151
|
Abstract
Surround inhibition is a physiological mechanism to focus neuronal activity in the central nervous system. This so-called center-surround organization is well known in sensory systems, where central signals are facilitated and eccentric signals are inhibited in order to sharpen the contrast between them. There is evidence that this mechanism is relevant to skilled motor behavior, and it is deficient, for example, in the affected primary motor cortex of patients with focal hand dystonia (FHD). While it is still not fully elucidated how surround inhibition is generated in healthy subjects, the process is enhanced with handedness and task difficulty indicating that it may be an important mechanism for the performance of individuated finger movements. In FHD, where involuntary overactivation of muscles interferes with precise finger movements, a loss of intracortical inhibition likely contributes to the loss of surround inhibition. Several intracortical inhibitory networks are modulated differently in FHD compared with healthy subjects, and these may contribute to the loss of surround inhibition. Surround inhibition can be observed and assessed in the primary motor cortex. It remains unclear, however, if the effects are created in the cortex or if they are derived from, or supported by, motor signals that come from the basal ganglia.
Collapse
|
152
|
Abstract
Few studies have investigated how the cortex encodes the preshaping of the hand as an object is grasped, an ethological movement referred to as prehension. We developed an encoding model of hand kinematics to test whether primary motor cortex (MI) neurons encode temporally extensive combinations of joint motions that characterize a prehensile movement. Two female rhesus macaque monkeys were trained to grasp 4 different objects presented by a robot while their arm was held in place by a thermoplastic brace. We used multielectrode arrays to record MI neurons and an infrared camera motion tracking system to record the 3-D positions of 14 markers placed on the monkeys' wrist and digits. A generalized linear model framework was used to predict the firing rate of each neuron in a 4 ms time interval, based on its own spiking history and the spatiotemporal kinematics of the joint angles of the hand. Our results show that the variability of the firing rate of MI neurons is better described by temporally extensive combinations of finger and wrist joint angle kinematics rather than any individual joint motion or any combination of static kinematic parameters at their optimal lag. Moreover, a higher percentage of neurons encoded joint angular velocities than joint angular positions. These results suggest that neurons encode the covarying trajectories of the hand's joints during a prehensile movement.
Collapse
|
153
|
Multi-finger interaction during involuntary and voluntary single finger force changes. Exp Brain Res 2010; 208:423-35. [PMID: 21104236 DOI: 10.1007/s00221-010-2492-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/06/2010] [Indexed: 10/18/2022]
Abstract
Two types of finger interaction are characterized by positive co-variation (enslaving) or negative co-variation (error compensation) of finger forces. Enslaving reflects mechanical and neural connections among fingers, while error compensation results from synergic control of fingers to stabilize their net output. Involuntary and voluntary force changes by a finger were used to explore these patterns. We hypothesized that synergic mechanisms will dominate during involuntary force changes, while enslaving will dominate during voluntary finger force changes. Subjects pressed with all four fingers to match a target force that was 10% of their maximum voluntary contraction (MVC). One of the fingers was unexpectedly raised 5.0 mm at a speed of 30.0 mm/s. During finger raising the subject was instructed "not to intervene voluntarily". After the finger was passively lifted and a new steady-state achieved, subjects pressed down with the lifted finger, producing a pulse of force voluntarily. The data were analyzed in terms of finger forces and finger modes (hypothetical commands to fingers reflecting their intended involvement). The target finger showed an increase in force during both phases. In the involuntary phase, the target finger force changes ranged between 10.71 ± 1.89% MVC (I-finger) and 16.60 ± 2.26% MVC (L-finger). Generally, non-target fingers displayed a force decrease with a maximum amplitude of -1.49 ± 0.43% MVC (L-finger). Thus, during the involuntary phase, error compensation was observed--non-lifted fingers showed a decrease in force (as well as in mode magnitude). During the voluntary phase, enslaving was observed--non-target fingers showed an increase in force and only minor changes in mode magnitude. The average change in force of non-target fingers ranged from 21.83 ± 4.47% MVC for R-finger (M-finger task) to 0.71 ± 1.10% MVC for L-finger (I-finger task). The average change in mode of non-target fingers was between -7.34 ± 19.27% MVC for R-finger (L-finger task) and 7.10 ± 1.38% MVC for M-finger (I-finger task). We discuss a range of factors affecting force changes, from purely mechanical effects of finger passive lifting to neural synergic adjustments of commands to individual fingers. The data fit a recently suggested scheme that merges the equilibrium-point hypothesis (control with referent configurations) with the idea of hierarchical synergic control of multi-element systems.
Collapse
|
154
|
Ma C, He J. A method for investigating cortical control of stand and squat in conscious behavioral monkeys. J Neurosci Methods 2010; 192:1-6. [PMID: 20600310 DOI: 10.1016/j.jneumeth.2010.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 11/18/2022]
Abstract
Technical challenges to record cortical unit spikes in conscious behavior monkeys have been presenting constraints in the investigation of cortical control of lower limb. Here we report a novel experimental system for investigation of correlation between cortical neuronal signals and standing and squatting movement. The system consists of a specially designed chair, a standing and squatting task training paradigm and a neuron recording setup with microdrivable electrodes. With this system, a monkey can perform standing up and squatting down tasks while the head is relatively stationary to allow accurate single cortical unit recordings. The spike activities of single motor cortical units, the kinematics and muscle activities from monkeys functioning lower limb motion tasks were successfully recorded simultaneously for analyses of cortical control of lower limb functions and correlations between activity patterns of cortical neurons and lower limb muscles.
Collapse
Affiliation(s)
- Chaolin Ma
- Center for Neural Interface Design, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | | |
Collapse
|
155
|
Abstract
How the activity of populations of cortical neurons generates coordinated multijoint actions of the arm, wrist, and hand is poorly understood. This study combined multielectrode recording techniques with full arm motion capture to relate neural activity in primary motor cortex (M1) of macaques (Macaca mulatta) to arm, wrist, and hand postures during movement. We find that the firing rate of individual M1 neurons is typically modulated by the kinematics of multiple joints and that small, local ensembles of M1 neurons contain sufficient information to reconstruct 25 measured joint angles (representing an estimated 10 functionally independent degrees of freedom). Beyond showing that the spiking patterns of local M1 ensembles represent a rich set of naturalistic movements involving the entire upper limb, the results also suggest that achieving high-dimensional reach and grasp actions with neuroprosthetic devices may be possible using small intracortical arrays like those already being tested in human pilot clinical trials.
Collapse
|
156
|
Towles JD, Kamper DG, Rymer WZ. Lack of hypertonia in thumb muscles after stroke. J Neurophysiol 2010; 104:2139-46. [PMID: 20668270 DOI: 10.1152/jn.00423.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite the importance of the thumb to hand function, little is known about the origins of thumb impairment poststroke. Accordingly, the primary purpose of this study was to assess whether thumb flexors have heightened stretch reflexes (SRs) following stroke-induced hand impairment. The secondary purpose was to compare SR characteristics of thumb flexors in relation to those of finger flexors since it is unclear whether SR properties of both muscle groups are similarly affected poststroke. Stretch reflexes in thumb and finger flexors were assessed at rest on the paretic side in each of 12 individuals with chronic, severe, stroke-induced hand impairment and in the dominant thumb in each of eight control subjects also at rest. Muscle activity and passive joint flexion torques were measured during imposed slow (SS) and fast stretches (FS) of the flexors that span the metacarpophalangeal joints. Putative spasticity was then quantified in terms of the peak difference between FS and SS joint torques and electromyographic changes. For both the hemiparetic and control groups, the mean normalized peak torque differences (PTDs) measured in thumb flexors were statistically indistinguishable (P = 0.57). In both groups, flexor muscles were primarily unresponsive to rapid stretching. For 10 of 12 hemiparetic subjects, PTDs in thumb flexors were less than those in finger flexors (P = 0.03). Paretic finger flexor muscle reflex activity was consistently elicited during rapid stretching. These results may reflect an important difference between thumb and finger flexors relating to properties of the involved muscle afferents and spinal motoneurons.
