151
|
Chacko N, Lin X. Non-coding RNAs in the development and pathogenesis of eukaryotic microbes. Appl Microbiol Biotechnol 2013; 97:7989-97. [PMID: 23948725 DOI: 10.1007/s00253-013-5160-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 12/15/2022]
Abstract
RNA has long been regarded as the important intermediary in the central dogma of gene expression. Recently, the importance of RNAs in the regulation of gene expression became evident with the identification and characterization of non-protein coding transcripts named non-coding RNAs (ncRNAs). The ncRNAs, small and long, are ubiquitously present in all three domains of life and are being recognized for their important roles in genome defense and development. Some of the ncRNAs have been associated with diseases, and therefore, they offer diagnostic and therapeutic potential. In this mini-review, we have highlighted some recent research on the ncRNAs identified in eukaryotic microbes, with special emphasis on fungi that are pathogenic to humans or plants when possible. It is our contention that further elucidation and understanding of ncRNAs will advance our understanding of the development and pathogenesis of eukaryotic microbes and offer alternatives in the diagnosis and treatment of the diseases caused by these pathogens.
Collapse
Affiliation(s)
- Nadia Chacko
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA
| | | |
Collapse
|
152
|
Nicolás FE, Ruiz-Vázquez RM. Functional diversity of RNAi-associated sRNAs in fungi. Int J Mol Sci 2013; 14:15348-60. [PMID: 23887655 PMCID: PMC3759863 DOI: 10.3390/ijms140815348] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022] Open
Abstract
Yeast and filamentous fungi have been essential model systems for unveiling the secrets of RNA interference (RNAi). Research on these organisms has contributed to identifying general mechanisms and conserved eukaryotic RNAi machinery that can be found from fungi to mammals. The development of deep sequencing technologies has brought on the last wave of studies on RNAi in fungi, which has been focused on the identification of new types of functional small RNAs (sRNAs). These studies have discovered an unexpected diversity of sRNA, biogenesis pathways and new functions that are the focus of this review.
Collapse
Affiliation(s)
- Francisco E. Nicolás
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain; E-Mail:
- Regional Campus of International Excellence “Campus Mare Nostrum”, Murcia 30100, Spain
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-868-887135; Fax: +34-868-883963
| | - Rosa M. Ruiz-Vázquez
- Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain; E-Mail:
| |
Collapse
|
153
|
Donaldson ME, Saville BJ. Ustilago maydis natural antisense transcript expression alters mRNA stability and pathogenesis. Mol Microbiol 2013; 89:29-51. [PMID: 23650872 PMCID: PMC3739942 DOI: 10.1111/mmi.12254] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2013] [Indexed: 11/29/2022]
Abstract
Ustilago maydis infection of Zea mays leads to the production of thick-walled diploid teliospores that are the dispersal agent for this pathogen. Transcriptome analyses of this model biotrophic basidiomycete fungus identified natural antisense transcripts (NATs) complementary to 247 open reading frames. The U. maydis NAT cDNAs were fully sequenced and annotated. Strand-specific RT-PCR screens confirmed expression and identified NATs preferentially expressed in the teliospore. Targeted screens revealed four U. maydis NATs that are conserved in a related fungus. Expression of NATs in haploid cells, where they are not naturally occurring, resulted in increased steady-state levels of some complementary mRNAs. The expression of one NAT, as-um02151, in haploid cells resulted in a twofold increase in complementary mRNA levels, the formation of sense-antisense double-stranded RNAs, and unchanged Um02151 protein levels. This led to a model for NAT function in the maintenance and expression of stored teliospore mRNAs. In testing this model by deletion of the regulatory region, it was determined that alteration in NAT expression resulted in decreased pathogenesis in both cob and seedling infections. This annotation and functional analysis supports multiple roles for U. maydis NATs in controlling gene expression and influencing pathogenesis.
