collapse
Affiliation(s)
- Kaoru Masuyama
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California , USA
| | | | | | | |
Collapse
|
186
|
Abstract
This chapter will briefly tie together a captivating string of scientific discoveries that began in the 1800s and catapulted us into the current state of the field where trials are under way in humans that have arisen directly from the discoveries made in model organisms such as Drosophila (fruit flies) and mice. The hope is that research efforts in the field of fragile X currently represent a roadmap that demonstrates the utility of identifying a mutant gene responsible for human disease, tracking down the molecular underpinnings of pathogenic phenotypes, and utilizing model organisms to identify and validate potential pharmacologic targets for testing in afflicted humans. Indeed, in fragile X this roadmap has already yielded successful trials in humans (J. Med. Genetic 46(4) 266-271; Jacquemont et al. Sci Transl Med 3(64):64ra61), although the work in studying these interventions in humans is just getting underway as the work in model organisms continues to generate new potential therapeutic targets.
Collapse
Affiliation(s)
- Sean M McBride
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
187
|
Abstract
How do animals perceive their environment and make appropriate behavioral choices based on those perceptions? New data have uncovered a novel sensory pathway that promotes Drosophila male courtship behavior in response to food.
Collapse
Affiliation(s)
- Carolina Rezával
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | | | | |
Collapse
|
188
|
Venken KJ, Simpson JH, Bellen HJ. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 2011; 72:202-30. [PMID: 22017985 PMCID: PMC3232021 DOI: 10.1016/j.neuron.2011.09.021] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2011] [Indexed: 12/26/2022]
Abstract
Research in the fruit fly Drosophila melanogaster has led to insights in neural development, axon guidance, ion channel function, synaptic transmission, learning and memory, diurnal rhythmicity, and neural disease that have had broad implications for neuroscience. Drosophila is currently the eukaryotic model organism that permits the most sophisticated in vivo manipulations to address the function of neurons and neuronally expressed genes. Here, we summarize many of the techniques that help assess the role of specific neurons by labeling, removing, or altering their activity. We also survey genetic manipulations to identify and characterize neural genes by mutation, overexpression, and protein labeling. Here, we attempt to acquaint the reader with available options and contexts to apply these methods.
Collapse
Affiliation(s)
- Koen J.T. Venken
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, Texas, 77030
| | - Julie H. Simpson
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, 20147
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, Texas, 77030
- Program in Developmental Biology, Department of Neuroscience, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
189
|
An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature 2011; 478:236-40. [PMID: 21964331 DOI: 10.1038/nature10428] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 08/03/2011] [Indexed: 01/19/2023]
Abstract
Many animals attract mating partners through the release of volatile sex pheromones, which can convey information on the species, gender and receptivity of the sender to induce innate courtship and mating behaviours by the receiver. Male Drosophila melanogaster fruitflies display stereotyped reproductive behaviours towards females, and these behaviours are controlled by the neural circuitry expressing male-specific isoforms of the transcription factor Fruitless (FRU(M)). However, the volatile pheromone ligands, receptors and olfactory sensory neurons (OSNs) that promote male courtship have not been identified in this important model organism. Here we describe a novel courtship function of Ionotropic receptor 84a (IR84a), which is a member of the chemosensory ionotropic glutamate receptor family, in a previously uncharacterized population of FRU(M)-positive OSNs. IR84a-expressing neurons are activated not by fly-derived chemicals but by the aromatic odours phenylacetic acid and phenylacetaldehyde, which are widely found in fruit and other plant tissues that serve as food sources and oviposition sites for drosophilid flies. Mutation of Ir84a abolishes both odour-evoked and spontaneous electrophysiological activity in these neurons and markedly reduces male courtship behaviour. Conversely, male courtship is increased--in an IR84a-dependent manner--in the presence of phenylacetic acid but not in the presence of another fruit odour that does not activate IR84a. Interneurons downstream of IR84a-expressing OSNs innervate a pheromone-processing centre in the brain. Whereas IR84a orthologues and phenylacetic-acid-responsive neurons are present in diverse drosophilid species, IR84a is absent from insects that rely on long-range sex pheromones. Our results suggest a model in which IR84a couples food presence to the activation of the fru(M) courtship circuitry in fruitflies. These findings reveal an unusual but effective evolutionary solution to coordinate feeding and oviposition site selection with reproductive behaviours through a specific sensory pathway.
