151
|
Sammut SJ, Feichtinger J, Stuart N, Wakeman JA, Larcombe L, McFarlane RJ. A novel cohort of cancer-testis biomarker genes revealed through meta-analysis of clinical data sets. Oncoscience 2014; 1:349-359. [PMID: 25594029 PMCID: PMC4278308 DOI: 10.18632/oncoscience.37] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/06/2014] [Indexed: 12/12/2022] Open
Abstract
The identification of cancer-specific biomolecules is of fundamental importance to the development of diagnostic and/or prognostic markers, which may also serve as therapeutic targets. Some antigenic proteins are only normally present in male gametogenic tissues in the testis and not in normal somatic cells. When these proteins are aberrantly produced in cancer they are referred to as cancer/testis (CT) antigens (CTAs). Some CTA genes have been proven to encode immunogenic proteins that have been used as successful immunotherapy targets for various forms of cancer and have been implicated as drug targets. Here, a targeted in silico analysis of cancer expressed sequence tag (EST) data sets resulted in the identification of a significant number of novel CT genes. The expression profiles of these genes were validated in a range of normal and cancerous cell types. Subsequent meta-analysis of gene expression microarray data sets demonstrates that these genes are clinically relevant as cancer-specific biomarkers, which could pave the way for the discovery of new therapies and/or diagnostic/prognostic monitoring technologies.
Collapse
Affiliation(s)
| | - Julia Feichtinger
- Institute for Knowledge Discovery, Graz University of Technology, Austria.,Core Facility Bioinformatics, Austrian Centre of Industrial Biotechnology, Austria
| | | | - Jane A Wakeman
- North West Cancer Research Institute, Bangor University, Bangor, UK
| | - Lee Larcombe
- North West Cancer Research Institute, Bangor University, Bangor, UK
| | - Ramsay J McFarlane
- North West Cancer Research Institute, Bangor University, Bangor, UK.,NISCHR Cancer Genetics Biomedical Research Unit
| |
Collapse
|
152
|
A regulatory network of Drosophila germline stem cell self-renewal. Dev Cell 2014; 28:459-73. [PMID: 24576427 DOI: 10.1016/j.devcel.2014.01.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/24/2013] [Accepted: 01/22/2014] [Indexed: 12/24/2022]
Abstract
Stem cells possess the capacity to generate two cells of distinct fate upon division: one cell retaining stem cell identity and the other cell destined to differentiate. These cell fates are established by cell-type-specific genetic networks. To comprehensively identify components of these networks, we performed a large-scale RNAi screen in Drosophila female germline stem cells (GSCs) covering ∼25% of the genome. The screen identified 366 genes that affect GSC maintenance, differentiation, or other processes involved in oogenesis. Comparison of GSC regulators with neural stem cell self-renewal factors identifies common and cell-type-specific self-renewal genes. Importantly, we identify the histone methyltransferase Set1 as a GSC-specific self-renewal factor. Loss of Set1 in neural stem cells does not affect cell fate decisions, suggesting a differential requirement of H3K4me3 in different stem cell lineages. Altogether, our study provides a resource that will help to further dissect the networks underlying stem cell self-renewal.
Collapse
|
153
|
Abstract
The integrity of the germline genome must be maintained to achieve successive generations of a species, because germline cells are the only source for transmitting genetic information to the next generation. Accordingly, the germline has acquired a system dedicated to protecting the genome from 'injuries' caused by harmful selfish nucleic acid elements, such as TEs (transposable elements). Accumulating evidence shows that a germline-specific subclass of small non-coding RNAs, piRNAs (piwi-interacting RNAs), are necessary for silencing TEs to protect the genome in germline cells. To silence TEs post-transcriptionally and/or transcriptionally, mature piRNAs are loaded on to germline-specific Argonaute proteins, or PIWI proteins, to form the piRISC (piRNA-induced silencing complex). The present chapter will highlight insights into the molecular mechanisms underlying piRISC-mediated silencing and piRNA biogenesis, and discuss a possible link with tumorigenesis, particularly in Drosophila.
Collapse
|
154
|
Yakushev EY, Sokolova OA, Gvozdev VA, Klenov MS. Multifunctionality of PIWI proteins in control of germline stem cell fate. BIOCHEMISTRY (MOSCOW) 2014; 78:585-91. [PMID: 23980885 DOI: 10.1134/s0006297913060047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PIWI proteins interacting with specific type of small RNAs (piRNAs) repress transposable elements in animals. Besides, they have been shown to participate in various cellular processes: in the regulation of heterochromatin formation including telomere structures, in the control of translation and the cell cycle, and in DNA rearrangements. PIWI proteins were first identified by their roles in the self-renewal of germline stem cells. PIWI protein functions are not limited to gonadogenesis, but the role in determining the fate of stem cells is their specific feature conserved throughout the evolution of animals. Molecular mechanisms underlying these processes are far from being understood. This review focuses on the role of PIWI proteins in the control of maintenance and proliferation of germinal stem cells and its relation to the known function of PIWI in transposon repression.
Collapse
Affiliation(s)
- E Y Yakushev
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | | | | | | |
Collapse
|
155
|
Yan H, Wu QL, Sun CY, Ai LS, Deng J, Zhang L, Chen L, Chu ZB, Tang B, Wang K, Wu XF, Xu J, Hu Y. piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia 2014; 29:196-206. [PMID: 24732595 DOI: 10.1038/leu.2014.135] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 03/05/2014] [Accepted: 04/09/2014] [Indexed: 12/17/2022]
Abstract
Aberrant DNA hypermethylation contributes to myelomagenesis by silencing tumor-suppressor genes. Recently, a few reports have suggested that a novel class of small non-coding RNAs, called Piwi-interacting RNAs (piRNAs), may be involved in the epigenetic regulation of cancer. In this study, for the first time we provided evidence that the expression of piRNA-823 was upregulated in multiple myeloma (MM) patients and cell lines, and positively correlated with clinical stage. Silencing piRNA-823 in MM cells induced deregulation of cell cycle regulators and apoptosis-related proteins expression, accompanied by inhibition of tumorigenicity in vitro and in vivo. Moreover, piRNA-823 was directly relevant to de novo DNA methyltransferases, DNMT3A and 3B, in primary CD138(+) MM cells. The inhibited expression of piRNA-823 in MM cells resulted in marked reduction of DNMT3A and 3B at both mRNA and protein levels, which in turn led to decrease in global DNA methylation and reexpression of methylation-silenced tumor suppressor, p16(INK4A). In addition, piRNA-823 abrogation in MM cells induced reduction of vascular endothelial growth factor secretion, with consequent decreased proangiogenic activity. Altogether, these data support an oncogenic role of piRNA-823 in the biology of MM, providing a rational for the development of piRNA-targeted therapeutic strategies in MM.
Collapse
Affiliation(s)
- H Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Q-L Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - C-Y Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L-S Ai
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Z-B Chu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - B Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - K Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - X-F Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
156
|
Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells. Biochem Biophys Res Commun 2014; 446:218-23. [PMID: 24602614 DOI: 10.1016/j.bbrc.2014.02.112] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/21/2014] [Indexed: 11/22/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are 26-31 nt small noncoding RNAs that are processed from their longer precursor transcripts by Piwi proteins. Localization of Piwi and piRNA has been reported mostly in nucleus and cytoplasm of higher eukaryotes germ-line cells, where it is believed that known piRNA sequences are located in repeat regions of nuclear genome in germ-line cells. However, localization of PIWI and piRNA in mammalian somatic cell mitochondria yet remains largely unknown. We identified 29 piRNA sequence alignments from various regions of the human mitochondrial genome. Twelve out 29 piRNA sequences matched stem-loop fragment sequences of seven distinct tRNAs. We observed their actual expression in mitochondria subcellular fractions by inspecting mitochondrial-specific small RNA-Seq datasets. Of interest, the majority of the 29 piRNAs overlapped with multiple longer transcripts (expressed sequence tags) that are unique to the human mitochondrial genome. The presence of mature piRNAs in mitochondria was detected by qRT-PCR of mitochondrial subcellular RNAs. Further validation showed detection of Piwi by colocalization using anti-Piwil1 and mitochondria organelle-specific protein antibodies.
