151
|
Single-molecule resolution of protein structure and interfacial dynamics on biomaterial surfaces. Proc Natl Acad Sci U S A 2013; 110:19396-401. [PMID: 24235137 DOI: 10.1073/pnas.1311761110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A method was developed to monitor dynamic changes in protein structure and interfacial behavior on surfaces by single-molecule Förster resonance energy transfer. This method entails the incorporation of unnatural amino acids to site-specifically label proteins with single-molecule Förster resonance energy transfer probes for high-throughput dynamic fluorescence tracking microscopy on surfaces. Structural changes in the enzyme organophosphorus hydrolase (OPH) were monitored upon adsorption to fused silica (FS) surfaces in the presence of BSA on a molecule-by-molecule basis. Analysis of >30,000 individual trajectories enabled the observation of heterogeneities in the kinetics of surface-induced OPH unfolding with unprecedented resolution. In particular, two distinct pathways were observed: a majority population (∼ 85%) unfolded with a characteristic time scale of 0.10 s, and the remainder unfolded more slowly with a time scale of 0.7 s. Importantly, even after unfolding, OPH readily desorbed from FS surfaces, challenging the common notion that surface-induced unfolding leads to irreversible protein binding. This suggests that protein fouling of surfaces is a highly dynamic process because of subtle differences in the adsorption/desorption rates of folded and unfolded species. Moreover, such observations imply that surfaces may act as a source of unfolded (i.e., aggregation-prone) protein back into solution. Continuing study of other proteins and surfaces will examine whether these conclusions are general or specific to OPH in contact with FS. Ultimately, this method, which is widely applicable to virtually any protein, provides the framework to develop surfaces and surface modifications with improved biocompatibility.
Collapse
|
152
|
Tomar SK, Artsimovitch I. NusG-Spt5 proteins-Universal tools for transcription modification and communication. Chem Rev 2013; 113:8604-19. [PMID: 23638618 PMCID: PMC4259564 DOI: 10.1021/cr400064k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sushil Kumar Tomar
- Department of Microbiology and The Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
153
|
Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of σ70 domain 1.1. Proc Natl Acad Sci U S A 2013; 110:19772-7. [PMID: 24218560 DOI: 10.1073/pnas.1314576110] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bacteriophage T7 encodes an essential inhibitor of the Escherichia coli host RNA polymerase (RNAP), the product of gene 2 (Gp2). We determined a series of X-ray crystal structures of E. coli RNAP holoenzyme with or without Gp2. The results define the structure and location of the RNAP σ(70) subunit domain 1.1(σ(1.1)(70)) inside the RNAP active site channel, where it must be displaced by the DNA upon formation of the open promoter complex. The structures and associated data, combined with previous results, allow for a complete delineation of the mechanism for Gp2 inhibition of E. coli RNAP. In the primary inhibition mechanism, Gp2 forms a protein-protein interaction with σ(1.1)(70), preventing the normal egress of σ(1.1)(70) from the RNAP active site channel. Gp2 thus misappropriates a domain of the RNAP holoenzyme, σ(1.1)(70), to inhibit the function of the enzyme.
Collapse
|
154
|
Murakami K, Elmlund H, Kalisman N, Bushnell DA, Adams CM, Azubel M, Elmlund D, Levi-Kalisman Y, Liu X, Levitt M, Kornberg RD, Gibbons BJ. Architecture of an RNA polymerase II transcription pre-initiation complex. Science 2013; 342:1238724. [PMID: 24072820 PMCID: PMC4039082 DOI: 10.1126/science.1238724] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The protein density and arrangement of subunits of a complete, 32-protein, RNA polymerase II (pol II) transcription pre-initiation complex (PIC) were determined by means of cryogenic electron microscopy and a combination of chemical cross-linking and mass spectrometry. The PIC showed a marked division in two parts, one containing all the general transcription factors (GTFs) and the other pol II. Promoter DNA was associated only with the GTFs, suspended above the pol II cleft and not in contact with pol II. This structural principle of the PIC underlies its conversion to a transcriptionally active state; the PIC is poised for the formation of a transcription bubble and descent of the DNA into the pol II cleft.
