151
|
Zeng R, Smith E, Barrientos A. Yeast Mitoribosome Large Subunit Assembly Proceeds by Hierarchical Incorporation of Protein Clusters and Modules on the Inner Membrane. Cell Metab 2018; 27. [PMID: 29514071 PMCID: PMC5951612 DOI: 10.1016/j.cmet.2018.01.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitoribosomes are specialized for the synthesis of hydrophobic membrane proteins encoded by mtDNA, all essential for oxidative phosphorylation. Despite their linkage to human mitochondrial diseases and the recent cryoelectron microscopy reconstruction of yeast and mammalian mitoribosomes, how they are assembled remains obscure. Here, we dissected the yeast mitoribosome large subunit (mtLSU) assembly process by systematic genomic deletion of 44 mtLSU proteins (MRPs). Analysis of the strain collection unveiled 37 proteins essential for functional mtLSU assembly, three of which are critical for mtLSU 21S rRNA stability. Hierarchical cluster analysis of mtLSU subassemblies accumulated in mutant strains revealed co-operative assembly of protein sets forming structural clusters and preassembled modules. It also indicated crucial roles for mitochondrion-specific membrane-binding MRPs in anchoring newly transcribed 21S rRNA to the inner membrane, where assembly proceeds. Our results define the yeast mtLSU assembly landscape in vivo and provide a foundation for studies of mitoribosome assembly across evolution.
Collapse
Affiliation(s)
- Rui Zeng
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, Miami, FL 33136, USA
| | - Erin Smith
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, Miami, FL 33136, USA
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1420 NW 9th Ave, Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
152
|
Leibovitch M, Hanic-Joyce PJ, Joyce PBM. In vitro studies of disease-linked variants of human tRNA nucleotidyltransferase reveal decreased thermal stability and altered catalytic activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:527-540. [PMID: 29454993 DOI: 10.1016/j.bbapap.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 11/15/2022]
Abstract
Mutations in the human TRNT1 gene encoding tRNA nucleotidyltransferase (tRNA-NT), an essential enzyme responsible for addition of the CCA (cytidine-cytidine-adenosine) sequence to the 3'-termini of tRNAs, have been linked to disease phenotypes including congenital sideroblastic anemia with B-cell immunodeficiency, periodic fevers and developmental delay (SIFD) or retinitis pigmentosa with erythrocyte microcytosis. The effects of these disease-linked mutations on the structure and function of tRNA-NT have not been explored. Here we use biochemical and biophysical approaches to study how five SIFD-linked amino acid substitutions (T154I, M158V, L166S, R190I and I223T), residing in the N-terminal head and neck domains of the enzyme, affect the structure and activity of human tRNA-NT in vitro. Our data suggest that the SIFD phenotype is linked to poor stability of the T154I and L166S variant proteins, and to a combination of reduced stability and altered catalytic efficiency in the M158 V, R190I and I223T variants.
Collapse
Affiliation(s)
- M Leibovitch
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P J Hanic-Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P B M Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada.
| |
Collapse
|
153
|
Gammage PA, Moraes CT, Minczuk M. Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized. Trends Genet 2018; 34:101-110. [PMID: 29179920 PMCID: PMC5783712 DOI: 10.1016/j.tig.2017.11.001] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 12/17/2022]
Abstract
In recent years mitochondrial DNA (mtDNA) has transitioned to greater prominence across diverse areas of biology and medicine. The recognition of mitochondria as a major biochemical hub, contributions of mitochondrial dysfunction to various diseases, and several high-profile attempts to prevent hereditary mtDNA disease through mitochondrial replacement therapy have roused interest in the organellar genome. Subsequently, attempts to manipulate mtDNA have been galvanized, although with few robust advances and much controversy. Re-engineered protein-only nucleases such as mtZFN and mitoTALEN function effectively in mammalian mitochondria, although efficient delivery of nucleic acids into the organelle remains elusive. Such an achievement, in concert with a mitochondria-adapted CRISPR/Cas9 platform, could prompt a revolution in mitochondrial genome engineering and biological understanding. However, the existence of an endogenous mechanism for nucleic acid import into mammalian mitochondria, a prerequisite for mitochondrial CRISPR/Cas9 gene editing, remains controversial.
Collapse
Affiliation(s)
- Payam A Gammage
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Carlos T Moraes
- Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Michal Minczuk
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
154
|
Gao F, Wesolowska M, Agami R, Rooijers K, Loayza-Puch F, Lawless C, Lightowlers RN, Chrzanowska-Lightowlers ZMA. Using mitoribosomal profiling to investigate human mitochondrial translation. Wellcome Open Res 2017; 2:116. [PMID: 29387808 PMCID: PMC5771143 DOI: 10.12688/wellcomeopenres.13119.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2017] [Indexed: 11/30/2022] Open
Abstract
Background: Gene expression in human mitochondria has various idiosyncratic features. One of these was recently revealed as the unprecedented recruitment of a mitochondrially-encoded tRNA as a structural component of the large mitoribosomal subunit. In porcine particles this is mt-tRNA
Phe whilst in humans it is mt-tRNA
Val. We have previously shown that when a mutation in mt-tRNA
Val causes very low steady state levels, there is preferential recruitment of mt-tRNA
Phe. We have investigated whether this altered mitoribosome affects intra-organellar protein synthesis. Methods: By using mitoribosomal profiling we have revealed aspects of mitoribosome behaviour with its template mt-mRNA under both normal conditions as well as those where the mitoribosome has incorporated mt-tRNA
Phe. Results: Analysis of the mitoribosome residency on transcripts under control conditions reveals that although mitochondria employ only 22 mt-tRNAs for protein synthesis, the use of non-canonical wobble base pairs at codon position 3 does not cause any measurable difference in mitoribosome occupancy irrespective of the codon. Comparison of the profile of aberrant mt-tRNA
Phe containing mitoribosomes with those of controls that integrate mt-tRNA
Val revealed that the impaired translation seen in the latter was not due to stalling on triplets encoding either of these amino acids. The alterations in mitoribosome interactions with start codons was not directly attributable to the either the use of non-cognate initiation codons or the presence or absence of 5’ leader sequences, except in the two bicistronic RNA units,
RNA7 and
RNA14 where the initiation sites are internal. Conclusions: These data report the power of mitoribosomal profiling in helping to understand the subtleties of mammalian mitochondrial protein synthesis. Analysis of profiles from the mutant mt-tRNA
Val cell line suggest that despite mt-tRNA
Phe being preferred in the porcine mitoribosome, its integration into the human counterpart results in a suboptimal structure that modifies its interaction with mt-mRNAs.
Collapse
Affiliation(s)
- Fei Gao
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Maria Wesolowska
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Immunocore Ltd, Oxford, UK
| | - Reuven Agami
- The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Koos Rooijers
- The Netherlands Cancer Institute, Amsterdam, Netherlands.,Hubrecht Institute, Utrecht, Netherlands
| | | | - Conor Lawless
- The Wellcome Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robert N Lightowlers
- The Wellcome Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
155
|
Gao F, Wesolowska M, Agami R, Rooijers K, Loayza-Puch F, Lawless C, Lightowlers RN, Chrzanowska-Lightowlers ZMA. Using mitoribosomal profiling to investigate human mitochondrial translation. Wellcome Open Res 2017. [PMID: 29387808 DOI: 10.12688/wellcomeopenres.13119.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background: Gene expression in human mitochondria has various idiosyncratic features. One of these was recently revealed as the unprecedented recruitment of a mitochondrially-encoded tRNA as a structural component of the large mitoribosomal subunit. In porcine particles this is mt-tRNA Phe whilst in humans it is mt-tRNA Val. We have previously shown that when a mutation in mt-tRNA Val causes very low steady state levels, there is preferential recruitment of mt-tRNA Phe. We have investigated whether this altered mitoribosome affects intra-organellar protein synthesis. Methods: By using mitoribosomal profiling we have revealed aspects of mitoribosome behaviour with its template mt-mRNA under both normal conditions as well as those where the mitoribosome has incorporated mt-tRNA Phe. Results: Analysis of the mitoribosome residency on transcripts under control conditions reveals that although mitochondria employ only 22 mt-tRNAs for protein synthesis, the use of non-canonical wobble base pairs at codon position 3 does not cause any measurable difference in mitoribosome occupancy irrespective of the codon. Comparison of the profile of aberrant mt-tRNA Phe containing mitoribosomes with those of controls that integrate mt-tRNA Val revealed that the impaired translation seen in the latter was not due to stalling on triplets encoding either of these amino acids. The alterations in mitoribosome interactions with start codons was not directly attributable to the either the use of non-cognate initiation codons or the presence or absence of 5' leader sequences, except in the two bicistronic RNA units, RNA7 and RNA14 where the initiation sites are internal. Conclusions: These data report the power of mitoribosomal profiling in helping to understand the subtleties of mammalian mitochondrial protein synthesis. Analysis of profiles from the mutant mt-tRNA Val cell line suggest that despite mt-tRNA Phe being preferred in the porcine mitoribosome, its integration into the human counterpart results in a suboptimal structure that modifies its interaction with mt-mRNAs.
