151
|
Deng P, Yuan Q, Cheng Y, Li J, Liu Z, Liu Y, Li Y, Su T, Wang J, Salvo ME, Wang W, Fan G, Lyons K, Yu B, Wang CY. Loss of KDM4B exacerbates bone-fat imbalance and mesenchymal stromal cell exhaustion in skeletal aging. Cell Stem Cell 2021; 28:1057-1073.e7. [PMID: 33571444 PMCID: PMC8178178 DOI: 10.1016/j.stem.2021.01.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/27/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022]
Abstract
Skeletal aging is a complex process, characterized by a decrease in bone formation, an increase in marrow fat, and stem cell exhaustion. Loss of H3K9me3, a heterochromatin mark, has been proposed to be associated with aging. Here, we report that loss of KDM4B in mesenchymal stromal cells (MSCs) exacerbated skeletal aging and osteoporosis by reducing bone formation and increasing marrow adiposity via increasing H3K9me3. KDM4B epigenetically coordinated β-catenin/Smad1-mediated transcription by removing repressive H3K9me3. Importantly, KDM4B ablation impaired MSC self-renewal and promoted MSC exhaustion by inducing senescence-associated heterochromatin foci formation, providing a mechanistic explanation for stem cell exhaustion with aging. Moreover, while KDM4B was required for parathyroid hormone-mediated bone anabolism, KDM4B depletion accelerated bone loss and marrow adiposity induced by a high-fat diet. Our results suggest that the epigenetic rejuvenation and reversing bone-fat imbalance might be new strategies for preventing and treating skeletal aging and osteoporosis by activating KDM4B in MSCs.
Collapse
Affiliation(s)
- Peng Deng
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Quan Yuan
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Yingduan Cheng
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Jiong Li
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Zhenqing Liu
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Yan Liu
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Ye Li
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Trent Su
- Institute for Quantitative and Computational Biology and Department of Biological Chemistry, UCLA, Los Angeles, CA 90095, USA
| | - Jing Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles Young Drive South, Los Angeles, CA 90095, USA
| | - Mari Ekimyan Salvo
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Weiguang Wang
- Department of Orthopaedic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, 695 Charles Young Drive South, Los Angeles, CA 90095, USA
| | - Karen Lyons
- Department of Orthopaedic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Bo Yu
- Division of Constitutive and Regenerative Science, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA; Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
152
|
Diao Z, Ji Q, Wu Z, Zhang W, Cai Y, Wang Z, Hu J, Liu Z, Wang Q, Bi S, Huang D, Ji Z, Liu GH, Wang S, Song M, Qu J. SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res 2021; 49:4203-4219. [PMID: 33706382 PMCID: PMC8096253 DOI: 10.1093/nar/gkab161] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Sirtuin 3 (SIRT3) is an NAD+-dependent deacetylase linked to a broad range of physiological and pathological processes, including aging and aging-related diseases. However, the role of SIRT3 in regulating human stem cell homeostasis remains unclear. Here we found that SIRT3 expression was downregulated in senescent human mesenchymal stem cells (hMSCs). CRISPR/Cas9-mediated depletion of SIRT3 led to compromised nuclear integrity, loss of heterochromatin and accelerated senescence in hMSCs. Further analysis indicated that SIRT3 interacted with nuclear envelope proteins and heterochromatin-associated proteins. SIRT3 deficiency resulted in the detachment of genomic lamina-associated domains (LADs) from the nuclear lamina, increased chromatin accessibility and aberrant repetitive sequence transcription. The re-introduction of SIRT3 rescued the disorganized heterochromatin and the senescence phenotypes. Taken together, our study reveals a novel role for SIRT3 in stabilizing heterochromatin and counteracting hMSC senescence, providing new potential therapeutic targets to ameliorate aging-related diseases.
Collapse
Affiliation(s)
- Zhiqing Diao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China
| | - Shijia Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.,Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.,Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
153
|
He Y, Zhang R, Quan Z, He B, Xu Y, Chen Z, Ren Y, Liu X. Synthesis, Characterization, and Specific Localization of Mitochondrial-Targeted Antioxidant Peptide SS31 Probe. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9915699. [PMID: 34056004 PMCID: PMC8142804 DOI: 10.1155/2021/9915699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
The aim of this study is to investigate the targeting efficiency of FITC-SS31 to mitochondria in both normal and H2O2-induced oxidative damaged 661W cells, characterizing the properties of FITC-SS31 in the biological assays. The purity and molecular weight of FITC-SS31 were identified using HPLC and MS. MTT and LDH assays were used to evaluate the cytotoxicity and cell permeability. The binding ability of FITC-SS31 to cells was demonstrated by flow cytometry. The colocalization of FITC-SS31 and MitoTracker both in normal and oxidative cells was analyzed by a laser confocal microscope. We detected the DEGs between SS31+H2O2 and H2O2-alone-treated cells by RNA seq. GO and KEGG analyses were performed to predict the functional gene of SS31. The molecular weight of FITC-SS31 was 1142.2 with the 97.76% purity. The flow cytometry results showed that the MFI (mean fluorescence intensity) of FITC-SS31 in normal cells in the 4 h probe treatment group was higher than that in the 2 h and the 0 h group. The MFI in the 2 h probe treatment group was much higher than that in the 4 h and 0 h groups in damaged cells. The positive rate of 10 μM FITC-SS31 was higher than that of 1 μM and 5 μM. Fluorescein imaging analysis confirmed that FITC-SS31 was overlapped with MitoTracker. Through the analysis, DEGs were highly expressed in "localization, organelle, antioxidant activity, binding" functions and enriched in "AMPK signaling pathway, MAPK targets/nuclear events mediated by MAP kinase pathway and PI3K-Akt signaling pathway." It is speculated that SS31 exerts an antioxidant effect through one of these pathways. We hypothesized that SS31 could play a more efficient role in the pathological cells in the half-life period to avoid cell death due to oxidative damage. The functions of the DEGs in SS31+H2O2 and H2O2-alone samples are related to the localization and antioxidant activity of SS31. DEGs are mostly enriched in the AMPK signaling pathway, which needs further studies.