Collapse
Affiliation(s)
- Kenji Murakami
- Department of Structural Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Hans Elmlund
- Department of Structural Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Nir Kalisman
- Department of Structural Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - David A. Bushnell
- Department of Structural Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Christopher M. Adams
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, U.S.A
| | - Maia Azubel
- Department of Structural Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Dominika Elmlund
- Department of Structural Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Yael Levi-Kalisman
- Department of Structural Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Xin Liu
- Department of Structural Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Michael Levitt
- Department of Structural Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Roger D. Kornberg
- Department of Structural Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Brian J. Gibbons
- Department of Structural Biology, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
155
|
Grünberg S, Hahn S. Structural insights into transcription initiation by RNA polymerase II. Trends Biochem Sci 2013; 38:603-11. [PMID: 24120742 DOI: 10.1016/j.tibs.2013.09.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 01/10/2023]
Abstract
Transcriptional regulation is one of the most important steps in control of cell identity, growth, differentiation, and development. Many signaling pathways controlling these processes ultimately target the core transcription machinery that, for protein coding genes, consists of RNA polymerase II (Pol II) and the general transcription factors (GTFs). New studies on the structure and mechanism of the core assembly and how it interfaces with promoter DNA and coactivator complexes have given tremendous insight into early steps in the initiation process, genome-wide binding, and mechanisms conserved for all nuclear and archaeal Pols. Here, we review recent developments in dissecting the architecture of the Pol II core machinery with a focus on early and regulated steps in transcription initiation.
Collapse
Affiliation(s)
- Sebastian Grünberg
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, PO Box 19024, Mailstop A1-162, Seattle, WA 98109, USA
| | | |
Collapse
|
156
|
Affiliation(s)
- Jens Michaelis
- Biophysics
Institute, Faculty of Natural Sciences, Ulm University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
- Center
for Integrated Protein Science Munich (CIPSM), Department
of Chemistry and Biochemistry, Munich University, Butenandtstrasse 5-13, 81377 München, Germany
| | - Barbara Treutlein
- Department
of Bioengineering, Stanford University, James H. Clark Center, E-300, 318
Campus Drive, Stanford, California 94305-5432, United States
| |
Collapse
|
157
|
Affiliation(s)
- Finn Werner
- RNAP Laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London , Darwin Building, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
158
|
Decker KB, Hinton DM. Transcription Regulation at the Core: Similarities Among Bacterial, Archaeal, and Eukaryotic RNA Polymerases. Annu Rev Microbiol 2013; 67:113-39. [DOI: 10.1146/annurev-micro-092412-155756] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kimberly B. Decker
- Unit on Microbial Pathogenesis, Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
159
|
Abstract
Transcription initiation is a key event in the regulation of gene expression. RNA polymerase (RNAP), the central enzyme of transcription, is able to efficiently locate promoters in the genome, carry out promoter opening, and initiate RNA synthesis. All the substeps of transcription initiation are subject to complex cellular regulation. Understanding the molecular details of each step in the promoter-opening pathway is essential for a complete mechanistic and quantitative picture of gene expression. In this minireview, primarily using bacterial RNAP as an example, I briefly summarize some of the key recent advances in our understanding of the mechanisms of promoter search and promoter opening.