Collapse
Affiliation(s)
- Fei Gao
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Maria Wesolowska
- The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Immunocore Ltd, Oxford, UK
| | - Reuven Agami
- The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Koos Rooijers
- The Netherlands Cancer Institute, Amsterdam, Netherlands.,Hubrecht Institute, Utrecht, Netherlands
| | | | - Conor Lawless
- The Wellcome Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Robert N Lightowlers
- The Wellcome Centre for Mitochondrial Research, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
156
|
Guedes-Monteiro RF, Ferreira-Junior JR, Bleicher L, Nóbrega FG, Barrientos A, Barros MH. Mitochondrial ribosome bL34 mutants present diminished translation of cytochrome c oxidase subunits. Cell Biol Int 2017; 42:630-642. [PMID: 29160602 DOI: 10.1002/cbin.10913] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/19/2017] [Indexed: 12/31/2022]
Abstract
Saccharomyces cerevisiae mitoribosomes are specialized in the translation of a few number of highly hydrophobic membrane proteins, components of the oxidative phosphorylation system. Mitochondrial characteristics, such as the membrane system and its redox state driven mitoribosomes evolution through great diversion from their bacterial and cytosolic counterparts. Therefore, mitoribosome presents a considerable number of mitochondrial-specific proteins, as well as new protein extensions. In this work we characterize temperature sensitive mutants of the subunit bL34 present in the 54S large subunit. Although bL34 has bacterial homologs, in yeast it has a long 65 aminoacids mitochondrial N-terminal addressing sequence, here we demonstrate that it can be replaced by the mitochondrial addressing sequence of Neurospora crassa ATP9 gene. The bL34 temperature sensitive mutants present lowered translation of mitochondrial COX1 and COX3, which resulted in reduced cytochrome c oxidase activity and respiratory growth deficiency. The sedimentation properties of bL34 in sucrose gradients suggest that similarly to its bacterial homolog, bL34 is also a later participant in the process of mitoribosome biogenesis.
Collapse
Affiliation(s)
| | | | - Lucas Bleicher
- Departamento de Bioquímica e Imunologia - Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mario H Barros
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
157
|
Zhang L, Wang W, Zhu B, Wang X. Regulatory Roles of Mitochondrial Ribosome in Lung Diseases and Single Cell Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1038:183-200. [PMID: 29178077 DOI: 10.1007/978-981-10-6674-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The mitochondria have the most vital processes in eukaryotic cells to produce ATP composed of polypeptides that are produced via ribosomes, as oxidative phosphorylation. Initially, studies regarding human mitochondrial ribosomes were performed in the model system, bovine mitochondrial ribosome, to investigate how ribosomes are biosynthesized and evolved as well as what their structure and function are. Advances in X-ray crystallography have led to dramatic progresses in structural studies of the ribosome. In recent years, there has been a growing interest in the properties of the mitochondrial ribosome. Although one of its main functions is the production of ATP, it was also linked to multiple diseases. A key area that remains unexplored and requires investigation and exploration is how mitochondrial ribosomal RNA (mt-rRNA) variations can affect the mitochondrial ribosomes in developing disease. This review summarizes the structure, elements, functions, and regulatory roles in associated diseases. With the continuous development of technology, studies on the mechanism of mitochondrial ribosome related diseases are crucial, in order to identify methods of prevention and treatment of these disorders.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - William Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - Bijun Zhu
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University, Shanghai Medical College, Shanghai, China.
| |
Collapse
|
158
|
Box JM, Kaur J, Stuart RA. MrpL35, a mitospecific component of mitoribosomes, plays a key role in cytochrome c oxidase assembly. Mol Biol Cell 2017; 28:3489-3499. [PMID: 28931599 PMCID: PMC5683760 DOI: 10.1091/mbc.e17-04-0239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/28/2017] [Accepted: 09/11/2017] [Indexed: 01/03/2023] Open
Abstract
Mitoribosomes perform the synthesis of the core components of the oxidative phosphorylation (OXPHOS) system encoded by the mitochondrial genome. We provide evidence that MrpL35 (mL38), a mitospecific component of the yeast mitoribosomal central protuberance, assembles into a subcomplex with MrpL7 (uL5), Mrp7 (bL27), and MrpL36 (bL31) and mitospecific proteins MrpL17 (mL46) and MrpL28 (mL40). We isolated respiratory defective mrpL35 mutant yeast strains, which do not display an overall inhibition in mitochondrial protein synthesis but rather have a problem in cytochrome c oxidase complex (COX) assembly. Our findings indicate that MrpL35, with its partner Mrp7, play a key role in coordinating the synthesis of the Cox1 subunit with its assembly into the COX enzyme and in a manner that involves the Cox14 and Coa3 proteins. We propose that MrpL35 and Mrp7 are regulatory subunits of the mitoribosome acting to coordinate protein synthesis and OXPHOS assembly events and thus the bioenergetic capacity of the mitochondria.
Collapse
Affiliation(s)
- Jodie M Box
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Jasvinder Kaur
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Rosemary A Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| |
Collapse
|
159
|
Chrzanowska-Lightowlers Z, Rorbach J, Minczuk M. Human mitochondrial ribosomes can switch structural tRNAs - but when and why? RNA Biol 2017; 14:1668-1671. [PMID: 28786741 PMCID: PMC5731804 DOI: 10.1080/15476286.2017.1356551] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
High resolution cryoEM of mammalian mitoribosomes revealed the unexpected presence of mitochondrially encoded tRNA as a structural component of mitochondrial large ribosomal subunit (mt-LSU). Our previously published data identified that only mitochondrial (mt-) tRNAPhe and mt-tRNAVal can be incorporated into mammalian mt-LSU and within an organism there is no evidence of tissue specific variation. When mt-tRNAVal is limiting, human mitoribosomes can integrate mt-tRNAPhe instead to generate a translationally competent monosome. Here we discuss the possible reasons for and consequences of the observed plasticity of the structural mt-tRNA integration. We also indicate potential direction for further research that could help our understanding of the mechanistic and evolutionary aspects of this unprecedented system.
Collapse
Affiliation(s)
- Zofia Chrzanowska-Lightowlers
- a The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience , Newcastle University , Newcastle upon Tyne , England , UK
| | - Joanna Rorbach
- b Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Retzius väg 8, Stockholm , Sweden
| | - Michal Minczuk
- c MRC Mitochondrial Biology Unit , Wellcome Trust/MRC Building, Hills Road, Cambridge, England , UK
| |
Collapse
|
160
|
Structures of the human mitochondrial ribosome in native states of assembly. Nat Struct Mol Biol 2017; 24:866-869. [PMID: 28892042 DOI: 10.1038/nsmb.3464] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) have less rRNA content and 36 additional proteins compared with the evolutionarily related bacterial ribosome. These differences make the assembly of mitoribosomes more complex than the assembly of bacterial ribosomes, but the molecular details of mitoribosomal biogenesis remain elusive. Here, we report the structures of two late-stage assembly intermediates of the human mitoribosomal large subunit (mt-LSU) isolated from a native pool within a human cell line and solved by cryo-EM to ∼3-Å resolution. Comparison of the structures reveals insights into the timing of rRNA folding and protein incorporation during the final steps of ribosomal maturation and the evolutionary adaptations that are required to preserve biogenesis after the structural diversification of mitoribosomes. Furthermore, the structures redefine the ribosome silencing factor (RsfS) family as multifunctional biogenesis factors and identify two new assembly factors (L0R8F8 and mt-ACP) not previously implicated in mitoribosomal biogenesis.
Collapse
|
161
|
Abstract
Mitochondria are intracellular organelles responsible for adenosine triphosphate production. The strict control of intracellular energy needs require proper mitochondrial functioning. The mitochondria are under dual controls of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mitochondrial dysfunction can arise from changes in either mtDNA or nDNA genes regulating function. There are an estimated ∼1500 proteins in the mitoproteome, whereas the mtDNA genome has 37 proteins. There are, to date, ∼275 genes shown to give rise to disease. The unique physiology of mitochondrial functioning contributes to diverse gene expression. The onset and range of phenotypic expression of disease is diverse, with onset from neonatal to seventh decade of life. The range of dysfunction is heterogeneous, ranging from single organ to multisystem involvement. The complexity of disease expression has severely limited gene discovery. Combining phenotypes with improvements in gene sequencing strategies are improving the diagnosis process. This chapter focuses on the interplay of the unique physiology and gene discovery in the current knowledge of genetically derived mitochondrial disease.