Collapse
Affiliation(s)
- Michael E Donaldson
- Environmental and Life Sciences Graduate ProgramPeterborough, ON, Canada, K9J 7B8
| | - Barry J Saville
- Environmental and Life Sciences Graduate ProgramPeterborough, ON, Canada, K9J 7B8
- Forensic Science Program, Trent UniversityPeterborough, ON, Canada, K9J 7B8
| |
Collapse
|
154
|
Carreras-Villaseñor N, Esquivel-Naranjo EU, Villalobos-Escobedo JM, Abreu-Goodger C, Herrera-Estrella A. The RNAi machinery regulates growth and development in the filamentous fungusTrichoderma atroviride. Mol Microbiol 2013; 89:96-112. [DOI: 10.1111/mmi.12261] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Nohemi Carreras-Villaseñor
- Laboratorio Nacional de Genómica para la Biodiversidad; Cinvestav Sede Irapuato; Km 9.6 Libramiento Norte Carretera Irapuato-León; 36821; Irapuato; Gto.; Mexico
| | - Edgardo U. Esquivel-Naranjo
- Laboratorio Nacional de Genómica para la Biodiversidad; Cinvestav Sede Irapuato; Km 9.6 Libramiento Norte Carretera Irapuato-León; 36821; Irapuato; Gto.; Mexico
| | - J. Manuel Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad; Cinvestav Sede Irapuato; Km 9.6 Libramiento Norte Carretera Irapuato-León; 36821; Irapuato; Gto.; Mexico
| | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad; Cinvestav Sede Irapuato; Km 9.6 Libramiento Norte Carretera Irapuato-León; 36821; Irapuato; Gto.; Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad; Cinvestav Sede Irapuato; Km 9.6 Libramiento Norte Carretera Irapuato-León; 36821; Irapuato; Gto.; Mexico
| |
Collapse
|
155
|
L-A-lus, a new variant of the L-A totivirus found in wine yeasts with Klus killer toxin-encoding Mlus double-stranded RNA: possible role of killer toxin-encoding satellite RNAs in the evolution of their helper viruses. Appl Environ Microbiol 2013; 79:4661-74. [PMID: 23728812 DOI: 10.1128/aem.00500-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yeast killer viruses are widely distributed in nature. Several toxins encoded in double-stranded RNA (dsRNA) satellites of the L-A totivirus have been described, including K1, K2, K28, and Klus. The 4.6-kb L-A genome encodes the Gag major structural protein that forms a 39-nm icosahedral virion and Gag-Pol, a minor fusion protein. Gag-Pol has transcriptase and replicase activities responsible for maintenance of L-A (or its satellite RNAs). Recently we reported a new killer toxin, Klus. The L-A virus in Klus strains showed poor hybridization to known L-A probes, suggesting substantial differences in their sequences. Here we report the characterization of this new L-A variant named L-A-lus. At the nucleotide level, L-A and L-A-lus showed only 73% identity, a value that increases to 86% in the amino acid composition of Gag or Gag-Pol. Two regions in their genomes, however, the frameshifting region between Gag and Pol and the encapsidation signal, are 100% identical, implying the importance of these two cis signals in the virus life cycle. L-A-lus shows higher resistance than L-A to growth at high temperature or to in vivo expression of endo- or exonucleases. L-A-lus also has wider helper activity, being able to maintain not only Mlus but also M1 or a satellite RNA of L-A called X. In a screening of 31 wine strains, we found that none of them had L-A; they carried either L-A-lus or a different L-A variant in K2 strains. Our data show that distinct M killer viruses are specifically associated with L-As with different nucleotide compositions, suggesting coevolution.
