151
|
Abstract
Hepatitis delta virus (HDV) is a cause of acute and chronic liver disease for which no effective therapy is currently available. Previous research has demonstrated that prenylation of the large HDV antigen is essential for viral assembly. A new report describes a novel small animal model for HDV replication and demonstrates that prenylation inhibitors are highly effective at clearing viremia and thus have potential relevance for the treatment of chronic delta hepatitis.
Collapse
Affiliation(s)
- Theo Heller
- Liver Diseases Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
152
|
Fadda Z, Daròs JA, Fagoaga C, Flores R, Duran-Vila N. Eggplant latent viroid, the candidate type species for a new genus within the family Avsunviroidae (hammerhead viroids). J Virol 2003; 77:6528-32. [PMID: 12743309 PMCID: PMC155007 DOI: 10.1128/jvi.77.11.6528-6532.2003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viroids, small circular RNAs that replicate independently and in most cases incite diseases in plants, are classified into the families Pospiviroidae, composed of species with a central conserved region (CCR) and without hammerhead ribozymes, and Avsunviroidae, composed of three members lacking CCR but able to self-cleave in both polarity strands through hammerhead ribozymes. Here we report the biological and molecular properties of Eggplant latent viroid (ELVd). Purified circular ELVd induces symptomless infections when inoculated into eggplant seedlings. ELVd can be transmitted horizontally and through seed. Sequencing 10 complete cDNA clones showed that ELVd is a circular RNA of 332 to 335 nucleotides with high variability. This RNA can adopt a quasi-rod-like secondary structure of minimal free energy and alternative foldings that permit formation of stable hammerhead structures in plus and minus strands. The ribozymes are active in vitro and, most likely, in vivo. Considering the ELVd properties to be intermediate between those of the two genera of family Avsunviroidae, we propose ELVd as the type species of a third genus with the name ELAVIROID:
Collapse
Affiliation(s)
- Z Fadda
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Spain
| | | | | | | | | |
Collapse
|
153
|
Puerta-Fernández E, Romero-López C, Barroso-delJesus A, Berzal-Herranz A. Ribozymes: recent advances in the development of RNA tools. FEMS Microbiol Rev 2003; 27:75-97. [PMID: 12697343 DOI: 10.1016/s0168-6445(03)00020-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The discovery 20 years ago that some RNA molecules, called ribozymes, are able to catalyze chemical reactions was a breakthrough in biology. Over the last two decades numerous natural RNA motifs endowed with catalytic activity have been described. They all fit within a few well-defined types that respond to a specific RNA structure. The prototype catalytic domain of each one has been engineered to generate trans-acting ribozymes that catalyze the site-specific cleavage of other RNA molecules. On the 20th anniversary of ribozyme discovery we briefly summarize the main features of the different natural catalytic RNAs. We also describe progress towards developing strategies to ensure an efficient ribozyme-based technology, dedicating special attention to the ones aimed to achieve a new generation of therapeutic agents.
Collapse
Affiliation(s)
- Elena Puerta-Fernández
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, Ventanilla 11, 18001 Granada, Spain
| | | | | | | |
Collapse
|
154
|
Maniataki E, Martinez de Alba AE, Sägesser R, Tabler M, Tsagris M. Viroid RNA systemic spread may depend on the interaction of a 71-nucleotide bulged hairpin with the host protein VirP1. RNA (NEW YORK, N.Y.) 2003; 9:346-54. [PMID: 12592008 PMCID: PMC1370401 DOI: 10.1261/rna.2162203] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2002] [Accepted: 12/13/2002] [Indexed: 05/18/2023]
Abstract
Viroids are noncoding circular single-stranded RNAs that are propagated systemically in plants. VirP1 is a protein from tomato, which is an excellent host for potato spindle tuber viroid (PSTVd), and it has been isolated by virtue of its specific in vitro binding to PSTVd RNA. We report on the specific in vivo interaction of VirP1 with full-length viroid RNA as well as with subfragments in the three-hybrid system. The terminal right domain (TR) of PSTVd was identified as a strong interacting partner for VirP1. A weaker partner is provided by a right-hand subfragment of hop stunt viroid (HSVd), a viroid that infects tomato poorly. We present a sequence and structural motif of the VirP1-interacting subfragments. The motif is disturbed in the replicative but nonspreading R+ mutant of the TR. According to our in vivo and in vitro binding assays, the interaction of this mutant with VirP1 is compromised. We propose that the AGG/CCUUC motif bolsters recognition of the TR by VirP1 to achieve access of the viroid to pathways that propagate endogenous RNA systemic signals in plants. Systemic trafficking has been suggested for miRNA precursors, of which the TR, as a stable bulged hairpin 71 nt long, is quite reminiscent.
Collapse
Affiliation(s)
- Elsa Maniataki
- Department of Biology, University of Crete, Greece, GR-71110 Heraklion/Crete, Greece.
| | | | | | | | | |
Collapse
|
155
|
Schrader O, Baumstark T, Riesner D. A mini-RNA containing the tetraloop, wobble-pair and loop E motifs of the central conserved region of potato spindle tuber viroid is processed into a minicircle. Nucleic Acids Res 2003; 31:988-98. [PMID: 12560495 PMCID: PMC149213 DOI: 10.1093/nar/gkg193] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A Mini-RNA from potato spindle tuber viroid (PSTVd) was constructed specifically for cleavage and ligation to circles in vitro. It contains the C-domain with the so-called central conserved region (CCR) of PSTVd with a 17 nt duplication in the upper strand and hairpin structures at the left and rights ends of the secondary structure. The CCR was previously shown to be essential for processing of in vitro transcripts. When folded under conditions which favor formation of a kinetically controlled conformation and incubated in a potato nuclear extract, the Mini-RNA is cleaved correctly at the 5'- and the 3'-end and ligated to a circle. Thus, the CCR obviously contains all structural and functional requirements for correct processing and therefore may be regarded as 'processing domain' of PSTVd. Using the Mini-RNA as a model substrate, the structural and functional relevance of its conserved non-canonical motifs GAAA tetraloop, loop E and G:U wobble base pair were studied by mutational analysis. It was found that (i) the conserved GAAA tetraloop is essential for processing by favoring the kinetically controlled conformation, (ii) a G:U wobble base pair at the 5'-cleavage site contributes to its correct recognition and (iii) an unpaired nucleotide in loop E, which is different from the corresponding nucleotide in the conserved loop E motif, is essential for ligation of the 5'- with the 3'-end. Hence all three structural motifs are functional elements for processing in a potato nuclear extract.
Collapse
Affiliation(s)
- O Schrader
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
156
|
Abstract
The hepatitis delta virus (HDV) ribozymes are self-cleaving RNA sequences critical to the replication of a small RNA genome. A recently determined crystal structure together with biochemical and biophysical studies provides new insight into the possible catalytic mechanism of these ribozymes. The HDV ribozymes are examples of naturally occurring small ribozymes that catalyze cleavage of the RNA backbone with a rate enhancement of 10(6)- to 10(7)-fold over the uncatalyzed rate. To achieve this level of rate enhancement, the HDV ribozymes have been proposed to employ several catalytic strategies that include the use of metal ions, intrinsic binding energy, and a novel example of general acid-base catalysis with a cytosine side chain acting as a proton donor or acceptor.