Collapse
|
157
|
Ross RJ, Weiner MM, Lin H. PIWI proteins and PIWI-interacting RNAs in the soma. Nature 2014; 505:353-359. [PMID: 24429634 PMCID: PMC4265809 DOI: 10.1038/nature12987] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/20/2013] [Indexed: 12/17/2022]
Abstract
The discovery of millions of PIWI-interacting RNAs revealed a fascinating and unanticipated dimension of biology. The PIWI-piRNA pathway has been commonly perceived as germline-specific, even though the somatic function of PIWI proteins was documented when they were first discovered. Recent studies have begun to re-explore this pathway in somatic cells in diverse organisms, particularly lower eukaryotes. These studies have illustrated the multifaceted somatic functions of the pathway not only in transposon silencing but also in genome rearrangement and epigenetic programming, with biological roles in stem-cell function, whole-body regeneration, memory and possibly cancer.
Collapse
Affiliation(s)
- Robert J Ross
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Molly M Weiner
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06509, USA
| |
Collapse
|
158
|
Mirkovic-Hösle M, Förstemann K. Transposon defense by endo-siRNAs, piRNAs and somatic pilRNAs in Drosophila: contributions of Loqs-PD and R2D2. PLoS One 2014; 9:e84994. [PMID: 24454776 PMCID: PMC3890300 DOI: 10.1371/journal.pone.0084994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 11/27/2013] [Indexed: 12/30/2022] Open
Abstract
Transposable elements are a serious threat for genome integrity and their control via small RNA mediated silencing pathways is an ancient strategy. The fruit fly Drosophila melanogaster has two silencing activities that target transposons: endogenous siRNAs (esiRNAs or endo-siRNAs) and Piwi-interacting small RNAs (piRNAs). The biogenesis of endo-siRNAs involves the Dicer-2 co-factors Loqs-PD, which acts predominantly during processing of dsRNA by Dcr-2, and R2D2, which primarily helps to direct siRNAs into the RNA interference effector Ago2. Nonetheless, loss of either protein is not sufficient to produce a phenotype comparable with a dcr-2 mutation. We provide further deep sequencing evidence supporting the notion that R2D2 and Loqs-PD have partially overlapping function. Certain transposons display a preference for either dsRBD-protein during production or loading; this appeared to correlate neither with overall abundance, classification of the transposon or a specific site of genomic origin. The endo-siRNA biogenesis pathway in germline operates according to the same principles as the existing model for the soma, and its impairment does not significantly affect piRNAs. Expanding the analysis, we confirmed the occurrence of somatic piRNA-like RNAs (pilRNAs) that show a ping-pong signature. We detected expression of the Piwi-family protein mRNAs only barely above background, indicating that the somatic pilRNAs may arise from a small sub-population of somatic cells that express a functional piRNA pathway.
Collapse
Affiliation(s)
| | - Klaus Förstemann
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
- * E-mail:
| |
Collapse
|
159
|
Opposing activities of DRM and MES-4 tune gene expression and X-chromosome repression in Caenorhabditis elegans germ cells. G3-GENES GENOMES GENETICS 2014; 4:143-53. [PMID: 24281426 PMCID: PMC3887530 DOI: 10.1534/g3.113.007849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During animal development, gene transcription is tuned to tissue-appropriate levels. Here we uncover antagonistic regulation of transcript levels in the germline of Caenorhabditis elegans hermaphrodites. The histone methyltransferase MES-4 (Maternal Effect Sterile-4) marks genes expressed in the germline with methylated lysine on histone H3 (H3K36me) and promotes their transcription; MES-4 also represses genes normally expressed in somatic cells and genes on the X chromosome. The DRM transcription factor complex, named for its Dp/E2F, Retinoblastoma-like, and MuvB subunits, affects germline gene expression and prevents excessive repression of X-chromosome genes. Using genome-scale analyses of germline tissue, we show that common germline-expressed genes are activated by MES-4 and repressed by DRM, and that MES-4 and DRM co-bind many germline-expressed genes. Reciprocally, MES-4 represses and DRM activates a set of autosomal soma-expressed genes and overall X-chromosome gene expression. Mutations in mes-4 and the DRM subunit lin-54 oppositely skew the transcript levels of their common targets and cause sterility. A double mutant restores target gene transcript levels closer to wild type, and the concomitant loss of lin-54 suppresses the severe germline proliferation defect observed in mes-4 single mutants. Together, “yin-yang” regulation by MES-4 and DRM ensures transcript levels appropriate for germ-cell function, elicits robust but not excessive dampening of X-chromosome-wide transcription, and may poise genes for future expression changes. Our study reveals that conserved transcriptional regulators implicated in development and cancer counteract each other to fine-tune transcript dosage.
Collapse
|
160
|
Clark JP, Lau NC. Piwi Proteins and piRNAs step onto the systems biology stage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:159-97. [PMID: 25201106 PMCID: PMC4248790 DOI: 10.1007/978-1-4939-1221-6_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal germ cells are totipotent because they maintain a highly unique and specialized epigenetic state for its genome. To accomplish this, germ cells express a rich repertoire of specialized RNA-binding protein complexes such as the Piwi proteins and Piwi-interacting RNAs (piRNAs): a germ-cell branch of the RNA interference (RNAi) phenomenon which includes microRNA and endogenous small interfering RNA pathways. Piwi proteins and piRNAs are deeply conserved in animal evolution and play essential roles in fertility and regeneration. Molecular mechanisms for how these ribonucleoproteins act upon the transcriptome and genome are only now coming to light with the application of systems-wide approaches in both invertebrates and vertebrates. Systems biology studies on invertebrates have revealed that transcriptional and heritable silencing is a main mechanism driven by Piwi proteins and piRNA complexes. In vertebrates, Piwi-targeting mechanisms and piRNA biogenesis have progressed, while the discovery that the nuclease activity of Piwi protein is essential for vertebrate germ cell development but not completely required in invertebrates highlights the many complexities of this pathway in different animals. This review recounts how recent systems-wide approaches have rapidly accelerated our appreciation for the broad reach of the Piwi pathway on germline genome regulation and what questions facing the field await to be unraveled.
Collapse
Affiliation(s)
- Josef P. Clark
- Department of Biology and Rosenstiel Biomedical Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Nelson C. Lau
- Department of Biology and Rosenstiel Biomedical Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
161
|
YUAN LIQIN, XIAO YUZHONG, ZHOU QIUZHI, YUAN DONGMEI, WU BAIPING, CHEN GANNONG, ZHOU JIANLIN. Proteomic analysis reveals that MAEL, a component of nuage, interacts with stress granule proteins in cancer cells. Oncol Rep 2013; 31:342-50. [DOI: 10.3892/or.2013.2836] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/21/2013] [Indexed: 11/06/2022] Open
|
162
|
Malignant genome reprogramming by ATAD2. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1010-4. [DOI: 10.1016/j.bbagrm.2013.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 01/26/2023]
|
163
|
Centrosomal kinase Nek2 cooperates with oncogenic pathways to promote metastasis. Oncogenesis 2013; 2:e69. [PMID: 24018644 PMCID: PMC3816224 DOI: 10.1038/oncsis.2013.34] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 12/16/2022] Open
Abstract
Centrosomal kinase Nek2 is overexpressed in different cancers, yet how it contributes toward tumorigenesis remains poorly understood. dNek2 overexpression in a Drosophila melanogaster model led to upregulation of Drosophila Wnt ortholog wingless (Wg), and alteration of cell migration markers—Rho1, Rac1 and E-cadherin (Ecad)—resulting in changes in cell shape and tissue morphogenesis. dNek2 overexpression cooperated with receptor tyrosine kinase and mitogen-activated protein kinase signaling to upregulate activated Akt, Diap1, Mmp1 and Wg protein to promote local invasion, distant seeding and metastasis. In tumor cell injection assays, dNek2 cooperated with Ras and Src signaling to promote aggressive colonization of tumors into different adult fly tissues. Inhibition of the PI3K pathway suppressed the cooperation of dNek2 with other growth pathways. Consistent with our fly studies, overexpression of human Nek2 in A549 lung adenocarcinoma and HEK293T cells led to activation of the Akt pathway and increase in β-catenin protein levels. Our computational approach identified a class of Nek2-inhibitory compounds and a novel drug-like pharmacophore that reversed the Nek2 overexpression phenotypes in flies and human cells. Our finding posits a novel role for Nek2 in promoting metastasis in addition to its currently defined role in promoting chromosomal instability. It provides a rationale for the selective advantage of centrosome amplification in cancer.