Collapse
Affiliation(s)
- Andrey Feklistov
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York 10065, USA.
| |
Collapse
|
160
|
Nayak D, Voss M, Windgassen T, Mooney RA, Landick R. Cys-pair reporters detect a constrained trigger loop in a paused RNA polymerase. Mol Cell 2013; 50:882-93. [PMID: 23769674 DOI: 10.1016/j.molcel.2013.05.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/10/2013] [Accepted: 05/07/2013] [Indexed: 01/22/2023]
Abstract
Transcriptional pausing, which regulates transcript elongation in both prokaryotes and eukaryotes, is thought to involve formation of alternative RNA polymerase conformations in which nucleotide addition is inhibited in part by restriction of trigger loop (TL) folding. The polymorphous TL must convert from a random coil to a helical hairpin that contacts the nucleotide triphosphate (NTP) substrate to allow rapid nucleotide addition. Understanding the distribution of TL conformations in different enzyme states is made difficult by the TL's small size and sensitive energetics. Here, we report a Cys-pair reporter strategy to elucidate the relative occupancies of different TL conformations in E. coli RNA polymerase based on the ability of Cys residues engineered into the TL and surrounding regions to form disulfide bonds. Our results indicate that a paused complex stabilized by a nascent RNA hairpin favors nonproductive TL conformations that persist after NTP binding but can be reversed by the elongation factor RfaH.
Collapse
Affiliation(s)
- Dhananjaya Nayak
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
161
|
Ross W, Vrentas CE, Sanchez-Vazquez P, Gaal T, Gourse RL. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation. Mol Cell 2013; 50:420-9. [PMID: 23623682 DOI: 10.1016/j.molcel.2013.03.021] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 02/17/2013] [Accepted: 03/19/2013] [Indexed: 10/26/2022]
Abstract
The global regulatory nucleotide ppGpp ("magic spot") regulates transcription from a large subset of Escherichia coli promoters, illustrating how small molecules can control gene expression promoter-specifically by interacting with RNA polymerase (RNAP) without binding to DNA. However, ppGpp's target site on RNAP, and therefore its mechanism of action, has remained unclear. We report here a binding site for ppGpp on E. coli RNAP, identified by crosslinking, protease mapping, and analysis of mutant RNAPs that fail to respond to ppGpp. A strain with a mutant ppGpp binding site displays properties characteristic of cells defective for ppGpp synthesis. The binding site is at an interface of two RNAP subunits, ω and β', and its position suggests an allosteric mechanism of action involving restriction of motion between two mobile RNAP modules. Identification of the binding site allows prediction of bacterial species in which ppGpp exerts its effects by targeting RNAP.
Collapse
Affiliation(s)
- Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
162
|
Wiesler SC, Weinzierl ROJ, Buck M. An aromatic residue switch in enhancer-dependent bacterial RNA polymerase controls transcription intermediate complex activity. Nucleic Acids Res 2013; 41:5874-86. [PMID: 23609536 PMCID: PMC3675486 DOI: 10.1093/nar/gkt271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The formation of the open promoter complex (RPo) in which the melted DNA containing the transcription start site is located at the RNA polymerase (RNAP) catalytic centre is an obligatory step in the transcription of DNA into RNA catalyzed by RNAP. In the RPo, an extensive network of interactions is established between DNA, RNAP and the σ-factor and the formation of functional RPo occurs via a series of transcriptional intermediates (collectively 'RPi'). A single tryptophan is ideally positioned to directly engage with the flipped out base of the non-template strand at the +1 site. Evidence suggests that this tryptophan (i) is involved in either forward translocation or DNA scrunching and (ii) in σ(54)-regulated promoters limits the transcription activity of at least one intermediate complex (RPi) before the formation of a fully functional RPo. Limiting RPi activity may be important in preventing the premature synthesis of abortive transcripts, suggesting its involvement in a general mechanism driving the RPi to RPo transition for transcription initiation.