Collapse
Affiliation(s)
- Russell P Saneto
- Seattle Children's Hospital/University of Washington, Seattle, WA, United States.
| |
Collapse
|
162
|
Englmeier R, Pfeffer S, Förster F. Structure of the Human Mitochondrial Ribosome Studied In Situ by Cryoelectron Tomography. Structure 2017; 25:1574-1581.e2. [PMID: 28867615 DOI: 10.1016/j.str.2017.07.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/12/2017] [Accepted: 07/26/2017] [Indexed: 01/26/2023]
Abstract
Mitochondria maintain their own genome and its corresponding protein synthesis machine, the mitochondrial ribosome (mitoribosome). Mitoribosomes primarily synthesize highly hydrophobic proteins of the inner mitochondrial membrane. Recent studies revealed the complete structure of the isolated mammalian mitoribosome, but its mode of membrane association remained hypothetical. In this study, we used cryoelectron tomography to visualize human mitoribosomes in isolated mitochondria. The subtomogram average of the membrane-associated human mitoribosome reveals a single major contact site with the inner membrane, mediated by the mitochondria-specific protein mL45. A second rRNA-mediated contact site that is present in yeast is absent in humans, resulting in a more variable association of the human mitoribosome with the inner membrane. Despite extensive structural differences of mammalian and fungal mitoribosomal structure, the principal organization of peptide exit tunnel and the mL45 homolog remains invariant, presumably to align the mitoribosome with the membrane-embedded insertion machinery.
Collapse
Affiliation(s)
- Robert Englmeier
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Stefan Pfeffer
- Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, 82152 Martinsried, Germany
| | - Friedrich Förster
- Cryo-Electron Microscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, the Netherlands; Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, 82152 Martinsried, Germany.
| |
Collapse
|
163
|
Thomas SE, Mendes V, Kim SY, Malhotra S, Ochoa-Montaño B, Blaszczyk M, Blundell TL. Structural Biology and the Design of New Therapeutics: From HIV and Cancer to Mycobacterial Infections: A Paper Dedicated to John Kendrew. J Mol Biol 2017; 429:2677-2693. [PMID: 28648615 DOI: 10.1016/j.jmb.2017.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
Abstract
Interest in applications of protein crystallography to medicine was evident, as the first high-resolution structures emerged in the 50s and 60s. In Cambridge, Max Perutz and John Kendrew sought to understand mutations in sickle cell and other genetic diseases related to hemoglobin, while in Oxford, the group of Dorothy Hodgkin became interested in long-lasting zinc-insulin crystals for treatment of diabetes and later considered insulin redesign, as synthetic insulins became possible. The use of protein crystallography in structure-guided drug discovery emerged as enzyme structures allowed the identification of potential inhibitor-binding sites and optimization of interactions of hits using the structure of the target protein. Early examples of this approach were the use of the structure of renin to design antihypertensives and the structure of HIV protease in design of AIDS antivirals. More recently, use of structure-guided design with fragment-based drug discovery, which reduces the size of screening libraries by decreasing complexity, has improved ligand efficiency in drug design and has been used to progress three oncology drugs through clinical trials to FDA approval. We exemplify current developments in structure-guided target identification and fragment-based lead discovery with efforts to develop new antimicrobials for mycobacterial infections.
Collapse
Affiliation(s)
- Sherine E Thomas
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Vitor Mendes
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - So Yeon Kim
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Sony Malhotra
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Bernardo Ochoa-Montaño
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Michal Blaszczyk
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK.
| |
Collapse
|
164
|
Mitochondrial diseases: the contribution of organelle stress responses to pathology. Nat Rev Mol Cell Biol 2017; 19:77-92. [DOI: 10.1038/nrm.2017.66] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
165
|
Ozsvari B, Fiorillo M, Bonuccelli G, Cappello AR, Frattaruolo L, Sotgia F, Trowbridge R, Foster R, Lisanti MP. Mitoriboscins: Mitochondrial-based therapeutics targeting cancer stem cells (CSCs), bacteria and pathogenic yeast. Oncotarget 2017; 8:67457-67472. [PMID: 28978045 PMCID: PMC5620185 DOI: 10.18632/oncotarget.19084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 05/17/2017] [Indexed: 12/26/2022] Open
Abstract
The "endo-symbiotic theory of mitochondrial evolution" states that mitochondrial organelles evolved from engulfed aerobic bacteria, after millions of years of symbiosis and adaptation. Here, we have exploited this premise to design new antibiotics and novel anti-cancer therapies, using a convergent approach. First, virtual high-throughput screening (vHTS) and computational chemistry were used to identify novel compounds binding to the 3D structure of the mammalian mitochondrial ribosome. The resulting library of ∼880 compounds was then subjected to phenotypic drug screening on human cancer cells, to identify which compounds functionally induce ATP-depletion, which is characteristic of mitochondrial inhibition. Notably, the top ten "hit" compounds define four new classes of mitochondrial inhibitors. Next, we further validated that these novel mitochondrial inhibitors metabolically target mitochondrial respiration in cancer cells and effectively inhibit the propagation of cancer stem-like cells in vitro. Finally, we show that these mitochondrial inhibitors possess broad-spectrum antibiotic activity, preventing the growth of both gram-positive and gram-negative bacteria, as well as C. albicans - a pathogenic yeast. Remarkably, these novel antibiotics also were effective against methicillin-resistant Staphylococcus aureus (MRSA). Thus, this simple, yet systematic, approach to the discovery of mitochondrial ribosome inhibitors could provide a plethora of anti-microbials and anti-cancer therapies, to target drug-resistance that is characteristic of both i) tumor recurrence and ii) infectious disease. In summary, we have successfully used vHTS combined with phenotypic drug screening of human cancer cells to identify several new classes of broad-spectrum antibiotics that target both bacteria and pathogenic yeast. We propose the new term "mitoriboscins" to describe these novel mitochondrial-related antibiotics. Thus far, we have identified four different classes of mitoriboscins, such as: 1) mitoribocyclines, 2) mitoribomycins, 3) mitoribosporins and 4) mitoribofloxins. However, we broadly define mitoriboscins as any small molecule(s) or peptide(s) that bind to the mitoribosome (large or small subunits) and, as a consequence, inhibit mitochondrial function, i.e., mitoribosome inhibitors.
Collapse
Affiliation(s)
- Bela Ozsvari
- Translational Medicine, School of Environment & Life Sciences, University of Salford, Greater Manchester, UK.,The Paterson Institute, University of Manchester, Withington, UK
| | - Marco Fiorillo
- Translational Medicine, School of Environment & Life Sciences, University of Salford, Greater Manchester, UK.,The Paterson Institute, University of Manchester, Withington, UK.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Gloria Bonuccelli
- Translational Medicine, School of Environment & Life Sciences, University of Salford, Greater Manchester, UK.,The Paterson Institute, University of Manchester, Withington, UK
| | - Anna Rita Cappello
- The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Luca Frattaruolo
- The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Federica Sotgia
- Translational Medicine, School of Environment & Life Sciences, University of Salford, Greater Manchester, UK.,The Paterson Institute, University of Manchester, Withington, UK
| | - Rachel Trowbridge
- School of Chemistry, Faculty of Mathematics and Physical Sciences, University of Leeds, West Yorkshire, UK
| | - Richard Foster
- Astbury Centre for Structural Molecular Biology, University of Leeds, West Yorkshire, UK.,School of Chemistry, Faculty of Mathematics and Physical Sciences, University of Leeds, West Yorkshire, UK
| | - Michael P Lisanti
- Translational Medicine, School of Environment & Life Sciences, University of Salford, Greater Manchester, UK.,The Paterson Institute, University of Manchester, Withington, UK
| |
Collapse
|
166
|
Correia M, Pinheiro P, Batista R, Soares P, Sobrinho-Simões M, Máximo V. Etiopathogenesis of oncocytomas. Semin Cancer Biol 2017; 47:82-94. [PMID: 28687249 DOI: 10.1016/j.semcancer.2017.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 01/01/2023]
Abstract
Oncocytomas are distinct tumors characterized by an abnormal accumulation of defective and (most probably) dysfunctional mitochondria in cell cytoplasm of such tumors. This particular phenotype has been studied for the last decades and the clarification of the etiopathogenic causes are still needed. Several mechanisms involved in the formation and maintenance of oncocytomas are accepted as reasonable causes, but the relevance and contribution of each one for oncocytic transformation may depend on different cancer etiopathogenic contexts. In this review, we describe the current knowledge of the etiopathogenic events that may lead to oncocytic transformation and discuss their contribution for tumor progression and mitochondrial accumulation.