Collapse
|
164
|
|
165
|
Turkel N, Sahota VK, Bolden JE, Goulding KR, Doggett K, Willoughby LF, Blanco E, Martin-Blanco E, Corominas M, Ellul J, Aigaki T, Richardson HE, Brumby AM. The BTB-zinc finger transcription factor abrupt acts as an epithelial oncogene in Drosophila melanogaster through maintaining a progenitor-like cell state. PLoS Genet 2013; 9:e1003627. [PMID: 23874226 PMCID: PMC3715428 DOI: 10.1371/journal.pgen.1003627] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/30/2013] [Indexed: 01/07/2023] Open
Abstract
The capacity of tumour cells to maintain continual overgrowth potential has been linked to the commandeering of normal self-renewal pathways. Using an epithelial cancer model in Drosophila melanogaster, we carried out an overexpression screen for oncogenes capable of cooperating with the loss of the epithelial apico-basal cell polarity regulator, scribbled (scrib), and identified the cell fate regulator, Abrupt, a BTB-zinc finger protein. Abrupt overexpression alone is insufficient to transform cells, but in cooperation with scrib loss of function, Abrupt promotes the formation of massive tumours in the eye/antennal disc. The steroid hormone receptor coactivator, Taiman (a homologue of SRC3/AIB1), is known to associate with Abrupt, and Taiman overexpression also drives tumour formation in cooperation with the loss of Scrib. Expression arrays and ChIP-Seq indicates that Abrupt overexpression represses a large number of genes, including steroid hormone-response genes and multiple cell fate regulators, thereby maintaining cells within an epithelial progenitor-like state. The progenitor-like state is characterised by the failure to express the conserved Eyes absent/Dachshund regulatory complex in the eye disc, and in the antennal disc by the failure to express cell fate regulators that define the temporal elaboration of the appendage along the proximo-distal axis downstream of Distalless. Loss of scrib promotes cooperation with Abrupt through impaired Hippo signalling, which is required and sufficient for cooperative overgrowth with Abrupt, and JNK (Jun kinase) signalling, which is required for tumour cell migration/invasion but not overgrowth. These results thus identify a novel cooperating oncogene, identify mammalian family members of which are also known oncogenes, and demonstrate that epithelial tumours in Drosophila can be characterised by the maintenance of a progenitor-like state. Cancer is a multigenic process, involving cooperative interactions between oncogenes or tumour suppressors. In this study, in a genetic screen in the vinegar fly, Drosophila melanogaster, for genes that cooperate with a mutation in the cell polarity (shape) regulator, scribbled (scrib), we identify a novel cooperative oncogene, abrupt. Expression of abrupt in scrib mutant tissue in the developing eye/antennal epithelium results in overgrown invasive tumours. abrupt encodes a BTB-zinc finger transcription factor, which has homology to several cancer-causing proteins in humans, such as BCL6. Analysis of the Abrupt targets and misexpressed genes in abrupt expressing-tissue and abrupt-expressing scrib mutant tumours, revealed cell fate regulators as a major class of targets. Thus, our results reveal that deregulation of multiple cell fate factors by Abrupt expression in the context of polarity disruption is associated with a progenitor-like cell state and the formation of overgrown invasive tumours. Our findings suggest that defective polarity may also be a critical factor in BTB-zinc finger-driven human cancers, and warrants further investigation into this issue.
Collapse
Affiliation(s)
- Nezaket Turkel
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Anatomy and Cell Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Virender K. Sahota
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Jessica E. Bolden
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Karen R. Goulding
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Karen Doggett
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Lee F. Willoughby
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Enrique Blanco
- Departament de Genètica i Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Barcelona, Spain
| | - Montserrat Corominas
- Departament de Genètica i Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Jason Ellul
- Bioinformatics Core Facility, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Helena E. Richardson
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Anatomy and Cell Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| | - Anthony M. Brumby
- Cell Cycle and Development Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Department of Anatomy and Cell Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Genetics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
166
|
Rousseaux S, Wang J, Khochbin S. Cancer hallmarks sustained by ectopic activations of placenta/male germline genes. Cell Cycle 2013; 12:2331-2. [PMID: 23856584 PMCID: PMC3841303 DOI: 10.4161/cc.25545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Sophie Rousseaux
- INSERM; U823; Université Joseph Fourier-Grenoble 1; Institut Albert Bonniot; Grenoble, France
| | | | | |
Collapse
|
167
|
Emadali A, Rousseaux S, Bruder-Costa J, Rome C, Duley S, Hamaidia S, Betton P, Debernardi A, Leroux D, Bernay B, Kieffer-Jaquinod S, Combes F, Ferri E, McKenna CE, Petosa C, Bruley C, Garin J, Ferro M, Gressin R, Callanan MB, Khochbin S. Identification of a novel BET bromodomain inhibitor-sensitive, gene regulatory circuit that controls Rituximab response and tumour growth in aggressive lymphoid cancers. EMBO Mol Med 2013; 5:1180-95. [PMID: 23828858 PMCID: PMC3944460 DOI: 10.1002/emmm.201202034] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 12/13/2022] Open
Abstract
Immuno-chemotherapy elicit high response rates in B-cell non-Hodgkin lymphoma but heterogeneity in response duration is observed, with some patients achieving cure and others showing refractory disease or relapse. Using a transcriptome-powered targeted proteomics screen, we discovered a gene regulatory circuit involving the nuclear factor CYCLON which characterizes aggressive disease and resistance to the anti-CD20 monoclonal antibody, Rituximab, in high-risk B-cell lymphoma. CYCLON knockdown was found to inhibit the aggressivity of MYC-overexpressing tumours in mice and to modulate gene expression programs of biological relevance to lymphoma. Furthermore, CYCLON knockdown increased the sensitivity of human lymphoma B cells to Rituximab in vitro and in vivo. Strikingly, this effect could be mimicked by in vitro treatment of lymphoma B cells with a small molecule inhibitor for BET bromodomain proteins (JQ1). In summary, this work has identified CYCLON as a new MYC cooperating factor that autonomously drives aggressive tumour growth and Rituximab resistance in lymphoma. This resistance mechanism is amenable to next-generation epigenetic therapy by BET bromodomain inhibition, thereby providing a new combination therapy rationale for high-risk lymphoma. The nuclear factor CYCLON is a new MYC cooperating factor that drives tumor growth and Rituximab resistance in lymphoma. This resistance mechanism can be targeted by next-generation epigenetic therapy by BET bromodomain inhibition downstream of MYC.
Collapse
Affiliation(s)
- Anouk Emadali
- CEA, iRTSV, Biologie à Grande Echelle, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Liu C, Ma Z, Hou J, Zhang H, Liu R, Wu W, Liu W, Lu Y. Germline traits of human hepatoblastoma cells associated with growth and metastasis. Biochem Biophys Res Commun 2013; 437:120-6. [PMID: 23800414 DOI: 10.1016/j.bbrc.2013.06.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 06/16/2013] [Indexed: 12/15/2022]
Abstract
Genes that are specific to germline and embryonic development can be activated in many tumors. Here, we show that germline traits that are present in human hepatoblastoma cells might be associated with the malignant behaviors of these tumor cells. In culture, single human hepatoblastoma cells differentiated into germ cell-like cells, which further developed into oocyte-like cells and formed parthenogenetic blastocyst-like structures. The germ cell-like cells and their embryonic derivatives from hepatoblastoma cells may favorably give rise to xenograft tumors with embryonal/germline traits and intrahepatic metastasis. These findings suggest that germline potential can be spontaneously activated in human hepatoblastoma cells and it might be important for tumor formation and metastasis.