Collapse
Affiliation(s)
- Simone C Wiesler
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | | | | |
Collapse
|
163
|
Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies. Nat Rev Microbiol 2013; 11:303-15. [DOI: 10.1038/nrmicro2994] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
164
|
Sheppard C, James E, Barton G, Matthews S, Severinov K, Wigneshweraraj S. A non-bacterial transcription factor inhibits bacterial transcription by a multipronged mechanism. RNA Biol 2013; 10:495-501. [PMID: 23558648 DOI: 10.4161/rna.24283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The process of transcription initiation is the major target for regulation of gene expression in bacteria and is performed by a multi-subunit RNA polymerase enzyme (RNAp). A complex network of regulatory elements controls the activity of the RNAp to fine-tune transcriptional output. Thus, RNAp is a nexus for controlling bacterial gene expression at the transcription level. Many bacteriophages, viruses that infect bacteria, encode transcription factors that specifically target and modulate the activity of the host RNAp and, thereby, facilitate the acquisition of the host bacteria by the phage. Here, we describe the modus operandi of a T7 bacteriophage-encoded small protein called Gp2 and define Gp2 as a non-bacterial regulator of bacterial transcription.
Collapse
Affiliation(s)
- Carol Sheppard
- MRC Centre for Molecular Bacteriology and Infection, Faculty of Medicine, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
165
|
He Y, Fang J, Taatjes DJ, Nogales E. Structural visualization of key steps in human transcription initiation. Nature 2013; 495:481-6. [PMID: 23446344 PMCID: PMC3612373 DOI: 10.1038/nature11991] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/07/2013] [Indexed: 01/22/2023]
Abstract
Eukaryotic transcription initiation requires the assembly of general transcription factors into a pre-initiation complex that ensures the accurate loading of RNA polymerase II (Pol II) at the transcription start site. The molecular mechanism and function of this assembly have remained elusive due to lack of structural information. Here we have used an in vitro reconstituted system to study the stepwise assembly of human TBP, TFIIA, TFIIB, Pol II, TFIIF, TFIIE and TFIIH onto promoter DNA using cryo-electron microscopy. Our structural analyses provide pseudo-atomic models at various stages of transcription initiation that illuminate critical molecular interactions, including how TFIIF engages Pol II and promoter DNA to stabilize both the closed pre-initiation complex and the open-promoter complex, and to regulate start--initiation complexes, combined with the localization of the TFIIH helicases XPD and XPB, support a DNA translocation model of XPB and explain its essential role in promoter opening.
Collapse
Affiliation(s)
- Yuan He
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jie Fang
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
| | - Dylan J. Taatjes
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303
| | - Eva Nogales
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,Howard Hughes Medical Institute, University of California, Berkeley, CA 94720,QB3 Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720,Correspondence:
| |
Collapse
|
166
|
Ingargiola A, Panzeri F, Sarkosh N, Gulinatti A, Rech I, Ghioni M, Weiss S, Michalet X. 8-spot smFRET analysis using two 8-pixel SPAD arrays. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2013; 8590. [PMID: 24386541 DOI: 10.1117/12.2003704] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Single-molecule Förster resonance energy transfer (smFRET) techniques are now widely used to address outstanding problems in biology and biophysics. In order to study freely diffusing molecules, current approaches consist in exciting a low concentration (<100 pM) sample with a single confocal spot using one or more lasers and detecting the induced single-molecule fluorescence in one or more spectrally- and/or polarization-distinct channels using single-pixel Single-Photon Avalanche Diodes (SPADs). A large enough number of single-molecule bursts must be accumulated in order to compute FRET efficiencies with sufficient statistics. As a result, the minimum timescale of observable phenomena is set by the minimum acquisition time needed for accurate measurements, typically a few minutes or more, limiting this approach mostly to equilibrium studies. Increasing smFRET analysis throughput would allow studying dynamics with shorter timescales. We recently demonstrated a new multi-spot excitation approach, employing a novel multi-pixel SPAD array, using a simplified dual-view setup in which a single 8-pixel SPAD array was used to collect FRET data from 4 independent spots. In this work we extend our results to 8 spots and use two 8-SPAD arrays to collect donor and acceptor photons and demonstrate the capabilities of this system by studying a series of doubly labeled dsDNA samples with different donor-acceptor distances ranging from low to high FRET efficiencies. Our results show that it is possible to enhance the throughput of smFRET measurements in solution by almost one order of magnitude, opening the way for studies of single-molecule dynamics with fast timescale once larger SPAD arrays become available.
