151
|
Popham D, Keener J, Kustu S. Purification of the alternative sigma factor, sigma 54, from Salmonella typhimurium and characterization of sigma 54-holoenzyme. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55025-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
152
|
Abstract
mRNA synthesis can be controlled at some distance from the start of transcription in eukaryotes and prokaryotes. It is generally assumed that the distal elements of the transcriptional machinery directly interact with the proximal elements, forcing the DNA to bend in a loop. DNA loop formation and transcription can be affected by the distance between the sites, their helical positioning, their orientation, their concentration (responsible for a cis- or a trans-effect of the DNA sequences), and DNA compaction in chromatin. The corresponding in vitro and in vivo situations have been critically examined for a number of systems, mostly prokaryotic.
Collapse
Affiliation(s)
- M Amouyal
- Unité de physicochimie des macromolécules biologiques, département de biologie moléculaire, Paris, France
| |
Collapse
|
153
|
Cannon W, Charlton W, Buck M. Organization and function of binding sites for the transcriptional activator NifA in the Klebsiella pneumoniae nifE and nifU promoters. J Mol Biol 1991; 220:915-31. [PMID: 1880804 DOI: 10.1016/0022-2836(91)90363-b] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The interaction of the Klebsiella pneumoniae NifA protein, a sigma 54-dependent activator, with the nifE and nifU promoters was analysed. At these promoters NifA established contacts in addition to those predicted by the minimal formulation NifA binding site (5'-TGT-N10-ACA). The positions of the contacts indicate that bound NifA molecules could assemble to form an oligomer. At both promoters contacts with NifA are made predominantly on one face of the DNA helix, and all contacts appear necessary for full activation by NifA. The close contacts made by NifA appear to be made by the DNA-binding domain of NifA. This domain shows specific DNA-binding activity in vitro. The binding of NifA to one site in the nifU promoter depends upon occupancy of additional upstream sequences by NifA. At the nifE promoter NifA binds adjacent to an integration host factor (IHF) binding site, but in contrast to results obtained with the nifU promoter IHF does not diminish nifE promoter occupancy by NifA. The IHF requirement for efficient in vivo activation of the nifU promoter by NifA was greater than that of the nifE promoter. Accordingly, the affinity of IHF for the nifU promoter is higher than for the nifE promoter. Amongst promoters utilizing the sigma 54 holoenzyme, the nifE promoter appears somewhat atypical in having the activator bound at around position -74 rather than the usual 100 base-pairs or more upstream from the transcription start site.
Collapse
Affiliation(s)
- W Cannon
- AFRC Institute of Plant Science Research, University of Sussex, Falmer, Brighton, U.K
| | | | | |
Collapse
|
154
|
Nuez B, Rojo F, Barthelemy I, Salas M. Identification of the sequences recognized by phage phi 29 transcriptional activator: possible interaction between the activator and the RNA polymerase. Nucleic Acids Res 1991; 19:2337-42. [PMID: 1904153 PMCID: PMC329440 DOI: 10.1093/nar/19.9.2337] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Expression of Bacillus subtilis phage phi 29 late genes requires the transcriptional activator protein p4. This activator binds to a region of the late A3 promoter spanning nucleotides -56 to -102 relative to the transcription start site, generating a strong bending Tin the DNA. In this work the target sequences recognized by protein p4 in the phage phi 29 late A3 promoter have been characterized. The binding of protein p4 to derivatives of the late A3 promoter harbouring deletions in the protein p4 binding site has been studied. When protein p4 recognition sequences were altered, the activator could only bind to the promoter in the presence of RNA polymerase. This strong cooperativity in the binding of protein p4 and RNA polymerase to the promoter suggests the presence of direct protein-protein contacts between them.
Collapse
Affiliation(s)
- B Nuez
- Centro de Biología Molecular (CSIC-UAM), Universidad Autónoma, Madrid, Spain
| | | | | | | |
Collapse
|
155
|
Hübner P, Willison JC, Vignais PM, Bickle TA. Expression of regulatory nif genes in Rhodobacter capsulatus. J Bacteriol 1991; 173:2993-9. [PMID: 1902215 PMCID: PMC207883 DOI: 10.1128/jb.173.9.2993-2999.1991] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Translational fusions of the Escherichia coli lacZ gene to Rhodobacter capsulatus nif genes were constructed in order to determine the regulatory circuit of nif gene expression in R. capsulatus, a free-living photosynthetic diazotroph. The expression of nifH, nifA (copies I and II), and nifR4 was measured in different regulatory mutant strains under different physiological conditions. The expression of nifH and nifR4 (the analog of ntrA in Klebsiella pneumoniae) depends on the NIFR1/R2 system (the analog of the ntr system in K. pneumoniae), on NIFA, and on NIFR4. The expression of both copies of nifA is regulated by the NIFR1/R2 system and is modulated by the N source of the medium under anaerobic photosynthetic growth conditions. In the presence of ammonia or oxygen, moderate expression of nifA was detectable, whereas nifH and nifR4 were not expressed under these conditions. The implications for the regulatory circuit of nif gene expression in R. capsulatus are discussed and compared with the situation in K. pneumoniae, another free-living diazotroph.