Collapse
Affiliation(s)
- Chunfang Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Zhang J, Bonasio R, Strino F, Kluger Y, Holloway JK, Modzelewski AJ, Cohen PE, Reinberg D. SFMBT1 functions with LSD1 to regulate expression of canonical histone genes and chromatin-related factors. Genes Dev 2013; 27:749-66. [PMID: 23592795 DOI: 10.1101/gad.210963.112] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SFMBT1 (Scm [Sex comb on midleg] with four MBT [malignant brain tumor] domains 1) is a poorly characterized mammalian MBT domain-containing protein homologous to Drosophila SFMBT, a Polycomb group protein involved in epigenetic regulation of gene expression. Here, we show that SFMBT1 regulates transcription in somatic cells and during spermatogenesis through the formation of a stable complex with LSD1 and CoREST. When bound to its gene targets, SFMBT1 recruits its associated proteins and causes chromatin compaction and transcriptional repression. SFMBT1, LSD1, and CoREST share a large fraction of target genes, including those encoding replication-dependent histones. Simultaneous occupancy of histone genes by SFMBT1, LSD1, and CoREST is regulated during the cell cycle and correlates with the loss of RNA polymerase II at these promoters during G2, M, and G1. The interplay between the repressive SFMBT1-LSD1-CoREST complex and RNA polymerase II contributes to the timely transcriptional regulation of histone genes in human cells. SFMBT1, LSD1, and CoREST also form a stable complex in germ cells, and their chromatin binding activity is regulated during spermatogenesis.
Collapse
Affiliation(s)
- Jin Zhang
- Howard Hughes Medical Institute, Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Berthaut I, Montjean D, Dessolle L, Morcel K, Deluen F, Poirot C, Bashamboo A, McElreavey K, Ravel C. Effect of temozolomide on male gametes: an epigenetic risk to the offspring? J Assist Reprod Genet 2013; 30:827-33. [PMID: 23652788 DOI: 10.1007/s10815-013-9999-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/09/2013] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Temozolomide is an oral alkylating agent with proven efficacy in recurrent high-grade glioma. The antitumour activity of this molecule is attributed to the inhibition of replication through DNA methylation. However, this methylation may also perturb other DNA-dependent processes, such as spermatogenesis. The ability to father a child may be affected by having this treatment. Here we report a pregnancy and a baby born after 6 cures of temozolomide. METHODS The quality of gametes of the father has been studied through these cures and after the cessation of treatment. Sperm parameters, chromosomal content and epigenetic profiles of H19, MEST and MGMT have been analysed. RESULTS Sperm counts decrease significantly and hypomethylation of the H19 locus increase with time even staying in the normal range. CONCLUSION This is the first report of an epigenetic modification in sperm after temozolomide treatment suggesting a potential risk for the offspring. A sperm cryopreservation before the initiation of temozolomide treatment should be recommended.
Collapse
Affiliation(s)
- I Berthaut
- AP-HP; Hopital Tenon, CECOS, 4 rue de la Chine, 75020, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Hackett JA, Surani MA. DNA methylation dynamics during the mammalian life cycle. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110328. [PMID: 23166392 PMCID: PMC3539357 DOI: 10.1098/rstb.2011.0328] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
DNA methylation is dynamically remodelled during the mammalian life cycle through distinct phases of reprogramming and de novo methylation. These events enable the acquisition of cellular potential followed by the maintenance of lineage-restricted cell identity, respectively, a process that defines the life cycle through successive generations. DNA methylation contributes to the epigenetic regulation of many key developmental processes including genomic imprinting, X-inactivation, genome stability and gene regulation. Emerging sequencing technologies have led to recent insights into the dynamic distribution of DNA methylation during development and the role of this epigenetic mark within distinct genomic contexts, such as at promoters, exons or imprinted control regions. Additionally, there is a better understanding of the mechanistic basis of DNA demethylation during epigenetic reprogramming in primordial germ cells and during pre-implantation development. Here, we discuss our current understanding of the developmental roles and dynamics of this key epigenetic system.
Collapse
Affiliation(s)
- Jamie A Hackett
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | | |
Collapse
|
172
|
Max is a repressor of germ cell-related gene expression in mouse embryonic stem cells. Nat Commun 2013; 4:1754. [DOI: 10.1038/ncomms2780] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/20/2013] [Indexed: 12/23/2022] Open
|
173
|
Lasko P. The DEAD-box helicase Vasa: evidence for a multiplicity of functions in RNA processes and developmental biology. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:810-6. [PMID: 23587717 DOI: 10.1016/j.bbagrm.2013.04.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/03/2013] [Accepted: 04/06/2013] [Indexed: 01/19/2023]
Abstract
DEAD-box helicases related to the Drosophila protein Vasa (also known as Ddx4) are found throughout the animal kingdom. They have been linked to numerous processes in gametogenesis, germ cell specification, and stem cell biology, and alterations in Vasa expression are associated with malignancy of tumor cells and with some human male infertility syndromes. Experimental results indicating how Vasa contributes to all these different cellular and developmental processes are discussed, using examples from planarians, Caenorhabditis elegans, Drosophila, sea urchin, zebrafish, Xenopus, mouse, and human. Molecular, cellular, and developmental functions of Vasa and its orthologs are reviewed in this article. Evidence linking Vasa to translational regulation, to biogenesis of small RNAs, and to chromosome condensation is examined. Finally, potential overlapping functions between Vasa and related DEAD-box helicases (Belle, or Ddx3, and DEADSouth, or Ddx25) are explored. This article is part of a Special Issue entitled: The biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
174
|
Feichtinger J, Aldeailej I, Anderson R, Almutairi M, Almatrafi A, Alsiwiehri N, Griffiths K, Stuart N, Wakeman JA, Larcombe L, McFarlane RJ. Meta-analysis of clinical data using human meiotic genes identifies a novel cohort of highly restricted cancer-specific marker genes. Oncotarget 2013; 3:843-53. [PMID: 22918178 PMCID: PMC3478461 DOI: 10.18632/oncotarget.580] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Identifying cancer-specific biomarkers represents an ongoing challenge to the development of novel cancer diagnostic, prognostic and therapeutic strategies. Cancer/testis (CT) genes are an important gene family with expression tightly restricted to the testis in normal individuals but which can also be activated in cancers. Here we develop a pipeline to identify new CT genes. We analysed and validated expression profiles of human meiotic genes in normal and cancerous tissue followed by meta-analyses of clinical data sets from a range of tumour types resulting in the identification of a large cohort of highly specific cancer biomarker genes, including the recombination hot spot activator PRDM9 and the meiotic cohesin genes SMC1beta and RAD21L. These genes not only provide excellent cancer biomarkers for diagnostics and prognostics, but may serve as oncogenes and have excellent drug targeting potential.
Collapse
Affiliation(s)
- Julia Feichtinger
- North West Cancer Research Fund Institute, Bangor University, Bangor, LL57 2UW, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Johnson NM, Lemmens BBLG, Tijsterman M. A role for the malignant brain tumour (MBT) domain protein LIN-61 in DNA double-strand break repair by homologous recombination. PLoS Genet 2013; 9:e1003339. [PMID: 23505385 PMCID: PMC3591299 DOI: 10.1371/journal.pgen.1003339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Malignant brain tumour (MBT) domain proteins are transcriptional repressors that function within Polycomb complexes. Some MBT genes are tumour suppressors, but how they prevent tumourigenesis is unknown. The Caenorhabditis elegans MBT protein LIN-61 is a member of the synMuvB chromatin-remodelling proteins that control vulval development. Here we report a new role for LIN-61: it protects the genome by promoting homologous recombination (HR) for the repair of DNA double-strand breaks (DSBs). lin-61 mutants manifest numerous problems associated with defective HR in germ and somatic cells but remain proficient in meiotic recombination. They are hypersensitive to ionizing radiation and interstrand crosslinks but not UV light. Using a novel reporter system that monitors repair of a defined DSB in C. elegans somatic cells, we show that LIN-61 contributes to HR. The involvement of this MBT protein in HR raises the possibility that MBT–deficient tumours may also have defective DSB repair. The genome is continually under threat from exogenous sources of DNA damage, as well as from sources that originate within the cell. DNA double-strand breaks (DSBs) are arguably the most problematic type of damage as they can cause dangerous chromosome rearrangements, which can lead to cancer, as well as mutation at the break site and/or cell death. A complex network of molecular pathways, collectively referred to as the DNA damage response (DDR), have evolved to protect the cell from these threats. We have discovered a new DDR factor, LIN-61, that promotes the repair of DSBs. This is a novel and unexpected role for LIN-61, which was previously known to act as a regulator of gene transcription during development.