Collapse
Affiliation(s)
| | - Francesco Panzeri
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Niusha Sarkosh
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA, USA 90095
| | - Angelo Gulinatti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Ivan Rech
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Massimo Ghioni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Shimon Weiss
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA, USA 90095
| | - Xavier Michalet
- Department of Chemistry & Biochemistry, UCLA, Los Angeles, CA, USA 90095
| |
Collapse
|
167
|
Murakami KS. X-ray crystal structure of Escherichia coli RNA polymerase σ70 holoenzyme. J Biol Chem 2013; 288:9126-34. [PMID: 23389035 DOI: 10.1074/jbc.m112.430900] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli RNA polymerase (RNAP) is the most studied bacterial RNAP and has been used as the model RNAP for screening and evaluating potential RNAP-targeting antibiotics. However, the x-ray crystal structure of E. coli RNAP has been limited to individual domains. Here, I report the x-ray structure of the E. coli RNAP σ(70) holoenzyme, which shows σ region 1.1 (σ1.1) and the α subunit C-terminal domain for the first time in the context of an intact RNAP. σ1.1 is positioned at the RNAP DNA-binding channel and completely blocks DNA entry to the RNAP active site. The structure reveals that σ1.1 contains a basic patch on its surface, which may play an important role in DNA interaction to facilitate open promoter complex formation. The α subunit C-terminal domain is positioned next to σ domain 4 with a fully stretched linker between the N- and C-terminal domains. E. coli RNAP crystals can be prepared from a convenient overexpression system, allowing further structural studies of bacterial RNAP mutants, including functionally deficient and antibiotic-resistant RNAPs.
Collapse
Affiliation(s)
- Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
168
|
Weixlbaumer A, Leon K, Landick R, Darst SA. Structural basis of transcriptional pausing in bacteria. Cell 2013; 152:431-41. [PMID: 23374340 PMCID: PMC3564060 DOI: 10.1016/j.cell.2012.12.020] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/08/2012] [Accepted: 12/13/2012] [Indexed: 11/20/2022]
Abstract
Transcriptional pausing by multisubunit RNA polymerases (RNAPs) is a key mechanism for regulating gene expression in both prokaryotes and eukaryotes and is a prerequisite for transcription termination. Pausing and termination states are thought to arise through a common, elemental pause state that is inhibitory for nucleotide addition. We report three crystal structures of Thermus RNAP elemental paused elongation complexes (ePECs). The structures reveal the same relaxed, open-clamp RNAP conformation in the ePEC that may arise by failure to re-establish DNA contacts during translocation. A kinked bridge-helix sterically blocks the RNAP active site, explaining how this conformation inhibits RNAP catalytic activity. Our results provide a framework for understanding how RNA hairpin formation stabilizes the paused state and how the ePEC intermediate facilitates termination.
Collapse
Affiliation(s)
| | - Katherine Leon
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Robert Landick
- Departments of Biochemistry and Bacteriology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Seth A. Darst
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
169
|
Lennon CW, Ross W, Martin-Tumasz S, Toulokhonov I, Vrentas CE, Rutherford ST, Lee JH, Butcher SE, Gourse RL. Direct interactions between the coiled-coil tip of DksA and the trigger loop of RNA polymerase mediate transcriptional regulation. Genes Dev 2013. [PMID: 23207918 DOI: 10.1101/gad.204693.112] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Escherichia coli DksA is a transcription factor that binds to RNA polymerase (RNAP) without binding to DNA, destabilizing RNAP-promoter interactions, sensitizing RNAP to the global regulator ppGpp, and regulating transcription of several hundred target genes, including those encoding rRNA. Previously, we described promoter sequences and kinetic properties that account for DksA's promoter specificity, but how DksA exerts its effects on RNAP has remained unclear. To better understand DksA's mechanism of action, we incorporated benzoyl-phenylalanine at specific positions in DksA and mapped its cross-links to RNAP, constraining computational docking of the two proteins. The resulting evidence-based model of the DksA-RNAP complex as well as additional genetic and biochemical approaches confirmed that DksA binds to the RNAP secondary channel, defined the orientation of DksA in the channel, and predicted a network of DksA interactions with RNAP that includes the rim helices and the mobile trigger loop (TL) domain. Engineered cysteine substitutions in the TL and DksA coiled-coil tip generated a disulfide bond between them, and the interacting residues were absolutely required for DksA function. We suggest that DksA traps the TL in a conformation that destabilizes promoter complexes, an interaction explaining the requirement for the DksA tip and its effects on transcription.