Collapse
Affiliation(s)
- P Hübner
- Department of Microbiology, Universität Basel, Switzerland
| | | | | | | |
Collapse
|
156
|
Affiliation(s)
- N L Craig
- Department of Microbiology and Immunology, George W. Hooper Foundation, HSW 1542, University of California, San Francisco, California 94143, USA
| |
Collapse
|
157
|
Kato J, Chakrabarty AM. Purification of the regulatory protein AlgR1 and its binding in the far upstream region of the algD promoter in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 1991; 88:1760-4. [PMID: 1900366 PMCID: PMC51104 DOI: 10.1073/pnas.88.5.1760] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A regulatory protein AlgR1, previously suggested to be a member of a two-component sensory transduction system because of its homology to OmpR and NtrC and its ability to allow activation of the algD promoter under conditions of high osmolarity, has been hyperproduced in Escherichia coli after deletion of the upstream region including part of the Shine-Dalgarno sequence of the algR1 gene and its subsequent cloning under the tac promoter. The AlgR1 protein is purified as a monomer, and the sequence of the nine N-terminal amino acids of the monomer matches with that predicted from the DNA sequence of the algR1 gene. The purified AlgR1 protein binds to two separate DNA fragments of the algD upstream region. DNase protection experiments identify these two DNA segments as 14-mer sequences centered at -382 and -458 regions, which contain a common CCGT-TCGTC sequence in them. While the presence of at least one AlgR1 binding site is important for the activation of the algD promoter, the presence of both of the binding sites in the upstream region leads to a higher level of activation.
Collapse
Affiliation(s)
- J Kato
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612
| | | |
Collapse
|
158
|
Role of integration host factor in the regulation of the glnHp2 promoter of Escherichia coli. Proc Natl Acad Sci U S A 1991; 88:1631-5. [PMID: 2000372 PMCID: PMC51078 DOI: 10.1073/pnas.88.5.1631] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The glnHPQ operon of Escherichia coli encodes components of the high-affinity glutamine transport system. One of the two promoters of this operon, glnHp2, is responsible for expression of the operon under nitrogen-limiting conditions. The general nitrogen regulatory protein (NRI) binds to two overlapping sites centered at -109 and -122 from the transcription start site and, when phosphorylated, activates transcription of glnHp2 by catalyzing isomerization of the closed sigma 54-RNA polymerase promoter complex to an open complex. The DNA-bending protein integration host factor (IHF) binds to a site immediately upstream of glnHp2 and enhances the activation of open complex formation by NRI phosphate. The NRI-binding sites can be moved several hundred base pairs further upstream without altering the ability of NRI phosphate to activate open complex formation. We propose that the IHF-induced bend can facilitate or obstruct the interaction between NRI phosphate and the closed complex depending on the relative positions of NRI phosphate and sigma 54-RNA polymerase on the DNA.
Collapse
|
159
|
Purucker M, Bodine D, Lin H, McDonagh K, Nienhuis AW. Structure and function of the enhancer 3' to the human A gamma globin gene. Nucleic Acids Res 1990; 18:7407-15. [PMID: 2259631 PMCID: PMC332879 DOI: 10.1093/nar/18.24.7407] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An enhancer is located immediately 3' to the A gamma globin gene. We have used DNase I footprinting to map the sites of interaction of nuclear proteins with the DNA sequences of this enhancer. Eight footprints were discovered, distributed over 600 base pairs of DNA. Three of these contain a consensus binding site for the erythroid specific factor GATA-I. Each of these GATA-1 sites had an enhancer activity when inserted into a reporter plasmid and tested in human erythroleukemia cells. Other footprints within the enhancer contained consensus binding sequences for the ubiquitous, positive regulatory proteins AP2 and CBP-1. An Sp1-like recognition sequence was also identified. Synthetic oligonucleotides encompassing two of the footprints generated a slowly migrating complex in gel mobility shift assays. The same complex forms on a fragment of the human gamma globin gene promoter extending from -260 to -200. The DNaseI footprint of this protein complex with the enhancer overlapped a sequence, AGGAGGA, found within the binding site for a protein that interacts with the chicken beta globin promoter and enhancer, termed the stage selector element. We propose that this complex of proteins may be involved in the human gamma globin promoter-enhancer interaction.