Collapse
Affiliation(s)
- Yuan He
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
- Xi'an Medical University, Xi'an, China
| | - Ruixue Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
- Xi'an Medical University, Xi'an, China
| | - Zhuoya Quan
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
- Xi'an Medical University, Xi'an, China
| | - Beilei He
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
- Xi'an Medical University, Xi'an, China
| | - Yun Xu
- Xi'an Medical University, Xi'an, China
| | | | - Yuan Ren
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Xu Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
154
|
Brabson JP, Leesang T, Mohammad S, Cimmino L. Epigenetic Regulation of Genomic Stability by Vitamin C. Front Genet 2021; 12:675780. [PMID: 34017357 PMCID: PMC8129186 DOI: 10.3389/fgene.2021.675780] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe2+) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.
Collapse
Affiliation(s)
- John P Brabson
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tiffany Leesang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sofia Mohammad
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
155
|
Pathak RU, Soujanya M, Mishra RK. Deterioration of nuclear morphology and architecture: A hallmark of senescence and aging. Ageing Res Rev 2021; 67:101264. [PMID: 33540043 DOI: 10.1016/j.arr.2021.101264] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
The metazoan nucleus is a highly structured organelle containing several well-defined sub-organelles. It is the largest organelle inside a cell taking up from one tenth to half of entire cell volume. This makes it one of the easiest organelles to identify and study under the microscope. Abnormalities in the nuclear morphology and architecture are commonly observed in an aged and senescent cell. For example, the nuclei enlarge, loose their shape, appear lobulated, harbour nuclear membrane invaginations, carry enlarged/fragmented nucleolus, loose heterochromatin, etc. In this review we discuss about the age-related changes in nuclear features and elaborate upon the molecular reasons driving the change. Many of these changes can be easily imaged under a microscope and analysed in silico. Thus, computational image analysis of nuclear features appears to be a promising tool to evaluate physiological age of a cell and offers to be a legitimate biomarker. It can be used to examine progression of age-related diseases and evaluate therapies.
Collapse
Affiliation(s)
| | - Mamilla Soujanya
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Rakesh Kumar Mishra
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
156
|
Keenan CR. Heterochromatin and Polycomb as regulators of haematopoiesis. Biochem Soc Trans 2021; 49:805-814. [PMID: 33929498 PMCID: PMC8106494 DOI: 10.1042/bst20200737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022]
Abstract
Haematopoiesis is the process by which multipotent haematopoietic stem cells are transformed into each and every type of terminally differentiated blood cell. Epigenetic silencing is critical for this process by regulating the transcription of cell-cycle genes critical for self-renewal and differentiation, as well as restricting alternative fate genes to allow lineage commitment and appropriate differentiation. There are two distinct forms of transcriptionally repressed chromatin: H3K9me3-marked heterochromatin and H3K27me3/H2AK119ub1-marked Polycomb (often referred to as facultative heterochromatin). This review will discuss the role of these distinct epigenetic silencing mechanisms in regulating normal haematopoiesis, how these contribute to age-related haematopoietic dysfunction, and the rationale for therapeutic targeting of these pathways in the treatment of haematological malignancies.
Collapse
Affiliation(s)
- Christine R. Keenan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
157
|
Yan P, Liu Z, Song M, Wu Z, Xu W, Li K, Ji Q, Wang S, Liu X, Yan K, Esteban CR, Ci W, Belmonte JCI, Xie W, Ren J, Zhang W, Sun Q, Qu J, Liu GH. Genome-wide R-loop Landscapes during Cell Differentiation and Reprogramming. Cell Rep 2021; 32:107870. [PMID: 32640235 DOI: 10.1016/j.celrep.2020.107870] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
DNA:RNA hybrids play key roles in both physiological and disease states by regulating chromatin and genome organization. Their homeostasis during cell differentiation and cell plasticity remains elusive. Using an isogenic human stem cell platform, we systematically characterize R-loops, DNA methylation, histone modifications, and chromatin accessibility in pluripotent cells and their lineage-differentiated derivatives. We confirm that a portion of R-loops formed co-transcriptionally at pluripotency genes in pluripotent stem cells and at lineage-controlling genes in differentiated lineages. Notably, a subset of R-loops maintained after differentiation are associated with repressive chromatin marks on silent pluripotency genes and undesired lineage genes. Moreover, in reprogrammed pluripotent cells, cell-of-origin-specific R-loops are initially present but are resolved with serial passaging. Our analysis suggests a multifaceted role of R-loops in cell fate determination that may serve as an additional layer of modulation on cell fate memory and cell plasticity.
Collapse
Affiliation(s)
- Pengze Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kuan Li
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Weimin Ci
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, School of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jie Ren
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, School of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, School of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qianwen Sun
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
158
|
Kang SM, Yoon MH, Lee SJ, Ahn J, Yi SA, Nam KH, Park S, Woo TG, Cho JH, Lee J, Ha NC, Park BJ. Human WRN is an intrinsic inhibitor of progerin, abnormal splicing product of lamin A. Sci Rep 2021; 11:9122. [PMID: 33907225 PMCID: PMC8079706 DOI: 10.1038/s41598-021-88325-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Werner syndrome (WRN) is a rare progressive genetic disorder, caused by functional defects in WRN protein and RecQ4L DNA helicase. Acceleration of the aging process is initiated at puberty and the expected life span is approximately the late 50 s. However, a Wrn-deficient mouse model does not show premature aging phenotypes or a short life span, implying that aging processes differ greatly between humans and mice. Gene expression analysis of WRN cells reveals very similar results to gene expression analysis of Hutchinson Gilford progeria syndrome (HGPS) cells, suggesting that these human progeroid syndromes share a common pathological mechanism. Here we show that WRN cells also express progerin, an abnormal variant of the lamin A protein. In addition, we reveal that duplicated sequences of human WRN (hWRN) from exon 9 to exon 10, which differ from the sequence of mouse WRN (mWRN), are a natural inhibitor of progerin. Overexpression of hWRN reduced progerin expression and aging features in HGPS cells. Furthermore, the elimination of progerin by siRNA or a progerin-inhibitor (SLC-D011 also called progerinin) can ameliorate senescence phenotypes in WRN fibroblasts and cardiomyocytes, derived from WRN-iPSCs. These results suggest that progerin, which easily accumulates under WRN-deficient conditions, can lead to premature aging in WRN and that this effect can be prevented by SLC-D011.