Collapse
Affiliation(s)
- Christopher W Lennon
- Department of Bacteriology, University of Wisconsin at Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Drennan A, Kraemer M, Capp M, Gries T, Ruff E, Sheppard C, Wigneshweraraj S, Artsimovitch I, Record MT. Key roles of the downstream mobile jaw of Escherichia coli RNA polymerase in transcription initiation. Biochemistry 2012; 51:9447-59. [PMID: 23116321 PMCID: PMC3517728 DOI: 10.1021/bi301260u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Differences in kinetics of transcription initiation by RNA polymerase (RNAP) at different promoters tailor the pattern of gene expression to cellular needs. After initial binding, large conformational changes occur in promoter DNA and RNAP to form initiation-capable complexes. To understand the mechanism and regulation of transcription initiation, the nature and sequence of these conformational changes must be determined. Escherichia coli RNAP uses binding free energy to unwind and separate 13 base pairs of λP(R) promoter DNA to form the unstable open intermediate I(2), which rapidly converts to much more stable open complexes (I(3), RP(o)). Conversion of I(2) to RP(o) involves folding/assembly of several mobile RNAP domains on downstream duplex DNA. Here, we investigate effects of a 42-residue deletion in the mobile β' jaw (ΔJAW) and truncation of promoter DNA beyond +12 (DT+12) on the steps of initiation. We find that in stable ΔJAW open complexes the downstream boundary of hydroxyl radical protection shortens by 5-10 base pairs, as compared to wild-type (WT) complexes. Dissociation kinetics of open complexes formed with ΔJAW RNAP and/or DT+12 DNA resemble those deduced for the structurally uncharacterized intermediate I(3). Overall rate constants (k(a)) for promoter binding and DNA opening by ΔJAW RNAP are much smaller than for WT RNAP. Values of k(a) for WT RNAP with DT+12 and full-length λP(R) are similar, though contributions of binding and isomerization steps differ. Hence, the jaw plays major roles both early and late in RP(o) formation, while downstream DNA functions primarily as the assembly platform after DNA opening.
Collapse
Affiliation(s)
- Amanda Drennan
- Department of Biochemistry, The University of Wisconsin-Madison, Madison, WI 53706
| | - Mark Kraemer
- Department of Biochemistry, The University of Wisconsin-Madison, Madison, WI 53706
| | - Michael Capp
- Department of Biochemistry, The University of Wisconsin-Madison, Madison, WI 53706
| | - Theodore Gries
- Department of Biochemistry, The University of Wisconsin-Madison, Madison, WI 53706
| | - Emily Ruff
- Department of Chemistry, The University of Wisconsin-Madison, Madison, WI 53706
| | - Carol Sheppard
- Department of Microbiology and Centre for Molecular Microbiology and Infection, Imperial College, London, SW7 2AZ
| | - Sivaramesh Wigneshweraraj
- Department of Microbiology and Centre for Molecular Microbiology and Infection, Imperial College, London, SW7 2AZ
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - M. Thomas Record
- Department of Biochemistry, The University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, The University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
171
|
Zhang Y, Feng Y, Chatterjee S, Tuske S, Ho MX, Arnold E, Ebright RH. Structural basis of transcription initiation. Science 2012; 338:1076-80. [PMID: 23086998 DOI: 10.1126/science.1227786] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During transcription initiation, RNA polymerase (RNAP) binds and unwinds promoter DNA to form an RNAP-promoter open complex. We have determined crystal structures at 2.9 and 3.0 Å resolution of functional transcription initiation complexes comprising Thermus thermophilus RNA polymerase, σ(A), and a promoter DNA fragment corresponding to the transcription bubble and downstream double-stranded DNA of the RNAP-promoter open complex. The structures show that σ recognizes the -10 element and discriminator element through interactions that include the unstacking and insertion into pockets of three DNA bases and that RNAP recognizes the -4/+2 region through interactions that include the unstacking and insertion into a pocket of the +2 base. The structures further show that interactions between σ and template-strand single-stranded DNA (ssDNA) preorganize template-strand ssDNA to engage the RNAP active center.