Collapse
|
156
|
Raman V, Simon SA, Romag A, Demirci F, Mathioni SM, Zhai J, Meyers BC, Donofrio NM. Physiological stressors and invasive plant infections alter the small RNA transcriptome of the rice blast fungus, Magnaporthe oryzae. BMC Genomics 2013; 14:326. [PMID: 23663523 PMCID: PMC3658920 DOI: 10.1186/1471-2164-14-326] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 05/02/2013] [Indexed: 11/21/2022] Open
Abstract
Background The rice blast fungus, Magnaporthe oryzae is a destructive pathogen of rice and other related crops, causing significant yield losses worldwide. Endogenous small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs) are critical components of gene regulation in many eukaryotic organisms. Recently several new species of sRNAs have been identified in fungi. This fact along with the availability of genome sequence makes M. oryzae a compelling target for sRNA profiling. We have examined sRNA species and their biosynthetic genes in M. oryzae, and the degree to which these elements regulate fungal stress responses. To this end, we have characterized sRNAs under different physiological stress conditions, which had not yet been examined in this fungus. Results The resulting libraries are composed of more than 37 million total genome matched reads mapping to intergenic regions, coding sequences, retrotransposons, inverted, tandem, and other repeated regions of the genome with more than half of the small RNAs arising from intergenic regions. The 24 nucleotide (nt) size class of sRNAs was predominant. A comparison to transcriptional data of M. oryzae undergoing the same physiological stresses indicates that sRNAs play a role in transcriptional regulation for a small subset of genes. Support for this idea comes from generation and characterization of mutants putatively involved in sRNAs biogenesis; our results indicate that the deletion of Dicer-like genes and an RNA-Dependent RNA Polymerase gene increases the transcriptional regulation of this subset of genes, including one involved in virulence. Conclusions Various physiological stressors and in planta conditions alter the small RNA profile of the rice blast fungus. Characterization of sRNA biosynthetic mutants helps to clarify the role of sRNAs in transcriptional control.
Collapse
Affiliation(s)
- Vidhyavathi Raman
- Department of Plant & Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | | | |
Collapse
|
157
|
A novel victorivirus from a phytopathogenic fungus, Rosellinia necatrix, is infectious as particles and targeted by RNA silencing. J Virol 2013; 87:6727-38. [PMID: 23552428 DOI: 10.1128/jvi.00557-13] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A novel victorivirus, termed Rosellinia necatrix victorivirus 1 (RnVV1), was isolated from a plant pathogenic ascomycete, white root rot fungus Rosellinia necatrix, coinfected with a partitivirus. The virus was molecularly and biologically characterized using the natural and experimental hosts (chestnut blight fungus, Cryphonectria parasitica). RnVV1 was shown to have typical molecular victorivirus attributes, including a monopartite double-stranded RNA genome with two open reading frames (ORFs) encoding capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), a UAAUG pentamer presumed to facilitate the coupled termination/reinitiation for translation of the two ORFs, a spherical particle structure ~40 nm in diameter, and moderate levels of CP and RdRp sequence identity (34 to 58%) to those of members of the genus Victorivirus within the family Totiviridae. A reproducible transfection system with purified RnVV1 virions was developed for the two distinct fungal hosts. Transfection assay with purified RnVV1 virions combined with virus elimination by hyphal tipping showed that the effects of RnVV1 on the phenotype of the natural host were negligible. Interestingly, comparison of the RNA silencing-competent (standard strain EP155) and -defective (Δdcl-2) strains of C. parasitica infected with RnVV1 showed that RNA silencing acted against the virus to repress its replication, which was restored by coinfection with hypovirus or transgenic expression of an RNA silencing suppressor, hypovirus p29. Phenotypic changes were observed in the Δdcl-2 strain but not in EP155. This is the first reported study on the host range expansion of a Totiviridae member that is targeted by RNA silencing.