Collapse
|
190
|
Meissner GW, Manoli DS, Chavez JF, Knapp JM, Lin TL, Stevens RJ, Mellert DJ, Tran DH, Baker BS. Functional dissection of the neural substrates for sexual behaviors in Drosophila melanogaster. Genetics 2011; 189:195-211. [PMID: 21705753 PMCID: PMC3176112 DOI: 10.1534/genetics.111.129940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 06/13/2011] [Indexed: 11/18/2022] Open
Abstract
The male-specific Fruitless proteins (FruM) act to establish the potential for male courtship behavior in Drosophila melanogaster and are expressed in small groups of neurons throughout the nervous system. We screened ∼1000 GAL4 lines, using assays for general courtship, male-male interactions, and male fertility to determine the phenotypes resulting from the GAL4-driven inhibition of FruM expression in subsets of these neurons. A battery of secondary assays showed that the phenotypic classes of GAL4 lines could be divided into subgroups on the basis of additional neurobiological and behavioral criteria. For example, in some lines, restoration of FruM expression in cholinergic neurons restores fertility or reduces male-male courtship. Persistent chains of males courting each other in some lines results from males courting both sexes indiscriminately, whereas in other lines this phenotype results from apparent habituation deficits. Inhibition of ectopic FruM expression in females, in populations of neurons where FruM is necessary for male fertility, can rescue female infertility. To identify the neurons responsible for some of the observed behavioral alterations, we determined the overlap between the identified GAL4 lines and endogenous FruM expression in lines with fertility defects. The GAL4 lines causing fertility defects generally had widespread overlap with FruM expression in many regions of the nervous system, suggesting likely redundant FruM-expressing neuronal pathways capable of conferring male fertility. From associations between the screened behaviors, we propose a functional model for courtship initiation.
Collapse
Affiliation(s)
- Geoffrey W. Meissner
- Neurosciences Program, and
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | | | - Jose F. Chavez
- Department of Biology, Stanford University, Stanford, California 94305
| | - Jon-Michael Knapp
- Neurosciences Program, and
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - Tasha L. Lin
- Department of Biology, Stanford University, Stanford, California 94305
| | - Robin J. Stevens
- Department of Biology, Stanford University, Stanford, California 94305
| | - David J. Mellert
- Department of Biology, Stanford University, Stanford, California 94305
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| | - David H. Tran
- Department of Biology, Stanford University, Stanford, California 94305
| | - Bruce S. Baker
- Neurosciences Program, and
- Department of Biology, Stanford University, Stanford, California 94305
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147
| |
Collapse
|
191
|
Whitaker KW, Neumeister H, Huffman LS, Kidd CE, Preuss T, Hofmann HA. Serotonergic modulation of startle-escape plasticity in an African cichlid fish: a single-cell molecular and physiological analysis of a vital neural circuit. J Neurophysiol 2011; 106:127-37. [DOI: 10.1152/jn.01126.2010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Social life affects brain function at all levels, including gene expression, neurochemical balance, and neural circuits. We have previously shown that in the cichlid fish Astatotilapia burtoni brightly colored, socially dominant (DOM) males face a trade-off between reproductive opportunities and increased predation risk. Compared with camouflaged subordinate (SUB) males, DOMs exposed to a loud sound pip display higher startle responsiveness and increased excitability of the Mauthner cell (M-cell) circuit that governs this behavior. Using behavioral tests, intracellular recordings, and single-cell molecular analysis, we show here that serotonin (5-HT) modulates this socially regulated plasticity via the 5-HT receptor subtype 2 (5-HTR2). Specifically, SUBs display increased sensitivity to pharmacological manipulation of 5-HTR2 compared with DOMs in both startle-escape behavior and electrophysiological properties of the M-cell. Immunohistochemistry showed serotonergic varicosities around the M-cells, further suggesting that 5-HT impinges directly onto the startle-escape circuitry. To determine whether the effects of 5-HTR2 are pre- or postsynaptic, and whether other 5-HTR subtypes are involved, we harvested the mRNA from single M-cells via cytoplasmic aspiration and found that 5-HTR subtypes 5A and 6 are expressed in the M-cell. 5-HTR2, however, was absent, suggesting that it affects M-cell excitability through a presynaptic mechanism. These results are consistent with a role for 5-HT in modulating startle plasticity and increase our understanding of the neural and molecular basis of a trade-off between reproduction and predation.