Collapse
Affiliation(s)
- I-hung Shih
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
157
|
Qi Y, Ding B. Replication of Potato spindle tuber viroid in cultured cells of tobacco and Nicotiana benthamiana: the role of specific nucleotides in determining replication levels for host adaptation. Virology 2002; 302:445-56. [PMID: 12441088 DOI: 10.1006/viro.2002.1662] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed an electroporation protocol to inoculate cultured cells of tobacco and Nicotiana benthamiana with in vitro transcripts of Potato spindle tuber viroid (PSTVd) to characterize viroid structural features that determine replication efficiency at the cellular level. Both (+)- and (-)-strands of PSTVd were detected by Northern blots as early as 6 h postinoculation (h.p.i.). Accumulation of the (+)-circular PSTVd increased very rapidly starting at 24 h.p.i. and continued beyond 6 days postinoculation. Viroid accumulation in individual cells was visualized by in situ hybridization, which showed that 60-70% of the cells were infected. Previous work showed that C259 --> U substitution converted tomato isolate PSTVd(KF440-2) into a strain that is infectious on tobacco (M. Wassenegger, R. L. Spieker, S. Thalmeir, F.-U. Gast, L. Riedel, and H. L. Sänger, 1996. Virology 226, 191-197). Similarly, C259 --> U or U257 --> A substitution in the Intermediate strain (PSTVd(Int)) conferred infectivity in tobacco (Y. Zhu, Y. Qi, Y. Xun, R. Owens, and B. Ding, 2002. Plant Physiol. 130, 138-146). Our replication assays in tobacco-cultured cells demonstrated that U257 --> A and C259 --> U substitutions each enhanced PSTVd replication by 5- to 10-fold. Replacement of U257 with C, but not with G, also led to enhanced replication in tobacco cells. Replacement of C259 with nucleotide A or G did not enhance replication. Elevated accumulation of the (-)- and (+)-strands of these mutants was in part due to enhanced transcription. Interestingly, all of the nucleotide changes did not alter PSTVd replication levels in N. benthamiana cells. These results provide insights about PSTVd structures that modulate replication efficiency in adapting to a specific host.
Collapse
Affiliation(s)
- Yijun Qi
- Department of Plant Biology and Plant Biotechnology Center, The Ohio State University, Columbus, 43210, USA
| | | |
Collapse
|
158
|
Chia JS, Wu HL, Wang HW, Chen DS, Chen PJ. Inhibition of Hepatitis Delta Virus Genomic Ribozyme Self-Cleavage by Aminoglycosides. J Biomed Sci 2002; 4:208-216. [PMID: 12386382 DOI: 10.1007/bf02253420] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Subgenomic regions of hepatitis delta virus (HDV) RNA contains ribozyme whose activities are important to viral life cycles and depend on a unique pseudoknot structure. To explore the characters of HDV ribozyme, antibiotics of the aminoglycoside, which has been shown inhibiting self-splicing of group I intron and useful in elucidating its structure, were tested for their effect on HDV genomic ribozyme. Aminoglycosides, including tobramycin, netromycin, neomycin and gentamicin effectively inhibited HDV genomic ribozyme self-cleavage in vitro at a concentration comparable to that inhibiting group I intron self-splicing. The extent of inhibition depended upon the concentration of magnesium ion. Chemical modification mapping of HDV ribozyme RNA indicated that the susceptibility of nucleotide 703 to the modifying agent was enhanced in the presence of tobramycin, suggesting a conformational shift of HDV ribozyme, probably due to an interaction with the aminoglycoside. Finally, we examined the effect of aminoglycoside on HDV cleavage and replication in cell lines, however, none of the aminoglycoside effective in vitro exerted suppressive effects in vivo. Our results represented as an initial effort in utilizing aminoglycoside to probe the structure of HDV ribozyme and to compare its reaction mechanism with those of other related ribozymes.
Collapse
Affiliation(s)
- J.-S. Chia
- Graduate Institutes of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
159
|
Macnaughton TB, Lai MMC. Large hepatitis delta antigen is not a suppressor of hepatitis delta virus RNA synthesis once RNA replication is established. J Virol 2002; 76:9910-9. [PMID: 12208968 PMCID: PMC136516 DOI: 10.1128/jvi.76.19.9910-9919.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Moderation of hepatitis delta virus (HDV) replication is a likely prerequisite in the establishment of chronic infections and is thought to be mediated by the intracellular accumulation of large hepatitis delta antigen (L-HDAg). The regulatory role of this protein was suggested from several studies showing that cotransfection of plasmid cDNAs expressing both L-HDAg and HDV RNA results in a potent inhibition of HDV RNA replication. However, since this approach differs significantly from natural HDV infections, where HDV RNA replication is initiated from an RNA template, and L-HDAg appears only late in the replication cycle, it remains unclear whether L-HDAg can modulate HDV RNA replication in the natural HDV replication cycle. In this study, we investigated the effect of L-HDAg, produced as a result of the natural HDV RNA editing event, on HDV RNA replication. The results showed that following cDNA-free HDV RNA transfection, a steady-state level of RNA was established at 3 to 4 days posttransfection. The same level of HDV RNA was reached when a mutant HDV genome unable to make L-HDAg was used, suggesting that L-HDAg did not play a role. The rates of HDV RNA synthesis, as measured by metabolic labeling experiments, were identical at 4 and 8 days posttransfection and in the wild type and the L-HDAg-deficient mutant. We further examined the effect of overexpression of L-HDAg at various stages of the HDV replication cycle, showing that HDV RNA synthesis was resistant to L-HDAg when it was overexpressed 3 days after HDV RNA replication had initiated. Finally, we showed that, contrary to conventional thinking, L-HDAg alone, at a certain molar ratio with HDV RNA, can initiate HDV RNA replication. Thus, L-HDAg does not inherently inhibit HDV RNA synthesis. Taken together, these results indicated that L-HDAg affects neither the rate of HDV RNA synthesis nor the final steady-state level of HDV RNA and that L-HDAg is unlikely to act as an inhibitor of HDV RNA replication in the natural HDV replication cycle.
Collapse
Affiliation(s)
- Thomas B Macnaughton
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California 90033-1054, USA
| | | |
Collapse
|
160
|
Zhu Y, Qi Y, Xun Y, Owens R, Ding B. Movement of potato spindle tuber viroid reveals regulatory points of phloem-mediated RNA traffic. PLANT PHYSIOLOGY 2002; 130:138-46. [PMID: 12226494 PMCID: PMC166547 DOI: 10.1104/pp.006403] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2002] [Revised: 04/18/2002] [Accepted: 04/26/2002] [Indexed: 05/17/2023]
Abstract
Increasing evidence indicates that the phloem mediates traffic of selective RNAs within a plant. How an RNA enters, moves in, and exits the phloem is poorly understood. Potato spindle tuber viroid (PSTVd) is a pathogenic RNA that does not encode proteins and is not encapsidated, and yet it replicates autonomously and traffics systemically within an infected plant. The viroid RNA genome must interact directly with cellular factors to accomplish these functions and is, therefore, an excellent probe to study mechanisms that regulate RNA traffic. Our analyses of PSTVd traffic in Nicotiana benthamiana yielded evidence that PSTVd movement within sieve tubes does not simply follow mass flow from source to sink organs. Rather, this RNA is transported into selective sink organs. Furthermore, two PSTVd mutants can enter the phloem to spread systemically but cannot exit the phloem in systemic leaves of tobacco (Nicotiana tabacum). A viroid most likely has evolved structural motifs that mimic endogenous plant RNA motifs so that they are recognized by cellular factors for traffic. Thus, analysis of PSTVd traffic functions may provide insights about endogenous mechanisms that control phloem entry, transport, and exit of RNAs.
Collapse
Affiliation(s)
- Yali Zhu
- Department of Plant Biology and Plant Biotechnology Center, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
161
|
Schröder ARW, Riesner D. Detection and analysis of hairpin II, an essential metastable structural element in viroid replication intermediates. Nucleic Acids Res 2002; 30:3349-59. [PMID: 12140319 PMCID: PMC137078 DOI: 10.1093/nar/gkf454] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In (-)-stranded replication intermediates of the potato spindle tuber viroid (PSTVd) a thermodynamically metastable structure containing a specific hairpin structure (HP II) has been proposed to be essential for viroid replication. In the present work a method was devised allowing the direct detection of the HP II structure in vitro and in vivo using a biophysical approach. An RNA oligonucleotide was constructed which specifically binds to the HP II loop region in transient (-)-strand intermediates. Analysis of the resulting oligonucleotide/HP II complexes on temperature-gradient gels enabled us to follow the formation of HP II during in vitro transcription by T7 RNA polymerase. Moreover, we were able to demonstrate the formation of HP II during viroid replication in potato (Solanum tuberosum) cells.