Collapse
Affiliation(s)
- Joseph D Towles
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, 345 E. Superior St., Ste.1406, Chicago, IL 60610, USA.
| | | | | |
Collapse
|
157
|
Tyč F, Boyadjian A. Plasticity of motor cortex induced by coordination and training. Clin Neurophysiol 2010; 122:153-62. [PMID: 21168091 DOI: 10.1016/j.clinph.2010.05.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 05/05/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To study the modifications induced by training of a coordinated movement on the primary motor cortex (M1) maps of one proximal muscle and one distal muscle activated alone and during their co-contraction. METHODS Six healthy female sport students performed a 6-week training program during which they were trained in darts 3-4 times a week. At the end each subject had made more than 1200 throws. Transcranial magnetic stimulation (TMS) was used to map the proximal medial deltoid (MD) and the distal brachio-radialis (BR) muscle representations on M1. Motor evoked potentials (MEPs) amplitude and excitability curves were used to test corticomotor excitability. RESULTS The cortical representation areas of each muscle separately increased after training. The cortical representation and the excitability curve of the BR muscle increased during co-activation with the MD. Combining co-contraction and training produced a further enlargement of the M1 representation of the BR muscle. CONCLUSIONS The enlargement of the BR representation in M1 suggests the development of overlapping zones specifying functional synergies between distal and proximal muscles. SIGNIFICANCE Our findings support the idea that training of a coordinated movement involving several muscles and joints requires an activity-dependent coupling of cortical networks.
Collapse
Affiliation(s)
- F Tyč
- Laboratoire Plasticité et Physio-Pathologie de la Motricité, UMR 6196, CNRS, 31 Chemin J. Aiguier, 13402 Marseille Cedex 20, France.
| | | |
Collapse
|
158
|
Acharya S, Fifer MS, Benz HL, Crone NE, Thakor NV. Electrocorticographic amplitude predicts finger positions during slow grasping motions of the hand. J Neural Eng 2010; 7:046002. [PMID: 20489239 DOI: 10.1088/1741-2560/7/4/046002] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Four human subjects undergoing subdural electrocorticography for epilepsy surgery engaged in a range of finger and hand movements. We observed that the amplitudes of the low-pass filtered electrocorticogram (ECoG), also known as the local motor potential (LMP), over specific peri-Rolandic electrodes were correlated (p < 0.001) with the position of individual fingers as the subjects engaged in slow and deliberate grasping motions. A generalized linear model (GLM) of the LMP amplitudes from those electrodes yielded predictions for positions of the fingers that had a strong congruence with the actual finger positions (correlation coefficient, r; median = 0.51, maximum = 0.91), during displacements of up to 10 cm at the fingertips. For all the subjects, decoding filters trained on data from any given session were remarkably robust in their prediction performance across multiple sessions and days, and were invariant with respect to changes in wrist angle, elbow flexion and hand placement across these sessions (median r = 0.52, maximum r = 0.86). Furthermore, a reasonable prediction accuracy for grasp aperture was achievable with as few as three electrodes in all subjects (median r = 0.49; maximum r = 0.90). These results provide further evidence for the feasibility of robust and practical ECoG-based control of finger movements in upper extremity prosthetics.
Collapse
Affiliation(s)
- Soumyadipta Acharya
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
159
|
Wang W, Degenhart AD, Collinger JL, Vinjamuri R, Sudre GP, Adelson PD, Holder DL, Leuthardt EC, Moran DW, Boninger ML, Schwartz AB, Crammond DJ, Tyler-Kabara EC, Weber DJ. Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:586-9. [PMID: 19964229 DOI: 10.1109/iembs.2009.5333704] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study human motor cortical activity was recorded with a customized micro-ECoG grid during individual finger movements. The quality of the recorded neural signals was characterized in the frequency domain from three different perspectives: (1) coherence between neural signals recorded from different electrodes, (2) modulation of neural signals by finger movement, and (3) accuracy of finger movement decoding. It was found that, for the high frequency band (60-120 Hz), coherence between neighboring micro-ECoG electrodes was 0.3. In addition, the high frequency band showed significant modulation by finger movement both temporally and spatially, and a classification accuracy of 73% (chance level: 20%) was achieved for individual finger movement using neural signals recorded from the micro-ECoG grid. These results suggest that the micro-ECoG grid presented here offers sufficient spatial and temporal resolution for the development of minimally-invasive brain-computer interface applications.
Collapse
Affiliation(s)
- W Wang
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Plow EB, Arora P, Pline MA, Binenstock MT, Carey JR. Within-limb somatotopy in primary motor cortex – revealed using fMRI. Cortex 2010; 46:310-21. [DOI: 10.1016/j.cortex.2009.02.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 12/01/2008] [Accepted: 02/27/2009] [Indexed: 10/20/2022]
|
161
|
Yu WS, van Duinen H, Gandevia SC. Limits to the Control of the Human Thumb and Fingers in Flexion and Extension. J Neurophysiol 2010; 103:278-89. [DOI: 10.1152/jn.00797.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In humans, hand performance has evolved from a crude multidigit grasp to skilled individuated finger movements. However, control of the fingers is not completely independent. Although musculotendinous factors can limit independent movements, constraints in supraspinal control are more important. Most previous studies examined either flexion or extension of the digits. We studied differences in voluntary force production by the five digits, in both flexion and extension tasks. Eleven healthy subjects were instructed either to maximally flex or extend their digits, in all single- and multidigit combinations. They received visual feedback of total force produced by “instructed” digits and had to ignore “noninstructed” digits. Despite attempts to maximally flex or extend instructed digits, subjects rarely generated their “maximal” force, resulting in a “force deficit,” and produced forces with noninstructed digits (“enslavement”). Subjects performed differently in flexion and extension tasks. Enslavement was greater in extension than in flexion tasks ( P = 0.019), whereas the force deficit in multidigit tasks was smaller in extension ( P = 0.035). The difference between flexion and extension in the relationships between the enslavement and force deficit suggests a difference in balance of spillover of neural drive to agonists acting on neighboring digits and focal neural drive to antagonist muscles. An increase in drive to antagonists would lead to more individualized movements. The pattern of force production matches the daily use of the digits. These results reveal a neural control system that preferentially lifts fingers together by extension but allows an individual digit to flex so that the finger pads can explore and grasp.
Collapse
Affiliation(s)
- W. S. Yu
- Prince of Wales Medical Research Institute and University of New South Wales, Randwick, New South Wales, Australia
| | - H. van Duinen
- Prince of Wales Medical Research Institute and University of New South Wales, Randwick, New South Wales, Australia
| | - S. C. Gandevia
- Prince of Wales Medical Research Institute and University of New South Wales, Randwick, New South Wales, Australia
| |
Collapse
|
162
|
Kubánek J, Miller K, Ojemann J, Wolpaw J, Schalk G. Decoding flexion of individual fingers using electrocorticographic signals in humans. J Neural Eng 2009; 6:066001. [PMID: 19794237 PMCID: PMC3664231 DOI: 10.1088/1741-2560/6/6/066001] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Brain signals can provide the basis for a non-muscular communication and control system, a brain-computer interface (BCI), for people with motor disabilities. A common approach to creating BCI devices is to decode kinematic parameters of movements using signals recorded by intracortical microelectrodes. Recent studies have shown that kinematic parameters of hand movements can also be accurately decoded from signals recorded by electrodes placed on the surface of the brain (electrocorticography (ECoG)). In the present study, we extend these results by demonstrating that it is also possible to decode the time course of the flexion of individual fingers using ECoG signals in humans, and by showing that these flexion time courses are highly specific to the moving finger. These results provide additional support for the hypothesis that ECoG could be the basis for powerful clinically practical BCI systems, and also indicate that ECoG is useful for studying cortical dynamics related to motor function.