Collapse
|
158
|
Nicolás FE, Torres-Martínez S, Ruiz-Vázquez RM. Loss and retention of RNA interference in fungi and parasites. PLoS Pathog 2013; 9:e1003089. [PMID: 23358725 PMCID: PMC3554617 DOI: 10.1371/journal.ppat.1003089] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Francisco E. Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- Regional Campus of International Excellence “Campus Mare Nostrum”, Murcia, Spain
| | - Santiago Torres-Martínez
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Rosa M. Ruiz-Vázquez
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
- * E-mail:
| |
Collapse
|
159
|
Abstract
Members of the virus family Narnaviridae contain the simplest genomes of any RNA virus, ranging from 2.3 to 3.6 kb and encoding only a single polypeptide that has an RNA-dependent RNA polymerase domain. The family is subdivided into two genera based on subcellular location: members of the genus Narnavirus have been found in the yeast Saccharomyces cerevisiae and in the oomycete Phytophthora infestans and are confined to the cytosol, while members of the genus Mitovirus have been found only in filamentous fungi and are found in mitochondria. None identified thus far encodes a capsid protein; like several other RNA viruses of lower eukaryotes, their genomes are confined within lipid vesicles. As more family members are discovered, their importance as genetic elements is becoming evident. The unique association of the genus Mitovirus with mitochondria renders them potentially valuable tools to study biology of lower eukaryotes.
Collapse
|
160
|
Identification of small RNA pathway genes using patterns of phylogenetic conservation and divergence. Nature 2012; 493:694-8. [PMID: 23364702 PMCID: PMC3762460 DOI: 10.1038/nature11779] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 11/08/2012] [Indexed: 11/12/2022]
Abstract
Genetic and biochemical analyses of RNA interference (RNAi) and microRNA (miRNA) pathways have revealed proteins such as Argonaute/PIWI and Dicer that process and present small RNAs to their targets. Well validated small RNA pathway cofactors, such as the Argonaute/PIWI proteins show distinctive patterns of conservation or divergence in particular animal, plant, fungal, and protist species. We compared 86 divergent eukaryotic genome sequences to discern sets of proteins that show similar phylogenetic profiles with known small RNA cofactors. A large set of additional candidate small RNA cofactors have emerged from functional genomic screens for defects in miRNA- or siRNA-mediated repression in C. elegans and D. melanogaster1,2 and from proteomic analyses of proteins co-purifying with validated small RNA pathway proteins3,4. The phylogenetic profiles of many of these candidate small RNA pathway proteins are similar to those of known small RNA cofactor proteins. We used a Bayesian approach to integrate the phylogenetic profile analysis with predictions from diverse transcriptional coregulation and proteome interaction datasets to assign a probability for each protein for a role in a small RNA pathway. Testing high-confidence candidates from this analysis for defects in RNAi silencing, we found that about half of the predicted small RNA cofactors are required for RNAi silencing. Many of the newly identified small RNA pathway proteins are orthologues of proteins implicated in RNA splicing. In support of a deep connection between the mechanism of RNA splicing and small RNA-mediated gene silencing, the presence of the Argonaute proteins and other small RNA components in the many species analysed strongly correlates with the number of introns in that species.
Collapse
|
161
|
Abstract
MicroRNAs (miRNAs) are small RNAs that play important roles in the regulation of gene expression. First described as posttranscriptional gene regulators in eukaryotic hosts, virus-encoded miRNAs were later uncovered. It is now apparent that diverse virus families, most with DNA genomes, but at least some with RNA genomes, encode miRNAs. While deciphering the functions of viral miRNAs has lagged behind their discovery, recent functional studies are bringing into focus these roles. Some of the best characterized viral miRNA functions include subtle roles in prolonging the longevity of infected cells, evading the immune response, and regulating the switch to lytic infection. Notably, all of these functions are particularly important during persistent infections. Furthermore, an emerging view of viral miRNAs suggests two distinct groups exist. In the first group, viral miRNAs mimic host miRNAs and take advantage of conserved networks of host miRNA target sites. In the larger second group, viral miRNAs do not share common target sites conserved for host miRNAs, and it remains unclear what fraction of these targeted transcripts are beneficial to the virus. Recent insights from multiple virus families have revealed new ways of interacting with the host miRNA machinery including noncanonical miRNA biogenesis and new mechanisms of posttranscriptional cis gene regulation. Exciting challenges await the field, including determining the most relevant miRNA targets and parlaying our current understanding of viral miRNAs into new therapeutic strategies. To accomplish these goals and to better grasp miRNA function, new in vivo models that recapitulate persistent infections associated with viral pathogens are required.