Collapse
Affiliation(s)
- K. W. Whitaker
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
- Army Research Laboratory, Aberdeen Proving Grounds, Maryland
| | - H. Neumeister
- Department of Psychology, CUNY Hunter College, New York, New York; and
| | - L. S. Huffman
- Section of Integrative Biology and
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas
| | | | - T. Preuss
- Department of Psychology, CUNY Hunter College, New York, New York; and
| | - H. A. Hofmann
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas
- Section of Integrative Biology and
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas
| |
Collapse
|
192
|
Pan Y, Robinett CC, Baker BS. Turning males on: activation of male courtship behavior in Drosophila melanogaster. PLoS One 2011; 6:e21144. [PMID: 21731661 PMCID: PMC3120818 DOI: 10.1371/journal.pone.0021144] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/20/2011] [Indexed: 11/18/2022] Open
Abstract
The innate sexual behaviors of Drosophila melanogaster males are an attractive system for elucidating how complex behavior patterns are generated. The potential for male sexual behavior in D. melanogaster is specified by the fruitless (fru) and doublesex (dsx) sex regulatory genes. We used the temperature-sensitive activator dTRPA1 to probe the roles of fru(M)- and dsx-expressing neurons in male courtship behaviors. Almost all steps of courtship, from courtship song to ejaculation, can be induced at very high levels through activation of either all fru(M) or all dsx neurons in solitary males. Detailed characterizations reveal different roles for fru(M) and dsx in male courtship. Surprisingly, the system for mate discrimination still works well when all dsx neurons are activated, but is impaired when all fru(M) neurons are activated. Most strikingly, we provide evidence for a fru(M)-independent courtship pathway that is primarily vision dependent.
Collapse
Affiliation(s)
- Yufeng Pan
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Carmen C. Robinett
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Bruce S. Baker
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- * E-mail:
| |
Collapse
|
193
|
Xu K, DiAngelo JR, Hughes ME, Hogenesch JB, Sehgal A. The circadian clock interacts with metabolic physiology to influence reproductive fitness. Cell Metab 2011; 13:639-54. [PMID: 21641546 PMCID: PMC3152999 DOI: 10.1016/j.cmet.2011.05.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 12/21/2010] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
Abstract
Circadian rhythms are regulated by a synchronized system of central and peripheral clocks. Here, we show that a clock in the Drosophila fat body drives rhythmic expression of genes involved in metabolism, detoxification, the immune response, and steroid hormone regulation. Some of these genes cycle even when the fat body clock is disrupted, indicating that they are regulated by exogenous factors. Food is an important stimulus, as limiting food availability to a 6 hr interval each day drives rhythmic expression of genes in the fat body. Restricting food to a time of day when consumption is typically low desynchronizes internal rhythms because it alters the phase of rhythmic gene expression in the fat body without affecting the brain clock. Flies maintained on this paradigm produce fewer eggs than those restricted to food at the normal time. These data suggest that desynchrony of endogenous rhythms, caused by aberrant feeding patterns, affects reproductive fitness.
Collapse
Affiliation(s)
- Kanyan Xu
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Justin R. DiAngelo
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Michael E. Hughes
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - John B. Hogenesch
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Center for Bioinformatics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Amita Sehgal
- Howard Hughes Medical Institute, Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
194
|
von Philipsborn AC, Liu T, Yu JY, Masser C, Bidaye SS, Dickson BJ. Neuronal control of Drosophila courtship song. Neuron 2011; 69:509-22. [PMID: 21315261 DOI: 10.1016/j.neuron.2011.01.011] [Citation(s) in RCA: 254] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2011] [Indexed: 10/18/2022]
Abstract
The courtship song of the Drosophila male serves as a genetically tractable model for the investigation of the neural mechanisms of decision-making, action selection, and motor pattern generation. Singing has been causally linked to the activity of the set of neurons that express the sex-specific fru transcripts, but the specific neurons involved have not been identified. Here we identify five distinct classes of fru neuron that trigger or compose the song. Our data suggest that P1 and pIP10 neurons in the brain mediate the decision to sing, and to act upon this decision, while the thoracic neurons dPR1, vPR6, and vMS11 are components of a central pattern generator that times and shapes the song's pulses. These neurons are potentially connected in a functional circuit, with the descending pIP10 neuron linking the brain and thoracic song centers. Sexual dimorphisms in each of these neurons may explain why only males sing.
Collapse
|
195
|
Abstract
Which neurons in the brain "decide" to initiate particular behaviors in response to sensory information? In this issue of Neuron, two papers (Kohatsu et al. and von Philipsborn et al.) identify candidates in the courtship circuitry of Drosophila. The activity of these neurons is both regulated by sex pheromones and necessary and sufficient to trigger male love song.