Collapse
Affiliation(s)
- Astrid R W Schröder
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universtitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
162
|
Macnaughton TB, Shi ST, Modahl LE, Lai MMC. Rolling circle replication of hepatitis delta virus RNA is carried out by two different cellular RNA polymerases. J Virol 2002; 76:3920-7. [PMID: 11907231 PMCID: PMC136092 DOI: 10.1128/jvi.76.8.3920-3927.2002] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hepatitis delta virus (HDV) contains a viroid-like circular RNA that is presumed to replicate via a rolling circle replication mechanism mediated by cellular RNA polymerases. However, the exact mechanism of rolling circle replication for HDV RNA and viroids is not clear. Using our recently described cDNA-free transfection system (L. E. Modahl and M. M. Lai, J. Virol. 72:5449-5456, 1998), we have succeeded in detecting HDV RNA replication by metabolic labeling with [32P]orthophosphate in vivo and obtained direct evidence that HDV RNA replication generates high-molecular-weight multimeric species of HDV RNA, which are processed into monomeric and dimeric forms. Thus, these multimeric RNAs are the true intermediates of HDV RNA replication. We also found that HDV RNA synthesis is highly temperature sensitive, occurring most efficiently at 37 to 40 degrees C and becoming virtually undetectable at temperatures below 30 degrees C. Moreover, genomic HDV RNA synthesis was found to occur at a rate roughly 30-fold higher than that of antigenomic RNA synthesis. Finally, in lysolecithin-permeabilized cells, the synthesis of full-length antigenomic HDV RNA was completely resistant to high concentrations (100 microg/ml) of alpha-amanitin. In contrast, synthesis of genomic HDV RNA was totally inhibited by alpha-amanitin at concentrations as low as 2.5 microg/ml. Thus, these results suggest that genomic and antigenomic HDV RNA syntheses are performed by two different host cell enzymes. This observation, combined with our previous finding that hepatitis delta antigen mRNA synthesis is likely performed by RNA polymerase II, suggests that the different HDV RNA species are synthesized by different cellular transcriptional machineries.
Collapse
Affiliation(s)
- Thomas B Macnaughton
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033-1054, USA
| | | | | | | |
Collapse
|
163
|
Affiliation(s)
- T O Diener
- Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
164
|
Flores R, Hernandez C, de la Peña M, Vera A, Daros JA. Hammerhead ribozyme structure and function in plant RNA replication. Methods Enzymol 2002; 341:540-52. [PMID: 11582803 DOI: 10.1016/s0076-6879(01)41175-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- R Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
165
|
Daròs JA, Flores R. A chloroplast protein binds a viroid RNA in vivo and facilitates its hammerhead-mediated self-cleavage. EMBO J 2002; 21:749-59. [PMID: 11847122 PMCID: PMC125856 DOI: 10.1093/emboj/21.4.749] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Viroids, small single-stranded circular RNAs (246-401 nucleotides), do not have mRNA capacity and must recruit host proteins to assist in the steps of their biological cycle. The nature of these cellular factors is poorly understood due to a lack of reliable experimental approaches. Here, to screen for host proteins interacting with viroid RNAs in vivo, we UV-irradiated avocado leaves infected with avocado sunblotch viroid (ASBVd), the type member of chloroplast viroids containing hammerhead ribozymes. This resulted in the detection of several ASBVd-host protein adducts. Tandem mass spectrometry analysis of the most abundant cross-linked species identified the protein component as two closely related chloroplast RNA-binding proteins (PARBP33 and PARBP35) of a family whose members previously have been shown to be involved in stabilization, maturation and editing of chloroplast transcripts. PARBP33 behaves as an RNA chaperone that stimulates in vitro the hammerhead-mediated self-cleavage of the multimeric ASBVd transcripts that result from rolling circle replication, indicating that this reaction, despite its RNA-based mechanism, is facilitated by proteins. The structural and functional parallelism between PARBP33 and PARBP35, and some proteins involved in viral RNA replication, indicates that viroids and RNA viruses recruit similar host proteins for their replication.
Collapse
Affiliation(s)
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, Valencia 46022, Spain
Corresponding author e-mail:
| |
Collapse
|
166
|
Chang J, Taylor J. In vivo RNA-directed transcription, with template switching, by a mammalian RNA polymerase. EMBO J 2002; 21:157-64. [PMID: 11782435 PMCID: PMC125818 DOI: 10.1093/emboj/21.1.157] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
These studies support the interpretation that a host polymerase, most likely RNA polymerase II, can not only carry out transcription that is RNA directed, but also achieve template switching on a discontinuous RNA template, and even perform non-templated nucleotide incorporation. As part of an in vivo analysis of the initiation of replication of the RNA genome of human hepatitis delta virus (HDV), a series of linear RNAs containing HDV sequences was tested in order to explain the ability of this host polymerase to initiate RNA-directed RNA synthesis in vivo and produce replicating circular HDV species. The data support the hypothesis that the input linear template RNAs were not converted to circles before transcription but rather that in the process of transcription, the polymerase was able to make an intra-molecular template switch. Furthermore, in certain cases this switch produced small deletions of template sequences, and in some cases even insertion of non-templated sequences. Thus, in an in vivo situation, polymerase II has several important capabilities in addition to what is considered typical DNA-directed transcription.
Collapse
Affiliation(s)
| | - John Taylor
- Fox Chase Cancer Center, 7701 Burholme Avenue, Philadelphia, PA 19111-2497, USA
Corresponding author e-mail:
| |
Collapse
|
167
|
Fels A, Hu K, Riesner D. Transcription of potato spindle tuber viroid by RNA polymerase II starts predominantly at two specific sites. Nucleic Acids Res 2001; 29:4589-97. [PMID: 11713308 PMCID: PMC92535 DOI: 10.1093/nar/29.22.4589] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pospiviroidae, with their main representative potato spindle tuber viroid (PSTVd), are replicated via a rolling circle mechanism by the host-encoded DNA-dependent RNA polymerase II (pol II). In the first step, the (+)-strand circular viroid is transcribed into a (-)-strand oligomer intermediate. As yet it is not known whether transcription is initiated by promotors at specific start sites or is distributed non-specifically over the whole circle. An in vitro transcription extract was prepared from a non-infected potato cell culture which exhibited transcriptional activity using added circular PSTVd (+)-strand RNA as template. In accordance with pol II activity, transcription could be inhibited by alpha-amanitin. RT-PCR revealed the existence of at least two different start sites and primer extension identified these as nucleotides A(111) and A(325). The sequences of the first 7 nt transcribed are very similar, (105)GGAGCGA(111) and (319)GGGGCGA(325). GC-boxes are located at a distance of 15 and 16 nt upstream, respectively, in the native viroid structure, which may act to facilitate initiation. The GC-boxes may have a similar function to the GC-rich hairpin II in the (-)-strand intermediate, as described previously. The results are compared with the corresponding features of avocado sunblotch viroid, which belongs to a different family of viroids and exhibits different transcription initiation properties.
Collapse
Affiliation(s)
- A Fels
- Institut für Physikalische Biologie, Heinrich-Heine Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
168
|
Itaya A, Folimonov A, Matsuda Y, Nelson RS, Ding B. Potato spindle tuber viroid as inducer of RNA silencing in infected tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:1332-1334. [PMID: 11763132 DOI: 10.1094/mpmi.2001.14.11.1332] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Potato spindle tuber viroid (PSTVd), an RNA plant pathogen encoding no known proteins, induces systemic symptoms on tomato plants. We report detection of small RNAs of approximately 25 nucleotides with sequence specificity to PSTVd in infected plants: an indication of the presence of RNA silencing. RNA silencing, however, did not appear to be responsible for the differing symptoms induced by a mild and a severe strain of PSTVd. The unique structural and biological features of viroids make them attractive experimental tools to investigate mechanisms of RNA silencing and pathogen counterdefense.