Collapse
Affiliation(s)
- Rodney P. Kincaid
- The University of Texas at Austin, Molecular Genetics & Microbiology, Austin, Texas, United States of America
| | - Christopher S. Sullivan
- The University of Texas at Austin, Molecular Genetics & Microbiology, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
162
|
Abstract
Cellular organisms have evolved related pathways for the biogenesis and function of small interfering RNAs (siRNAs), microRNAs and PIWI-interacting RNAs (piRNAs). These distinct classes of small RNAs guide specific gene silencing at both transcriptional and posttranscriptional levels by serving as specificity determinants. Small RNAs of virus and host origins have been found to modulate virus–host interactions by RNA interference (RNAi), leading to antiviral immunity or viral pathogenesis. Deep sequencing-based profiling of virus-derived small RNAs as products of host immune recognition not only allowed us to gain insight into the expansion and functional specialization of host factors involved in the antiviral immunity but also made it possible to identify new viruses in a culture-independent manner. Here we review recent developments on the characterization and function of virus-derived siRNAs and piRNAs in eukaryotic hosts.
Collapse
Affiliation(s)
- Shou-Wei Ding
- Department of Plant Pathology & Microbiology, and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, United States.
| | | |
Collapse
|
163
|
Prevalence and diversity of viruses in the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 2012; 78:8523-30. [PMID: 23001673 DOI: 10.1128/aem.01954-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viruses have been discovered in numerous fungal species, but unlike most known animal or plant viruses, they are rarely associated with deleterious effects on their hosts. The knowledge about viruses among entomopathogenic fungi is very limited, although their existence is suspected because of the presence of virus-like double-stranded RNA (dsRNA) in isolates of several species. Beauveria bassiana is one of the most-studied species of entomopathogenic fungi; it has a cosmopolitan distribution and is used as a biological control agent against invertebrates in agriculture. We analyzed a collection of 73 isolates obtained at different locations and from different habitats in Spain and Portugal, searching for dsRNA elements indicative of viral infections. The results revealed that the prevalence of viral infections is high; 54.8% of the isolates contained dsRNA elements with viral characteristics. The dsRNA electropherotypes of infected isolates indicated that virus diversity was high in the collection analyzed and that mixed virus infections occurred in fungal isolates. However, a hybridization experiment indicated that dsRNA bands that are similar in size do not always have similar sequences. Particular virus species or dsRNA profiles were not associated with locations or types of habitats, probably because of the ubiquity and efficient dispersion of this fungus as an airborne species. The sequence of one of the most common dsRNA elements corresponded to the 5.2-kbp genome of a previously undescribed member of the Totiviridae family, termed B. bassiana RNA virus 1 (BbRV1).
Collapse
|
164
|
Nookaew I, Papini M, Pornputtapong N, Scalcinati G, Fagerberg L, Uhlén M, Nielsen J. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res 2012; 40:10084-97. [PMID: 22965124 PMCID: PMC3488244 DOI: 10.1093/nar/gks804] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RNA-seq, has recently become an attractive method of choice in the studies of transcriptomes, promising several advantages compared with microarrays. In this study, we sought to assess the contribution of the different analytical steps involved in the analysis of RNA-seq data generated with the Illumina platform, and to perform a cross-platform comparison based on the results obtained through Affymetrix microarray. As a case study for our work we, used the Saccharomyces cerevisiae strain CEN.PK 113-7D, grown under two different conditions (batch and chemostat). Here, we asses the influence of genetic variation on the estimation of gene expression level using three different aligners for read-mapping (Gsnap, Stampy and TopHat) on S288c genome, the capabilities of five different statistical methods to detect differential gene expression (baySeq, Cuffdiff, DESeq, edgeR and NOISeq) and we explored the consistency between RNA-seq analysis using reference genome and de novo assembly approach. High reproducibility among biological replicates (correlation ≥0.99) and high consistency between the two platforms for analysis of gene expression levels (correlation ≥0.91) are reported. The results from differential gene expression identification derived from the different statistical methods, as well as their integrated analysis results based on gene ontology annotation are in good agreement. Overall, our study provides a useful and comprehensive comparison between the two platforms (RNA-seq and microrrays) for gene expression analysis and addresses the contribution of the different steps involved in the analysis of RNA-seq data.