Collapse
Affiliation(s)
- Yu Zhang
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
172
|
Mekler V, Minakhin L, Kuznedelov K, Mukhamedyarov D, Severinov K. RNA polymerase-promoter interactions determining different stability of the Escherichia coli and Thermus aquaticus transcription initiation complexes. Nucleic Acids Res 2012; 40:11352-62. [PMID: 23087380 PMCID: PMC3526302 DOI: 10.1093/nar/gks973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Transcription initiation complexes formed by bacterial RNA polymerases (RNAPs) exhibit dramatic species-specific differences in stability, leading to different strategies of transcription regulation. The molecular basis for this diversity is unclear. Promoter complexes formed by RNAP from Thermus aquaticus (Taq) are considerably less stable than Escherichia coli RNAP promoter complexes, particularly at temperatures below 37°C. Here, we used a fluorometric RNAP molecular beacon assay to discern partial RNAP-promoter interactions. We quantitatively compared the strength of E. coli and Taq RNAPs partial interactions with the −10, −35 and UP promoter elements; the TG motif of the extended −10 element; the discriminator and the downstream duplex promoter segments. We found that compared with Taq RNAP, E. coli RNAP has much higher affinity only to the UP element and the downstream promoter duplex. This result indicates that the difference in stability between E. coli and Taq promoter complexes is mainly determined by the differential strength of core RNAP–DNA contacts. We suggest that the relative weakness of Taq RNAP interactions with DNA downstream of the transcription start point is the major reason of low stability and temperature sensitivity of promoter complexes formed by this enzyme.
Collapse
Affiliation(s)
- Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | | | |
Collapse
|
173
|
A mutation of the RNA polymerase β' subunit (rpoC) confers cephalosporin resistance in Bacillus subtilis. Antimicrob Agents Chemother 2012; 57:56-65. [PMID: 23070162 DOI: 10.1128/aac.01449-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In bacteria, mutations affecting the major catalytic subunits of RNA polymerase (encoded by rpoB and rpoC) emerge in response to a variety of selective pressures. Here we isolated a Bacillus subtilis strain with high-level resistance to cefuroxime (CEF). Whole-genome resequencing revealed only one missense mutation affecting an invariant residue in close proximity to the C-terminal DNA-binding domain of RpoC (G1122D). Genetic reconstruction experiments demonstrate that this substitution is sufficient to confer CEF resistance. The G1122D mutation leads to elevated expression of stress-responsive regulons, including those of extracytoplasmic function (ECF) σ factors (σ(M), σ(W), and σ(X)) and the general stress σ factor (σ(B)). The increased CEF resistance of the rpoC(G1122D) strain is lost in the sigM rpoC(G1122D) double mutant, consistent with a major role for σ(M) in CEF resistance. However, a sigM mutant is very sensitive to CEF, and this sensitivity is still reduced by the G1122D mutation, suggesting that other regulatory effects are also important. Indeed, the ability of the G1122D mutation to increase CEF resistance is further reduced in a triple mutant strain lacking three ECF σ factors (σ(M), σ(W), and σ(X)), which are known from prior studies to control overlapping sets of genes. Collectively, our findings highlight the ability of mutations in RNA polymerase to confer antibiotic resistance by affecting the activity of alternative σ factors that control cell envelope stress-responsive regulons.