Collapse
Affiliation(s)
- A Itaya
- Department of Plant Biology and Plant Biotechnology Center, Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
169
|
Flores R. A naked plant-specific RNA ten-fold smaller than the smallest known viral RNA: the viroid. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2001; 324:943-52. [PMID: 11570283 DOI: 10.1016/s0764-4469(01)01370-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Viroids are subviral plant pathogens at the frontier of life. They are solely composed by a single-stranded circular RNA of 246-401 nt with a compact secondary structure. Viroids replicate autonomously when inoculated into their host plants and incite, in most of them, economically important diseases. In contrast to viruses, viroids do not code for any protein and depend on host enzymes for their replication, which in some viroids occurs in the nucleus and in others in the chloroplast, through a rolling-circle mechanism with three catalytic steps. Quite remarkably, however, one of the steps, cleavage of the oligomeric head-to-tail replicative intermediates to unit-length strands, is mediated in certain viroids by hammerhead ribozymes that can be formed by their strands of both polarities. Viroids induce disease by direct interaction with host factors, the nature of which is presently unknown. Some properties of viroids, particularly the presence of ribozymes, suggest that they might have appeared very early in evolution and could represent 'living fossils' of the precellular RNA world that presumably preceded our current world based on DNA and proteins.
Collapse
Affiliation(s)
- R Flores
- Instituto de Bología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022, Valencia, Spain.
| |
Collapse
|
170
|
De la Peña M, Flores R. An extra nucleotide in the consensus catalytic core of a viroid hammerhead ribozyme: implications for the design of more efficient ribozymes. J Biol Chem 2001; 276:34586-93. [PMID: 11454858 DOI: 10.1074/jbc.m103867200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hammerhead ribozymes catalyze self-cleavage of oligomeric RNAs generated in replication of certain viroid and viroid-like RNAs. Previous studies have defined a catalytic core conserved in most natural hammerheads, but it is still unknown why some present deviations from the consensus. We have addressed this issue in chrysanthemum chlorotic mottle viroid (CChMVd), whose (+) hammerhead has an extra A (A10) between the conserved A9 and the quasi-conserved G10.1. Effects of insertions at this position on hammerhead kinetics have not hitherto been examined. A10 caused a moderate decrease of the trans-cleaving rate constant with respect to the CChMVd (+) hammerhead without this residue, whereas A10-->C and A10-->G substitutions had major detrimental effects, likely because they favor catalytically inactive foldings. By contrast, A10-->U substitution induced a 3-4-fold increase of the rate constant, providing an explanation for the extra U10 present in two natural hammerheads. Because A10 also occupies a singular and indispensable position in the global CChMVd conformation, as revealed by bioassays, these results show that some hammerheads deviate from the consensus due to the involvement of certain residues in critical function(s) other than self-cleavage. Incorporation of the extra U10 into a model hammerhead also caused a similar increase in the rate constant, providing data for a deeper understanding of the hammerhead structural requirements and for designing more efficient ribozymes.
Collapse
Affiliation(s)
- M De la Peña
- Instituto de Biologia Molecular y Celular de Plantas, Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, Valencia 46022, Spain
| | | |
Collapse
|
171
|
Shapiro BA, Bengali D, Kasprzak W, Wu JC. RNA folding pathway functional intermediates: their prediction and analysis. J Mol Biol 2001; 312:27-44. [PMID: 11545583 DOI: 10.1006/jmbi.2001.4931] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The massively parallel genetic algorithm (GA) for RNA structure prediction uses the concepts of mutation, recombination, and survival of the fittest to evolve a population of thousands of possible RNA structures toward a solution structure. As described below, the properties of the algorithm are ideally suited to use in the prediction of possible folding pathways and functional intermediates of RNA molecules given their sequences. Utilizing Stem Trace, an interactive visualization tool for RNA structure comparison, analysis of not only the solution ensembles developed by the algorithm, but also the stages of development of each of these solutions, can give strong insight into these folding pathways. The GA allows the incorporation of information from biological experiments, making it possible to test the influence of particular interactions between structural elements on the dynamics of the folding pathway. These methods are used to reveal the folding pathways of the potato spindle tuber viroid (PSTVd) and the host killing mechanism of Escherichia coli plasmid R1, both of which are successfully explored through the combination of the GA and Stem Trace. We also present novel intermediate folds of each molecule, which appear to be phylogenetically supported, as determined by use of the methods described below.
Collapse
Affiliation(s)
- B A Shapiro
- Laboratory of Experimental and Computational Biology, NCI Center for Cancer Research, NCI-Frederick, National Institutes of Health, Building 469, Room 150, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
172
|
Doherty EA, Doudna JA. Ribozyme structures and mechanisms. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:457-75. [PMID: 11441810 DOI: 10.1146/annurev.biophys.30.1.457] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The past few years have seen exciting advances in understanding the structure and function of catalytic RNA. Crystal structures of several ribozymes have provided detailed insight into the folds of RNA molecules. Models of other biologically important RNAs have been constructed based on structural, phylogenetic, and biochemical data. However, many questions regarding the catalytic mechanisms of ribozymes remain. This review compares the structures and possible catalytic mechanisms of four small self-cleaving RNAs: the hammerhead, hairpin, hepatitis delta virus, and in vitro-selected lead-dependent ribozymes. The organization of these small catalysts is contrasted to that of larger ribozymes, such as the group I intron.
Collapse
Affiliation(s)
- E A Doherty
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
173
|
Abstract
Hepatitis delta virus (HDV) is a defective RNA virus with similarities to unusual subviral pathogens of higher plants. It requires hepatitis B virus (HBV) for its replication/transmission, and HBV-infected humans are the only established host. HDV causes both severe acute hepatitis and rapidly progressive chronic disease in some individuals. The HDV life cycle involves remarkable features, such as ribozyme- mediated autocatalytic processes, Pol II-directed RNA synthesis from a single-stranded circular RNA template, and RNA editing. Much of our understanding of the nature of this pathogen derives from experimental studies in the chimpanzee model of HBV infection. The hepadnavirus-infected eastern woodchuck also is capable of supporting HDV replication and offers opportunities for the development of control strategies that might be applicable to human type D hepatitis.
Collapse
Affiliation(s)
- J L Gerin
- Division of Molecular Virology and Immunology, Georgetown University Medical Center, Rockville, Maryland, USA
| |
Collapse
|
174
|
Yadava RS, Choi AJ, Lebruska LL, Fedor MJ. Hairpin ribozymes with four-way helical junctions mediate intracellular RNA ligation. J Mol Biol 2001; 309:893-902. [PMID: 11399066 DOI: 10.1006/jmbi.2001.4713] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Virtually all RNA-mediated reactions require transitions among alternative RNA conformations. The complexity of biological reactions can obscure specific conformational changes in vivo and important features of the intracellular environment are difficult to reproduce in vitro. However, simple RNA self-cleavage and ligation reactions offer a unique opportunity to measure the kinetics and equilibria of specific RNA conformational transitions directly in living cells. Hairpin ribozymes that incorporate the natural four-way helical junction self-cleave rapidly in vivo, but only when cleavage products dissociate rapidly. Cleavage rates fall when cleavage products remain bound in stable base-paired helices, providing evidence that bound products undergo re-ligation. These results provide the first detailed kinetic description of an intracellular ribozyme reaction that includes cleavage, ligation and product dissociation rates. Kinetic and equilibrium parameters measured in vivo correspond well, but not perfectly, with values measured for the same reactions in vitro under conditions that approximate an intracellular ionic environment.
Collapse
Affiliation(s)
- R S Yadava
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute MB35, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
175
|
Abstract
The past few years have seen exciting advances in understanding the structure and function of catalytic RNA. Crystal structures of several ribozymes have provided detailed insight into the folds of RNA molecules. Models of other biologically important RNAs have been constructed based on structural, phylogenetic, and biochemical data. However, many questions regarding the catalytic mechanisms of ribozymes remain. This review compares the structures and possible catalytic mechanisms of four small self-cleaving RNAs: the hammerhead, hairpin, hepatitis delta virus, and in vitro-selected lead-dependent ribozymes. The organization of these small catalysts is contrasted to that of larger ribozymes, such as the group I intron.