Collapse
Affiliation(s)
- Marcelo Correia
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Pedro Pinheiro
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Rui Batista
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal
| | - Paula Soares
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal
| | - Manuel Sobrinho-Simões
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Valdemar Máximo
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal.
| |
Collapse
|
167
|
On the state of crystallography at the dawn of the electron microscopy revolution. Curr Opin Struct Biol 2017; 46:95-101. [PMID: 28686957 PMCID: PMC5689515 DOI: 10.1016/j.sbi.2017.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/05/2017] [Accepted: 06/11/2017] [Indexed: 12/20/2022]
Abstract
While protein crystallography has, for many years, been the most used method for structural analysis of macromolecular complexes, remarkable recent advances in high-resolution electron cryo-microscopy led to suggestions that 'the revolution will not be crystallised'. Here we highlight the current success rate, speed and ease of modern crystallographic structure determination and some recent triumphs of both 'classical' crystallography and the use of X-ray free electron lasers. We also outline fundamental differences between structure determination using X-ray crystallography and electron microscopy. We suggest that crystallography will continue to co-exist with electron microscopy as part of an integrated array of methods, allowing structural biologists to focus on fundamental biological questions rather than being constrained by the methods available.
Collapse
|
168
|
Huter P, Müller C, Arenz S, Beckert B, Wilson DN. Structural Basis for Ribosome Rescue in Bacteria. Trends Biochem Sci 2017. [PMID: 28629612 DOI: 10.1016/j.tibs.2017.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ribosomes that translate mRNAs lacking stop codons become stalled at the 3' end of the mRNA. Recycling of these stalled ribosomes is essential for cell viability. In bacteria three ribosome rescue systems have been identified so far, with the most ubiquitous and best characterized being the trans-translation system mediated by transfer-messenger RNA (tmRNA) and small protein B (SmpB). The two additional rescue systems present in some bacteria employ alternative rescue factor (Arf) A and release factor (RF) 2 or ArfB. Recent structures have revealed how ArfA mediates ribosome rescue by recruiting the canonical termination factor RF2 to ribosomes stalled on truncated mRNAs. This now provides us with the opportunity to compare and contrast the available structures of all three bacterial ribosome rescue systems.
Collapse
Affiliation(s)
- Paul Huter
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Feodor-Lynenstr. 25, 81377 München, Germany
| | - Claudia Müller
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Feodor-Lynenstr. 25, 81377 München, Germany
| | - Stefan Arenz
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Feodor-Lynenstr. 25, 81377 München, Germany
| | - Bertrand Beckert
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Feodor-Lynenstr. 25, 81377 München, Germany; Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Daniel N Wilson
- Gene Center, Department of Biochemistry and Center for Integrated Protein Science Munich (CiPSM), Feodor-Lynenstr. 25, 81377 München, Germany; Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany.
| |
Collapse
|
169
|
The human RNA-binding protein RBFA promotes the maturation of the mitochondrial ribosome. Biochem J 2017; 474:2145-2158. [PMID: 28512204 PMCID: PMC5468982 DOI: 10.1042/bcj20170256] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 11/17/2022]
Abstract
Accurate assembly and maturation of human mitochondrial ribosomes is essential for synthesis of the 13 polypeptides encoded by the mitochondrial genome. This process requires the correct integration of 80 proteins, 1 mt (mitochondrial)-tRNA and 2 mt-rRNA species, the latter being post-transcriptionally modified at many sites. Here, we report that human ribosome-binding factor A (RBFA) is a mitochondrial RNA-binding protein that exerts crucial roles in mitoribosome biogenesis. Unlike its bacterial orthologue, RBFA associates mainly with helices 44 and 45 of the 12S rRNA in the mitoribosomal small subunit to promote dimethylation of two highly conserved consecutive adenines. Characterization of RBFA-depleted cells indicates that this dimethylation is not a prerequisite for assembly of the small ribosomal subunit. However, the RBFA-facilitated modification is necessary for completing mt-rRNA maturation and regulating association of the small and large subunits to form a functional monosome implicating RBFA in the quality control of mitoribosome formation.
Collapse
|
170
|
Zhou Q, Zhou N, Wang HW. Particle segmentation algorithm for flexible single particle reconstruction. BIOPHYSICS REPORTS 2017; 3:43-55. [PMID: 28782000 PMCID: PMC5515998 DOI: 10.1007/s41048-017-0038-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/15/2017] [Indexed: 12/12/2022] Open
Abstract
As single particle cryo-electron microscopy has evolved to a new era of atomic resolution, sample heterogeneity still imposes a major limit to the resolution of many macromolecular complexes, especially those with continuous conformational flexibility. Here, we describe a particle segmentation algorithm towards solving structures of molecules composed of several parts that are relatively flexible with each other. In this algorithm, the different parts of a target molecule are segmented from raw images according to their alignment information obtained from a preliminary 3D reconstruction and are subjected to single particle processing in an iterative manner. This algorithm was tested on both simulated and experimental data and showed improvement of 3D reconstruction resolution of each segmented part of the molecule than that of the entire molecule.
Collapse
Affiliation(s)
- Qiang Zhou
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China.,Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Niyun Zhou
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
171
|
Simkovic F, Ovchinnikov S, Baker D, Rigden DJ. Applications of contact predictions to structural biology. IUCRJ 2017; 4:291-300. [PMID: 28512576 PMCID: PMC5414403 DOI: 10.1107/s2052252517005115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Evolutionary pressure on residue interactions, intramolecular or intermolecular, that are important for protein structure or function can lead to covariance between the two positions. Recent methodological advances allow much more accurate contact predictions to be derived from this evolutionary covariance signal. The practical application of contact predictions has largely been confined to structural bioinformatics, yet, as this work seeks to demonstrate, the data can be of enormous value to the structural biologist working in X-ray crystallo-graphy, cryo-EM or NMR. Integrative structural bioinformatics packages such as Rosetta can already exploit contact predictions in a variety of ways. The contribution of contact predictions begins at construct design, where structural domains may need to be expressed separately and contact predictions can help to predict domain limits. Structure solution by molecular replacement (MR) benefits from contact predictions in diverse ways: in difficult cases, more accurate search models can be constructed using ab initio modelling when predictions are available, while intermolecular contact predictions can allow the construction of larger, oligomeric search models. Furthermore, MR using supersecondary motifs or large-scale screens against the PDB can exploit information, such as the parallel or antiparallel nature of any β-strand pairing in the target, that can be inferred from contact predictions. Contact information will be particularly valuable in the determination of lower resolution structures by helping to assign sequence register. In large complexes, contact information may allow the identity of a protein responsible for a certain region of density to be determined and then assist in the orientation of an available model within that density. In NMR, predicted contacts can provide long-range information to extend the upper size limit of the technique in a manner analogous but complementary to experimental methods. Finally, predicted contacts can distinguish between biologically relevant interfaces and mere lattice contacts in a final crystal structure, and have potential in the identification of functionally important regions and in foreseeing the consequences of mutations.
Collapse
Affiliation(s)
- Felix Simkovic
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Sergey Ovchinnikov
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Box 357370, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Box 357370, Seattle, WA 98195, USA
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| |
Collapse
|
172
|
Abstract
Mitochondria play fundamental roles in the regulation of life and death of eukaryotic cells. They mediate aerobic energy conversion through the oxidative phosphorylation (OXPHOS) system, and harbor and control the intrinsic pathway of apoptosis. As a descendant of a bacterial endosymbiont, mitochondria retain a vestige of their original genome (mtDNA), and its corresponding full gene expression machinery. Proteins encoded in the mtDNA, all components of the multimeric OXPHOS enzymes, are synthesized in specialized mitochondrial ribosomes (mitoribosomes). Mitoribosomes are therefore essential in the regulation of cellular respiration. Additionally, an increasing body of literature has been reporting an alternative role for several mitochondrial ribosomal proteins as apoptosis-inducing factors. No surprisingly, the expression of genes encoding for mitoribosomal proteins, mitoribosome assembly factors and mitochondrial translation factors is modified in numerous cancers, a trait that has been linked to tumorigenesis and metastasis. In this article, we will review the current knowledge regarding the dual function of mitoribosome components in protein synthesis and apoptosis and their association with cancer susceptibility and development. We will also highlight recent developments in targeting mitochondrial ribosomes for the treatment of cancer.