Collapse
|
174
|
Shadrin A, Sheppard C, Severinov K, Matthews S, Wigneshweraraj S. Substitutions in the Escherichia coli RNA polymerase inhibitor T7 Gp2 that allow inhibition of transcription when the primary interaction interface between Gp2 and RNA polymerase becomes compromised. MICROBIOLOGY-SGM 2012; 158:2753-2764. [PMID: 22977089 PMCID: PMC3541766 DOI: 10.1099/mic.0.062547-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The Escherichia coli-infecting bacteriophage T7 encodes a 7 kDa protein, called Gp2, which is a potent inhibitor of the host RNA polymerase (RNAp). Gp2 is essential for T7 phage development. The interaction site for Gp2 on the E. coli RNAp is the β′ jaw domain, which is part of the DNA binding channel. The binding of Gp2 to the β′ jaw antagonizes several steps associated with interactions between the RNAp and promoter DNA, leading to inhibition of transcription at the open promoter complex formation step. In the structure of the complex formed between Gp2 and a fragment of the β′ jaw, amino acid residues in the β3 strand of Gp2 contribute to the primary interaction interface with the β′ jaw. The 7009 E. coli strain is resistant to T7 because it carries a charge reversal point mutation in the β′ jaw that prevents Gp2 binding. However, a T7 phage encoding a mutant form of Gp2, called Gp2β, which carries triple amino acid substitutions E24K, F27Y and R56C, can productively infect this strain. By studying the molecular basis of inhibition of RNAp from the 7009 strain by Gp2β, we provide several lines of evidence that the E24K and F27Y substitutions facilitate an interaction with RNAp when the primary interaction interface with the β′ jaw is compromised. The proposed additional interaction interface between RNAp and Gp2 may contribute to the multipronged mechanism of transcription inhibition by Gp2.
Collapse
Affiliation(s)
- Andrey Shadrin
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Carol Sheppard
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Konstantin Severinov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.,Waksman Institute for Microbiology and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Steve Matthews
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Sivaramesh Wigneshweraraj
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
175
|
Supertertiary structure of the synaptic MAGuK scaffold proteins is conserved. Proc Natl Acad Sci U S A 2012; 109:15775-80. [PMID: 23019361 DOI: 10.1073/pnas.1200254109] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Scaffold proteins form a framework to organize signal transduction by binding multiple partners within a signaling pathway. This shapes the output of signal responses as well as providing specificity and localization. The Membrane Associated Guanylate Kinases (MAGuKs) are scaffold proteins at cellular junctions that localize cell surface receptors and link them to downstream signaling enzymes. Scaffold proteins often contain protein-binding domains that are connected in series by disordered linkers. The tertiary structure of the folded domains is well understood, but describing the dynamic inter-domain interactions (the superteritary structure) of such multidomain proteins remains a challenge to structural biology. We used 65 distance restraints from single-molecule fluorescence resonance energy transfer (smFRET) to describe the superteritary structure of the canonical MAGuK scaffold protein PSD-95. By combining multiple fluorescence techniques, the conformational dynamics of PSD-95 could be characterized across the biologically relevant timescales for protein domain motions. Relying only on a qualitative interpretation of FRET data, we were able to distinguish stable interdomain interactions from freely orienting domains. This revealed that the five domains in PSD-95 partitioned into two independent supramodules: PDZ1-PDZ2 and PDZ3-SH3-GuK. We used our smFRET data for hybrid structural refinement to model the PDZ3-SH3-GuK supramodule and include explicit dye simulations to provide complete characterization of potential uncertainties inherent to quantitative interpretation of FRET as distance. Comparative structural analysis of synaptic MAGuK homologues showed a conservation of this supertertiary structure. Our approach represents a general solution to describing the supertertiary structure of multidomain proteins.
Collapse
|