Collapse
Affiliation(s)
- E A Doherty
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
176
|
Abstract
The global structures of branched RNA species are important to their function. Branched RNA species are defined as molecules in which double-helical segments are interrupted by abrupt discontinuities. These include helical junctions of different orders, and base bulges and loops. Common helical junctions are three- and four-way junctions, often interrupted by mispairs or additional nucleotides. There are many interesting examples of functional RNA junctions, including the hammerhead and hairpin ribozymes, and junctions that serve as binding sites for proteins. The junctions display some common structural properties. These include a tendency to undergo pairwise helical stacking and ion-induced conformational transitions. Helical branchpoints can act as key architectural components and as important sites for interactions with proteins. Copyright 1999 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- David M. J. Lilley
- CRC Nucleic Acid Structure Research Group, Department of Biochemistry, The University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
177
|
Côté F, Lévesque D, Perreault JP. Natural 2',5'-phosphodiester bonds found at the ligation sites of peach latent mosaic viroid. J Virol 2001; 75:19-25. [PMID: 11119569 PMCID: PMC113893 DOI: 10.1128/jvi.75.1.19-25.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2000] [Accepted: 08/30/2000] [Indexed: 11/20/2022] Open
Abstract
Peach latent mosaic viroid (PLMVd) is a circular RNA pathogen that replicates in a DNA-independent fashion via a rolling circle mechanism. PLMVd has been shown to self-ligate in vitro primarily via the formation of 2',5'-phosphodiester bonds; however, in vivo the occurrence and necessity of this nonenzymatic mechanism are not evident. Here, we unequivocally report the presence of 2', 5'-phosphodiester bonds at the ligation site of circular PLMVd strands isolated from infected peach leaves. These bonds serve to close the linear conformers (i.e., intermediates), yielding circular ones. Furthermore, these bonds are shown to stabilize the replicational circular templates, resulting in a significant advantage in terms of viroid viability. Although the mechanism responsible for the formation of these 2',5'-phosphodiester bonds remains to be elucidated, a hypothesis describing in vivo nonenzymatic self-ligation is proposed. Most significantly, our results clearly show that 2',5'-phosphodiester bonds are still present in nature and that they are of biological importance.
Collapse
Affiliation(s)
- F Côté
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | |
Collapse
|
178
|
Vera A, Daròs JA, Flores R, Hernández C. The DNA of a plant retroviroid-like element is fused to different sites in the genome of a plant pararetrovirus and shows multiple forms with sequence deletions. J Virol 2000; 74:10390-400. [PMID: 11044083 PMCID: PMC110913 DOI: 10.1128/jvi.74.22.10390-10400.2000] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Carnation small viroid-like RNA (CarSV RNA) and its homologous DNA are the two forms of a unique plant retroviroid-like system. CarSV RNA is a 275-nucleotide noninfectious viroid-like RNA, present in certain carnation plants, which can adopt hammerhead structures in both polarity strands and self-cleave accordingly. CarSV DNA is organized as a series of head-to-tail multimers forming part of extrachromosomal elements in which CarSV DNA sequences are fused to sequences of carnation etched ring virus (CERV), a plant pararetrovirus. Analysis of more than 30 CarSV-CERV DNA junctions showed that distinct regions of the viral genome seem able to interact with CarSV DNA. All these junctions were short nucleotide stretches common to both CarSV and CERV DNAs. This suggests a polymerase-driven mechanism for their origin involving an enzyme with low processivity, most likely the viral reverse transcriptase. This view was further supported by the observation that most of CarSV sequences forming part of the junctions correspond either to strong secondary structure motifs in the conformation proposed for CarSV RNA or to its self-cleavage sites, which may have facilitated polymerase jumping. Accompanying the most-abundant CarSV RNA, a series of CarSV RNAs with sequence deletions were previously characterized. Here we have identified some of their corresponding DNA forms, together with other CarSV DNA forms with deletions not found in any CarSV RNA species identified so far. Some of these CarSV DNA forms have also been detected fused to CERV sequences. The existence of these shortened CarSV DNA versions may provide a continuous input of their corresponding transcripts and explain the persistence of CarSV RNAs with defective hammerhead structures for which an RNA-RNA model of amplification seems unlikely.
Collapse
Affiliation(s)
- A Vera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | | | | | | |
Collapse
|
179
|
Rojas AA, Vazquez-Tello A, Ferbeyre G, Venanzetti F, Bachmann L, Paquin B, Sbordoni V, Cedergren R. Hammerhead-mediated processing of satellite pDo500 family transcripts from Dolichopoda cave crickets. Nucleic Acids Res 2000; 28:4037-43. [PMID: 11024185 PMCID: PMC110794 DOI: 10.1093/nar/28.20.4037] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This work reports the discovery and functional characterization of catalytically active hammerhead motifs within satellite DNA of the pDo500 family from several DOLICHOPODA: cave cricket species. We show that in vitro transcribed RNA of some members of this satellite DNA family do self-cleave in vitro. This self-cleavage activity is correlated with the efficient in vivo processing of long primary transcripts into monomer-sized RNA. The high sequence conservation of the satellite pDo500 DNA family among genetically isolated DOLICHOPODA: schiavazzii populations, as well as other DOLICHOPODA: species, along with the fact that satellite members are actively transcribed in vivo suggests that the hammerhead-encoding satellite transcripts are under selective pressure, perhaps because they fulfil an important physiological role or function. Remarkably, this is the third example of hammerhead ribozyme structures associated with transcribed repetitive DNA sequences from animals. The possibility that such an association may not be purely coincidental is discussed.
Collapse
Affiliation(s)
- A A Rojas
- Département de Biochimie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Navarro JA, Flores R. Characterization of the initiation sites of both polarity strands of a viroid RNA reveals a motif conserved in sequence and structure. EMBO J 2000; 19:2662-70. [PMID: 10835363 PMCID: PMC212762 DOI: 10.1093/emboj/19.11.2662] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Viroids replicate through a rolling-circle mechanism in which the infecting circular RNA and its complementary (-) strand are transcribed. The precise site at which transcription starts was investigated for the avocado sunblotch viroid (ASBVd), the type species of the family of viroids with hammerhead ribozymes. Linear ASBVd (+) and (-) RNAs begin with a UAAAA sequence that maps to similar A+U-rich terminal loops in their predicted quasi-rod-like secondary structures. The sequences around the initiation sites of ASBVd, which replicates and accumulates in the chloroplast, are similar to the promoters of a nuclear-encoded chloroplastic RNA polymerase (NEP), supporting the involvement of an NEP-like activity in ASBVd replication. Since RNA folding appears to be kinetically determined, the specific location of both ASBVd initiation sites provides a mechanistic insight into how the nascent ASBVd strands may fold in vivo. The approach used here, in vitro capping and RNase protection assays, may be useful for investigating the initiation sites of other small circular RNA replicons.
Collapse
Affiliation(s)
- J A Navarro
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, Valencia 46022, Spain
| | | |
Collapse
|
181
|
Bell P, Brazas R, Ganem D, Maul GG. Hepatitis delta virus replication generates complexes of large hepatitis delta antigen and antigenomic RNA that affiliate with and alter nuclear domain 10. J Virol 2000; 74:5329-36. [PMID: 10799610 PMCID: PMC110888 DOI: 10.1128/jvi.74.11.5329-5336.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1999] [Accepted: 02/22/2000] [Indexed: 12/15/2022] Open
Abstract
Hepatitis delta virus (HDV), a single-stranded RNA virus, bears a single coding region whose product, the hepatitis delta antigen (HDAg), is expressed in two isoforms, small (S-HDAg) and large (L-HDAg). S-HDAg is required for replication of HDV, while L-HDAg inhibits viral replication and is required for the envelopment of the HDV genomic RNA by hepatitis B virus proteins. Here we have examined the spatial distribution of HDV RNA and proteins in infected nuclei, with particular reference to specific nuclear domains. We found that L-HDAg was aggregated in specific nuclear domains and that over half of these domains were localized beside nuclear domain 10 (ND10). At later times, ND10-associated proteins like PML were found in larger HDAg complexes that had developed into apparently hollow spheres. In these larger complexes, PML was found chiefly in the rims of the spheres, while the known ND10 components Sp100, Daxx, and NDP55 were found in the centers of the spheres. Thus, ND10 proteins that normally are closely linked separate within HDAg-associated complexes. Viral RNA of antigenomic polarity, whether expressed from genomic RNA or directly from introduced plasmids, colocalizes with L-HDAg and the transcriptional repressor PML. In contrast, HDV genomic RNA was distributed more uniformly throughout the nucleus. These results suggest that different host protein complexes may assemble on viral RNA strands of different polarities, and they also suggest that this RNA virus, like DNA viruses, can alter the distribution of ND10-associated proteins. The fact that viral components specifically linked to repression of replication can associate with one of the ND10-associated proteins (PML) raises the possibility that this host protein may play a role in the regulation of HDV RNA synthesis.