Collapse
|
173
|
Wong W, Bai XC, Sleebs BE, Triglia T, Brown A, Thompson JK, Jackson KE, Hanssen E, Marapana DS, Fernandez IS, Ralph SA, Cowman AF, Scheres SH, Baum J. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat Microbiol 2017; 2:17031. [PMID: 28288098 PMCID: PMC5439513 DOI: 10.1038/nmicrobiol.2017.31] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/07/2017] [Indexed: 12/26/2022]
Abstract
Malaria control is heavily dependent on chemotherapeutic agents for disease prevention and drug treatment. Defining the mechanism of action for licensed drugs, for which no target is characterized, is critical to the development of their second-generation derivatives to improve drug potency towards inhibition of their molecular targets. Mefloquine is a widely used antimalarial without a known mode of action. Here, we demonstrate that mefloquine is a protein synthesis inhibitor. We solved a 3.2 Å cryo-electron microscopy structure of the Plasmodium falciparum 80S ribosome with the (+)-mefloquine enantiomer bound to the ribosome GTPase-associated centre. Mutagenesis of mefloquine-binding residues generates parasites with increased resistance, confirming the parasite-killing mechanism. Furthermore, structure-guided derivatives with an altered piperidine group, predicted to improve binding, show enhanced parasiticidal effect. These data reveal one possible mode of action for mefloquine and demonstrate the vast potential of cryo-electron microscopy to guide the development of mefloquine derivatives to inhibit parasite protein synthesis.
Collapse
Affiliation(s)
- Wilson Wong
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Xiao-Chen Bai
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Brad E. Sleebs
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Tony Triglia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Alan Brown
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jennifer K. Thompson
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Katherine E. Jackson
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eric Hanssen
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Danushka S. Marapana
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Israel S. Fernandez
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Stuart A. Ralph
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alan F. Cowman
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sjors H.W. Scheres
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jake Baum
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK
| |
Collapse
|
174
|
Regulation of Mammalian Mitochondrial Gene Expression: Recent Advances. Trends Biochem Sci 2017; 42:625-639. [PMID: 28285835 PMCID: PMC5538620 DOI: 10.1016/j.tibs.2017.02.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/02/2017] [Accepted: 02/10/2017] [Indexed: 01/03/2023]
Abstract
Perturbation of mitochondrial DNA (mtDNA) gene expression can lead to human pathologies. Therefore, a greater appreciation of the basic mechanisms of mitochondrial gene expression is desirable to understand the pathophysiology of associated disorders. Although the purpose of the mitochondrial gene expression machinery is to provide only 13 proteins of the oxidative phosphorylation (OxPhos) system, recent studies have revealed its remarkable and unexpected complexity. We review here the latest breakthroughs in our understanding of the post-transcriptional processes of mitochondrial gene expression, focusing on advances in analyzing the mitochondrial epitranscriptome, the role of mitochondrial RNA granules (MRGs), the benefits of recently obtained structures of the mitochondrial ribosome, and the coordination of mitochondrial and cytosolic translation to orchestrate the biogenesis of OxPhos complexes. The genetic system required for mitochondrial gene expression is housed within the mitochondrial matrix, with all the necessary RNAs being provided by transcription of the mtDNA itself. Our understanding of the extent and nature of post-transcriptional modifications of mtRNA, the epitranscriptome, is rapidly expanding. Several required nucleus-encoded enzymes have recently been identified. mtRNA maturation factors localize in distinct foci, termed mtRNA granules, with newly transcribed RNA. These foci may allow spatiotemporal control of mtRNA processing. Recent high-resolution structures obtained via cryo-electron microscopy have rapidly advanced our understanding of the specialized adaptations of the mitochondrial ribosome. Production of respiratory complexes requires tight coordination between the cytoplasmic and mitochondrial translation systems.
Collapse
|
175
|
Abstract
Translation of the genetic code on the ribosome into protein is a process of extraordinary complexity, and understanding its mechanism has remained one of the major challenges even though x-ray structures have been available since 2000. In the past two decades, single-particle cryo-electron microscopy has contributed a major share of information on structure, binding modes, and conformational changes of the ribosome during its work cycle, but the contributions of this technique in the translation field have recently skyrocketed after the introduction of a new recording medium capable of detecting individual electrons. As many examples in the recent literature over the past three years show, the impact of this development on the advancement of knowledge in this field has been transformative and promises to be lasting.
Collapse
Affiliation(s)
- Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| |
Collapse
|
176
|
Schaeffer RD, Liao Y, Cheng H, Grishin NV. ECOD: new developments in the evolutionary classification of domains. Nucleic Acids Res 2016; 45:D296-D302. [PMID: 27899594 PMCID: PMC5210594 DOI: 10.1093/nar/gkw1137] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022] Open
Abstract
Evolutionary Classification Of protein Domains (ECOD) (http://prodata.swmed.edu/ecod) comprehensively classifies protein with known spatial structures maintained by the Protein Data Bank (PDB) into evolutionary groups of protein domains. ECOD relies on a combination of automatic and manual weekly updates to achieve its high accuracy and coverage with a short update cycle. ECOD classifies the approximately 120 000 depositions of the PDB into more than 500 000 domains in ∼3400 homologous groups. We show the performance of the weekly update pipeline since the release of ECOD, describe improvements to the ECOD website and available search options, and discuss novel structures and homologous groups that have been classified in the recent updates. Finally, we discuss the future directions of ECOD and further improvements planned for the hierarchy and update process.
Collapse
Affiliation(s)
- R Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA
| | - Yuxing Liao
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA
| | - Hua Cheng
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, USA
| |
Collapse
|
177
|
Chandrasekar S, Sweredoski MJ, Sohn CH, Hess S, Shan SO. Co-evolution of Two GTPases Enables Efficient Protein Targeting in an RNA-less Chloroplast Signal Recognition Particle Pathway. J Biol Chem 2016; 292:386-396. [PMID: 27895118 DOI: 10.1074/jbc.m116.752931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/17/2016] [Indexed: 11/06/2022] Open
Abstract
The signal recognition particle (SRP) is an essential ribonucleoprotein particle that mediates the co-translational targeting of newly synthesized proteins to cellular membranes. The SRP RNA is a universally conserved component of SRP that mediates key interactions between two GTPases in SRP and its receptor, thus enabling rapid delivery of cargo to the target membrane. Notably, this essential RNA is bypassed in the chloroplast (cp) SRP of green plants. Previously, we showed that the cpSRP and cpSRP receptor GTPases (cpSRP54 and cpFtsY, respectively) interact efficiently by themselves without the SRP RNA. Here, we explore the molecular mechanism by which this is accomplished. Fluorescence analyses showed that, in the absence of SRP RNA, the M-domain of cpSRP54 both accelerates and stabilizes complex assembly between cpSRP54 and cpFtsY. Cross-linking coupled with mass spectrometry and mutational analyses identified a new interaction between complementarily charged residues on the cpFtsY G-domain and the vicinity of the cpSRP54 M-domain. These residues are specifically conserved in plastids, and their evolution coincides with the loss of SRP RNA in green plants. These results provide an example of how proteins replace the functions of RNA during evolution.
Collapse
Affiliation(s)
| | - Michael J Sweredoski
- the Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Chang Ho Sohn
- From the Division of Chemistry and Chemical Engineering and
| | - Sonja Hess
- the Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, California 91125
| | - Shu-Ou Shan
- From the Division of Chemistry and Chemical Engineering and
| |
Collapse
|
178
|
Cryo-EM study of start codon selection during archaeal translation initiation. Nat Commun 2016; 7:13366. [PMID: 27819266 PMCID: PMC5103072 DOI: 10.1038/ncomms13366] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/27/2016] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic and archaeal translation initiation complexes have a common structural core comprising e/aIF1, e/aIF1A, the ternary complex (TC, e/aIF2-GTP-Met-tRNAiMet) and mRNA bound to the small ribosomal subunit. e/aIF2 plays a crucial role in this process but how this factor controls start codon selection remains unclear. Here, we present cryo-EM structures of the full archaeal 30S initiation complex showing two conformational states of the TC. In the first state, the TC is bound to the ribosome in a relaxed conformation with the tRNA oriented out of the P site. In the second state, the tRNA is accommodated within the peptidyl (P) site and the TC becomes constrained. This constraint is compensated by codon/anticodon base pairing, whereas in the absence of a start codon, aIF2 contributes to swing out the tRNA. This spring force concept highlights a mechanism of codon/anticodon probing by the initiator tRNA directly assisted by aIF2. Initiation factor eIF2, common to eukaryotes and archaea, is a central actor in translation initiation. Here the authors describe two cryo-EM structures of archaeal 30S initiation complexes that provide a novel view of the central role that e/aIF2 plays in start codon selection.