Collapse
Affiliation(s)
- So-Mi Kang
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Min-Ho Yoon
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Su-Jin Lee
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Jinsook Ahn
- Program in Food Science and Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Ah Yi
- School of Pharmacy, Sungkyunkwan University, Suwon, Kyunggi-Do, Republic of Korea
| | - Ki Hong Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, Kyunggi-Do, Republic of Korea
| | - Soyoung Park
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Tae-Gyun Woo
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Jung-Hyun Cho
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Jaecheol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Kyunggi-Do, Republic of Korea
| | - Nam-Chul Ha
- Program in Food Science and Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bum-Joon Park
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
159
|
Alle Q, Le Borgne E, Milhavet O, Lemaitre JM. Reprogramming: Emerging Strategies to Rejuvenate Aging Cells and Tissues. Int J Mol Sci 2021; 22:3990. [PMID: 33924362 PMCID: PMC8070588 DOI: 10.3390/ijms22083990] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Aging is associated with a progressive and functional decline of all tissues and a striking increase in many "age-related diseases". Although aging has long been considered an inevitable process, strategies to delay and potentially even reverse the aging process have recently been developed. Here, we review emerging rejuvenation strategies that are based on reprogramming toward pluripotency. Some of these approaches may eventually lead to medical applications to improve healthspan and longevity.
Collapse
Affiliation(s)
- Quentin Alle
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (Q.A.); (E.L.B.)
| | - Enora Le Borgne
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (Q.A.); (E.L.B.)
| | - Ollivier Milhavet
- IRMB, University of Montpellier, INSERM, CNRS, 34295 Montpellier, France
| | - Jean-Marc Lemaitre
- IRMB, University of Montpellier, INSERM, 34295 Montpellier, France; (Q.A.); (E.L.B.)
| |
Collapse
|
160
|
Abstract
Significance: Werner syndrome (WS) is a rare autosomal recessive malady typified by a pro-oxidant/proinflammatory status, genetic instability, and by the early onset of numerous age-associated illnesses. The protein malfunctioning in WS individuals (WRN) is a helicase/exonuclease implicated in transcription, DNA replication/repair, and telomere maintenance. Recent Advances: In the last two decades, a series of important biological systems were created to comprehend at the molecular level the effect of a defective WRN protein. Such biological tools include mouse and worm (Caenorhabditis elegans) with a mutation in the Wrn helicase ortholog as well as human WS-induced pluripotent stem cells that can ultimately be differentiated into most cell lineages. Such WS models have identified anomalies related to the hallmarks of aging. Most importantly, vitamin C counteracts these age-related cellular phenotypes in these systems. Critical Issues: Vitamin C is the only antioxidant agent capable of reversing the cellular aging-related phenotypes in those biological systems. Since vitamin C is a cofactor for many hydroxylases and mono- or dioxygenase, it adds another level of complexity in deciphering the exact molecular pathways affected by this vitamin. Moreover, it is still unclear whether a short- or long-term vitamin C supplementation in human WS patients who already display aging-related phenotypes will have a beneficial impact. Future Directions: The discovery of new molecular markers specific to the modified biological pathways in WS that can be used for novel imaging techniques or as blood markers will be necessary to assess the favorable effect of vitamin C supplementation in WS. Antioxid. Redox Signal. 34, 856-874.
Collapse
Affiliation(s)
- Lucie Aumailley
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Michel Lebel
- Centre de Recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
161
|
Pignolo RJ, Law SF, Chandra A. Bone Aging, Cellular Senescence, and Osteoporosis. JBMR Plus 2021; 5:e10488. [PMID: 33869998 PMCID: PMC8046105 DOI: 10.1002/jbm4.10488] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in aging bone that lead to osteoporosis are mediated at multiple levels, including hormonal alterations, skeletal unloading, and accumulation of senescent cells. This pathological interplay is superimposed upon medical conditions, potentially bone-wasting medications, modifiable and unmodifiable personal risk factors, and genetic predisposition that accelerate bone loss with aging. In this study, the focus is on bone hemostasis and its dysregulation with aging. The major physiological changes with aging in bone and the role of cellular senescence in contributing to age-related osteoporosis are summarized. The aspects of bone aging are reviewed including remodeling deficits, uncoupling phenomena, inducers of cellular senescence related to bone aging, roles of the senescence-associated secretory phenotype, radiation-induced bone loss as a model for bone aging, and the accumulation of senescent cells in the bone microenvironment as a predominant mechanism for age-related osteoporosis. The study also addresses the rationale and potential for therapeutic interventions based on the clearance of senescent cells or suppression of the senescence-associated secretory phenotype. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Susan F Law
- Department of MedicineMayo ClinicRochesterMNUSA
| | - Abhishek Chandra
- Department of MedicineMayo ClinicRochesterMNUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| |
Collapse
|
162
|
de Lima Camillo LP, Quinlan RBA. A ride through the epigenetic landscape: aging reversal by reprogramming. GeroScience 2021; 43:463-485. [PMID: 33825176 PMCID: PMC8110674 DOI: 10.1007/s11357-021-00358-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Aging has become one of the fastest-growing research topics in biology. However, exactly how the aging process occurs remains unknown. Epigenetics plays a significant role, and several epigenetic interventions can modulate lifespan. This review will explore the interplay between epigenetics and aging, and how epigenetic reprogramming can be harnessed for age reversal. In vivo partial reprogramming holds great promise as a possible therapy, but several limitations remain. Rejuvenation by reprogramming is a young but rapidly expanding subfield in the biology of aging.
Collapse
|
163
|
Hanna R, Flamier A, Barabino A, Bernier G. G-quadruplexes originating from evolutionary conserved L1 elements interfere with neuronal gene expression in Alzheimer's disease. Nat Commun 2021; 12:1828. [PMID: 33758195 PMCID: PMC7987966 DOI: 10.1038/s41467-021-22129-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
DNA sequences containing consecutive guanines organized in 4-interspaced tandem repeats can form stable single-stranded secondary structures, called G-quadruplexes (G4). Herein, we report that the Polycomb group protein BMI1 is enriched at heterochromatin regions containing putative G4 DNA sequences, and that G4 structures accumulate in cells with reduced BMI1 expression and/or relaxed chromatin, including sporadic Alzheimer's disease (AD) neurons. In AD neurons, G4 structures preferentially accumulate in lamina-associated domains, and this is rescued by re-establishing chromatin compaction. ChIP-seq analyses reveal that G4 peaks correspond to evolutionary conserved Long Interspersed Element-1 (L1) sequences predicted to be transcriptionally active. Hence, G4 structures co-localize with RNAPII, and inhibition of transcription can reverse the G4 phenotype without affecting chromatin's state, thus uncoupling both components. Intragenic G4 structures affecting splicing events are furthermore associated with reduced neuronal gene expression in AD. Active L1 sequences are thus at the origin of most G4 structures observed in human neurons.