Collapse
Affiliation(s)
- P Bell
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
182
|
Navarro JA, Vera A, Flores R. A chloroplastic RNA polymerase resistant to tagetitoxin is involved in replication of avocado sunblotch viroid. Virology 2000; 268:218-25. [PMID: 10683343 DOI: 10.1006/viro.1999.0161] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Avocado sunblotch viroid (ASBVd), the type species of the family Avsunviroidae, replicates and accumulates in the chloroplast. Two main chloroplastic RNA polymerases have been described: the plastid-encoded polymerase (PEP) with a multisubunit structure similar to the Escherichia coli enzyme and a single-unit nuclear-encoded polymerase (NEP) resembling phage RNA polymerases. On a different basis, sensitivity to tagetitoxin, two major RNA polymerase activities, tagetitoxin sensitive (TS) and resistant (TR), have been found in plastids. The most plausible candidates for the TS and TR RNA polymerases are PEP and NEP, respectively. To gain an insight into the enzymology of the polymerization of ASBVd strands, purified chloroplast preparations from ASBVd-infected leaves were assayed for their in vitro ability to transcribe ASBVd RNAs together with some representative genes (psbA, 16SrDNA, accD, and rpoB) of the three classes of chloroplastic genes according to their promoter structure. High concentrations of alpha-amanitin had no effect on gene or on viroid transcription, but tagetitoxin (5-10 microM) prevented transcription of all these genes without affecting synthesis of ASBVd strands; only at higher tagetitoxin concentrations (50-100 microM) was a 25% inhibition observed. These results suggest that NEP is the RNA polymerase required in ASBVd replication, although the participation of another TR RNA polymerase from the chloroplast cannot be excluded.
Collapse
Affiliation(s)
- J A Navarro
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Camino de Vera 14, Valencia, 46022, Spain
| | | | | |
Collapse
|
183
|
Abstract
Infection with hepatitis delta virus (HDV), a satellite virus of hepatitis B virus (HBV), is associated with severe and sometimes fulminant hepatitis. The traditional methods for the diagnosis of HDV infection, such as detection of serum anti-HD antibodies, are sufficient for the clinical diagnosis of delta infection. However, such techniques lack the sensitivity and specificity required to more accurately characterize the nature of HDV infection and to assess the efficacy of therapies. Recent improvements in molecular techniques, such as HDV RNA hybridization and RT-PCR, have provided increased diagnostic precision and a more thorough understanding of the natural course of HDV infection. These advances have enhanced the clinician's ability to accurately evaluate the stage of HDV infection, response to therapy, and occurrence of reinfection after orthotopic liver transplant. This review focuses on the recent advances in the understanding of the molecular biology of HDV and in the laboratory diagnosis of HDV infection.
Collapse
Affiliation(s)
- L E Modahl
- Department of Molecular Microbiology and Immunology, Howard Hughes Medical Institute, Los Angeles, CA, USA
| | | |
Collapse
|
184
|
Reid CE, Lazinski DW. A host-specific function is required for ligation of a wide variety of ribozyme-processed RNAs. Proc Natl Acad Sci U S A 2000; 97:424-9. [PMID: 10618434 PMCID: PMC26679 DOI: 10.1073/pnas.97.1.424] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis delta virus (HDV) replicates its circular RNA genome via a rolling circle mechanism. During this process, cis-acting ribozymes cleave adjacent upstream sequences and thereby resolve replication intermediates to unit-length RNA. The subsequent ligation of these 5'OH and 2',3'-cyclic phosphate termini to form circular RNA is an essential step in the life cycle of the virus. Here we present evidence for the involvement of a host activity in the ligation of HDV RNA. We used both HDV and hammerhead ribozymes to generate a panel of HDV and non-HDV RNA substrates that bear 5' hydroxyl and 2', 3'- cyclic phosphate termini. We found that ligation of these substrates occurred in host cells, but not in vitro or in Escherichia coli. The host-specific ligation activity was capable of joining RNA in both bimolecular and intramolecular reactions and functioned in a sequence-independent manner. We conclude that mammalian cells contain a default pathway that efficiently circularizes ribozyme processed RNAs. This pathway could be exploited in the delivery of stable antisense and decoy RNA to the nucleus.
Collapse
Affiliation(s)
- C E Reid
- Department of Molecular Biology, Raymond and Beverly Sackler Research Foundation Laboratory, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
185
|
Abstract
This chapter focuses on the second viroid family, whose members are also referred to as hammerhead viroids, taking into account their most outstanding feature. If the word “small” is the first to come to mind when considering viroids, perhaps the second word is “hammerhead,” because this class of ribozymes, which because of its structural simplicity has an enormous biotechnological potential, is described in avocado sunblotch viroid (ASBVd) as well as in a viroid-like satellite RNA. The most outstanding feature of the Avsunviroidae members is their potential to adopt hammerhead structures in both polarity strands and to self-cleave in vitro accordingly. Viroids differ from viruses not only in their genome size but also in other fundamental aspects, prominent among which is the lack of messenger activity of both viroid RNAs and their complementary strands.
Collapse
Affiliation(s)
- R Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Spain
| | | | | |
Collapse
|
186
|
Song SI, Silver SL, Aulik MA, Rasochova L, Mohan BR, Miller WA. Satellite cereal yellow dwarf virus-RPV (satRPV) RNA requires a douXble hammerhead for self-cleavage and an alternative structure for replication. J Mol Biol 1999; 293:781-93. [PMID: 10543967 DOI: 10.1006/jmbi.1999.3169] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 110 nt hammerhead ribozyme in the satellite RNA of cereal yellow dwarf virus-RPV (satRPV RNA) folds into an alternative conformation that inhibits self-cleavage. This alternative structure comprises a pseudoknot with base-pairing between loop (L1) and a single-stranded bulge (L2a), which are located in hammerhead stems I and II, respectively. Mutations that disrupt this base-pairing, or otherwise cause the ribozyme to more closely resemble a canonical hammerhead, greatly increase self-cleavage. In a more natural multimeric sequence context containing the full-length satRPV RNA and two copies of the hammerhead, wild-type RNA cleaves much more efficiently than in the 110 nt context. Mutations in the upstream hammerhead, including a knock-out in the catalytic core, affect cleavage at the downstream cleavage site, indicating that multimers of satRPV RNA cleave via a double hammerhead. The double hammerhead includes base-pairing between two copies of the L1 sequence which extends stem I. Disruption of L1-L1 base-pairing slows cleavage of the multimer. L1-L2a base-pairing is required for efficient replication of satRPV RNA in oat protoplasts. Mutations that affect self-cleavage of the multimer do not correlate with replication efficiency, indicating that the ability to self-cleave is not a primary determinant of replication. We present a replication model in which multimeric satRPV RNA folds into alternative conformations that cannot form in the monomer. One potential metastable intermediate conformation involves L1-L2a base-pairing that may facilitate formation of the double hammerhead. However, we conclude that L1-L2a also performs some other essential function in the satRPV RNA replication cycle, because the L1-L2a base-pairing is more important than efficient self-cleavage for replication.