Collapse
|
179
|
Liu Z, Gutierrez-Vargas C, Wei J, Grassucci RA, Sun M, Espina N, Madison-Antenucci S, Tong L, Frank J. Determination of the ribosome structure to a resolution of 2.5 Å by single-particle cryo-EM. Protein Sci 2016; 26:82-92. [PMID: 27750394 DOI: 10.1002/pro.3068] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/06/2022]
Abstract
With the advance of new instruments and algorithms, and the accumulation of experience over decades, single-particle cryo-EM has become a pivotal part of structural biology. Recently, we determined the structure of a eukaryotic ribosome at 2.5 Å for the large subunit. The ribosome was derived from Trypanosoma cruzi, the protozoan pathogen of Chagas disease. The high-resolution density map allowed us to discern a large number of unprecedented details including rRNA modifications, water molecules, and ions such as Mg2+ and Zn2+ . In this paper, we focus on the procedures for data collection, image processing, and modeling, with particular emphasis on factors that contributed to the attainment of high resolution. The methods described here are readily applicable to other macromolecules for high-resolution reconstruction by single-particle cryo-EM.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, 10032
| | - Cristina Gutierrez-Vargas
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, 10032
| | - Jia Wei
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, 10032
| | - Robert A Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, 10032
| | - Ming Sun
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, 10032
| | - Noel Espina
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, 12201
| | - Susan Madison-Antenucci
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, 12201
| | - Liang Tong
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, 10032
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, 10032.,Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, 10032.,Department of Biological Sciences, Columbia University, New York, New York, 10027
| |
Collapse
|
180
|
Cryo-EM structure of the large subunit of the spinach chloroplast ribosome. Sci Rep 2016; 6:35793. [PMID: 27762343 PMCID: PMC5071890 DOI: 10.1038/srep35793] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022] Open
Abstract
Protein synthesis in the chloroplast is mediated by the chloroplast ribosome (chloro-ribosome). Overall architecture of the chloro-ribosome is considerably similar to the Escherichia coli (E. coli) ribosome but certain differences are evident. The chloro-ribosome proteins are generally larger because of the presence of chloroplast-specific extensions in their N- and C-termini. The chloro-ribosome harbours six plastid-specific ribosomal proteins (PSRPs); four in the small subunit and two in the large subunit. Deletions and insertions occur throughout the rRNA sequence of the chloro-ribosome (except for the conserved peptidyl transferase center region) but the overall length of the rRNAs do not change significantly, compared to the E. coli. Although, recent advancements in cryo-electron microscopy (cryo-EM) have provided detailed high-resolution structures of ribosomes from many different sources, a high-resolution structure of the chloro-ribosome is still lacking. Here, we present a cryo-EM structure of the large subunit of the chloro-ribosome from spinach (Spinacia oleracea) at an average resolution of 3.5 Å. High-resolution map enabled us to localize and model chloro-ribosome proteins, chloroplast-specific protein extensions, two PSRPs (PSRP5 and 6) and three rRNA molecules present in the chloro-ribosome. Although comparable to E. coli, the polypeptide tunnel and the tunnel exit site show chloroplast-specific features.
Collapse
|
181
|
Woellhaf MW, Sommer F, Schroda M, Herrmann JM. Proteomic profiling of the mitochondrial ribosome identifies Atp25 as a composite mitochondrial precursor protein. Mol Biol Cell 2016; 27:3031-3039. [PMID: 27582385 PMCID: PMC5063612 DOI: 10.1091/mbc.e16-07-0513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 11/15/2022] Open
Abstract
Whereas the structure and function of cytosolic ribosomes are well characterized, we only have a limited understanding of the mitochondrial translation apparatus. Using SILAC-based proteomic profiling, we identified 13 proteins that cofractionated with the mitochondrial ribosome, most of which play a role in translation or ribosomal biogenesis. One of these proteins is a homologue of the bacterial ribosome-silencing factor (Rsf). This protein is generated from the composite precursor protein Atp25 upon internal cleavage by the matrix processing peptidase MPP, and in this respect, it differs from all other characterized mitochondrial proteins of baker's yeast. We observed that cytosolic expression of Rsf, but not of noncleaved Atp25 protein, is toxic. Our results suggest that eukaryotic cells face the challenge of avoiding negative interference from the biogenesis of their two distinct translation machineries.
Collapse
Affiliation(s)
- Michael W Woellhaf
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | |
Collapse
|
182
|
Human mitochondrial ribosomes can switch their structural RNA composition. Proc Natl Acad Sci U S A 2016; 113:12198-12201. [PMID: 27729525 DOI: 10.1073/pnas.1609338113] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The recent developments in cryo-EM have revolutionized our access to previously refractory structures. In particular, such studies of mammalian mitoribosomes have confirmed the absence of any 5S rRNA species and revealed the unexpected presence of a mitochondrially encoded tRNA (mt-tRNA) that usurps this position. Although the cryo-EM structures resolved the conundrum of whether mammalian mitoribosomes contain a 5S rRNA, they introduced a new dilemma: Why do human and porcine mitoribosomes integrate contrasting mt-tRNAs? Human mitoribosomes have been shown to integrate mt-tRNAVal compared with the porcine use of mt-tRNAPhe We have explored this observation further. Our studies examine whether a range of mt-tRNAs are used by different mammals, or whether the mt-tRNA selection is strictly limited to only these two species of the 22 tRNAs encoded by the mitochondrial genome (mtDNA); whether there is tissue-specific variation within a single organism; and what happens to the human mitoribosome when levels of the mt-tRNAVal are depleted. Our data demonstrate that only mt-tRNAVal or mt-tRNAPhe are found in the mitoribosomes of five different mammals, each mammal favors the same mt-tRNA in all tissue types, and strikingly, when steady-state levels of mt-tRNAVal are reduced, human mitoribosome biogenesis displays an adaptive response by switching to the incorporation of mt-tRNAPhe to generate translationally competent machinery.
Collapse
|
183
|
Structure and assembly model for the Trypanosoma cruzi 60S ribosomal subunit. Proc Natl Acad Sci U S A 2016; 113:12174-12179. [PMID: 27791004 DOI: 10.1073/pnas.1614594113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribosomes of trypanosomatids, a family of protozoan parasites causing debilitating human diseases, possess multiply fragmented rRNAs that together are analogous to 28S rRNA, unusually large rRNA expansion segments, and r-protein variations compared with other eukaryotic ribosomes. To investigate the architecture of the trypanosomatid ribosomes, we determined the 2.5-Å structure of the Trypanosoma cruzi ribosome large subunit by single-particle cryo-EM. Examination of this structure and comparative analysis of the yeast ribosomal assembly pathway allowed us to develop a stepwise assembly model for the eight pieces of the large subunit rRNAs and a number of ancillary "glue" proteins. This model can be applied to the characterization of Trypanosoma brucei and Leishmania spp. ribosomes as well. Together with other details, our atomic-level structure may provide a foundation for structure-based design of antitrypanosome drugs.
Collapse
|
184
|
Boos F, Wollin M, Herrmann JM. Methionine on the rise: how mitochondria changed their codon usage. EMBO J 2016; 35:2066-2067. [PMID: 27578810 DOI: 10.15252/embj.201695385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Felix Boos
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Michael Wollin
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
185
|
Wang RYR, Song Y, Barad BA, Cheng Y, Fraser JS, DiMaio F. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife 2016; 5. [PMID: 27669148 PMCID: PMC5115868 DOI: 10.7554/elife.17219] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/22/2016] [Indexed: 01/25/2023] Open
Abstract
Cryo-EM has revealed the structures of many challenging yet exciting macromolecular assemblies at near-atomic resolution (3–4.5Å), providing biological phenomena with molecular descriptions. However, at these resolutions, accurately positioning individual atoms remains challenging and error-prone. Manually refining thousands of amino acids – typical in a macromolecular assembly – is tedious and time-consuming. We present an automated method that can improve the atomic details in models that are manually built in near-atomic-resolution cryo-EM maps. Applying the method to three systems recently solved by cryo-EM, we are able to improve model geometry while maintaining the fit-to-density. Backbone placement errors are automatically detected and corrected, and the refinement shows a large radius of convergence. The results demonstrate that the method is amenable to structures with symmetry, of very large size, and containing RNA as well as covalently bound ligands. The method should streamline the cryo-EM structure determination process, providing accurate and unbiased atomic structure interpretation of such maps. DOI:http://dx.doi.org/10.7554/eLife.17219.001
Collapse
Affiliation(s)
- Ray Yu-Ruei Wang
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, United States.,Department of Biochemistry, University of Washington, Seattle, United States
| | - Yifan Song
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Benjamin A Barad
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, United States.,Graduate Group in Biophysics, University of California, San Francisco, San Francisco, United States
| | - Yifan Cheng
- Keck Advanced Microscopy Laboratory, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, United States
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Protein Design, University of Washington, Seattle, United States
| |
Collapse
|
186
|
The architecture of the mammalian respirasome. Nature 2016; 537:639-43. [DOI: 10.1038/nature19359] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022]
|
187
|
Satoh TP, Miya M, Mabuchi K, Nishida M. Structure and variation of the mitochondrial genome of fishes. BMC Genomics 2016; 17:719. [PMID: 27604148 PMCID: PMC5015259 DOI: 10.1186/s12864-016-3054-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background The mitochondrial (mt) genome has been used as an effective tool for phylogenetic and population genetic analyses in vertebrates. However, the structure and variability of the vertebrate mt genome are not well understood. A potential strategy for improving our understanding is to conduct a comprehensive comparative study of large mt genome data. The aim of this study was to characterize the structure and variability of the fish mt genome through comparative analysis of large datasets. Results An analysis of the secondary structure of proteins for 250 fish species (248 ray-finned and 2 cartilaginous fishes) illustrated that cytochrome c oxidase subunits (COI, COII, and COIII) and a cytochrome bc1 complex subunit (Cyt b) had substantial amino acid conservation. Among the four proteins, COI was the most conserved, as more than half of all amino acid sites were invariable among the 250 species. Our models identified 43 and 58 stems within 12S rRNA and 16S rRNA, respectively, with larger numbers than proposed previously for vertebrates. The models also identified 149 and 319 invariable sites in 12S rRNA and 16S rRNA, respectively, in all fishes. In particular, the present result verified that a region corresponding to the peptidyl transferase center in prokaryotic 23S rRNA, which is homologous to mt 16S rRNA, is also conserved in fish mt 16S rRNA. Concerning the gene order, we found 35 variations (in 32 families) that deviated from the common gene order in vertebrates. These gene rearrangements were mostly observed in the area spanning the ND5 gene to the control region as well as two tRNA gene cluster regions (IQM and WANCY regions). Although many of such gene rearrangements were unique to a specific taxon, some were shared polyphyletically between distantly related species. Conclusions Through a large-scale comparative analysis of 250 fish species mt genomes, we elucidated various structural aspects of the fish mt genome and the encoded genes. The present results will be important for understanding functions of the mt genome and developing programs for nucleotide sequence analysis. This study demonstrated the significance of extensive comparisons for understanding the structure of the mt genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3054-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takashi P Satoh
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, Chiba, 277-8654, Japan. .,Collection Center, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba City, Ibaraki, 305-0005, Japan. .,Present address: Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto University, 459 Shirahama, Nishimuro, Wakayama, 649-2211, Japan.