Collapse
Affiliation(s)
- Nicholas M. Johnson
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Marcel Tijsterman
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
176
|
Liu M, Hu Z, Qi L, Wang J, Zhou T, Guo Y, Zeng Y, Zheng B, Wu Y, Zhang P, Chen X, Tu W, Zhang T, Zhou Q, Jiang M, Guo X, Zhou Z, Sha J. Scanning of novel cancer/testis proteins by human testis proteomic analysis. Proteomics 2013; 13:1200-10. [DOI: 10.1002/pmic.201200489] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/20/2012] [Accepted: 01/07/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Mingxi Liu
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Lin Qi
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Yan Zeng
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Yibo Wu
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Pan Zhang
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Xin Chen
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Wenjiao Tu
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Ting Zhang
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Quan Zhou
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Min Jiang
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine; Nanjing Medical University; Nanjing; China
| |
Collapse
|
177
|
Gonzalez C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 2013; 13:172-83. [PMID: 23388617 DOI: 10.1038/nrc3461] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For decades, lower-model organisms such as Drosophila melanogaster have often provided the first glimpse into the mechanism of action of human cancer-related proteins, thus making a substantial contribution to elucidating the molecular basis of the disease. More recently, D. melanogaster strains that are engineered to recapitulate key aspects of specific types of human cancer have been paving the way for the future role of this 'workhorse' of biomedical research, helping to further investigate the process of malignancy, and serving as platforms for therapeutic drug discovery.
Collapse
Affiliation(s)
- Cayetano Gonzalez
- IRB-Barcelona, c/Baldiri Reixac 10-12, Barcelona, Spain. gonzalez@ irbbarcelona.org
| |
Collapse
|
178
|
Seervai RNH, Wessel GM. Lessons for inductive germline determination. Mol Reprod Dev 2013; 80:590-609. [PMID: 23450642 DOI: 10.1002/mrd.22151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 01/03/2013] [Indexed: 12/25/2022]
Abstract
Formation of the germline in an embryo marks a fresh round of reproductive potential, yet the developmental stage and location within the embryo where the primordial germ cells (PGCs) form differs wildly among species. In most animals, the germline is formed either by an inherited mechanism, in which maternal provisions within the oocyte drive localized germ-cell fate once acquired in the embryo, or an inductive mechanism that involves signaling between cells that directs germ-cell fate. The inherited mechanism has been widely studied in model organisms such as Drosophila melanogaster, Caenorhabditis elegans, Xenopus laevis, and Danio rerio. Given the rapid generation time and the effective adaptation for laboratory research of these organisms, it is not coincidental that research on these organisms has led the field in elucidating mechanisms for germline specification. The inductive mechanism, however, is less well understood and is studied primarily in the mouse (Mus musculus). In this review, we compare and contrast these two fundamental mechanisms for germline determination, beginning with the key molecular determinants that play a role in the formation of germ cells across all animal taxa. We next explore the current understanding of the inductive mechanism of germ-cell determination in mice, and evaluate the hypotheses for selective pressures on these contrasting mechanisms. We then discuss the hypothesis that the transition between these determination mechanisms, which has happened many times in phylogeny, is more of a continuum than a binary change. Finally, we propose an analogy between germline determination and sex determination in vertebrates-two of the milestones of reproduction and development-in which animals use contrasting strategies to activate similar pathways.
Collapse
Affiliation(s)
- Riyad N H Seervai
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, 02192, USA
| | | |
Collapse
|
179
|
Bamezai S, Rawat VP, Buske C. Concise Review: The Piwi-piRNA Axis: Pivotal Beyond Transposon Silencing. Stem Cells 2012; 30:2603-11. [DOI: 10.1002/stem.1237] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/29/2012] [Indexed: 01/21/2023]
|
180
|
Germ cell proteins in melanoma: prognosis, diagnosis, treatment, and theories on expression. J Skin Cancer 2012; 2012:621968. [PMID: 23209909 PMCID: PMC3503391 DOI: 10.1155/2012/621968] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 10/16/2012] [Indexed: 12/18/2022] Open
Abstract
Germ cell protein expression in melanoma has been shown to correlate with malignancy, severity of disease and to serve as an immunologic target for therapy. However, very little is known about the role that germ cell proteins play in cancer development. Unique germ cell pathways include those involved in immortalization, genetic evolution, and energy metabolism. There is an ever increasing recognition that within tumors there is a subpopulation of cells with stem-cell-like characteristics that play a role in driving tumorgenesis. Stem cell and germ cell biology is intertwined. Given the enormous potential and known expression of germ cell proteins in melanoma, it is possible that they represent a largely untapped resource that may play a fundamental role in tumor development and progression. The purpose of this paper is to provide an update on the current value of germ cell protein expression in melanoma diagnosis, prognosis, and therapy, as well as to review critical germ cell pathways and discuss the potential roles these pathways may play in malignant transformation.
Collapse
|
181
|
Wright JE, Ciosk R. RNA-based regulation of pluripotency. Trends Genet 2012; 29:99-107. [PMID: 23146412 DOI: 10.1016/j.tig.2012.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/01/2012] [Accepted: 10/08/2012] [Indexed: 01/01/2023]
Abstract
Pluripotent cells have the unique ability to differentiate into diverse cell types. Over the past decade our understanding of the mechanisms underlying pluripotency, and particularly the role of transcriptional regulation, has increased dramatically. However, there is growing evidence for 'RNA-based' regulation of pluripotency. We use this term to describe control of gene expression by RNA-binding proteins (RBPs) and regulatory non-coding RNAs (ncRNAs). These molecules bind to specific elements within mRNAs and, by recruiting various effectors, affect many aspects of mRNA regulation. Here, we discuss the role of RBPs and ncRNAs in both the induction and maintenance of pluripotency. We highlight and contrast examples from pluripotent cell lines and in vivo systems while discussing the connection to transcriptional regulators.
Collapse
Affiliation(s)
- Jane E Wright
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | | |
Collapse
|
182
|
Evidence for autoregulation and cell signaling pathway regulation from genome-wide binding of the Drosophila retinoblastoma protein. G3-GENES GENOMES GENETICS 2012; 2:1459-72. [PMID: 23173097 PMCID: PMC3484676 DOI: 10.1534/g3.112.004424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/20/2012] [Indexed: 12/24/2022]
Abstract
The retinoblastoma (RB) tumor suppressor protein is a transcriptional cofactor with essential roles in cell cycle and development. Physical and functional targets of RB and its paralogs p107/p130 have been studied largely in cultured cells, but the full biological context of this family of proteins' activities will likely be revealed only in whole organismal studies. To identify direct targets of the major Drosophila RB counterpart in a developmental context, we carried out ChIP-Seq analysis of Rbf1 in the embryo. The association of the protein with promoters is developmentally controlled; early promoter access is globally inhibited, whereas later in development Rbf1 is found to associate with promoter-proximal regions of approximately 2000 genes. In addition to conserved cell-cycle-related genes, a wholly unexpected finding was that Rbf1 targets many components of the insulin, Hippo, JAK/STAT, Notch, and other conserved signaling pathways. Rbf1 may thus directly affect output of these essential growth-control and differentiation pathways by regulation of expression of receptors, kinases and downstream effectors. Rbf1 was also found to target multiple levels of its own regulatory hierarchy. Bioinformatic analysis indicates that different classes of genes exhibit distinct constellations of motifs associated with the Rbf1-bound regions, suggesting that the context of Rbf1 recruitment may vary within the Rbf1 regulon. Many of these targeted genes are bound by Rbf1 homologs in human cells, indicating that a conserved role of RB proteins may be to adjust the set point of interlinked signaling networks essential for growth and development.