Collapse
Affiliation(s)
- Roy Hanna
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Anthony Flamier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
164
|
Rocha A, Dalgarno A, Neretti N. The functional impact of nuclear reorganization in cellular senescence. Brief Funct Genomics 2021; 21:24-34. [PMID: 33755107 PMCID: PMC8789270 DOI: 10.1093/bfgp/elab012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is the irreversible cell cycle arrest in response to DNA damage. Because senescent cells accumulate with age and contribute to chronic inflammation, they are promising therapeutic targets for healthspan extension. The senescent phenotype can vary depending on cell type and on the specific insults that induce senescence. This variability is also reflected in the extensive remodeling of the genome organization within the nucleus of senescent cells. Here, we give an overview of the nuclear changes that occur in different forms of senescence, including changes to chromatin state and composition and to the three-dimensional organization of the genome, as well as alterations to the nuclear envelope and to the accessibility of repetitive genomic regions. Many of these changes are shared across all forms of senescence, implicating nuclear organization as a fundamental driver of the senescent state and of how senescent cells interact with the surrounding tissue.
Collapse
Affiliation(s)
- Azucena Rocha
- Molecular Biology, Cell Biology and Biochemistry program at Brown University
| | - Audrey Dalgarno
- Molecular Biology, Cell Biology and Biochemistry program at Brown University
| | - Nicola Neretti
- Associate Professor in the Department of Molecular Biology, Cell Biology and Biochemistry at Brown University
| |
Collapse
|
165
|
Xu R, Shen X, Xie H, Zhang H, Liu D, Chen X, Fu Y, Zhang P, Yang Y, Cheng J, Jiang H. Identification of the canonical and noncanonical role of miR-143/145 in estrogen-deficient bone loss. Theranostics 2021; 11:5491-5510. [PMID: 33859759 PMCID: PMC8039936 DOI: 10.7150/thno.55041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Rationale: Postmenopausal-induced bone loss is mainly caused by declining core transcription factors (TFs) of bone mesenchymal stem cells (BMSCs), but little is known about how miRNAs regulate chromatin structure remodeling of TFs gene to maintain BMSCs function in bone homeostasis. Methods: We examined the serum, salivary and bone samples from Pre- and Post-menopause women by paired analysis and confirmed canonical ceRNA role of MIR143HG and miR-143/145 complexes in cytoplasm and noncanonical role for SOX2 transcription in nucleus (FISH, qRT-PCR, immunostaining, Luciferase assays and ChIP). Moreover, we took advantage of transgenic mice under OVX-induced osteoporosis, studying the in vitro and in vivo effect of miR-143/145 deletion on BMSCs function and bone homeostasis. Last, using miRNA antagonism, antagomiR-143/145 were delivered into bone marrow to treat estrogen-deficient bone loss. Results: Here, we identified miR-143/145 as potential diagnostic candidates for postmenopausal osteoporosis, and miR-143/145 overexpression impaired BMSCs self-renewing and differentiation function. Mechanistically, we confirmed that cytoplasmic miR-143/145 and LncRNA MIR143HG, that controlled by ERβ, cooperatively regulated pluripotency genes translation via canonical ceRNA pathway, and MIR143HG cooperates with miR‑143 to nuclear translocation for co-activation of SOX2 transcription via opening promoter chromatin. Meanwhile, miR‑143/145 were shuttled into osteoclasts in extracellular vesicles and triggered osteoclastic activity by targeting Cd226 and Srgap2. Furthermore, miR-143/145-/- mice or using chemically‑modified antagomiR-143/145 significantly alleviated estrogen-deficient osteoporosis. Conclusions: Our findings reveal a canonical and noncanonical role of miR-143/145 in controlling BMSCs pluripotency and unfold their dual effect on bone formation and bone resorption, suggesting miR-143/145 as promising therapeutic targets for treating estrogen-deficient bone loss.
Collapse
Affiliation(s)
- Rongyao Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xin Shen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hanyu Xie
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hengguo Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Dingshan Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xin Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ping Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yi Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
166
|
Cell stretchers and the LINC complex in mechanotransduction. Arch Biochem Biophys 2021; 702:108829. [PMID: 33716002 DOI: 10.1016/j.abb.2021.108829] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
How cells respond to mechanical forces from the surrounding environment is critical for cell survival and function. The LINC complex is a central component in the mechanotransduction pathway that transmits mechanical information from the cell surface to the nucleus. Through LINC complex functionality, the nucleus is able to respond to mechanical stress by altering nuclear structure, chromatin organization, and gene expression. The use of specialized devices that apply mechanical strain to cells have been central to investigating how mechanotransduction occurs, how cells respond to mechanical stress, and the role of the LINC complexes in these processes. A large variety of designs have been reported for these devices, with the most common type being cell stretchers. Here we highlight some of the salient features of cell stretchers and suggest some key parameters that should be considered when using these devices. We provide a brief overview of how the LINC complexes contribute to the cellular responses to mechanical strain. And finally, we suggest that stretchers may be a useful tool to study aging.
Collapse
|
167
|
Hsu TY, Zhang B, L'Etoile ND, Juang BT. C. elegans orthologs MUT-7/CeWRN-1 of Werner syndrome protein regulate neuronal plasticity. eLife 2021; 10:62449. [PMID: 33646120 PMCID: PMC7946423 DOI: 10.7554/elife.62449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/26/2021] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans expresses human Werner syndrome protein (WRN) orthologs as two distinct proteins: MUT-7, with a 3′−5′ exonuclease domain, and CeWRN-1, with helicase domains. How these domains cooperate remains unclear. Here, we demonstrate the different contributions of MUT-7 and CeWRN-1 to 22G small interfering RNA (siRNA) synthesis and the plasticity of neuronal signaling. MUT-7 acts specifically in the cytoplasm to promote siRNA biogenesis and in the nucleus to associate with CeWRN-1. The import of siRNA by the nuclear Argonaute NRDE-3 promotes the loading of the heterochromatin-binding protein HP1 homolog HPL-2 onto specific loci. This heterochromatin complex represses the gene expression of the guanylyl cyclase ODR-1 to direct olfactory plasticity in C. elegans. Our findings suggest that the exonuclease and helicase domains of human WRN may act in concert to promote RNA-dependent loading into a heterochromatin complex, and the failure of this entire process reduces plasticity in postmitotic neurons.