| | - Masaki Miya
- Natural History Museum and Institute, 955-2 Aoba-cho, Chuo-ku, Chiba City, Chiba, 260-8682, Japan
| | - Kohji Mabuchi
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, Chiba, 277-8654, Japan
| | - Mutsumi Nishida
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, Chiba, 277-8654, Japan. .,Present address: University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa, 908-0213, Japan.
| |
Collapse
|
188
|
Coscia F, Estrozi LF, Hans F, Malet H, Noirclerc-Savoye M, Schoehn G, Petosa C. Fusion to a homo-oligomeric scaffold allows cryo-EM analysis of a small protein. Sci Rep 2016; 6:30909. [PMID: 27485862 PMCID: PMC4971460 DOI: 10.1038/srep30909] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/10/2016] [Indexed: 12/30/2022] Open
Abstract
Recent technical advances have revolutionized the field of cryo-electron microscopy (cryo-EM). However, most monomeric proteins remain too small (<100 kDa) for cryo-EM analysis. To overcome this limitation, we explored a strategy whereby a monomeric target protein is genetically fused to a homo-oligomeric scaffold protein and the junction optimized to allow the target to adopt the scaffold symmetry, thereby generating a chimeric particle suitable for cryo-EM. To demonstrate the concept, we fused maltose-binding protein (MBP), a 40 kDa monomer, to glutamine synthetase, a dodecamer formed by two hexameric rings. Chimeric constructs with different junction lengths were screened by biophysical analysis and negative-stain EM. The optimal construct yielded a cryo-EM reconstruction that revealed the MBP structure at sub-nanometre resolution. These findings illustrate the feasibility of using homo-oligomeric scaffolds to enable cryo-EM analysis of monomeric proteins, paving the way for applying this strategy to challenging structures resistant to crystallographic and NMR analysis.
Collapse
Affiliation(s)
- Francesca Coscia
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Leandro F Estrozi
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Fabienne Hans
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Hélène Malet
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | | | - Guy Schoehn
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Carlo Petosa
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| |
Collapse
|
189
|
Gammage PA, Gaude E, Van Haute L, Rebelo-Guiomar P, Jackson CB, Rorbach J, Pekalski ML, Robinson AJ, Charpentier M, Concordet JP, Frezza C, Minczuk M. Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Res 2016; 44:7804-16. [PMID: 27466392 PMCID: PMC5027515 DOI: 10.1093/nar/gkw676] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/20/2016] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial diseases are frequently associated with mutations in mitochondrial DNA (mtDNA). In most cases, mutant and wild-type mtDNAs coexist, resulting in heteroplasmy. The selective elimination of mutant mtDNA, and consequent enrichment of wild-type mtDNA, can rescue pathological phenotypes in heteroplasmic cells. Use of the mitochondrially targeted zinc finger-nuclease (mtZFN) results in degradation of mutant mtDNA through site-specific DNA cleavage. Here, we describe a substantial enhancement of our previous mtZFN-based approaches to targeting mtDNA, allowing near-complete directional shifts of mtDNA heteroplasmy, either by iterative treatment or through finely controlled expression of mtZFN, which limits off-target catalysis and undesired mtDNA copy number depletion. To demonstrate the utility of this improved approach, we generated an isogenic distribution of heteroplasmic cells with variable mtDNA mutant level from the same parental source without clonal selection. Analysis of these populations demonstrated an altered metabolic signature in cells harbouring decreased levels of mutant m.8993T>G mtDNA, associated with neuropathy, ataxia, and retinitis pigmentosa (NARP). We conclude that mtZFN-based approaches offer means for mtDNA heteroplasmy manipulation in basic research, and may provide a strategy for therapeutic intervention in selected mitochondrial diseases.
Collapse
Affiliation(s)
| | | | | | - Pedro Rebelo-Guiomar
- MRC Mitochondrial Biology Unit, Cambridge, UK GABBA, University of Porto, Portugal
| | | | | | - Marcin L Pekalski
- JDRF/Wellcome Trust DIL, Cambridge Institute for Medical Research, University of Cambridge, UK
| | | | - Marine Charpentier
- INSERM U1154, CNRS UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | | | | |
Collapse
|
190
|
Vonck J, Parcej DN, Mills DJ. Structure of Alcohol Oxidase from Pichia pastoris by Cryo-Electron Microscopy. PLoS One 2016; 11:e0159476. [PMID: 27458710 PMCID: PMC4961394 DOI: 10.1371/journal.pone.0159476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/10/2016] [Indexed: 01/13/2023] Open
Abstract
The first step in methanol metabolism in methylotrophic yeasts, the oxidation of methanol and higher alcohols with molecular oxygen to formaldehyde and hydrogen peroxide, is catalysed by alcohol oxidase (AOX), a 600-kDa homo-octamer containing eight FAD cofactors. When these yeasts are grown with methanol as the carbon source, AOX forms large crystalline arrays in peroxisomes. We determined the structure of AOX by cryo-electron microscopy at a resolution of 3.4 Å. All residues of the 662-amino acid polypeptide as well as the FAD are well resolved. AOX shows high structural homology to other members of the GMC family of oxidoreductases, which share a conserved FAD binding domain, but have different substrate specificities. The preference of AOX for small alcohols is explained by the presence of conserved bulky aromatic residues near the active site. Compared to the other GMC enzymes, AOX contains a large number of amino acid inserts, the longest being 75 residues. These segments are found at the periphery of the monomer and make extensive inter-subunit contacts which are responsible for the very stable octamer. A short surface helix forms contacts between two octamers, explaining the tendency of AOX to form crystals in the peroxisomes.
Collapse
Affiliation(s)
- Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- * E-mail:
| | - David N. Parcej
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Deryck J. Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
191
|
Abstract
Oxidative phosphorylation (OXPHOS) is the mechanism whereby ATP, the major energy source for the cell, is produced by harnessing cellular respiration in the mitochondrion. This is facilitated by five multi-subunit complexes housed within the inner mitochondrial membrane. These complexes, with the exception of complex II, are of a dual genetic origin, requiring expression from nuclear and mitochondrial genes. Mitochondrially encoded mRNA is translated on the mitochondrial ribosome (mitoribosome) and the recent release of the near atomic resolution structure of the mammalian mitoribosome has highlighted its peculiar features. However, whereas some aspects of mitochondrial translation are understood, much is to be learnt about the presentation of mitochondrial mRNA to the mitoribosome, the biogenesis of the machinery, the exact role of the membrane, the constitution of the translocon/insertion machinery and the regulation of translation in the mitochondrion. This review addresses our current knowledge of mammalian mitochondrial gene expression, highlights key questions and indicates how defects in this process can result in profound mitochondrial disease.