Collapse
Affiliation(s)
- J. Kubánek
- BCI R&D Progr, Wadsworth Ctr, NYS Dept of Health, Albany, NY
- Dept of Biomed Eng, Washington Univ, St. Louis, MO
- Dept of Anat & Neurobiol, Washington Univ School of Medicine, St. Louis, MO
| | - K.J. Miller
- Dept of Physics, Univ of Washington, Seattle, WA
- Dept of Medicine, Univ of Washington, Seattle, WA
| | - J.G. Ojemann
- Dept of Neurosurgery, University of Wash School of Med, Seattle, WA
| | - J.R. Wolpaw
- BCI R&D Progr, Wadsworth Ctr, NYS Dept of Health, Albany, NY
| | - G. Schalk
- BCI R&D Progr, Wadsworth Ctr, NYS Dept of Health, Albany, NY
- Dept of Neurology, Albany Medical College, Albany, NY
- Dept of Neurosurgery, Washington Univ, St. Louis, MO
- Dept of Biomed Sci, State Univ of New York at Albany, Albany, NY
- Dept of Biomed Eng, Rensselaer Polytechnic Inst, Troy, NY
| |
Collapse
|
163
|
Duffau H. Does post-lesional subcortical plasticity exist in the human brain? Neurosci Res 2009; 65:131-5. [DOI: 10.1016/j.neures.2009.07.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 07/01/2009] [Accepted: 07/06/2009] [Indexed: 12/23/2022]
|
164
|
Tanriverdi T, Al-Jehani H, Poulin N, Olivier A. Functional results of electrical cortical stimulation of the lower sensory strip. J Clin Neurosci 2009; 16:1188-94. [PMID: 19497753 DOI: 10.1016/j.jocn.2008.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/21/2008] [Accepted: 11/26/2008] [Indexed: 10/20/2022]
Abstract
The aim of this paper is to provide functional results obtained from electrical cortical stimulation of the lower postcentral gyrus in patients who underwent either lesional or non-lesional epilepsy surgery. Group I (n=393) included those patients with gliosis or normal tissue and Group II (n=107) included patients with space-occupying lesions. For cortical stimulation, a unipolar voltage-controlled electrode was used. The tongue, lip, and hand/finger sequences over the lower postcentral gyrus lateromedially in both groups were in agreement with classic teaching. The presence of structural lesions, such as tumors and dysplasia, did not affect the vertical representation of the body parts on the lower sensory strip. Individual variations, which included mosaicism over the sensory strip, were frequent. Whether the functional variability and mosaicism within the sensory cortex result from a pathological condition or not remains to be elucidated in healthy humans using advanced non-invasive brain mapping techniques.
Collapse
Affiliation(s)
- Taner Tanriverdi
- Department of Neurosurgery, Montreal Neurological Institute and Hospital, 3801 rue University, Suite 109, McGill University, Montreal, Quebec H3A-2B4, Canada.
| | | | | | | |
Collapse
|
165
|
Kim CK, Lee DY, Kim YS, Huang J, Park J, Shim JK. Finger force enslaving and surplus in spinal cord injury patients. Exp Brain Res 2009; 195:627-33. [PMID: 19452144 DOI: 10.1007/s00221-009-1837-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/28/2009] [Indexed: 11/24/2022]
Abstract
This study investigated the phenomena of finger enslaving, involuntary finger actions by non-intended fingers, and force deficit, smaller maximum force by all four fingers than the sum of individual finger maximum forces in individuals with cervical spinal cord injuries (SCI). A total of 16 subjects participated in this study: 8 with a cervical spinal cord injury and 8 controls. Each of the injured subjects had one paralyzed finger. The results showed that the efforts to produce force using any individual finger induced force production in all other fingers, suggesting finger force enslaving. The maximum force during the four-finger task was greater than the sum of the individual finger forces during single-finger tasks in the SCI group, which was reflected by positive force deficit, "force surplus". One may utilize these findings for rehabilitation of paralyzed fingers caused by cervical spinal injuries.
Collapse
Affiliation(s)
- Chang Kook Kim
- Department of Sport and Leisure Studies, Korea University, Jochiwon, Korea
| | | | | | | | | | | |
Collapse
|
166
|
Hendrix CM, Mason CR, Ebner TJ. Signaling of grasp dimension and grasp force in dorsal premotor cortex and primary motor cortex neurons during reach to grasp in the monkey. J Neurophysiol 2009; 102:132-45. [PMID: 19403752 DOI: 10.1152/jn.00016.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fundamental question is how the CNS controls the hand with its many degrees of freedom. Several motor cortical areas, including the dorsal premotor cortex (PMd) and primary motor cortex (M1), are involved in reach to grasp. Although neurons in PMd are known to modulate in relation to the type of grasp and neurons in M1 in relation to grasp force and finger movements, whether specific parameters of whole hand shaping are encoded in the discharge of these cells has not been studied. In this study, two monkeys were trained to reach and grasp 16 objects varying in shape, size, and orientation. Grasp force was explicitly controlled, requiring the monkeys to exert either three or five levels of grasp force on each object. The animals were unable to see the objects or their hands. Single PMd and M1 neurons were recorded during the task, and cell firing was examined for modulation with object properties and grasp force. The firing of the vast majority of PMd and M1 neurons varied significantly as a function of the object presented as well as the object grasp dimension. Grasp dimension of the object was an important determinant of the firing of cells in both PMd and M1. A smaller percentage of PMd and M1 neurons were modulated by grasp force. Linear encoding was prominent with grasp force but less so with grasp dimension. The correlations with grasp dimension and grasp force were stronger in the firing of M1 than PMd neurons and across both regions the modulation with these parameters increased as reach to grasp proceeded. All PMd and M1 neurons that signaled grasp force also signaled grasp dimension, yet the two signals showed limited interactions, providing a neural substrate for the independent control of these two parameters at the behavioral level.
Collapse
Affiliation(s)
- Claudia M Hendrix
- Department of Neuroscience, University of Minnesota, Lions Research Bldg., Rm. 421, 2001 Sixth St. SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
167
|
Shin HC, Aggarwal V, Acharya S, Schieber MH, Thakor NV. Neural decoding of finger movements using Skellam-based maximum-likelihood decoding. IEEE Trans Biomed Eng 2009; 57:754-60. [PMID: 19403361 DOI: 10.1109/tbme.2009.2020791] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present an optimal method for decoding the activity of primary motor cortex (M1) neurons in a nonhuman primate during single finger movements. The method is based on the maximum-likelihood (ML) inference, which assuming the probability of finger movements is uniform, is equivalent to the maximum a posteriori (MAP) inference. Each neuron's activation is first quantified by the change in firing rate before and after finger movement. We then estimate the probability density function of this activation given finger movement, i.e., Pr(neuronal activation (x) | finger movements (m)). Based on the ML criterion, we choose finger movements to maximize Pr(x |m). Experimentally, data were collected from 115 task-related neurons in M1 as the monkey performed flexion and extension of each finger and the wrist (12 movements). With as few as 20--25 randomly selected neurons, the proposed method decoded single-finger movements with 99% accuracy. Since the training and decoding procedures in the proposed method are simple and computationally efficient, the method can be extended for real-time neuroprosthetic control of a dexterous hand.
Collapse
Affiliation(s)
- Hyun-Chool Shin
- Department of Electronic Engineering, College of Information Technology, Soongsil University, Seoul, Korea.
| | | | | | | | | |
Collapse
|
168
|
Decoupling the cortical power spectrum reveals real-time representation of individual finger movements in humans. J Neurosci 2009; 29:3132-7. [PMID: 19279250 DOI: 10.1523/jneurosci.5506-08.2009] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During active movement the electric potentials measured from the surface of the motor cortex exhibit consistent modulation, revealing two distinguishable processes in the power spectrum. At frequencies <40 Hz, narrow-band power decreases occur with movement over widely distributed cortical areas, while at higher frequencies there are spatially more focal power increases. These high-frequency changes have commonly been assumed to reflect synchronous rhythms, analogous to lower-frequency phenomena, but it has recently been proposed that they reflect a broad-band spectral change across the entire spectrum, which could be obscured by synchronous rhythms at low frequencies. In 10 human subjects performing a finger movement task, we demonstrate that a principal component type of decomposition can naively separate low-frequency narrow-band rhythms from an asynchronous, broad-spectral, change at all frequencies between 5 and 200 Hz. This broad-spectral change exhibited spatially discrete representation for individual fingers and reproduced the temporal movement trajectories of different individual fingers.