Collapse
|
183
|
Ma Z, Hu Y, Jiang G, Hou J, Liu R, Lu Y, Liu C. Spontaneous generation of germline characteristics in mouse fibrosarcoma cells. Sci Rep 2012; 2:743. [PMID: 23077727 PMCID: PMC3473365 DOI: 10.1038/srep00743] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/19/2012] [Indexed: 12/02/2022] Open
Abstract
Germline/embryonic-specific genes have been found to be activated in somatic tumors. In this study, we further showed that cells functioning as germline could be present in mouse fibrosarcoma cells (L929 cell line). Early germline-like cells spontaneously appeared in L929 cells and further differentiated into oocyte-like cells. These germline-like cells can, in turn, develop into blastocyst-like structures in vitro and cause teratocarcinomas in vivo, which is consistent with natural germ cells in function. Generation of germline-like cells from somatic tumors might provide a novel way to understand why somatic cancer cells have strong features of embryonic/germline development. It is thought that the germline traits of tumors are associated with the central characteristics of malignancy, such as immortalization, invasion, migration and immune evasion. Therefore, germline-like cells in tumors might provide potential targets to tumor biology, diagnosis and therapy.
Collapse
Affiliation(s)
- Zhan Ma
- Department of Labratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | | | | | | | | | | | | |
Collapse
|
184
|
Suzuki R, Honda S, Kirino Y. PIWI Expression and Function in Cancer. Front Genet 2012; 3:204. [PMID: 23087701 PMCID: PMC3472457 DOI: 10.3389/fgene.2012.00204] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/23/2012] [Indexed: 12/13/2022] Open
Abstract
PIWI proteins, a subclade of the Argonaute family proteins, are expressed predominantly in the germline and bind to PIWI-interacting RNAs (piRNAs), which are 25–31 nucleotides in length. The PIWI/piRNA pathway plays critical roles in germline development by regulating transposons and other targets to maintain genome integrity. While the functions of PIWI in the germline have been extensively investigated, recent studies have accumulated evidence that the human PIWI proteins, HIWI and HILI, are aberrantly expressed in a variety of cancers. This review summarizes our knowledge of PIWI expression in cancer and discusses its possible role in tumorigenesis.
Collapse
Affiliation(s)
- Ryusuke Suzuki
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center Los Angeles, CA, USA
| | | | | |
Collapse
|
185
|
Abstract
Germline stem cells are key to genome transmission to future generations. Over recent years, there have been numerous insights into the regulatory mechanisms that govern both germ cell specification and the maintenance of the germline in adults. Complex regulatory interactions with both the niche and the environment modulate germline stem cell function. This perspective highlights some examples of this regulation to illustrate the diversity and complexity of the mechanisms involved.
Collapse
Affiliation(s)
- Ruth Lehmann
- Howard Hughes Medical Institute; Skirball Institute, The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
186
|
Hackett JA, Reddington JP, Nestor CE, Dunican DS, Branco MR, Reichmann J, Reik W, Surani MA, Adams IR, Meehan RR. Promoter DNA methylation couples genome-defence mechanisms to epigenetic reprogramming in the mouse germline. Development 2012; 139:3623-32. [PMID: 22949617 PMCID: PMC3436114 DOI: 10.1242/dev.081661] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2012] [Indexed: 12/13/2022]
Abstract
Mouse primordial germ cells (PGCs) erase global DNA methylation (5mC) as part of the comprehensive epigenetic reprogramming that occurs during PGC development. 5mC plays an important role in maintaining stable gene silencing and repression of transposable elements (TE) but it is not clear how the extensive loss of DNA methylation impacts on gene expression and TE repression in developing PGCs. Using a novel epigenetic disruption and recovery screen and genetic analyses, we identified a core set of germline-specific genes that are dependent exclusively on promoter DNA methylation for initiation and maintenance of developmental silencing. These gene promoters appear to possess a specialised chromatin environment that does not acquire any of the repressive H3K27me3, H3K9me2, H3K9me3 or H4K20me3 histone modifications when silenced by DNA methylation. Intriguingly, this methylation-dependent subset is highly enriched in genes with roles in suppressing TE activity in germ cells. We show that the mechanism for developmental regulation of the germline genome-defence genes involves DNMT3B-dependent de novo DNA methylation. These genes are then activated by lineage-specific promoter demethylation during distinct global epigenetic reprogramming events in migratory (~E8.5) and post-migratory (E10.5-11.5) PGCs. We propose that genes involved in genome defence are developmentally regulated primarily by promoter DNA methylation as a sensory mechanism that is coupled to the potential for TE activation during global 5mC erasure, thereby acting as a failsafe to ensure TE suppression and maintain genomic integrity in the germline.
Collapse
Affiliation(s)
- Jamie A. Hackett
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - James P. Reddington
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Colm E. Nestor
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Donncha S. Dunican
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Miguel R. Branco
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Judith Reichmann
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - M. Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Ian R. Adams
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Richard R. Meehan
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Breakthrough Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
187
|
Smith JJ, Baker C, Eichler EE, Amemiya CT. Genetic consequences of programmed genome rearrangement. Curr Biol 2012; 22:1524-9. [PMID: 22818913 PMCID: PMC3427415 DOI: 10.1016/j.cub.2012.06.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/03/2012] [Accepted: 06/07/2012] [Indexed: 11/17/2022]
Abstract
The lamprey (Petromyzon marinus) undergoes developmentally programmed genome rearrangements that mediate deletion of∼20% of germline DNA from somatic cells during early embryogenesis. This genomic differentiation of germline and soma is intriguing, because the germline plays a unique biological role wherein it must possess the ability to undergo meiotic recombination and the capacity to differentiate into every cell type. These evolutionarily indispensable functions set the germline at odds with somatic tissues, because factors that promote recombination and pluripotency can potentially disrupt genome integrity or specification of cell fate when misexpressed in somatic cell lineages (e.g., in oncogenesis). Here, we describe the development of new genomic and transcriptomic resources for lamprey and use these to identify hundreds of genes that are targeted for programmed deletion from somatic cell lineages. Transcriptome sequencing and targeted validation studies further confirm that somatically deleted genes function both in adult (meiotic) germline and in the development of primordial germ cells during embryogenesis. Inferred functional information from deleted regions indicates that developmentally programmed rearrangement serves as a (perhaps ancient) biological strategy to ensure segregation of pluripotency functions to the germline, effectively eliminating the potential for somatic misexpression.
Collapse
Affiliation(s)
- Jeramiah J Smith
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA.
| | | | | | | |
Collapse
|
188
|
Baumbach J, Levesque MP, Raff JW. Centrosome loss or amplification does not dramatically perturb global gene expression in Drosophila. Biol Open 2012; 1:983-93. [PMID: 23213376 PMCID: PMC3507170 DOI: 10.1242/bio.20122238] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 06/29/2012] [Indexed: 12/19/2022] Open
Abstract
Centrosome defects are a common feature of many cancers, and they can predispose fly brain cells to form tumours. In flies, centrosome defects perturb the asymmetric division of the neural stem cells, but it is unclear how this might lead to malignant transformation. One possibility is that centrosome defects might also perturb cellular homeostasis: for example, stress pathways are often activated in response to centrosome defects in cultured cells, and stress contributes to tumourigenesis in some fly models. Here we attempt to assess whether centrosome loss or centrosome amplification perturbs cell physiology in vivo by profiling the global transcriptome of Drosophila larval brains and imaginal discs that either lack centrosomes or have too many centrosomes. Surprisingly, we find that centrosome loss or amplification leads to few changes in the transcriptional profile of these cells, indicating that centrosome defects are surprisingly well tolerated by these cells. These observations indicate that centrosome defects can predispose fly brain cells to form tumours without, at least initially, dramatically altering their physiology.