Collapse
Affiliation(s)
- Intawat Nookaew
- Novo Nordisk Foundation Center for Biosustainability, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
165
|
Bernstein DA, Vyas VK, Fink GR. Genes come and go: the evolutionarily plastic path of budding yeast RNase III enzymes. RNA Biol 2012; 9:1123-8. [PMID: 23018782 PMCID: PMC3579876 DOI: 10.4161/rna.21360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Our recent finding that the Candida albicans RNase III enzyme CaDcr1 is an unusual, multifunctional RNase III coupled with data on the RNase III enzymes from other fungal species prompted us to seek a model that explained the evolution of RNase III’s in modern budding yeast species. CaDcr1 has both dicer function (generates small RNA molecules from dsRNA precursors) and Rnt1 function, (catalyzes the maturation of 35S rRNA and U4 snRNA). Some budding yeast species have two distinct genes that encode these functions, a Dicer and RNT1, whereas others have only an RNT1 and no Dicer. As none of the budding yeast species has the canonical Dicer found in many other fungal lineages and most eukaryotes, the extant species must have evolved from an ancestor that lost the canonical Dicer, and evolved a novel Dicer from the essential RNT1 gene. No single, simple model could explain the evolution of RNase III enzymes from this ancestor because existing sequence data are consistent with two equally plausible models. The models share an architecture for RNase III evolution that involves gene duplication, loss, subfunctionalization, and neofunctionalization. This commentary explains our reasoning, and offers the prospect that further genomic data could further resolve the dilemma surrounding the budding yeast RNase III’s evolution.
Collapse
Affiliation(s)
- Douglas A Bernstein
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA, USA
| | | | | |
Collapse
|
166
|
Hartley MA, Ronet C, Zangger H, Beverley SM, Fasel N. Leishmania RNA virus: when the host pays the toll. Front Cell Infect Microbiol 2012; 2:99. [PMID: 22919688 PMCID: PMC3417650 DOI: 10.3389/fcimb.2012.00099] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/27/2012] [Indexed: 12/21/2022] Open
Abstract
The presence of an RNA virus in a South American subgenus of the Leishmania parasite, L. (Viannia), was detected several decades ago but its role in leishmanial virulence and metastasis was only recently described. In Leishmania guyanensis, the nucleic acid of Leishmania RNA virus (LRV1) acts as a potent innate immunogen, eliciting a hyper-inflammatory immune response through toll-like receptor 3 (TLR3). The resultant inflammatory cascade has been shown to increase disease severity, parasite persistence, and perhaps even resistance to anti-leishmanial drugs. Curiously, LRVs were found mostly in clinical isolates prone to infectious metastasis in both their human source and experimental animal model, suggesting an association between the viral hyperpathogen and metastatic complications such as mucocutaneous leishmaniasis (MCL). MCL presents as chronic secondary lesions in the mucosa of the mouth and nose, debilitatingly inflamed and notoriously refractory to treatment. Immunologically, this outcome has many of the same hallmarks associated with the reaction to LRV: production of type 1 interferons, bias toward a chronic Th1 inflammatory state and an impaired ability of host cells to eliminate parasites through oxidative stress. More intriguing, is that the risk of developing MCL is found almost exclusively in infections of the L. (Viannia) subtype, further indication that leishmanial metastasis is caused, at least in part, by a parasitic component. LRV present in this subgenus may contribute to the destructive inflammation of metastatic disease either by acting in concert with other intrinsic "metastatic factors" or by independently preying on host TLR3 hypersensitivity. Because LRV amplifies parasite virulence, its presence may provide a unique target for diagnostic and clinical intervention of metastatic leishmaniasis. Taking examples from other members of the Totiviridae virus family, this paper reviews the benefits and costs of endosymbiosis, specifically for the maintenance of LRV infection in Leishmania parasites, which is often at the expense of its human host.