Collapse
|
169
|
Hatsopoulos NG. Columnar organization in the motor cortex. Cortex 2009; 46:270-1. [PMID: 19398100 DOI: 10.1016/j.cortex.2008.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/09/2008] [Accepted: 07/11/2008] [Indexed: 10/20/2022]
Affiliation(s)
- Nicholas G Hatsopoulos
- Department of Organismal Biology and Anatomy and Committees on Computational Neuroscience and Neurobiology, University of Chicago, IL 60637, USA.
| |
Collapse
|
170
|
de Vignemont F, Majid A, Jola C, Haggard P. Segmenting the Body into Parts: Evidence from Biases in Tactile Perception. Q J Exp Psychol (Hove) 2009; 62:500-12. [DOI: 10.1080/17470210802000802] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
How do we individuate body parts? Here, we investigated the effect of body segmentation between hand and arm in tactile and visual perception. In a first experiment, we showed that two tactile stimuli felt farther away when they were applied across the wrist than when they were applied within a single body part (palm or forearm), indicating a “category boundary effect”. In the following experiments, we excluded two hypotheses, which attributed tactile segmentation to other, nontactile factors. In Experiment 2, we showed that the boundary effect does not arise from motor cues. The effect was reduced during a motor task involving flexion and extension movements of the wrist joint. Action brings body parts together into functional units, instead of pulling them apart. In Experiments 3 and 4, we showed that the effect does not arise from perceptual cues of visual discontinuities. We did not find any segmentation effect for the visual percept of the body in Experiment 3, nor for a neutral shape in Experiment 4. We suggest that the mental representation of the body is structured in categorical body parts delineated by joints, and that this categorical representation modulates tactile spatial perception.
Collapse
Affiliation(s)
| | - Asifa Majid
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Corinne Jola
- Department of Psychology and Social Sciences, City University, London, UK
| | - Patrick Haggard
- Institute of Cognitive Neuroscience and Department of Psychology, University College London, London, UK
| |
Collapse
|
171
|
Interactions between imagined movement and the initiation of voluntary movement: a TMS study. Clin Neurophysiol 2009; 120:1154-60. [PMID: 19250861 DOI: 10.1016/j.clinph.2008.12.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 12/09/2008] [Accepted: 12/19/2008] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The purpose was to examine motor imagery-induced enhancement in corticospinal excitability during a reaction time (RT) task. METHODS Nine young and healthy subjects performed an isometric finger flexion tasks in response to a visual imperative cue. In the pre-cue period, they were instructed to: (1) rest; (2) imagine flexing their fingers isometrically (ImFlex); or (3) imagine extending their fingers isometrically (ImExt). Surface EMGs from the finger flexors and extensors were monitored to ensure EMG silence before movement onset. Transcranial magnetic stimulation (TMS) was used to evaluate changes in motor-evoked potentials (MEP) in the finger flexor and extensor muscles during the response phase. TMS was delivered either with the imperative cue, or 120 ms before and after the imperative cue. RESULTS RT was slower when they were imagining finger extension prior to the visual imperative cue. MEPs were significantly increased for the finger flexors during imagined finger flexion and for the finger extensors during imagined finger extension at both TMS delivery time points, reflecting movement specific enhancement in corticospinal excitability during motor imagery. When TMS was delivered 120 ms after the cue, finger flexor MEPs were further facilitated under the Rest and ImFlex conditions, but not under the ImExt condition, suggesting additive interactions between imagery-induced enhancement and early rise in corticospinal excitability during the initiation of a reaction time response. CONCLUSIONS Our results provide neurophysiological evidence mediating dynamic interactions between imagined movement and the initiation of voluntary movement. SIGNIFICANCE Motor imagery can be integrated into a rehabilitation protocol to facilitate motor recovery.
Collapse
|
172
|
Herter TM, Korbel T, Scott SH. Comparison of neural responses in primary motor cortex to transient and continuous loads during posture. J Neurophysiol 2008; 101:150-63. [PMID: 19005005 DOI: 10.1152/jn.90230.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined whether neurons in primary motor cortex (M1) exhibit similar responses to transient and continuous loads applied during posture. Rapid responses to whole-limb perturbations were examined by transiently applying (300 ms) flexor and extensor torques to the shoulder and/or elbow during postural maintenance. Over half of M1 neurons responded to these transient loads within 80 ms and many responded within 20-40 ms. These rapid responses exhibited a broad continuum of modulation patterns across load directions. At one extreme, neurons exhibited reciprocal increases and decreases in activity for opposing loads. At the other extreme, neurons (particularly those with onset times of 20-40 ms) displayed relatively uniform increases in activity for all loads. Activity of proximal arm muscles displayed a narrower distribution of modulation patterns characterized by broadly tuned excitation combined with little or no reciprocal inhibition. Both neurons and muscles showed a directional preference for whole-limb flexor and whole-limb extensor torques (flexor at one joint and extensor at the other). Most neurons with rapid responses also showed steady-state responses to continuous loads, although these responses generally displayed reciprocal increases and decreases in activity for opposing loads. Importantly, the preferred-torque directions were quantitatively similar across tasks. For example, a neuron with a maximal rapid response to a transient elbow flexor torque tended to exhibit a maximal steady-state response to a continuous elbow flexor torque. Activity of proximal arm muscles also showed this preservation of directional tuning. These results illustrate that M1 neurons respond rapidly to transient multijoint loads and their patterns of activity share some, but not all, features related to continuous multijoint loads applied during posture.
Collapse
Affiliation(s)
- Troy M Herter
- Centre for Neuroscience Studies, Canadian Institute for Health Research Group in Sensory-Motor Systems, Department of Anatomy and Cell Biology, Queen's University, Botterell Hall, Room 219, Kingston, Ontario, Canada, K7L 3N6
| | | | | |
Collapse
|
173
|
Burman DD, Lie-Nemeth T, Brandfonbrener AG, Parisi T, Meyer JR. Altered Finger Representations in Sensorimotor Cortex of Musicians with Focal Dystonia: Precentral Cortex. Brain Imaging Behav 2008. [DOI: 10.1007/s11682-008-9046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
174
|
Affiliation(s)
- R N Lemon
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
175
|
Abstract
Each of the descending pathways involved in motor control has a number of anatomical, molecular, pharmacological, and neuroinformatic characteristics. They are differentially involved in motor control, a process that results from operations involving the entire motor network rather than from the brain commanding the spinal cord. A given pathway can have many functional roles. This review explores to what extent descending pathways are highly conserved across species and concludes that there are actually rather widespread species differences, for example, in the transmission of information from the corticospinal tract to upper limb motoneurons. The significance of direct, cortico-motoneuronal (CM) connections, which were discovered a little more than 50 years ago, is reassessed. I conclude that although these connections operate in parallel with other less direct linkages to motoneurons, CM influence is significant and may subserve some special functions including adaptive motor behaviors involving the distal extremities.
Collapse
Affiliation(s)
- Roger N Lemon
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom.
| |
Collapse
|
176
|
Oliveira MA, Hsu J, Park J, Clark JE, Shim JK. Age-related changes in multi-finger interactions in adults during maximum voluntary finger force production tasks. Hum Mov Sci 2008; 27:714-27. [PMID: 18762348 DOI: 10.1016/j.humov.2008.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed to continue our characterization of finger strength and multi-finger interactions across the lifespan to include those in their 60s and older. Building on our previous study of children, we examined young and elderly adults during isometric finger flexion and extension tasks. Sixteen young and 16 elderly, gender-matched participants produced maximum force using either a single finger or all four fingers in flexion and extension. The maximum voluntary finger force (MVF), the percentage contributions of individual finger forces to the sum of individual finger forces during four-finger MVF task (force sharing), and the non-task finger forces during a task finger MVF task (force enslaving), were computed as dependent variables. Force enslaving during finger extension was greater than during flexion in both young and elderly groups. The flexion-extension difference was greater in the elderly than the young adult group. The greater independency in flexion may result from more frequent use of finger flexion in everyday manipulation tasks. The non-task fingers closer to a task finger produced greater enslaving force than non-task fingers farther from the task finger. The force sharing pattern was not different between age groups. Our findings suggest that finger strength decreases over the aging process, finger independency for flexion increases throughout development, and force sharing pattern remains constant across the lifespan.