Collapse
Affiliation(s)
- Janina Baumbach
- Sir William Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE , UK
| | | | | |
Collapse
|
189
|
Liu M, Chen J, Hu L, Shi X, Zhou Z, Hu Z, Sha J. HORMAD2/CT46.2, a novel cancer/testis gene, is ectopically expressed in lung cancer tissues. ACTA ACUST UNITED AC 2012; 18:599-604. [DOI: 10.1093/molehr/gas033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
190
|
Sin3a acts through a multi-gene module to regulate invasion in Drosophila and human tumors. Oncogene 2012; 32:3184-97. [PMID: 22890320 DOI: 10.1038/onc.2012.326] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Chromatin remodeling proteins regulate multiple aspects of cell homeostasis, making them ideal candidates for misregulation in transformed cells. Here, we explore Sin3A, a member of the Sin3 family of proteins linked to tumorigenesis that are thought to regulate gene expression through their role as histone deacetylases (HDACs). We identified Drosophila Sin3a as an important mediator of oncogenic Ret receptor in a fly model of Multiple Endocrine Neoplasia Type 2. Reducing Drosophila Sin3a activity led to metastasis-like behavior and, in the presence of Diap1, secondary tumors distant from the site of origin. Genetic and Chip-Seq analyses identified previously undescribed Sin3a targets including genes involved in cell motility and actin dynamics, as well as signaling pathways including Src, Jnk and Rho. A key Sin3a oncogenic target, PP1B, regulates stability of β-Catenin/Armadillo: the outcome is to oppose T-cell factor (TCF) function and Wg/Wnt pathway signaling in both fly and mammalian cancer cells. Reducing Sin3A strongly increased the invasive behavior of A549 human lung adenocarcinoma cells. We show that Sin3A is downregulated in a variety of human tumors and that Src, JNK, RhoA and PP1B/β-Catenin are regulated in a manner analogous to our Drosophila models. Our data suggest that Sin3A influences a specific step of tumorigenesis by regulating a module of genes involved in cell invasion. Tumor progression may commonly rely on such 'modules of invasion' under the control of broad transcriptional regulators.
Collapse
|
191
|
Wagner DE, Ho JJ, Reddien PW. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell 2012; 10:299-311. [PMID: 22385657 DOI: 10.1016/j.stem.2012.01.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/30/2011] [Accepted: 01/23/2012] [Indexed: 12/24/2022]
Abstract
Pluripotency is a central, well-studied feature of embryonic development, but the role of pluripotent cell regulation in somatic tissue regeneration remains poorly understood. In planarians, regeneration of entire animals from tissue fragments is promoted by the activity of adult pluripotent stem cells (cNeoblasts). We utilized transcriptional profiling to identify planarian genes expressed in adult proliferating, regenerative cells (neoblasts). We also developed quantitative clonal analysis methods for expansion and differentiation of cNeoblast descendants that, together with RNAi, revealed gene roles in stem cell biology. Genes encoding two zinc finger proteins, Vasa, a LIM domain protein, Sox and Jun-like transcription factors, two candidate RNA-binding proteins, a Setd8-like protein, and PRC2 (Polycomb) were required for proliferative expansion and/or differentiation of cNeoblast-derived clones. These findings suggest that planarian stem cells utilize molecular mechanisms found in germ cells and other pluripotent cell types and identify genetic regulators of the planarian stem cell system.
Collapse
Affiliation(s)
- Daniel E Wagner
- Howard Hughes Medical Institute, MIT Biology, Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
192
|
Kulkarni P, Shiraishi T, Rajagopalan K, Kim R, Mooney SM, Getzenberg RH. Cancer/testis antigens and urological malignancies. Nat Rev Urol 2012; 9:386-96. [PMID: 22710665 DOI: 10.1038/nrurol.2012.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer/testis antigens (CTAs) are a group of tumour-associated antigens (TAAs) that display normal expression in the adult testis--an immune-privileged organ--but aberrant expression in several types of cancers, particularly in advanced cancers with stem cell-like characteristics. There has been an explosion in CTA-based research since CTAs were first identified in 1991 and MAGE-1 was shown to elicit an autologous cytotoxic T-lymphocyte (CTL) response in a patient with melanoma. The resulting data have not only highlighted a role for CTAs in tumorigenesis, but have also underscored the translational potential of these antigens for detecting and treating many types of cancers. Studies that have investigated the use of CTAs for the clinical management of urological malignancies indicate that these TAAs have potential roles as novel biomarkers, with increased specificity and sensitivity compared to those currently used in the clinic, and therapeutic targets for cancer immunotherapy. Increasing evidence supports the utilization of these promising tools for urological indications.
Collapse
Affiliation(s)
- Prakash Kulkarni
- James Buchanan Brady Urological Institute, 600 North Wolfe Street, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
193
|
Neural stem cells in Drosophila: molecular genetic mechanisms underlying normal neural proliferation and abnormal brain tumor formation. Stem Cells Int 2012; 2012:486169. [PMID: 22737173 PMCID: PMC3377361 DOI: 10.1155/2012/486169] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 03/31/2012] [Indexed: 12/11/2022] Open
Abstract
Neural stem cells in Drosophila are currently one of the best model systems for understanding stem cell biology during normal development and during abnormal development of stem cell-derived brain tumors. In Drosophila brain development, the proliferative activity of neural stem cells called neuroblasts gives rise to both the optic lobe and the central brain ganglia, and asymmetric cell divisions are key features of this proliferation. The molecular mechanisms that underlie the asymmetric cell divisions by which these neuroblasts self-renew and generate lineages of differentiating progeny have been studied extensively and involve two major protein complexes, the apical complex which maintains polarity and controls spindle orientation and the basal complex which is comprised of cell fate determinants and their adaptors that are segregated into the differentiating daughter cells during mitosis. Recent molecular genetic work has established Drosophila neuroblasts as a model for neural stem cell-derived tumors in which perturbation of key molecular mechanisms that control neuroblast proliferation and the asymmetric segregation of cell fate determinants lead to brain tumor formation. Identification of novel candidate genes that control neuroblast self-renewal and differentiation as well as functional analysis of these genes in normal and tumorigenic conditions in a tissue-specific manner is now possible through genome-wide transgenic RNAi screens. These cellular and molecular findings in Drosophila are likely to provide valuable genetic links for analyzing mammalian neural stem cells and tumor biology.
Collapse
|
194
|
Meier K, Mathieu EL, Finkernagel F, Reuter LM, Scharfe M, Doehlemann G, Jarek M, Brehm A. LINT, a novel dL(3)mbt-containing complex, represses malignant brain tumour signature genes. PLoS Genet 2012; 8:e1002676. [PMID: 22570633 PMCID: PMC3342951 DOI: 10.1371/journal.pgen.1002676] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/13/2012] [Indexed: 11/18/2022] Open
Abstract
Mutations in the l(3)mbt tumour suppressor result in overproliferation of Drosophila larval brains. Recently, the derepression of different gene classes in l(3)mbt mutants was shown to be causal for transformation. However, the molecular mechanisms of dL(3)mbt-mediated gene repression are not understood. Here, we identify LINT, the major dL(3)mbt complex of Drosophila. LINT has three core subunits—dL(3)mbt, dCoREST, and dLint-1—and is expressed in cell lines, embryos, and larval brain. Using genome-wide ChIP–Seq analysis, we show that dLint-1 binds close to the TSS of tumour-relevant target genes. Depletion of the LINT core subunits results in derepression of these genes. By contrast, histone deacetylase, histone methylase, and histone demethylase activities are not required to maintain repression. Our results support a direct role of LINT in the repression of brain tumour-relevant target genes by restricting promoter access. Mutations in the l(3)mbt result in the formation of brain tumours. The molecular basis underlying this phenotype has remained obscure. Here, we have isolated LINT, a novel protein complex containing dL(3)mbt, the corepressor dCoREST, and the uncharacterised protein dLint-1. We have used genome-wide ChIP–Seq analysis to map the binding sites of LINT. LINT occupies the promoters of many genes that are deregulated in l(3)mbt brain tumours, suggesting that these genes are repressed by LINT. Indeed, RNAi–mediated depletion of LINT subunits results in the derepression of these genes. Surprisingly, LINT-mediated repression is largely independent of histone modification status, arguing for a repression mechanism that operates by restricting promoter access.