Collapse
Affiliation(s)
- Mary-Anne Hartley
- Department of Biochemistry, University of Lausanne Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
167
|
Cleary IA, Lazzell AL, Monteagudo C, Thomas DP, Saville SP. BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence. Mol Microbiol 2012; 85:557-73. [PMID: 22757963 DOI: 10.1111/j.1365-2958.2012.08127.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the opportunistic fungal pathogen Candida albicans both cellular morphology and the capacity to cause disease are regulated by the transcriptional repressor Nrg1p. One of the genes repressed by Nrg1p is BRG1, which encodes a putative GATA family transcription factor. Deletion of both copies of this gene prevents hypha formation. We discovered that BRG1 overexpression is sufficient to overcome Nrg1p-mediated repression and drive the morphogenetic shift from yeast to hyphae even in the absence of environmental stimuli. We further observed that expression of BRG1 influences the stability of the NRG1 transcript, thus controlling filamentation through a feedback loop. Analysis of this phenomenon revealed that BRG1 expression is required for the induction of an antisense NRG1 transcript. This is the first demonstration of a role for mRNA stability in regulating the key C. albicans virulence trait: the ability to form hyphae.
Collapse
Affiliation(s)
- Ian A Cleary
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|
168
|
Laurie JD, Ali S, Linning R, Mannhaupt G, Wong P, Güldener U, Münsterkötter M, Moore R, Kahmann R, Bakkeren G, Schirawski J. Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. THE PLANT CELL 2012; 24:1733-45. [PMID: 22623492 PMCID: PMC3442566 DOI: 10.1105/tpc.112.097261] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/13/2012] [Accepted: 04/25/2012] [Indexed: 05/19/2023]
Abstract
Ustilago hordei is a biotrophic parasite of barley (Hordeum vulgare). After seedling infection, the fungus persists in the plant until head emergence when fungal spores develop and are released from sori formed at kernel positions. The 26.1-Mb U. hordei genome contains 7113 protein encoding genes with high synteny to the smaller genomes of the related, maize-infecting smut fungi Ustilago maydis and Sporisorium reilianum but has a larger repeat content that affected genome evolution at important loci, including mating-type and effector loci. The U. hordei genome encodes components involved in RNA interference and heterochromatin formation, normally involved in genome defense, that are lacking in the U. maydis genome due to clean excision events. These excision events were possibly a result of former presence of repetitive DNA and of an efficient homologous recombination system in U. maydis. We found evidence of repeat-induced point mutations in the genome of U. hordei, indicating that smut fungi use different strategies to counteract the deleterious effects of repetitive DNA. The complement of U. hordei effector genes is comparable to the other two smuts but reveals differences in family expansion and clustering. The availability of the genome sequence will facilitate the identification of genes responsible for virulence and evolution of smut fungi on their respective hosts.