Collapse
MESH Headings
- Avena/cytology
- Avena/virology
- Base Pairing/genetics
- Base Sequence
- Catalysis
- Half-Life
- Kinetics
- Luteovirus/enzymology
- Luteovirus/genetics
- Molecular Sequence Data
- Molecular Weight
- Mutation/genetics
- RNA, Catalytic/biosynthesis
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Satellite/biosynthesis
- RNA, Satellite/chemistry
- RNA, Satellite/genetics
- RNA, Satellite/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- S I Song
- Plant Pathology Department, Iowa State University, 351 Bessey Hall, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|
187
|
Taylor JM. Replication of human hepatitis delta virus: influence of studies on subviral plant pathogens. Adv Virus Res 1999; 54:45-60. [PMID: 10547674 DOI: 10.1016/s0065-3527(08)60365-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- J M Taylor
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111-2497, USA
| |
Collapse
|
188
|
Abstract
In its methodology, the unexpected discovery of the viroid in 1971 resembles that of the virus by Beijerinck some 70 years earlier. In either case, a novel type of plant pathogen was recognized by its ability to penetrate through a medium with pores small enough to exclude even the smallest previously known pathogen: bacteria as compared with the tobacco mosaic agent; viruses as compared with the potato spindle tuber agent. Interestingly, one of the two methods used by Beijerinck, diffusion of the tobacco mosaic agent into agar gels, is conceptually similar to one method used to establish the size of the potato spindle tuber agent, namely polyacrylamide gel electrophoresis. Further work demonstrated that neither agent is an unusually small conventional pathogen (a microbe in the case of the tobacco mosaic agent; a virus in the case of the potato spindle tuber agent), but that either agent represents the prototype of a fundamentally distinct class of pathogen, the viruses and the viroids, respectively. With the viroids, this distinction became evident once their unique molecular structure, lack of mRNA activity, and autonomous replication had become elucidated. Functionally, viroids rely to a far greater extent than viruses on their host's biosynthetic systems: Whereas translation of viral genetic information is essential for virus replication, viroids are totally dependent on their hosts' transcriptional system and, in contrast to viruses, no viroid-coded proteins are involved. Because of the viroids' simplicity and extremely small size they approach more closely even than viruses Beijerinck's concept of a contagium vivum fluidum.
Collapse
Affiliation(s)
- T O Diener
- Center for Agricultural Biotechnology, University of Maryland, College Park, USA
| |
Collapse
|
189
|
Flores R, Navarro JA, de la Peña M, Navarro B, Ambrós S, Vera A. Viroids with hammerhead ribozymes: some unique structural and functional aspects with respect to other members of the group. Biol Chem 1999; 380:849-54. [PMID: 10494833 DOI: 10.1515/bc.1999.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Viroids, subviral pathogens of plants, are composed of a single-stranded circular RNA of 246-399 nucleotides. Within the 27 viroids sequenced, avocado sunblotch, peach latent mosaic and chrysanthemum chlorotic mottle viroids (ASBVd, PLMVd and CChMVd, respectively) can form hammerhead structures in both of their polarity strands. These ribozymes mediate self-cleavage of the oligomeric RNAs generated in the replication through a rolling circle mechanism, whose two other steps are catalyzed by an RNA polymerase and an RNA ligase. ASBVd, and presumably PLMVd and CChMVd, replicate and accumulate in the chloroplast, whereas typical viroids replicate and accumulate in the nucleus. PLMVd and CChMVd do not adopt a rod-like or quasi rod-like secondary structure as typical viroids do but have a highly branched conformation. A pathogenicity determinant has been mapped in a defined region of the CChMVd molecule.
Collapse
Affiliation(s)
- R Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Spain
| | | | | | | | | | | |
Collapse
|
190
|
González-Peralta RP, Galasso GJ, Poynard T, Schalm S, Thomas HC, Wright TL. Summary of the first international symposium on viral hepatitis. Antiviral Res 1999; 42:77-96. [PMID: 10389652 DOI: 10.1016/s0166-3542(99)00023-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
MESH Headings
- Animals
- Disease Models, Animal
- Hepatitis B, Chronic/immunology
- Hepatitis B, Chronic/therapy
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/therapy
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/therapy
- Hepatitis, Viral, Human/immunology
- Hepatitis, Viral, Human/therapy
- Humans
Collapse
|
191
|
Symons RH, Randles JW. Encapsidated circular viroid-like satellite RNAs (virusoids) of plants. Curr Top Microbiol Immunol 1999; 239:81-105. [PMID: 9893370 DOI: 10.1007/978-3-662-09796-0_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
MESH Headings
- Base Sequence
- Blotting, Northern
- Electrophoresis, Polyacrylamide Gel
- Microscopy, Electron
- Models, Molecular
- Molecular Sequence Data
- Plant Viruses/genetics
- Polymerase Chain Reaction
- RNA, Satellite/biosynthesis
- RNA, Satellite/isolation & purification
- RNA, Satellite/ultrastructure
- RNA, Viral/biosynthesis
- RNA, Viral/isolation & purification
- RNA, Viral/ultrastructure
- Viroids/genetics
Collapse
Affiliation(s)
- R H Symons
- Department of Plant Science, Waite Institute, University of Adelaide, Glen Osmond, Australia
| | | |
Collapse
|
192
|
Robertson HD, Neel OD. Virus Origins. ORIGIN AND EVOLUTION OF VIRUSES 1999. [PMCID: PMC7155586 DOI: 10.1016/b978-012220360-2/50003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
193
|
Ambrós S, Hernández C, Desvignes JC, Flores R. Genomic structure of three phenotypically different isolates of peach latent mosaic viroid: implications of the existence of constraints limiting the heterogeneity of viroid quasispecies. J Virol 1998; 72:7397-406. [PMID: 9696836 PMCID: PMC109966 DOI: 10.1128/jvi.72.9.7397-7406.1998] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The peach latent mosaic viroid (PLMVd) is used to study the interactions between a viroid containing hammerhead ribozymes and its natural host, peach. To gain insight into the molecular basis of the phenotypic effects observed upon viroid infection, sequence variants from three PLMVd isolates that differ in symptom expression on the peach indicator GF-305 have been characterized. Analysis of the primary structures of a total of 29 different sequence variants derived from a severe and two latent isolates has revealed a large number of polymorphic positions in the viroid molecule. The variability pattern indicates that preservation of the stability of both hammerhead structures and conservation of a branched secondary structure of the viroid molecule may be factors limiting sequence heterogeneity in PLMVd. Moreover, compensatory mutations in two hairpin loops of the proposed secondary structure, suggesting that a pseudoknot-like interaction may exist between them, have also been observed. Phylogenetic analysis has allowed the allocation of PLMVd molecules into three major groups. This clustering does not strictly correlate with the source isolate from which the variants were obtained, providing insights into the complex mixture of molecules which make up each isolate. Bioassays of individual PLMVd sequence variants on GF-305 peach seedlings have shown that the biological properties of the PLMVd isolates may be correlated with both the complexity of their viroid populations and the presence of specific sequence variants.
Collapse
Affiliation(s)
- S Ambrós
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, Valencia 46022, Spain
| | | | | | | |
Collapse
|
194
|
Feldstein PA, Hu Y, Owens RA. Precisely full length, circularizable, complementary RNA: an infectious form of potato spindle tuber viroid. Proc Natl Acad Sci U S A 1998; 95:6560-5. [PMID: 9601006 PMCID: PMC27879 DOI: 10.1073/pnas.95.11.6560] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/1997] [Accepted: 02/23/1998] [Indexed: 02/07/2023] Open
Abstract
The replication of many viral and subviral pathogens as well as the amplification of certain cellular genes proceeds via a rolling circle mechanism. For potato spindle tuber (PSTVd) and related viroids, the possible role of a circular (-)strand RNA as a template for synthesis of (+)strand progeny is unclear. Infected plants appear to contain only multimeric linear (-)strand RNAs, and attempts to initiate infection with multimeric (-)PSTVd RNAs generally have failed. To examine critically the infectivity of monomeric (-)strand viroid RNAs, we have developed a ribozyme-based expression system for the production of precisely full length (-)strand RNAs whose termini are capable of undergoing facile circularization in vitro. Mechanical inoculation of tomato seedlings with electrophoretically purified (-)PSTVd RNA led to a small fraction of plants becoming infected whereas parallel assays with an analogous tomato planta macho viroid (-)RNA resulted in a much larger fraction of infected plants. Ribozyme-mediated production of (-)PSTVd RNA in transgenic plants led to the appearance of monomeric circular (-)PSTVd RNA and large amounts of (+)PSTVd progeny. No monomeric circular (-)PSTVd RNA could be detected in naturally infected plants by using either ribonuclease protection or electrophoresis under partially denaturing conditions. Although not a component of the normal replicative pathway, precisely full length (-)PSTVd RNA appears to contain all of the structural and regulatory elements necessary for initiation of viroid replication.