Collapse
|
196
|
Salvemini M, Polito C, Saccone G. Fruitless alternative splicing and sex behaviour in insects: an ancient and unforgettable love story? J Genet 2011; 89:287-99. [PMID: 20876995 DOI: 10.1007/s12041-010-0040-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Courtship behaviours are common features of animal species that reproduce sexually. Typically, males are involved in courting females. Insects display an astonishing variety of courtship strategies primarily based on innate stereotyped responses to various external stimuli. In Drosophila melanogaster, male courtship requires proteins encoded by the fruitless (fru) gene that are produced in different sex-specific isoforms via alternative splicing. Drosophila mutant flies with loss-of-function alleles of the fru gene exhibit blocked male courtship behaviour. However, various individual steps in the courtship ritual are disrupted in fly strains carrying different fru alleles. These findings suggest that fru is required for specific steps in courtship. In distantly related insect species, various fru paralogues were isolated, which shows conservation of sex-specific alternative splicing and protein expression in neural tissues and suggests an evolutionary functional conservation of fru in the control of male-specific courtship behaviour. In this review, we report the seminal findings regarding the fru gene, its splicing regulation and evolution in insects.
Collapse
Affiliation(s)
- Marco Salvemini
- Department of Biological Sciences, University of Naples Federico II, 80134, Naples, Italy
| | | | | |
Collapse
|
197
|
Wu MV, Shah NM. Control of masculinization of the brain and behavior. Curr Opin Neurobiol 2011; 21:116-23. [PMID: 20970320 PMCID: PMC3046257 DOI: 10.1016/j.conb.2010.09.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 09/27/2010] [Indexed: 02/05/2023]
Abstract
Sex steroid hormones exert a profound influence on the sexual differentiation and function of the neural circuits that mediate dimorphic behaviors. Both estrogen and testosterone are essential for male typical behaviors in many species. Recent studies with genetically modified mice provide important new insights into the logic whereby these two hormones coordinate the display of sexually dimorphic behaviors: estrogen sets up the masculine repertoire of sexual and territorial behaviors and testosterone controls the extent of these male displays.
Collapse
Affiliation(s)
- Melody V. Wu
- Program in Neuroscience, University of California, San Francisco, MC2722, San Francisco, CA 94158
| | - Nirao M. Shah
- Program in Neuroscience, University of California, San Francisco, MC2722, San Francisco, CA 94158
- Department of Anatomy, University of California, San Francisco, MC2722, San Francisco, CA 94158
| |
Collapse
|
198
|
O'Kane CJ. Drosophila as a model organism for the study of neuropsychiatric disorders. Curr Top Behav Neurosci 2011; 7:37-60. [PMID: 21225410 DOI: 10.1007/7854_2010_110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The fruitfly Drosophila offers a model system in which powerful genetic tools can be applied to understanding the neurobiological bases of a range of complex behaviors. The Drosophila and human lineages diverged several hundred million years ago, and despite their obvious differences, flies and humans share many fundamental cellular and neurobiological processes. The similarities include fundamental mechanisms of neuronal signaling, a conserved underlying brain architecture and the main classes of neurotransmitter system. Drosophila also have a sophisticated behavioral repertoire that includes extensive abilities to adapt to experience and other circumstances, and is therefore susceptible to the same kinds of insults that can cause neuropsychiatric disorders in humans. Given the different physiologies, lifestyles, and cognitive abilities of flies and humans, many higher order behavioral features of the human disorders cannot be modeled readily in flies. However, an increasing understanding of the genetics of human neuropsychiatric disorders is suggesting parallels with underlying neurobiological mechanisms in flies, thus providing important insights into the possible mechanisms of these poorly understood disorders.
Collapse
Affiliation(s)
- Cahir J O'Kane
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK,
| |
Collapse
|
199
|
|
200
|
Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 2010; 21:1-11. [PMID: 21129968 DOI: 10.1016/j.cub.2010.11.056] [Citation(s) in RCA: 387] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/05/2010] [Accepted: 11/22/2010] [Indexed: 12/27/2022]
Abstract
BACKGROUND Animal behavior is governed by the activity of interconnected brain circuits. Comprehensive brain wiring maps are thus needed in order to formulate hypotheses about information flow and also to guide genetic manipulations aimed at understanding how genes and circuits orchestrate complex behaviors. RESULTS To assemble this map, we deconstructed the adult Drosophila brain into approximately 16,000 single neurons and reconstructed them into a common standardized framework to produce a virtual fly brain. We have constructed a mesoscopic map and found that it consists of 41 local processing units (LPUs), six hubs, and 58 tracts covering the whole Drosophila brain. Despite individual local variation, the architecture of the Drosophila brain shows invariance for both the aggregation of local neurons (LNs) within specific LPUs and for the connectivity of projection neurons (PNs) between the same set of LPUs. An open-access image database, named FlyCircuit, has been constructed for online data archiving, mining, analysis, and three-dimensional visualization of all single neurons, brain-wide LPUs, their wiring diagrams, and neural tracts. CONCLUSION We found that the Drosophila brain is assembled from families of multiple LPUs and their interconnections. This provides an essential first step in the analysis of information processing within and between neurons in a complete brain.
Collapse
|