Collapse
Affiliation(s)
- John D. Laurie
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Shawkat Ali
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Rob Linning
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - Gertrud Mannhaupt
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology, 85764 Neuherberg, Germany
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, 35043 Marburg, Germany
| | - Philip Wong
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology, 85764 Neuherberg, Germany
| | - Ulrich Güldener
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology, 85764 Neuherberg, Germany
| | - Martin Münsterkötter
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology, 85764 Neuherberg, Germany
| | - Richard Moore
- Michael Smith Genome Sciences Centre, Vancouver, British Columbia V5Z 4E6, Canada
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, 35043 Marburg, Germany
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, British Columbia V0H 1Z0, Canada
- Address correspondence to
| | - Jan Schirawski
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, 35043 Marburg, Germany
- Rheinisch-Westfälische Technische Hochschule Aachen University, Institute of Applied Microbiology, 52074 Aachen, Germany
| |
Collapse
|
169
|
Blount BA, Weenink T, Ellis T. Construction of synthetic regulatory networks in yeast. FEBS Lett 2012; 586:2112-21. [DOI: 10.1016/j.febslet.2012.01.053] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 01/25/2012] [Accepted: 01/26/2012] [Indexed: 11/30/2022]
|
170
|
Collins LJ. Characterizing ncRNAs in Human Pathogenic Protists Using High-Throughput Sequencing Technology. Front Genet 2011; 2:96. [PMID: 22303390 PMCID: PMC3268645 DOI: 10.3389/fgene.2011.00096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 12/07/2011] [Indexed: 11/16/2022] Open
Abstract
ncRNAs are key genes in many human diseases including cancer and viral infection, as well as providing critical functions in pathogenic organisms such as fungi, bacteria, viruses, and protists. Until now the identification and characterization of ncRNAs associated with disease has been slow or inaccurate requiring many years of testing to understand complicated RNA and protein gene relationships. High-throughput sequencing now offers the opportunity to characterize miRNAs, siRNAs, small nucleolar RNAs (snoRNAs), and long ncRNAs on a genomic scale, making it faster and easier to clarify how these ncRNAs contribute to the disease state. However, this technology is still relatively new, and ncRNA discovery is not an application of high priority for streamlined bioinformatics. Here we summarize background concepts and practical approaches for ncRNA analysis using high-throughput sequencing, and how it relates to understanding human disease. As a case study, we focus on the parasitic protists Giardia lamblia and Trichomonas vaginalis, where large evolutionary distance has meant difficulties in comparing ncRNAs with those from model eukaryotes. A combination of biological, computational, and sequencing approaches has enabled easier classification of ncRNA classes such as snoRNAs, but has also aided the identification of novel classes. It is hoped that a higher level of understanding of ncRNA expression and interaction may aid in the development of less harsh treatment for protist-based diseases.
Collapse
Affiliation(s)
- Lesley Joan Collins
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| |
Collapse
|
171
|
Candida albicans Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA maturation. Proc Natl Acad Sci U S A 2011; 109:523-8. [PMID: 22173636 DOI: 10.1073/pnas.1118859109] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The generation of mature functional RNAs from nascent transcripts requires the precise and coordinated action of numerous RNAs and proteins. One such protein family, the ribonuclease III (RNase III) endonucleases, includes Rnt1, which functions in fungal ribosome and spliceosome biogenesis, and Dicer, which generates the siRNAs of the RNAi pathway. The recent discovery of small RNAs in Candida albicans led us to investigate the function of C. albicans Dicer (CaDcr1). CaDcr1 is capable of generating siRNAs in vitro and is required for siRNA generation in vivo. In addition, CaDCR1 complements a Dicer knockout in Saccharomyces castellii, restoring RNAi-mediated gene repression. Unexpectedly, deletion of the C. albicans CaDCR1 results in a severe slow-growth phenotype, whereas deletion of another core component of the RNAi pathway (CaAGO1) has little effect on growth, suggesting that CaDCR1 may have an essential function in addition to producing siRNAs. Indeed CaDcr1, the sole functional RNase III enzyme in C. albicans, has additional functions: it is required for cleavage of the 3' external transcribed spacer from unprocessed pre-rRNA and for processing the 3' tail of snRNA U4. Our results suggest two models whereby the RNase III enzymes of a fungal ancestor, containing both a canonical Dicer and Rnt1, evolved through a series of gene-duplication and gene-loss events to generate the variety of RNase III enzymes found in modern-day budding yeasts.
Collapse
|
172
|
Killer sought in case of missing RNA interference. Nat Rev Microbiol 2011. [DOI: 10.1038/nrmicro2681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|