Collapse
Affiliation(s)
- Marcio A Oliveira
- Department of Kinesiology, University of Maryland, College Park, MD 20742, United States.
| | | | | | | | | |
Collapse
|
177
|
Muscles in "concert": study of primary motor cortex upper limb functional topography. PLoS One 2008; 3:e3069. [PMID: 18728785 PMCID: PMC2518106 DOI: 10.1371/journal.pone.0003069] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Accepted: 07/28/2008] [Indexed: 12/05/2022] Open
Abstract
Background Previous studies with Transcranial Magnetic Stimulation (TMS) have focused on the cortical representation of limited group of muscles. No attempts have been carried out so far to get simultaneous recordings from hand, forearm and arm with TMS in order to disentangle a ‘functional’ map providing information on the rules orchestrating muscle coupling and overlap. The aim of the present study is to disentangle functional associations between 12 upper limb muscles using two measures: cortical overlapping and cortical covariation of each pair of muscles. Interhemispheric differences and the influence of posture were evaluated as well. Methodology/Principal Findings TMS mapping studies of 12 muscles belonging to hand, forearm and arm were performed. Findings demonstrate significant differences between the 66 pairs of muscles in terms of cortical overlapping: extremely high for hand-forearm muscles and very low for arm vs hand/forearm muscles. When right and left hemispheres were compared, overlapping between all possible pairs of muscles in the left hemisphere (62.5%) was significantly higher than in the right one (53.5% ). The arm/hand posture influenced both measures of cortical association, the effect of Position being significant [p = .021] on overlapping, resulting in 59.5% with prone vs 53.2% with supine hand, but only for pairs of muscles belonging to hand and forearm, while no changes occurred in the overlapping of proximal muscles with those of more distal districts. Conclusions/Significance Larger overlapping in the left hemisphere could be related to its lifetime higher training of all twelve muscles studied with respect to the right hemisphere, resulting in larger intra-cortical connectivity within primary motor cortex. Altogether, findings with prone hand might be ascribed to mechanisms facilitating coupling of muscles for object grasping and lifting -with more proximal involvement for joint stabilization- compared to supine hand facilitating actions like catching. TMS multiple-muscle mapping studies permit a better understanding of motor control and ‘plastic’ reorganization of motor system.
Collapse
|
178
|
Meier JD, Aflalo TN, Kastner S, Graziano MSA. Complex organization of human primary motor cortex: a high-resolution fMRI study. J Neurophysiol 2008; 100:1800-12. [PMID: 18684903 DOI: 10.1152/jn.90531.2008] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A traditional view of the human motor cortex is that it contains an overlapping sequence of body part representations from the tongue in a ventral location to the foot in a dorsal location. In this study, high-resolution functional MRI (1.5x1.5x2 mm) was used to examine the somatotopic map in the lateral motor cortex of humans, to determine whether it followed the traditional somatotopic order or whether it contained any violations of that somatotopic order. The arm and hand representation had a complex organization in which the arm was relatively emphasized in two areas: one dorsal and the other ventral to a region that emphasized the fingers. This violation of a traditional somatotopic order suggests that the motor cortex is not merely a map of the body but is topographically shaped by other influences, perhaps including correlations in the use of body parts in the motor repertoire.
Collapse
Affiliation(s)
- Jeffrey D Meier
- Department of Psychology, Green Hall, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
179
|
Merritt M. Nativism and Neurobiology: Representations, Representing, and the Continuum of Cognition. REVIEW OF GENERAL PSYCHOLOGY 2008. [DOI: 10.1037/1089-2680.12.2.181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Whether or not the mind contains innately specified representations is highly contestable, especially in light of neurobiological evidence for the plasticity of the brain. In what follows, I provide an overview of the debate as it now stands and a discussion of the possibility, proposed by Clark (1998) and others, that representations need not be localized and are better understood as distributed systems. I then seek to tie the debate into a similar controversy surrounding the architecture of the mind. While advocates of modularity find arguments for innately specified and domain-specific representations palatable, as the thesis of innateness only strengthens their claims, favorers of a more domain-general learning mechanism are not convinced by arguments for innate specificity and instead insist that representations emerge or are learned. Rather than come down on one side of these issues, I propose, in the spirit of Cundall (2006), that cognition is more aptly conceived of as a continuum: the domains by which certain “representers” are constrained turn out to be innate, while many of the complex representations, in particular, higher-level social–cognitive representations, come from more general learning and development. Thus, the problem of reconciling nativism and neurobiology turns out to be a matter not of choosing one of two extremes, but instead, adopting an intermediary view.
Collapse
Affiliation(s)
- Michele Merritt
- Department of Philosophy and Department of Applied Linguistics, University of South Florida
| |
Collapse
|
180
|
Evrard HC, Craig AD'B'. Retrograde analysis of the cerebellar projections to the posteroventral part of the ventral lateral thalamic nucleus in the macaque monkey. J Comp Neurol 2008; 508:286-314. [PMID: 18322920 DOI: 10.1002/cne.21674] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The organization of cerebellothalamic projections was investigated in macaque monkeys using injections of retrograde tracers (cholera toxin B and fluorescent dextrans) in the posteroventral part of the ventrolateral thalamic nucleus (VLpv), the main source of thalamic inputs to the primary motor cortex. Injections that filled all of VLpv labeled abundant neurons that were inhomogeneously distributed among many unlabeled cells in the deep cerebellar nuclei (DCbN). Single large pressure injections made in face-, forelimb-, or hindlimb-related portions of VLpv using physiological guidance labeled numerous neurons that were broadly dispersed within a coarse somatotopographic anteroposterior (foot to face) gradient in the dentate and interposed nuclei. Small iontophoretic injections labeled fewer neurons with the same somatotopographic gradient, but strikingly, the labeled neurons in these cases were as broadly dispersed as in cases with large injections. Simultaneous injections of multiple tracers in VLpv (one tracer per somatic region with no overlap between injections) confirmed the general somatotopography but also demonstrated clearly the overlapping distributions and the close intermingling of neurons labeled with different tracers. Significantly, very few neurons (<2%) were double-labeled. This organizational pattern contrasts with the concept of a segregated "point-to-point" somatotopy and instead resembles the complex patterns that have been observed throughout the motor pathway. These data support the idea that muscle synergies are represented anatomically in the DCbN by a general somatotopography in which intermingled neurons and dispersed but selective connections provide the basis for plastic, adaptable movement coordination of different parts of the body. Indexing terms:
Collapse
Affiliation(s)
- Henry C Evrard
- Atkinson Research Laboratory, Barrow Neurological Institute, Phoenix, Arizona 85013, USA.
| | | |
Collapse
|
181
|
Aggarwal V, Acharya S, Tenore F, Shin HC, Etienne-Cummings R, Schieber MH, Thakor NV. Asynchronous decoding of dexterous finger movements using M1 neurons. IEEE Trans Neural Syst Rehabil Eng 2008; 16:3-14. [PMID: 18303800 DOI: 10.1109/tnsre.2007.916289] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous efforts in brain-machine interfaces (BMI) have looked at decoding movement intent or hand and arm trajectory, but current cortical control strategies have not focused on the decoding of dexterous [corrected] actions such as finger movements. The present work demonstrates the asynchronous decoding (i.e., where cues indicating the onset of movement are not known) of individual and combined finger movements. Single-unit activities were recorded sequentially from a population of neurons in the M1 hand area of trained rhesus monkeys during flexion and extension movements of each finger and the wrist. Nonlinear filters were designed to detect the onset of movement and decode the movement type from randomly selected neuronal ensembles (assembled from individually recorded single-unit activities). Average asynchronous decoding accuracies as high as 99.8%, 96.2%, and 90.5%, were achieved for individuated finger and wrist movements with three monkeys. Average decoding accuracy was still 92.5% when combined movements of two fingers were included. These results demonstrate that it is possible to asynchronously decode dexterous finger movements from a neuronal ensemble with high accuracy. This work takes an important step towards the development of a BMI for direct neural control of a state-of-the-art, multifingered hand prosthesis.
Collapse
Affiliation(s)
- Vikram Aggarwal
- Department of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Acharya S, Tenore F, Aggarwal V, Etienne-Cummings R, Schieber MH, Thakor NV. Decoding individuated finger movements using volume-constrained neuronal ensembles in the M1 hand area. IEEE Trans Neural Syst Rehabil Eng 2008; 16:15-23. [PMID: 18303801 DOI: 10.1109/tnsre.2007.916269] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Individuated finger and wrist movements can be decoded using random subpopulations of neurons that are widely distributed in the primary motor (M1) hand area. This work investigates 1) whether it is possible to decode dexterous finger movements using spatially-constrained volumes of neurons as typically recorded from a microelectrode array; and 2) whether decoding accuracy differs due to the configuration or location of the array within the M1 hand area. Single-unit activities were sequentially recorded from task-related neurons in two rhesus monkeys as they performed individuated movements of the fingers and the wrist. Simultaneous neuronal ensembles were simulated by constraining these activities to the recording field dimensions of conventional microelectrode array architectures. Artificial neural network (ANN) based filters were able to decode individuated finger movements with greater than 90% accuracy for the majority of movement types, using as few as 20 neurons from these ensemble activities. Furthermore, for the large majority of cases there were no significant differences (p < 0.01) in decoding accuracy as a function of the location of the recording volume. The results suggest that a brain-machine interface (BMI) for dexterous control of individuated fingers and the wrist can be implemented using microelectrode arrays placed broadly in the M1 hand area.