Collapse
Affiliation(s)
- Tsung-Yuan Hsu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Bo Zhang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Noelle D L'Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Bi-Tzen Juang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
168
|
Chikuma S, Yamanaka S, Nakagawa S, Ueda MT, Hayabuchi H, Tokifuji Y, Kanayama M, Okamura T, Arase H, Yoshimura A. TRIM28 Expression on Dendritic Cells Prevents Excessive T Cell Priming by Silencing Endogenous Retrovirus. THE JOURNAL OF IMMUNOLOGY 2021; 206:1528-1539. [PMID: 33619215 DOI: 10.4049/jimmunol.2001003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022]
Abstract
Acquired immune reaction is initiated by dendritic cells (DCs), which present Ags to a few naive Ag-specific T cells. Deregulation of gene expression in DCs may alter the outcome of the immune response toward immunodeficiency and/or autoimmune diseases. Expression of TRIM28, a nuclear protein that mediates gene silencing through heterochromatin, decreased in DCs from old mice, suggesting alteration of gene regulation. Mice specifically lacking TRIM28 in DCs show increased DC population in the spleen and enhanced T cell priming toward inflammatory effector T cells, leading to acceleration and exacerbation in experimental autoimmune encephalomyelitis. TRIM28-deficient DCs were found to ectopically transcribe endogenous retrovirus (ERV) elements. Combined genome-wide analysis revealed a strong colocalization among the decreased repressive histone mark H3K9me3-transcribed ERV elements and the derepressed host genes that were related to inflammation in TRIM28-deficient DCs. This suggests that TRIM28 occupancy of ERV elements critically represses expression of proximal inflammatory genes on the genome. We propose that gene silencing through repressive histone modification by TRIM28 plays a role in maintaining the integrity of precise gene regulation in DCs, which prevents aberrant T cell priming to inflammatory effector T cells.
Collapse
Affiliation(s)
- Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Soichiro Yamanaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Mahoko Takahashi Ueda
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 259-1193, Japan.,Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hodaka Hayabuchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yukiko Tokifuji
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masashi Kanayama
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan.,Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Disease, Osaka University, Osaka 565-0871, Japan; and.,Laboratory of Immunochemistry, World Premier International Research Center Initiative, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
169
|
Extreme disruption of heterochromatin is required for accelerated hematopoietic aging. Blood 2021; 135:2049-2058. [PMID: 32305044 DOI: 10.1182/blood.2019002990] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/22/2020] [Indexed: 12/22/2022] Open
Abstract
Loss of heterochromatin has been proposed as a universal mechanism of aging across different species and cell types. However, a comprehensive analysis of hematopoietic changes caused by heterochromatin loss is lacking. Moreover, there is conflict in the literature around the role of the major heterochromatic histone methyltransferase Suv39h1 in the aging process. Here, we use individual and dual deletion of Suv39h1 and Suv39h2 enzymes to examine the causal role of heterochromatin loss in hematopoietic cell development. Loss of neither Suv39h1 nor Suv39h2 individually had any effect on hematopoietic stem cell function or the development of mature lymphoid or myeloid lineages. However, deletion of both enzymes resulted in characteristic changes associated with aging such as reduced hematopoietic stem cell function, thymic involution and decreased lymphoid output with a skewing toward myeloid development, and increased memory T cells at the expense of naive T cells. These cellular changes were accompanied by molecular changes consistent with aging, including alterations in nuclear shape and increased nucleolar size. Together, our results indicate that the hematopoietic system has a remarkable tolerance for major disruptions in chromatin structure and reveal a role for Suv39h2 in depositing sufficient H3K9me3 to protect the entire hematopoietic system from changes associated with premature aging.
Collapse
|
170
|
Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Res 2021; 31:187-205. [PMID: 32737416 PMCID: PMC8027439 DOI: 10.1038/s41422-020-0385-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/07/2020] [Indexed: 01/29/2023] Open
Abstract
Accumulating evidence indicates an association between the circadian clock and the aging process. However, it remains elusive whether the deregulation of circadian clock proteins underlies stem cell aging and whether they are targetable for the alleviation of aging-associated syndromes. Here, we identified a transcription factor-independent role of CLOCK, a core component of the molecular circadian clock machinery, in counteracting human mesenchymal stem cell (hMSC) decay. CLOCK expression was decreased during hMSC aging. In addition, CLOCK deficiency accelerated hMSC senescence, whereas the overexpression of CLOCK, even as a transcriptionally inactive form, rejuvenated physiologically and pathologically aged hMSCs. Mechanistic studies revealed that CLOCK formed complexes with nuclear lamina proteins and KAP1, thus maintaining heterochromatin architecture and stabilizing repetitive genomic sequences. Finally, gene therapy with lentiviral vectors encoding CLOCK promoted cartilage regeneration and attenuated age-related articular degeneration in mice. These findings demonstrate a noncanonical role of CLOCK in stabilizing heterochromatin, promoting tissue regeneration, and mitigating aging-associated chronic diseases.
Collapse
|
171
|
Karoutas A, Akhtar A. Functional mechanisms and abnormalities of the nuclear lamina. Nat Cell Biol 2021; 23:116-126. [PMID: 33558730 DOI: 10.1038/s41556-020-00630-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023]
Abstract
Alterations in nuclear shape are present in human diseases and ageing. A compromised nuclear lamina is molecularly interlinked to altered chromatin functions and genomic instability. Whether these alterations are a cause or a consequence of the pathological state are important questions in biology. Here, we summarize the roles of nuclear envelope components in chromatin organization, phase separation and transcriptional and epigenetic regulation. Examining these functions in healthy backgrounds will guide us towards a better understanding of pathological alterations.
Collapse
Affiliation(s)
- Adam Karoutas
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Francis Crick Institute, London, UK
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
172
|
Bitman-Lotan E, Orian A. Nuclear organization and regulation of the differentiated state. Cell Mol Life Sci 2021; 78:3141-3158. [PMID: 33507327 PMCID: PMC8038961 DOI: 10.1007/s00018-020-03731-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022]
Abstract
Regulation of the differentiated identity requires active and continued supervision. Inability to maintain the differentiated state is a hallmark of aging and aging-related disease. To maintain cellular identity, a network of nuclear regulators is devoted to silencing previous and non-relevant gene programs. This network involves transcription factors, epigenetic regulators, and the localization of silent genes to heterochromatin. Together, identity supervisors mold and maintain the unique nuclear environment of the differentiated cell. This review describes recent discoveries regarding mechanisms and regulators that supervise the differentiated identity and protect from de-differentiation, tumorigenesis, and attenuate forced somatic cell reprograming. The review focuses on mechanisms involved in H3K9me3-decorated heterochromatin and the importance of nuclear lamins in cell identity. We outline how the biophysical properties of these factors are involved in self-compartmentalization of heterochromatin and cell identity. Finally, we discuss the relevance of these regulators to aging and age-related disease.