Collapse
|
192
|
Kayal E, Bentlage B, Collins AG. Insights into the transcriptional and translational mechanisms of linear organellar chromosomes in the box jellyfish Alatina alata (Cnidaria: Medusozoa: Cubozoa). RNA Biol 2016; 13:799-809. [PMID: 27267414 DOI: 10.1080/15476286.2016.1194161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In most animals, the mitochondrial genome is characterized by its small size, organization into a single circular molecule, and a relative conservation of the number of encoded genes. In box jellyfish (Cubozoa, Cnidaria), the mitochondrial genome is organized into 8 linear mito-chromosomes harboring between one and 4 genes each, including 2 extra protein-coding genes: mt-polB and orf314. Such an organization challenges the traditional view of mitochondrial DNA (mtDNA) expression in animals. In this study, we investigate the pattern of mitochondrial gene expression in the box jellyfish Alatina alata, as well as several key nuclear-encoded molecular pathways involved in the processing of mitochondrial gene transcription. RESULTS Read coverage of DNA-seq data is relatively uniform for all 8 mito-chromosomes, suggesting that each mito-chromosome is present in equimolar proportion in the mitochondrion. Comparison of DNA and RNA-seq based assemblies indicates that mito-chromosomes are transcribed into individual transcripts in which the beginning and ending are highly conserved. Expression levels for mt-polB and orf314 are similar to those of other mitochondrial-encoded genes, which provides further evidence for them having functional roles in the mitochondrion. Survey of the transcriptome suggests recognition of the mitochondrial tRNA-Met by the cytoplasmic aminoacyl-tRNA synthetase counterpart and C-to-U editing of the cytoplasmic tRNA-Trp after import into the mitochondrion. Moreover, several mitochondrial ribosomal proteins appear to be lost. CONCLUSIONS This study represents the first survey of mitochondrial gene expression of the linear multi-chromosomal mtDNA in box jellyfish (Cubozoa). Future exploration of small RNAs and the proteome of the mitochondrion will test the hypotheses presented herein.
Collapse
Affiliation(s)
- Ehsan Kayal
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA
| | - Bastian Bentlage
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA
| | - Allen G Collins
- a Department of Invertebrate Zoology , National Museum of Natural History, Smithsonian Institution , Washington DC , USA.,b National Systematics Laboratory of NOAA's Fisheries Service, National Museum of Natural History , Washington , DC , USA
| |
Collapse
|
193
|
Affiliation(s)
- Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Alexey Amunts
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
- Science for Life Laboratory, Stockholm University, SE-171 21 Solna, Sweden;
| | - Alan Brown
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, United Kingdom;
| |
Collapse
|
194
|
Constrained cyclic coordinate descent for cryo-EM images at medium resolutions: beyond the protein loop closure problem. ROBOTICA 2016; 34:1777-1790. [DOI: 10.1017/s0263574716000242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYThe cyclic coordinate descent (CCD) method is a popular loop closure method in protein structure modeling. It is a robotics algorithm originally developed for inverse kinematic applications. We demonstrate an effective method of building the backbone of protein structure models using the principle of CCD and a guiding trace. For medium-resolution 3-dimensional (3D) images derived using cryo-electron microscopy (cryo-EM), it is possible to obtain guiding traces of secondary structures and their skeleton connections. Our new method, constrained cyclic coordinate descent (CCCD), builds α-helices, β-strands, and loops quickly and fairly accurately along predefined traces. We show that it is possible to build the entire backbone of a protein fairly accurately when the guiding traces are accurate. In a test of 10 proteins, the models constructed using CCCD show an average of 3.91 Å of backbone root mean square deviation (RMSD). When the CCCD method is incorporated in a simulated annealing framework to sample possible shift, translation, and rotation freedom, the models built with the true topology were ranked high on the list, with an average backbone RMSD100 of 3.76 Å. CCCD is an effective method for modeling atomic structures after secondary structure traces and skeletons are extracted from 3D cryo-EM images.
Collapse
|
195
|
Frank J. Whither Ribosome Structure and Dynamics Research? (A Perspective). J Mol Biol 2016; 428:3565-9. [PMID: 27178840 DOI: 10.1016/j.jmb.2016.04.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/24/2016] [Accepted: 04/29/2016] [Indexed: 12/24/2022]
Abstract
As high-resolution cryogenic electron microscopy (cryo-EM) structures of ribosomes proliferate, at resolutions that allow atomic interactions to be visualized, this article attempts to give a perspective on the way research on ribosome structure and dynamics may be headed, and particularly the new opportunities we have gained through recent advances in cryo-EM. It is pointed out that single-molecule FRET and cryo-EM form natural complements in the characterization of ribosome dynamics and transitions among equilibrating states of in vitro translational systems.
Collapse
Affiliation(s)
- Joachim Frank
- Howard Hughes Medical Institute, Columbia University, 116th and Broadway, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, 650 W. 168th Street, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
196
|
Gopisetty G, Thangarajan R. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease. Gene 2016; 589:27-35. [PMID: 27170550 DOI: 10.1016/j.gene.2016.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/06/2016] [Indexed: 12/25/2022]
Abstract
Mitochondria are prominently understood as power houses producing ATP the primary energy currency of the cell. However, mitochondria are also known to play an important role in apoptosis and autophagy, and mitochondrial dysregulation can lead to pathological outcomes. Mitochondria are known to contain 1500 proteins of which only 13 are coded by mitochondrial DNA and the rest are coded by nuclear genes. Protein synthesis in mitochondria involves mitochondrial ribosomes which are 55-60S particles and are composed of small 28S and large 39S subunits. A feature of mammalian mitoribosome which differentiate it from bacterial ribosomes is the increased protein content. The human mitochondrial ribosomal protein (MRP) gene family comprises of 30 genes which code for mitochondrial ribosomal small subunit and 50 genes for the large subunit. The present review focuses on the mitochondrial ribosomal small subunit genes (MRPS), presents an overview of the literature and data gleaned from publicly available gene and protein expression databases. The survey revealed aberrations in MRPS gene expression patterns in varied human diseases indicating a putative role in their etiology.
Collapse
Affiliation(s)
- Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, India
| | | |
Collapse
|
197
|
Abstract
Awareness that the metabolic phenotype of cells within tumours is heterogeneous - and distinct from that of their normal counterparts - is growing. In general, tumour cells metabolize glucose, lactate, pyruvate, hydroxybutyrate, acetate, glutamine, and fatty acids at much higher rates than their nontumour equivalents; however, the metabolic ecology of tumours is complex because they contain multiple metabolic compartments, which are linked by the transfer of these catabolites. This metabolic variability and flexibility enables tumour cells to generate ATP as an energy source, while maintaining the reduction-oxidation (redox) balance and committing resources to biosynthesis - processes that are essential for cell survival, growth, and proliferation. Importantly, experimental evidence indicates that metabolic coupling between cell populations with different, complementary metabolic profiles can induce cancer progression. Thus, targeting the metabolic differences between tumour and normal cells holds promise as a novel anticancer strategy. In this Review, we discuss how cancer cells reprogramme their metabolism and that of other cells within the tumour microenvironment in order to survive and propagate, thus driving disease progression; in particular, we highlight potential metabolic vulnerabilities that might be targeted therapeutically.
Collapse
|
198
|
Rouault TA. Mitochondrial iron overload: causes and consequences. Curr Opin Genet Dev 2016; 38:31-37. [PMID: 27026139 DOI: 10.1016/j.gde.2016.02.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/08/2016] [Accepted: 02/21/2016] [Indexed: 02/07/2023]
Abstract
Pathological overload of iron in the mitochondrial matrix has been observed in numerous diseases, including sideroblastic anemias, which have many causes, and in genetic diseases that affect iron-sulfur cluster biogenesis, heme synthesis, and mitochondrial protein translation and its products. Although high expression of the mitochondrial iron importer, mitoferrin, appears to be an underlying common feature, it is unclear what drives high mitoferrin expression and what other proteins are involved in trapping excess toxic iron in the mitochondrial matrix. Numerous examples of human diseases and model systems suggest that mitochondrial iron homeostasis is coordinated through transcriptional remodeling. A cytosolic/nuclear molecule may affect a transcriptional factor to coordinate the events that lead to iron accumulation, but no candidates for this role have yet been identified.
Collapse
Affiliation(s)
- Tracey A Rouault
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, Bethesda, MD 20892, United States.
| |
Collapse
|
199
|
Abstract
Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate production in eukaryotic cells. Throughout evolution, mitoribosomes have become functionally specialized for synthesizing mitochondrial membrane proteins, and this has been accompanied by large changes to their structure and composition. We review recent high-resolution structural data that have provided unprecedented insight into the structure and function of mitoribosomes in mammals and fungi.
Collapse
Affiliation(s)
- Basil J Greber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland; .,*Present address: California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720-3220
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
200
|
Habenstein B, Loquet A. Solid-state NMR: An emerging technique in structural biology of self-assemblies. Biophys Chem 2016; 210:14-26. [DOI: 10.1016/j.bpc.2015.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022]
|