Collapse
Affiliation(s)
- Soumyadipta Acharya
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
183
|
Abstract
The neural control of tasks such as rapid acquisition of precision pinch remains unknown. Therefore, we investigated the neural control of finger musculature when the index fingertip abruptly transitions from motion to static force production. Nine subjects produced a downward tapping motion followed by vertical fingertip force against a rigid surface. We simultaneously recorded three-dimensional fingertip force, plus the complete muscle coordination pattern using intramuscular electromyograms from all seven index finger muscles. We found that the muscle coordination pattern clearly switched from that for motion to that for isometric force approximately 65 ms before contact (p = 0.0004). Mathematical modeling and analysis revealed that the underlying neural control also switched between mutually incompatible strategies in a time-critical manner. Importantly, this abrupt switch in underlying neural control polluted fingertip force vector direction beyond what is explained by muscle activation-contraction dynamics and neuromuscular noise (p < or = 0.003). We further ruled out an impedance control strategy in a separate test showing no systematic change in initial force magnitude for catch trials where the tapping surface was surreptitiously lowered and raised (p = 0.93). We conclude that the nervous system predictively switches between mutually incompatible neural control strategies to bridge the abrupt transition in mechanical constraints between motion and static force. Moreover because the nervous system cannot switch between control strategies instantaneously or exactly, there arise physical limits to the accuracy of force production on contact. The need for such a neurally demanding and time-critical strategy for routine motion-to-force transitions with the fingertip may explain the existence of specialized neural circuits for the human hand.
Collapse
|
184
|
Kim SW, Shim JK, Zatsiorsky VM, Latash ML. Finger inter-dependence: linking the kinetic and kinematic variables. Hum Mov Sci 2008; 27:408-22. [PMID: 18255182 DOI: 10.1016/j.humov.2007.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 08/24/2007] [Accepted: 08/28/2007] [Indexed: 11/28/2022]
Abstract
We studied the dependence between voluntary motion of a finger and pressing forces produced by the tips of other fingers of the hand. Participants moved one of the fingers (task finger) of the right hand trying to follow a cyclic, ramp-like flexion-extension template at different frequencies. The other fingers (slave fingers) were restricted from moving; their flexion forces were recorded and analyzed. Index finger motion caused the smallest force production by the slave fingers. Larger forces were produced by the neighbors of the task finger; these forces showed strong modulation over the range of motion of the task finger. The enslaved forces were higher during the flexion phase of the movement cycle as compared to the extension phase. The index of enslaving expressed in N/rad was higher when the task finger moved through the more flexed postures. The dependence of enslaving on both range and direction of task finger motion poses problems for methods of analysis of finger coordination based on an assumption of universal matrices of finger interdependence.
Collapse
Affiliation(s)
- Sun Wook Kim
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, United States
| | | | | | | |
Collapse
|
185
|
Abstract
A traditional view of the motor cortex in the primate brain is that it contains a map of the body arranged across the cortical surface. This traditional topographic scheme, however, does not capture the actual pattern of overlaps, fractures, re-representations, and multiple areas separated by fuzzy borders. Here, we suggest that the organization of the motor cortex, premotor cortex, supplementary motor cortex, frontal eye field, and supplementary eye field can in principle be understood as a best-fit rendering of the motor repertoire onto the two-dimensional cortical sheet in a manner that optimizes local continuity.
Collapse
|
186
|
The role of cortical inhibition in the pathophysiology and treatment of schizophrenia. ACTA ACUST UNITED AC 2007; 56:427-42. [DOI: 10.1016/j.brainresrev.2007.09.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 08/27/2007] [Accepted: 09/17/2007] [Indexed: 11/18/2022]
|
187
|
Marconi B, Koch G, Pecchioli C, Cavallari P, Caltagirone C. Breakdown of inhibitory effects induced by foot motor imagery on hand motor area in lower-limb amputees. Clin Neurophysiol 2007; 118:2468-78. [PMID: 17905652 DOI: 10.1016/j.clinph.2007.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/10/2007] [Accepted: 08/23/2007] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Amputation of a limb induces plastic changes in motor cortex that modify the relationships between the missing limb and the remaining body part representations. We used motor imagery to explore the interactions between a missing lower limb and the hand/forearm cortical representations. METHODS Eight right leg amputees and nine healthy subjects participated in the study. Focal transcranial magnetic stimulation was used to map out the hand/forearm muscle maps at rest and during imagined ankle dorsiflexion and plantarflexion. RESULTS In healthy subjects, both motor imagery tasks strongly inhibited the map volume and contracted the map area of the hand muscles. By contrast, in amputees, imagined dorsiflexion and plantarflexion enhanced the map area and volume of the hand muscles. In the forearm muscle maps, both groups displayed a similar pattern of isodirectional coupling during both motor imagery tasks. Imagined dorsiflexion facilitated MEP amplitudes of the extensor and inhibited the flexor muscles of the upper limb. This pattern was reversed during imagined plantarflexion. CONCLUSIONS We argue that there exists an inhibitory relationship between the foot and hand motor cortices that ceases to exist after leg amputation. SIGNIFICANCE The understanding of these functional mechanisms may shed light on the motor network underlying interlimb coordination.
Collapse
Affiliation(s)
- Barbara Marconi
- European Brain Research Institute (EBRI), Foundation Rita Levi-Montalcini, 00143 Rome, Italy.
| | | | | | | | | |
Collapse
|
188
|
Holsheimer J, Lefaucheur JP, Buitenweg JR, Goujon C, Nineb A, Nguyen JP. The role of intra-operative motor evoked potentials in the optimization of chronic cortical stimulation for the treatment of neuropathic pain. Clin Neurophysiol 2007; 118:2287-96. [PMID: 17765605 DOI: 10.1016/j.clinph.2007.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/18/2007] [Accepted: 07/14/2007] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To explore the significance of intra-operative motor evoked potentials (MEPs) obtained by monopolar and bipolar stimulation in determining the location of the electrode(s) giving most pain relief in chronic motor cortex stimulation (MCS). METHODS Eight patients with chronic refractory neuropathic pain were implanted epidurally with two parallel leads of four electrodes each and placed normal to the central sulcus (CS). We measured the peak-peak amplitude (V(p-p)) of the MEPs recorded intra-operatively at the contralateral hand with the same stimulus delivered by each single electrode used as an anode or a cathode. Those electrodes giving the largest MEPs in monopolar stimulation were also tested in bipolar stimulation with an adjacent electrode located on the same or the other lead. It was analyzed whether a relation was present between the electrode providing the largest V(p-p) in the monopolar condition and the bipolar combination selected for chronic stimulation. RESULTS In monopolar stimulation the median amplitude of MEPs evoked with an anode was 59% larger than with a cathode. The mean amplitude of the bipolarly evoked MEPs was only 21% and 37%, respectively, of the corresponding monopoles when the anode and cathode were separated by 6mm and by more than 8mm. A significant pain relief was obtained in 5 out of 8 patients post-operatively. In all these patients, one of the cathodes used in chronic stimulation was one of the anodes producing the largest MEP intra-operatively. Conversely, in the 3 patients who did not benefit from MCS, one of the cathodes used in chronic stimulation was one of the cathodes producing the largest MEPs intra-operatively. CONCLUSIONS Monopolar stimulation should be applied in intra-operative neurophysiological testing because, contrary to bipolar stimulation, the corresponding MEPs are unambiguously related to a single stimulating electrode and their amplitude is not affected by the anode-cathode distance. The anode providing the largest MEPs intra-operatively should be selected as the cathode in chronic stimulation. However, implantable pulse generators allowing monopolar (cathodal and anodal) stimulation for MCS should become available to compare the respective analgesic efficacy of monopolar and bipolar chronic cortical stimulation. SIGNIFICANCE Intra-operative MEP recordings can predict which electrode should be used as the cathode to obtain the best analgesic effect with chronic MCS.