Collapse
Affiliation(s)
- Eliya Bitman-Lotan
- Rappaport Research Institute and Faculty of Medicine, The Rappaport Faculty of Medicine Technion-IIT, Technion Integrative Cancer Center (TICC), Technion-Israel Institute of Technology, Bat-Galim, 3109610, Haifa, Israel
| | - Amir Orian
- Rappaport Research Institute and Faculty of Medicine, The Rappaport Faculty of Medicine Technion-IIT, Technion Integrative Cancer Center (TICC), Technion-Israel Institute of Technology, Bat-Galim, 3109610, Haifa, Israel.
| |
Collapse
|
173
|
Zhang S, Yu X, Zhang Y, Xue X, Yu Q, Zha Z, Gogol M, Workman JL, Li S. Metabolic regulation of telomere silencing by SESAME complex-catalyzed H3T11 phosphorylation. Nat Commun 2021; 12:594. [PMID: 33500413 PMCID: PMC7838282 DOI: 10.1038/s41467-020-20711-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Telomeres are organized into a heterochromatin structure and maintenance of silent heterochromatin is required for chromosome stability. How telomere heterochromatin is dynamically regulated in response to stimuli remains unknown. Pyruvate kinase Pyk1 forms a complex named SESAME (Serine-responsive SAM-containing Metabolic Enzyme complex) to regulate gene expression by phosphorylating histone H3T11 (H3pT11). Here, we identify a function of SESAME in regulating telomere heterochromatin structure. SESAME phosphorylates H3T11 at telomeres, which maintains SIR (silent information regulator) complex occupancy at telomeres and protects Sir2 from degradation by autophagy. Moreover, SESAME-catalyzed H3pT11 directly represses autophagy-related gene expression to further prevent autophagy-mediated Sir2 degradation. By promoting H3pT11, serine increases Sir2 protein levels and enhances telomere silencing. Loss of H3pT11 leads to reduced Sir2 and compromised telomere silencing during chronological aging. Together, our study provides insights into dynamic regulation of silent heterochromatin by histone modifications and autophagy in response to cell metabolism and aging.
Collapse
Affiliation(s)
- Shihao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Yuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xiangyan Xue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Zitong Zha
- Human Aging Research Institute (HARI), School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
174
|
Siametis A, Niotis G, Garinis GA. DNA Damage and the Aging Epigenome. J Invest Dermatol 2021; 141:961-967. [PMID: 33494932 DOI: 10.1016/j.jid.2020.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/29/2022]
Abstract
In mammals, genome instability and aging are intimately linked as illustrated by the growing list of patients with progeroid and animal models with inborn DNA repair defects. Until recently, DNA damage was thought to drive aging by compromising transcription or DNA replication, thereby leading to age-related cellular malfunction and somatic mutations triggering cancer. However, recent evidence suggests that DNA lesions also elicit widespread epigenetic alterations that threaten cell homeostasis as a function of age. In this review, we discuss the functional links of persistent DNA damage with the epigenome in the context of aging and age-related diseases.
Collapse
Affiliation(s)
- Athanasios Siametis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece; Department of Biology, University of Crete, Heraklion, Greece
| | - George Niotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece; Department of Biology, University of Crete, Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece; Department of Biology, University of Crete, Heraklion, Greece.
| |
Collapse
|
175
|
H3K9me selectively blocks transcription factor activity and ensures differentiated tissue integrity. Nat Cell Biol 2021; 23:1163-1175. [PMID: 34737442 PMCID: PMC8572725 DOI: 10.1038/s41556-021-00776-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/17/2021] [Indexed: 01/05/2023]
Abstract
The developmental role of histone H3K9 methylation (H3K9me), which typifies heterochromatin, remains unclear. In Caenorhabditis elegans, loss of H3K9me leads to a highly divergent upregulation of genes with tissue and developmental-stage specificity. During development H3K9me is lost from differentiated cell type-specific genes and gained at genes expressed in earlier developmental stages or other tissues. The continuous deposition of H3K9me2 by the SETDB1 homolog MET-2 after terminal differentiation is necessary to maintain repression. In differentiated tissues, H3K9me ensures silencing by restricting the activity of a defined set of transcription factors at promoters and enhancers. Increased chromatin accessibility following the loss of H3K9me is neither sufficient nor necessary to drive transcription. Increased ATAC-seq signal and gene expression correlate at a subset of loci positioned away from the nuclear envelope, while derepressed genes at the nuclear periphery remain poorly accessible despite being transcribed. In conclusion, H3K9me deposition can confer tissue-specific gene expression and maintain the integrity of terminally differentiated muscle by restricting transcription factor activity.
Collapse
|
176
|
Grajeda Y, Arias N, Barrios A, Pervin S, Singh R. Aging-induced stem cell dysfunction: Molecular mechanisms and potential therapeutic avenues. STEM CELLS AND AGING 2021:203-222. [DOI: 10.1016/b978-0-12-820071-1.00005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
177
|
Potter ML, Hill WD, Isales CM, Hamrick MW, Fulzele S. MicroRNAs are critical regulators of senescence and aging in mesenchymal stem cells. Bone 2021; 142:115679. [PMID: 33022453 PMCID: PMC7901145 DOI: 10.1016/j.bone.2020.115679] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/16/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023]
Abstract
MicroRNAs (miRNAs) have recently come under scrutiny for their role in various age-related diseases. Similarly, cellular senescence has been linked to disease and aging. MicroRNAs and senescence likely play an intertwined role in driving these pathologic states. In this review, we present the connection between these two drivers of age-related disease concerning mesenchymal stem cells (MSCs). First, we summarize key miRNAs that are differentially expressed in MSCs and other musculoskeletal lineage cells during senescence and aging. Additionally, we also reviewed miRNAs that are regulated via traditional senescence-associated secretory phenotype (SASP) cytokines in MSC. Lastly, we summarize miRNAs that have been found to target components of the cell cycle arrest pathways inherently activated in senescence. This review attempts to highlight potential miRNA targets for regenerative medicine applications in age-related musculoskeletal disease.