Collapse
Affiliation(s)
- Karin Meier
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - Eve-Lyne Mathieu
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - Florian Finkernagel
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - L. Maximilian Reuter
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - Maren Scharfe
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Michael Jarek
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
195
|
Wu X, Shi Z, Cui M, Han M, Ruvkun G. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes. PLoS Genet 2012; 8:e1002542. [PMID: 22412383 PMCID: PMC3297578 DOI: 10.1371/journal.pgen.1002542] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 12/30/2011] [Indexed: 11/22/2022] Open
Abstract
The retinoblastoma (Rb) tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene. In metazoans, soma and germline have specialized functions that require differential tissue-specific gene expression. In C. elegans, explicit chromatin marks deposited by the MES-4 histone methyltransferase and the MRG-1 chromodomain protein allow germline expression of particular suites of target genes. Conversely, the expression of germline-specific genes is repressed in somatic cells by other chromatin regulatory factors, including the retinoblastoma pathway genes. We characterized the distinct profiles of somatic misexpression of normally germline-specific genes in these mutants and mapped out three chromatin complexes that prevent misexpression. We demonstrate that one of the complexes closely counteracts the activity of MES-4 and MRG-1, whereas another complex interacts with additional regulators that are yet to be identified. We show that these intersecting chromatin complexes prevent the upregulation of a suite of germline-specific as well as ubiquitous small RNA pathway genes, which contributes to the enhanced RNAi response in retinoblastoma pathway mutant worms. We suggest that this function of the retinoblastoma pathway chromatin factors to prevent germline-associated gene expression programs in the soma and the upregulation of small RNA pathways may also underlie their role as tumor suppressors.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhen Shi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mingxue Cui
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Min Han
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
196
|
Hackett JA, Zylicz JJ, Surani MA. Parallel mechanisms of epigenetic reprogramming in the germline. Trends Genet 2012; 28:164-74. [PMID: 22386917 DOI: 10.1016/j.tig.2012.01.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/18/2012] [Accepted: 01/26/2012] [Indexed: 11/16/2022]
Abstract
Germ cells possess the extraordinary and unique capacity to give rise to a new organism and create an enduring link between all generations. To acquire this property, primordial germ cells (PGCs) transit through an unprecedented programme of sequential epigenetic events that culminates in an epigenomic basal state that is the foundation of totipotency. This process is underpinned by genome-wide DNA demethylation, which may occur through several overlapping pathways, including conversion to 5-hydroxymethylcytosine. We propose that the epigenetic programme in PGCs operates through multiple parallel mechanisms to ensure robustness at the level of individual cells while also being flexible through functional redundancy to guarantee high fidelity of the process. Gaining a better understanding of the molecular mechanisms that direct epigenetic reprogramming in PGCs will enhance our ability to manipulate epigenetic memory, cell-fate decisions and applications in regenerative medicine.
Collapse
Affiliation(s)
- Jamie A Hackett
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 1QN, UK
| | | | | |
Collapse
|
197
|
Rajagopalan K, Mooney SM, Parekh N, Getzenberg RH, Kulkarni P. A majority of the cancer/testis antigens are intrinsically disordered proteins. J Cell Biochem 2012; 112:3256-67. [PMID: 21748782 DOI: 10.1002/jcb.23252] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cancer/testis antigens (CTAs) are a group of heterogeneous proteins that are typically expressed in the testis but aberrantly expressed in several types of cancer. Although overexpression of CTAs is frequently associated with advanced disease and poorer prognosis, the significance of this correlation is unclear since the functions of the CTAs in the disease process remain poorly understood. Here, employing a bioinformatics approach, we show that a majority of CTAs are intrinsically disordered proteins (IDPs). IDPs are proteins that, under physiological conditions in vitro, lack rigid 3D structures either along their entire length or in localized regions. Despite the lack of structure, most IDPs can transition from disorder to order upon binding to biological targets and often promote highly promiscuous interactions. IDPs play important roles in transcriptional regulation and signaling via regulatory protein networks and are often associated with dosage sensitivity. Consistent with these observations, we find that several CTAs can bind DNA, and their forced expression appears to increase cell growth implying a potential dosage-sensitive function. Furthermore, the CTAs appear to occupy "hub" positions in protein regulatory networks that typically adopt a "scale-free" power law distribution. Taken together, our data provide a novel perspective on the CTAs implicating them in processing and transducing information in altered physiological states in a dosage-sensitive manner. Identifying the CTAs that occupy hub positions in protein regulatory networks would allow a better understanding of their functions as well as the development of novel therapeutics to treat cancer.
Collapse
Affiliation(s)
- Krithika Rajagopalan
- Department of Urology, James Buchanan Brady Urological Institute, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
198
|
Synergism between altered cortical polarity and the PI3K/TOR pathway in the suppression of tumour growth. EMBO Rep 2012; 13:157-62. [PMID: 22173033 DOI: 10.1038/embor.2011.230] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 12/13/2022] Open
Abstract
Loss of function of pins (partner of inscuteable) partially disrupts neuroblast (NB) polarity and asymmetric division, results in fewer and smaller NBs and inhibits Drosophila larval brain growth. Food deprivation also inhibits growth. However, we find that the combination of loss of function of pins and dietary restriction results in loss of NB asymmetry, overproliferation of Miranda-expressing cells, brain overgrowth and increased frequency of tumour growth on allograft transplantation. The same effects are observed in well-fed pins larvae that are mutant for pi3k (phosphatidylinositol 3-kinase) or exposed to the TOR inhibitor rapamycin. Thus, pathways that are sensitive to food deprivation and dependent on PI3K and TOR are essential to suppress tumour growth in Drosophila larval brains with compromised pins function. These results highlight an unexpected crosstalk whereby the normally growth-promoting, nutrient-sensing PI3K/TOR pathway suppresses tumour formation in neural stem cells with compromised cell polarity.
Collapse
|
199
|
Chang KC, Wang C, Wang H. Balancing self-renewal and differentiation by asymmetric division: insights from brain tumor suppressors in Drosophila neural stem cells. Bioessays 2012; 34:301-10. [PMID: 22287225 DOI: 10.1002/bies.201100090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Balancing self-renewal and differentiation of stem cells is an important issue in stem cell and cancer biology. Recently, the Drosophila neuroblast (NB), neural stem cell has emerged as an excellent model for stem cell self-renewal and tumorigenesis. It is of great interest to understand how defects in the asymmetric division of neural stem cells lead to tumor formation. Here, we review recent advances in asymmetric division and the self-renewal control of Drosophila NBs. We summarize molecular mechanisms of asymmetric cell division and discuss how the defects in asymmetric division lead to tumor formation. Gain-of-function or loss-of-function of various proteins in the asymmetric machinery can drive NB overgrowth and tumor formation. These proteins control either the asymmetric protein localization or mitotic spindle orientation of NBs. We also discuss other mechanisms of brain tumor suppression that are beyond the control of asymmetric division.
Collapse
Affiliation(s)
- Kai Chen Chang
- Neuroscience & Behavioral Disorder Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | | | | |
Collapse
|
200
|
Zhao H, Hong N, Lu W, Zeng H, Song J, Hong Y. Fusion gene vectors allowing for simultaneous drug selection, cell labeling, and reporter assay in vitro and in vivo. Anal Chem 2012; 84:987-93. [PMID: 22081858 DOI: 10.1021/ac202541t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vector systems allowing simultaneously for rapid drug selection, cell labeling, and reporter assay are highly desirable in biomedical research including stem cell biology. Here, we present such a vector system including pCVpf or pCVpr, plasmids that express pf or pr, a fusion protein between puromycin acetyltransferase and green or red fluorescent protein from CV, the human cytomegalovirus enhancer/promoter. Transfection with pCVpf or pCVpr produced a ∼10% efficiency of gene transfer. A 2-day pulse puromycin selection resulted in ∼13-fold enrichment for transgenic cells, and continuous puromycin selection produced stable transgenic stem cell clones with retained pluripotency. Furthermore, we developed a PAC assay protocol for quantification of transgene expression. To test the usefulness for cell labeling and PAC assay in vivo, we constructed pVASpf containing pf linked to the regulatory sequence of medaka germ gene vasa and generated transgenic fish with visible GFP expression in germ cells. PAC assay revealed the highest expression in the testis. Interestingly, PAC activity was also detectable in somatic organs including the eye, which was validated by fluorescence in situ hybridization. Therefore, the pf and pr vectors provide a useful system for simultaneous drug selection, live labeling, and reporter assay in vitro and in vivo.
Collapse
Affiliation(s)
- Haobin Zhao
- Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543
| | | | | | | | | | | |
Collapse
|