Collapse
Affiliation(s)
- Jan Holsheimer
- Institute for Biomedical Technology, University of Twente, Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
189
|
Cros D, Soto O, Chiappa KH. Transcranial magnetic stimulation during voluntary action: directional facilitation of outputs and relationships to force generation. Brain Res 2007; 1185:103-16. [PMID: 17961516 DOI: 10.1016/j.brainres.2007.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 08/11/2007] [Accepted: 09/05/2007] [Indexed: 12/22/2022]
Abstract
Single-pulse transcranial magnetic stimulation (TMS) of the human motor cortex evokes simple muscle jerks whose physiological significance is unclear. Indeed, in subjects performing a motor task, there is uncertainty as to whether TMS-evoked outputs reflect the ongoing behavior or, alternatively, a disrupted motor plan. Considering force direction and magnitude to reflect qualitative and quantitative features of the motor plan respectively, we studied the relationships between voluntary forces and those evoked by TMS. In five healthy adults, we recorded the isometric forces acting a hand joint and the electromyographic activity in the first dorsal interosseous (FDI) muscle. Responses obtained at rest were highly invariant. Evoked responses obtained while subjects generated static and dynamic contractions were highly codirectional with the voluntary forces. Such directional relationships were independent of stimulation intensity, stimulated cortical volume, or magnitude of voluntary force exerted. Dynamic force generation was associated with a marked increase in the magnitude of the evoked force that was linearly related to the rate of force generation. The timing of central conduction was different depending on functional role of the target muscle, as either agonist or joint fixator. These results indicate that the architecture of motor plans remain grossly undisrupted by cortical stimulation applied during voluntary motor behavior. The significant magnitude modulation of responses during dynamic force generation suggests an essential role of the corticospinal system in the specification of force changes. Finally, the corticospinal activation depends on the functional role assumed by the target muscle, either postural or agonist.
Collapse
Affiliation(s)
- Didier Cros
- Clinical Neurophysiology Laboratories, Department of Neurology, Massachusetts General Hospital, 3 Hawthorne Place, Suite 112 Boston, MA 02114, USA.
| | | | | |
Collapse
|
190
|
Gorniak SL, Zatsiorsky VM, Latash ML. Emerging and disappearing synergies in a hierarchically controlled system. Exp Brain Res 2007; 183:259-70. [PMID: 17703288 PMCID: PMC2827035 DOI: 10.1007/s00221-007-1042-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 06/18/2007] [Indexed: 11/29/2022]
Abstract
The purpose of the study was to explore the ability of the central nervous system (CNS) to organize synergies at two levels of a hypothetical control hierarchy involved in two-hand, multi-finger tasks. We investigated indices (DeltaV) of finger force co-variation across trials as reflections of synergies stabilizing the total force (F (TOT)). Subjects produced constant force with one or two finger-pairs (from one hand or two hands). In trials starting with one finger-pair, subjects added another finger-pair without changing F (TOT). In trials starting with two finger-pairs, subjects removed one of the finger-pairs without changing F (TOT). Adding or removing a finger-pair resulted in a transient drop in DeltaV computed for the finger-pair that remained active throughout the trial. This drop in DeltaV was seen simultaneously with force changes. Compared to the original steady-state, addition of a finger-pair led to a significant drop in DeltaV at the newly established steady-state. This drop eliminated negative co-variation among finger forces that had stabilized F (TOT). In contrast, in trials starting with two finger-pairs, no negative co-variation between finger forces within-a-pair was seen. Removing a finger-pair led to the emergence of negative co-variation between finger forces at the new steady-state. The DeltaV index computed across two finger-pairs confirmed the existence of negative force co-variation. The emergence and disappearance of force stabilizing synergies within a finger-pair may signal limitations in the ability of the CNS in forming synergies at two different hierarchical levels.
Collapse
Affiliation(s)
- Stacey L Gorniak
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-21, University Park, PA 16802, USA.
| | | | | |
Collapse
|
191
|
Farrell DF, Burbank N, Lettich E, Ojemann GA. Individual variation in human motor-sensory (rolandic) cortex. J Clin Neurophysiol 2007; 24:286-93. [PMID: 17545834 DOI: 10.1097/wnp.0b013e31803bb59a] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Eloquent cortex is generally identified using a variety of techniques including direct electrical stimulation to identify motor-sensory, language, and memory cortex and somatosensory evoked potentials to identify motor-sensory cortex. It is important that these areas of cortex be identified so as to prevent damage during the course of neurosurgical procedures. Seventy epilepsy patients undergoing evaluation for epilepsy surgery with chronically implanted subdural grids were retrospectively studied using both somatosensory evoked potentials and direct electrical stimulation. Direct electrical stimulation of motor-sensory cortex elicited responses over a larger area than did somatosensory evoked potentials. A great deal of individual variation was identified using both techniques. The results presented here support previous conclusions that the concept of homunculus somatotopy (point to point representation) of the motor-sensory cortex be abandoned and that of functional mosaicism of the motor-sensory cortex replace the earlier model. The individual variation found in the human motor-sensory cortex will require a continuation of "brain mapping" to identify eloquent cortex so that these vital areas will be spared during neocortical neurosurgical procedures.
Collapse
Affiliation(s)
- Donald F Farrell
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
192
|
Abstract
We tested several techniques for decoding the activity of primary motor cortex (M1) neurons during movements of single fingers or pairs of fingers. We report that single finger movements can be decoded with >99% accuracy using as few as 30 neurons randomly selected from populations of task-related neurons recorded from the M1 hand representation. This number was reduced to 20 neurons or less when the neurons were not picked randomly but selected on the basis of their information content. We extended techniques for decoding single finger movements to the problem of decoding the simultaneous movement of two fingers. Movements of pairs of fingers were decoded with 90.9% accuracy from 100 neurons. The techniques we used to obtain these results can be applied, not only to movements of single fingers and pairs of fingers as reported here, but also to movements of arbitrary combinations of fingers. The remarkably small number of neurons needed to decode a relatively large repertoire of movements involving either one or two effectors is encouraging for the development of neural prosthetics that will control hand movements.
Collapse
Affiliation(s)
- S Ben Hamed
- Brain and Cognitive Science Dept, Meliora Hall, Univ of Rochester, Rochester, NY 14627, USA
| | | | | |
Collapse
|
193
|
|
194
|
Abstract
In studies of volitional inhibition, successful task performance usually requires the prevention of all movement. In reality, movements are selectively prevented in the presence of global motor output. The aim of this study was to investigate the ability to prevent one movement while concurrently executing another, referred to as selective inhibition. In two experiments, participants released switches with either their index and middle fingers (unimanual) or their left and right index fingers (bimanual) to stop two moving indicators at a fixed target (Go trials). Stop trials occurred when either one or both indicators automatically stopped before reaching the target, signaling that prevention of the prepared movement was required. Stop All and selective Stop trials were randomly interspersed among more frequently occurring Go trials. We found that selective inhibition is harder to perform than nonselective inhibition, for both unimanual and bimanual task contexts. During selective inhibition trials, lift time of the responding digit was delayed in both experiments by ≤100 ms, demonstrating the generality of the result. A nonselective neural inhibitory pathway may temporarily “brake” the required response, followed by selective excitation of the to-be-moved digit's cortical representation. After selective inhibition trials, there were persistent asynchronies between finger lift times of subsequent Go trials. The persistent effects reflect the behavioral consequences of nonspecific neural inhibition combined with selective neural disinhibition.
Collapse
Affiliation(s)
- James P Coxon
- Human Motor Control Laboratory, Department of Sport and Exercise Science, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
195
|
Bogacz R. Optimal decision network with distributed representation. Neural Netw 2007; 20:564-76. [PMID: 17399947 DOI: 10.1016/j.neunet.2007.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2005] [Revised: 01/31/2007] [Accepted: 01/31/2007] [Indexed: 11/19/2022]
Abstract
On the basis of detailed analysis of reaction times and neurophysiological data from tasks involving choice, it has been proposed that the brain implements an optimal statistical test during simple perceptual decisions. It has been shown recently how this optimal test can be implemented in biologically plausible models of decision networks, but this analysis was restricted to very simplified localist models which include abstract units describing activity of whole cell assemblies rather than individual neurons. This paper derives the optimal parameters in a model of a decision network including individual neurons, in which the alternatives are represented by distributed patterns of neuronal activity. It is also shown how the optimal weights in the decision network can be learnt via iterative rules using information accessible for individual synapses. Simulations demonstrate that the network with the optimal synaptic weights achieves better performance and matches fundamental behavioural regularities observed in choice tasks (Hick's law and the relationship between the error rate and the time for decision) better than a network with synaptic weights set according to a standard Hebb rule.