Collapse
Affiliation(s)
- Matthew L Potter
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America
| | - William D Hill
- Medical University of South Carolina, Charleston, SC 29403, United States of America; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, 29403, United States of America
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States of America; Department of Medicine, Augusta University, Augusta, GA, United States of America; Institute of Healthy Aging, Augusta University, Augusta, GA, United States of America; Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, United States of America.
| |
Collapse
|
178
|
Tsurumi A, Li WX. Aging mechanisms-A perspective mostly from Drosophila. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10026. [PMID: 36619249 PMCID: PMC9744567 DOI: 10.1002/ggn2.10026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 01/11/2023]
Abstract
A mechanistic understanding of the natural aging process, which is distinct from aging-related disease mechanisms, is essential for developing interventions to extend lifespan or healthspan. Here, we discuss current trends in aging research and address conceptual and experimental challenges in the field. We examine various molecular markers implicated in aging with an emphasis on the role of heterochromatin and epigenetic changes. Studies in model organisms have been advantageous in elucidating conserved genetic and epigenetic mechanisms and assessing interventions that affect aging. We highlight the use of Drosophila, which allows controlled studies for evaluating genetic and environmental contributors to aging conveniently. Finally, we propose the use of novel methodologies and future strategies using Drosophila in aging research.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of SurgeryMassachusetts General Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Microbiology and ImmunologyHarvard Medical SchoolBostonMassachusettsUSA
- Shriners Hospitals for Children‐Boston®BostonMassachusettsUSA
| | - Willis X. Li
- Department of MedicineUniversity of California at San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
179
|
Klutstein M. Cause and effect in epigenetics - where lies the truth, and how can experiments reveal it?: Epigenetic self-reinforcing loops obscure causation in cancer and aging. Bioessays 2020; 43:e2000262. [PMID: 33236359 DOI: 10.1002/bies.202000262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
Epigenetic changes are implicated in aging and cancer. Sometimes, it is clear whether the causing agent of the condition is a genetic factor or epigenetic. In other cases, the causative factor is unclear, and could be either genetic or epigenetic. Is there a general role for epigenetic changes in cancer and aging? Here, I present the paradigm of causative roles executed by epigenetic changes. I discuss cases with clear roles of the epigenome in cancer and aging, and other cases showing involvement of other factors. I also present the possibility that sometimes causality is difficult to assign because of the presence of self-reinforcing loops in epigenetic regulation. Such loops hinder the identification of the causative factor. I provide an experimental framework by which the role of the epigenome can be examined in a better setting and where the presence of such loops could be investigated in more detail.
Collapse
Affiliation(s)
- Michael Klutstein
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| |
Collapse
|
180
|
Wu Z, Shi Y, Lu M, Song M, Yu Z, Wang J, Wang S, Ren J, Yang YG, Liu GH, Zhang W, Ci W, Qu J. METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Res 2020; 48:11083-11096. [PMID: 33035345 PMCID: PMC7641765 DOI: 10.1093/nar/gkaa816] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
N6-Methyladenosine (m6A) messenger RNA methylation is a well-known epitranscriptional regulatory mechanism affecting central biological processes, but its function in human cellular senescence remains uninvestigated. Here, we found that levels of both m6A RNA methylation and the methyltransferase METTL3 were reduced in prematurely senescent human mesenchymal stem cell (hMSC) models of progeroid syndromes. Transcriptional profiling of m6A modifications further identified MIS12, for which m6A modifications were reduced in both prematurely senescent hMSCs and METTL3-deficient hMSCs. Knockout of METTL3 accelerated hMSC senescence whereas overexpression of METTL3 rescued the senescent phenotypes. Mechanistically, loss of m6A modifications accelerated the turnover and decreased the expression of MIS12 mRNA while knockout of MIS12 accelerated cellular senescence. Furthermore, m6A reader IGF2BP2 was identified as a key player in recognizing and stabilizing m6A-modified MIS12 mRNA. Taken together, we discovered that METTL3 alleviates hMSC senescence through m6A modification-dependent stabilization of the MIS12 transcript, representing a novel epitranscriptional mechanism in premature stem cell senescence.
Collapse
Affiliation(s)
- Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Mingming Lu
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Moshi Song
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zihui Yu
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Jilu Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Si Wang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Yun-Gui Yang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Guang-Hui Liu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Weimin Ci
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
181
|
Yi SJ, Kim K. New Insights into the Role of Histone Changes in Aging. Int J Mol Sci 2020; 21:ijms21218241. [PMID: 33153221 PMCID: PMC7662996 DOI: 10.3390/ijms21218241] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Aging is the progressive decline or loss of function at the cellular, tissue, and organismal levels that ultimately leads to death. A number of external and internal factors, including diet, exercise, metabolic dysfunction, genome instability, and epigenetic imbalance, affect the lifespan of an organism. These aging factors regulate transcriptome changes related to the aging process through chromatin remodeling. Many epigenetic regulators, such as histone modification, histone variants, and ATP-dependent chromatin remodeling factors, play roles in chromatin reorganization. The key to understanding the role of gene regulatory networks in aging lies in characterizing the epigenetic regulators responsible for reorganizing and potentiating particular chromatin structures. This review covers epigenetic studies on aging, discusses the impact of epigenetic modifications on gene expression, and provides future directions in this area.
Collapse
|
182
|
Rodríguez-Matellán A, Alcazar N, Hernández F, Serrano M, Ávila J. In Vivo Reprogramming Ameliorates Aging Features in Dentate Gyrus Cells and Improves Memory in Mice. Stem Cell Reports 2020; 15:1056-1066. [PMID: 33096049 PMCID: PMC7663782 DOI: 10.1016/j.stemcr.2020.09.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational epigenetic modifications take place in mouse neurons of the dentate gyrus (DG) with age. Here, we report that age-dependent reduction in H3K9 trimethylation (H3K9me3) is prevented by cyclic induction of the Yamanaka factors used for cell reprogramming. Interestingly, Yamanaka factors elevated the levels of migrating cells containing the neurogenic markers doublecortin and calretinin, and the levels of the NMDA receptor subunit GluN2B. These changes could result in an increase in the survival of newborn DG neurons during their maturation and higher synaptic plasticity in mature neurons. Importantly, these cellular changes were accompanied by an improvement in mouse performance in the object recognition test over long time. We conclude that transient cyclic reprogramming in vivo in the central nervous system could be an effective strategy to ameliorate aging of the central nervous system and neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberto Rodríguez-Matellán
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Noelia Alcazar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Félix Hernández
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Jesús Ávila
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa, CBMSO, CSIC-UAM, Madrid, Spain; Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
183
|
Finkbeiner S. Functional genomics, genetic risk profiling and cell phenotypes in neurodegenerative disease. Neurobiol Dis 2020; 146:105088. [PMID: 32977020 PMCID: PMC7686089 DOI: 10.1016/j.nbd.2020.105088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/03/2022] Open
Abstract
Human genetics provides unbiased insights into the causes of human disease, which can be used to create a foundation for effective ways to more accurately diagnose patients, stratify patients for more successful clinical trials, discover and develop new therapies, and ultimately help patients choose the safest and most promising therapeutic option based on their risk profile. But the process for translating basic observations from human genetics studies into pathogenic disease mechanisms and treatments is laborious and complex, and this challenge has particularly slowed the development of interventions for neurodegenerative disease. In this review, we discuss the many steps in the process, the important considerations at each stage, and some of the latest tools and technologies that are available to help investigators translate insights from human genetics into diagnostic and therapeutic strategies that will lead to the sort of advances in clinical care that make a difference for patients.