Collapse
Affiliation(s)
- P A Feldstein
- Plant Biology Department, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
195
|
Lee CH, Chang SC, Chen CJ, Chang MF. The nucleolin binding activity of hepatitis delta antigen is associated with nucleolus targeting. J Biol Chem 1998; 273:7650-7656. [PMID: 9516470 DOI: 10.1074/jbc.273.13.7650] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatitis delta antigens (HDAgs) are important for the replication and assembly of hepatitis delta virus (HDV). To understand the association between HDAgs and cellular proteins and the mechanism of viral multiplication, we have studied the interaction between HDAgs and nucleolin, a major nucleolar phosphoprotein. The interaction between HDAgs and nucleolin was first demonstrated by immunofluorescence staining studies. HDAgs and endogenous nucleolin were colocalized in the nucleoli of cultured cells transfected with plasmids encoding the small and large HDAg. Coimmunoprecipitation results indicated that the NH2-terminal domain of HDAg was essential for its binding to nucleolin. In vitro ligand binding assays revealed two nucleolin binding sites, NBS1 and NBS2. Each spanned amino acid residues 35-50 and 51-65, respectively, with a conserved core sequence K(K/R)XK. HDV replication was modulated by exogenous human nucleolin. In addition, a small HDAg mutant S-d65/75, which possesses both NBS1 and NBS2, was capable of transactivating HDV replication, whereas the small HDAg mutant S-d50/75, which retained NBS1 but not NBS2, was unable to support the replication of HDV. Thus, the nucleolin binding activity of HDAg is critical for its nucleolar targeting and is involved in the modulation of HDV replication.
Collapse
Affiliation(s)
- C H Lee
- Institute of Biochemistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
196
|
Gultyaev AP, van Batenburg FH, Pleij CW. Dynamic competition between alternative structures in viroid RNAs simulated by an RNA folding algorithm. J Mol Biol 1998; 276:43-55. [PMID: 9514713 DOI: 10.1006/jmbi.1997.1384] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The folding pathways of viroid RNAs were studied using computer simulations by the genetic algorithm for RNA folding. The folding simulations were performed for PSTVd RNAs of both polarities, using the wild-type sequence and some previously known mutants with suggested changes in the stable or metastable structures. It is shown that metastable multihairpin foldings in the minus strand replicative intermediates are established due to the specific folding pathway that ensures the absence of the most stable rod-like structure. Simulations of the PSTVd minus strand folding during transcription reveal a metastable hairpin, formed in the left terminal domain region of the PSTVd. Despite high sequence variability, this hairpin is conserved in all known large viroids of both subgroups of PSTVd type, and is presumably necessary to guide the folding of the HPII hairpin which is functional in the minus strand. The folding simulations are able to demonstrate the changes in the balance between metastable and stable structures in mutant PSTVd RNAs. The stable rod-like structure of the circular viroid (+) RNA is also folded via a dynamic folding pathway. Furthermore, the simulations show that intermediate steps in the forced evolution of a shortened PSTVd replicon may be reconstructed by a mechanistic model of different folding pathway requirements in plus- and minus-strand RNAs. Thus the formation of viroid RNA structure strongly depends on dynamics of competition between alternative RNA structures. This also suggests that the replication efficiency of viroid sequences may be estimated by a simulation of the folding process.
Collapse
Affiliation(s)
- A P Gultyaev
- Leiden Institute of Chemistry Department of Biochemistry Leiden University, The Netherlands
| | | | | |
Collapse
|
197
|
Sano T, Ishiguro A. Viability and pathogenicity of intersubgroup viroid chimeras suggest possible involvement of the terminal right region in replication. Virology 1998; 240:238-44. [PMID: 9454697 DOI: 10.1006/viro.1997.8899] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To investigate the structural determinants regulating viroid replication and pathogenicity, we have examined the biological properties of four chimeric viroids containing sequences derived from hop stunt (HSVd) and citrus exocortis (CEVd) viroids. The viability of each chimera--CEHS (CEVd left half + HSVd right half), HSCE (HSVd left half + CEVd right half), CE/HS-TR (CEVd + HSVd right terminal loop), and HS/CE-TR (HSVd + CEVd right terminal loop)--was tested by inoculation onto cucumber and tomato seedlings. Chimeras CEHS and HSCE were not infectious, but CE/HS-TR and HS/CE-TR replicated stably and produced disease symptoms when inoculated onto tomato or cucumber, respectively. Progeny accumulation was reduced 10-fold or more compared to that of CEVd in tomato or HSVd in cucumber. The results suggested that the TR, like the TL and P regions, forms a relatively independent structural unit that contributes to the total function of a viroid. The effect of sequences in the right terminal loop on pathogenicity appears to be indirect, modulating the efficiency of viroid replication (or accumulation) efficiency rather than symptom expression per se.
Collapse
Affiliation(s)
- T Sano
- Laboratory of Phytopathology, Faculty of Agriculture, Hirosaki University, Japan.
| | | |
Collapse
|
198
|
Abstract
AbstractRibozymes are catalytic RNA molecules that recognize their target RNA in a highly sequence-specific manner. They can therefore be used to inhibit deleterious gene expression (by cleavage of the target mRNA) or even repair mutant cellular RNAs. Targets such as the mRNAs of oncogenes (resulting from base mutations or chromosome translocations, eg, ras or bcr-abl) and viral genomes and transcripts (human immunodeficiency virus–type 1 [HIV-1]) are ideal targets for such sequence-specific agents. The aim of this review is therefore to introduce the different classes of ribozymes, highlighting some of the chemistry of the reactions they catalyze, to address the specific inhibition of genes by ribozymes, the problems yet to be resolved, and how new developments in the field give hope to the future for ribozymes in the therapeutic field.
Collapse
|
199
|
Abstract
Ribozymes are catalytic RNA molecules that recognize their target RNA in a highly sequence-specific manner. They can therefore be used to inhibit deleterious gene expression (by cleavage of the target mRNA) or even repair mutant cellular RNAs. Targets such as the mRNAs of oncogenes (resulting from base mutations or chromosome translocations, eg, ras or bcr-abl) and viral genomes and transcripts (human immunodeficiency virus–type 1 [HIV-1]) are ideal targets for such sequence-specific agents. The aim of this review is therefore to introduce the different classes of ribozymes, highlighting some of the chemistry of the reactions they catalyze, to address the specific inhibition of genes by ribozymes, the problems yet to be resolved, and how new developments in the field give hope to the future for ribozymes in the therapeutic field.
Collapse
|
200
|
Abstract
The hepatitis D virus (HDV) relies on the helper hepatitis B virus (HBV) for the provision of its envelope, which consists of hepatitis B surface antigen (HBsAg). The RNA genome of HDV is a circular rod-like structure due to its extensive intramolecular base-pairing. HDV-RNA has ribozyme activity which includes autocatalytic cleavage and self-ligation properties, essential in virus replication via the rolling circle mechanism. Replication of the RNA is thought to be effected by cellular RNA polymerase II. Hepatitis D antigen (HDAg) is the only protein encoded by HDV-RNA and its long and short forms have a regulatory role in the replication and morphogenesis of the virus. Superinfected HBV carriers who become chronically infected with HDV are at increased risk of developing cirrhosis. Attempts to treat such carriers with interferon have not been particularly successful. In recent years the epidemiology of HDV has changed primarily due to the impact of HBV vaccination in preventing an increase in the pool of susceptible individuals. Copyright 1998 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- P Karayiannis
- Department of Medicine, Division of Medicine, Imperial College School of Medicine at St. Mary's, South Wharf Road, London W2 1NY, UK
| |
Collapse
|