Collapse
Affiliation(s)
- Rafal Bogacz
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK.
| |
Collapse
|
196
|
Herter TM, Kurtzer I, Cabel DW, Haunts KA, Scott SH. Characterization of torque-related activity in primary motor cortex during a multijoint postural task. J Neurophysiol 2007; 97:2887-99. [PMID: 17267758 DOI: 10.1152/jn.00757.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined neural activity in the shoulder/elbow region of primary motor cortex (M1) during a whole-limb postural task. By selectively imposing torques at the shoulder, elbow, or both joints we addressed how neurons represent changes in torque at a single joint, multiple joints, and their interrelation. We observed that similar proportions of neurons reflected changes in torque at the shoulder, elbow, and both joints and these neurons were highly intermingled across the cortical surface. Most torque-related neurons were reciprocally excited and inhibited (relative to their unloaded baseline activity) by opposing flexor and extensor torques at a single joint. Although coexcitation/coinhibition was occasionally observed at a single joint, it was rarely observed at both joints. A second analysis assessed the relationship between single-joint and multijoint activity. In contrast to our previous observations, we found that neither linear nor vector summation of single-joint activities could capture the breadth of neural responses to multijoint torques. Finally, we studied the neurons' directional tuning across all the torque conditions, i.e., in joint-torque space. Our population of M1 neurons exhibited a strong bimodal distribution of preferred-torque directions (PTDs) that was biased toward shoulder-extensor/elbow-flexor (whole-limb flexor) and shoulder-flexor/elbow-extensor (whole-limb extensor) torques. Notably, we recently observed a similar bimodal distribution of PTDs in a sample of proximal arm muscles. This observation illustrates the intimate relationship between M1 and the motor periphery.
Collapse
Affiliation(s)
- Troy M Herter
- Department of Anatomy and Cell Biology, Canadian Institute of Health Research Group in Sensory-Motor Systems, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
197
|
Szameitat AJ, Shen S, Sterr A. Motor imagery of complex everyday movements. An fMRI study. Neuroimage 2007; 34:702-13. [PMID: 17112742 DOI: 10.1016/j.neuroimage.2006.09.033] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 09/19/2006] [Accepted: 09/21/2006] [Indexed: 11/23/2022] Open
Abstract
The present study aimed to investigate the functional neuroanatomical correlates of motor imagery (MI) of complex everyday movements (also called everyday tasks or functional tasks). 15 participants imagined two different types of everyday movements, movements confined to the upper extremities (UE; e.g., eating a meal) and movements involving the whole body (WB; e.g., swimming), during fMRI scanning. Results showed that both movement types activated the lateral and medial premotor cortices bilaterally, the left parietal cortex, and the right basal ganglia. Direct comparison of WB and UE movements further revealed a homuncular organization in the primary sensorimotor cortices (SMC), with UE movements represented in inferior parts of the SMC and WB movements in superior and medial parts. These results demonstrate that MI of everyday movements drives a cortical network comparable to the one described for more simple movements such as finger opposition. The findings further are in accordance with the suggestion that motor imagery-based mental practice is effective because it activates a comparable cortical network as overt training. Since most people are familiar with everyday movements and therefore a practice of the movement prior to scanning is not necessarily required, the current paradigm seems particularly appealing for clinical research and application focusing on patients with low or no residual motor abilities.
Collapse
Affiliation(s)
- André J Szameitat
- Department of Psychology, School of Human Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | | | | |
Collapse
|
198
|
Li S. Movement-specific enhancement of corticospinal excitability at subthreshold levels during motor imagery. Exp Brain Res 2006; 179:517-24. [PMID: 17160400 PMCID: PMC2889909 DOI: 10.1007/s00221-006-0809-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 11/17/2006] [Indexed: 11/29/2022]
Abstract
This study examined modulation of corticospinal excitability during both actual and imagined movements. Seven young healthy subjects performed actual (3-50% maximal voluntary contractions) and imagined index finger force production, and rest. Individual responses to focal transcranial magnetic stimulation (TMS) in four fingers (index, middle, ring, and little) were recorded for all three tested conditions. The force increments at the threshold of activation were predicted from regression analysis, representing the TMS-induced response at the threshold activation of the corticospinal pathways. The measured increment in the index finger during motor imagery was larger than that at rest, but smaller than the predicted increment at the threshold of activation. On the other hand, the measured increment in the uninstructed (middle, ring, and little), slave fingers during motor imagery was larger than that at rest, but not different from the predicted increment at the threshold of activation. These contrasting results suggest that the degree of imagery-induced enhancement in corticospinal excitability was significantly less than what could be predicted for threshold levels from regression analysis, but only for the index finger, and not the adjacent slave fingers. It is concluded that corticospinal excitability for the explicitly instructed index finger is specifically enhanced at subthreshold levels during motor imagery.
Collapse
Affiliation(s)
- Sheng Li
- School of Physical Therapy and Rehabilitation Science, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
199
|
Naselaris T, Merchant H, Amirikian B, Georgopoulos AP. Large-Scale Organization of Preferred Directions in the Motor Cortex. II. Analysis of Local Distributions. J Neurophysiol 2006; 96:3237-47. [PMID: 16971680 DOI: 10.1152/jn.00488.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The spatial arrangement of preferred directions (PDs) in the primary motor cortex has revealed evidence for columnar organization and short-range order. We investigated the large-scale properties of this arrangement. We recorded neural activity at sites on a grid covering a large region of the arm area of the motor cortex while monkeys performed a 3D reaching task. Sites were projected to the cortical surface along anatomically defined cortical columns and a PD was extracted from each site with directionally tuned activity. We analyzed the resulting 2D surface map of PDs. Consistent with previous studies, we found that any particular reaching direction was rerepresented at many points across the recorded area. In particular, we determined that the median radius of a cortical region required to represent the full complement of reaching directions is at most 1 mm. We also found that for the majority of regions of this size, the distribution of PDs within them exhibits an enrichment for the representation of forward and backward reaching directions (see companion paper). Finally, we found that the error of a population vector estimate of reaching direction constructed from neural activity within these regions is small on average, but varies significantly across different sections of the motor cortex, with the highest levels of error sustained near the fundus of the central sulcus and lowest levels achieved near the crown. We interpret these findings in the context of two well-known features of motor cortex, that is, its highly distributed anatomical organization and its behaviorally dependent plasticity.
Collapse
Affiliation(s)
- Thomas Naselaris
- Brain Sciences Center, Veterans Affairs Medical Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
200
|
Gentner R, Classen J. Modular Organization of Finger Movements by the Human Central Nervous System. Neuron 2006; 52:731-42. [PMID: 17114055 DOI: 10.1016/j.neuron.2006.09.038] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/11/2006] [Accepted: 09/18/2006] [Indexed: 10/23/2022]
Abstract
The motor system may generate automated movements, such as walking, by combining modular spinal motor synergies. However, it remains unknown whether a modular neuronal architecture is sufficient to generate the unique flexibility of human finger movements, which rely on cortical structures. Here we show that finger movements evoked by transcranial magnetic stimulation (TMS) of the primary motor cortex reproduced distinctive features of the spatial representation of voluntary movements as identified in previous neuroimaging studies, consistent with naturalistic activation of neuronal elements. Principal component analysis revealed that the dimensionality of TMS-evoked movements was low. Principal components extracted from TMS-induced finger movements resembled those derived from end-postures of voluntary movements performed to grasp imagined objects, and a small subset of them was sufficient to reconstruct these movements with remarkable fidelity. The motor system may coordinate even the most dexterous movements by using a modular architecture involving cortical components.
Collapse
Affiliation(s)
- Reinhard Gentner
- Human Cortical Physiology and Motor Control Laboratory, Department of Neurology, University of Wuerzburg, 97080 Würzburg, Germany
| | | |
Collapse
|