Collapse
Affiliation(s)
- M Purucker
- Clinical Hematology Branch, National Heart, Lung and Blood Institute, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
160
|
Hoover TR, Santero E, Porter S, Kustu S. The integration host factor stimulates interaction of RNA polymerase with NIFA, the transcriptional activator for nitrogen fixation operons. Cell 1990; 63:11-22. [PMID: 2208275 DOI: 10.1016/0092-8674(90)90284-l] [Citation(s) in RCA: 312] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The regulatory protein NIFA activates transcription of nitrogen fixation (nif) operons by the sigma 54 holoenzyme form of RNA polymerase. NIFA from Klebsiella pneumoniae activates transcription from the nifH promoter in vitro; in addition, the integration host factor, IHF, binds between the nifH promoter and an upstream binding site for NIFA. We demonstrate here that IHF greatly stimulates NIFA-mediated activation of nifH transcription in vitro and thus that the two factors are functionally synergistic. Electron micrographs indicate that IHF bends the DNA in the nifH promoter regulatory region. Although IHF binds close to the nifH promoter, it does not directly stimulate binding of sigma 54 holoenzyme. Rather, the IHF-induced bend may facilitate productive contacts between NIFA and sigma 54 holoenzyme that lead to the formation of open complexes. IHF binds to nif promoter regulatory regions from a variety of organisms within the phylum "purple bacteria," suggesting a general ability to stimulate NIFA-mediated activation of nif transcription.
Collapse
Affiliation(s)
- T R Hoover
- Department of Plant Pathology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
161
|
Abstract
Numerous genes contain regulatory elements located many tens of kilobases away from the promoter they control. Specific mechanisms must be required to ensure that such distant elements can find and interact with their proper targets but not with extraneous genes. This review explores the connections between transvection phenomena, the activation of domains of homeotic gene expression, position effect variegation and silencers. These various examples of long-distance effects suggest that, in all cases, related forms of chromatin packaging may be involved.
Collapse
Affiliation(s)
- V Pirrotta
- Department of Cell Biology, Baylor College of Medicine, Texas Medical Center, Houston 77030
| |
Collapse
|
162
|
Abstract
Enhancers have been defined operationally as cis-regulatory sequences that can stimulate transcription of RNA polymerase-II-transcribed genes over large distances and even when located downstream of the gene. Recently, it has become evident that enhancers can also stimulate transcription in trans if they are brought into close proximity to the promoter/gene. These reports provide clues to the mechanism of remote enhancer action. In addition, the findings, together with genetic studies in Drosophila, strongly suggest that enhancer action in trans could underlie phenomena such as 'transvection', where one chromosome affects gene expression in the paired homolog.
Collapse
Affiliation(s)
- H P Müller
- Institut für Molekularbiologie II, Universität Zürich, Switzerland
| | | |
Collapse
|
163
|
Su W, Porter S, Kustu S, Echols H. DNA-looping and enhancer activity: association between DNA-bound NtrC activator and RNA polymerase at the bacterial glnA promoter. Proc Natl Acad Sci U S A 1990; 87:5504-8. [PMID: 2164685 PMCID: PMC54353 DOI: 10.1073/pnas.87.14.5504] [Citation(s) in RCA: 220] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The NtrC protein activates transcription of the glnA operon of enteric bacteria by stimulating the formation of stable "open" complexes by RNA polymerase (sigma 54-holoenzyme form). To regulate the glnA promoter, NtrC binds to sites that have the properties of transcriptional enhancers: the sites will function far from the promoter and in an orientation-independent fashion. To investigate the mechanism of enhancer function, we have used electron microscopy to visualize the interactions of purified NtrC and RNA polymerase with their DNA binding sites and with each other. Under conditions that allow the formation of open complexes, about 30% of DNA molecules carry both RNA polymerase and NtrC bound to their specific sites. Of these, about 15% form looped structures in which NtrC and the RNA polymerase-promoter complex are in contact. The length of the looped DNA is that predicted from the spacing that was engineered between the enhancer and the glnA promoter (390 base pairs). As expected for activation intermediates, the looped structures disappear when RNA polymerase is allowed to transcribe the DNA. We conclude that the NtrC enhancer functions by means of a direct association between DNA-bound NtrC and RNA polymerase (DNA-looping model). Association of DNA-bound proteins appears to be the major mechanism by which different types of site-specific DNA transactions are localized and controlled.
Collapse
Affiliation(s)
- W Su
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | | | |
Collapse
|