Collapse
Affiliation(s)
- Steven Finkbeiner
- Center for Systems and Therapeutics, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA; Departments of Neurology and Physiology, University of Califorina, San Francisco, CA 94158, USA.
| |
Collapse
|
184
|
Epigenetic Regulation in Mesenchymal Stem Cell Aging and Differentiation and Osteoporosis. Stem Cells Int 2020; 2020:8836258. [PMID: 32963550 PMCID: PMC7501554 DOI: 10.1155/2020/8836258] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a reliable source for cell-based regenerative medicine owing to their multipotency and biological functions. However, aging-induced systemic homeostasis disorders in vivo and cell culture passaging in vitro induce a functional decline of MSCs, switching MSCs to a senescent status with impaired self-renewal capacity and biased differentiation tendency. MSC functional decline accounts for the pathogenesis of many diseases and, more importantly, limits the large-scale applications of MSCs in regenerative medicine. Growing evidence implies that epigenetic mechanisms are a critical regulator of the differentiation programs for cell fate and are subject to changes during aging. Thus, we here review epigenetic dysregulations that contribute to MSC aging and osteoporosis. Comprehending detailed epigenetic mechanisms could provide us with a novel horizon for dissecting MSC-related pathogenesis and further optimizing MSC-mediated regenerative therapies.
Collapse
|
185
|
Lee JH, Kim EW, Croteau DL, Bohr VA. Heterochromatin: an epigenetic point of view in aging. Exp Mol Med 2020; 52:1466-1474. [PMID: 32887933 PMCID: PMC8080806 DOI: 10.1038/s12276-020-00497-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Aging is an inevitable process of life. Defined by progressive physiological and functional loss of tissues and organs, aging increases the risk of mortality for the organism. The aging process is affected by various factors, including genetic and epigenetic ones. Here, we review the chromatin-specific epigenetic changes that occur during normal (chronological) aging and in premature aging diseases. Taking advantage of the reversible nature of epigenetic modifications, we will also discuss possible lifespan expansion strategies through epigenetic modulation, which was considered irreversible until recently.
Collapse
Affiliation(s)
- Jong-Hyuk Lee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Edward W Kim
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA. .,Danish Center for Healthy Aging, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
186
|
Cakouros D, Gronthos S. The changing epigenetic landscape of Mesenchymal Stem/Stromal Cells during aging. Bone 2020; 137:115440. [PMID: 32445894 DOI: 10.1016/j.bone.2020.115440] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 12/17/2022]
Abstract
There is mounting evidence in the literature that mesenchymal stromal/stem cell (MSC) like populations derived from different tissues, undergo epigenetic changes during aging, leading to compromised connective tissue integrity and function. This body of work has linked the biological aging of MSC to changes in their epigenetic signatures affecting growth, lifespan, self-renewal and multi-potential, due to deregulation of processes such as cellular senescence, oxidative stress, DNA damage, telomere shortening and DNA damage. This review addresses recent findings examining DNA methylation, histone modifications and miRNA changes in aging MSC populations. Moreover, we explore how epigenetic factors alter cellular pathways and associated biological networks, contributing to the MSC aging phenotype. Finally we discuss the crucial areas requiring a greater understanding of these processes, in order to piece together a global picture of the changing epigenetic landscape in MSC during aging.
Collapse
Affiliation(s)
- Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
187
|
Xu Y, Yuan H, Luo Y, Zhao YJ, Xiao JH. Ganoderic Acid D Protects Human Amniotic Mesenchymal Stem Cells against Oxidative Stress-Induced Senescence through the PERK/NRF2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8291413. [PMID: 32774686 PMCID: PMC7407022 DOI: 10.1155/2020/8291413] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022]
Abstract
Aging is an important risk factor in the occurrence of many chronic diseases. Senescence and exhaustion of adult stem cells are considered as a hallmark of aging in organisms. In this study, a senescent human amniotic mesenchymal stem cell (hAMSC) model subjected to oxidative stress was established in vitro using hydrogen peroxide. We investigated the effects of ganoderic acid D (GA-D), a natural triterpenoid compound produced from Ganoderma lucidum, on hAMSC senescence. GA-D significantly inhibited β-galactosidase (a senescence-associated marker) formation, in a dose-dependent manner, with doses ranging from 0.1 μM to 10 μM, without inducing cytotoxic side-effects. Furthermore, GA-D markedly inhibited the generation of reactive oxygen species (ROS) and the expression of p21 and p16 proteins, relieved the cell cycle arrest, and enhanced telomerase activity in senescent hAMSCs. Furthermore, GA-D upregulated the expression of phosphorylated protein kinase R- (PKR-) like endoplasmic reticulum kinase (PERK), peroxidase III (PRDX3), and nuclear factor-erythroid 2-related factor (NRF2) and promoted intranuclear transfer of NRF2 in senescent cells. The PERK inhibitor GSK2656157 and/or the NRF2 inhibitor ML385 suppressed the PERK/NRF2 signaling, which was activated by GA-D. They induced a rebound for the generation of ROS and β-galactosidase-positive cells and attenuated the differentiation capacity. These findings suggest that GA-D retards hAMSC senescence through activation of the PERK/NRF2 signaling pathway and may be a promising candidate for the discovery of antiaging agents.
Collapse
Affiliation(s)
- Yan Xu
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
| | - Huan Yuan
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
| | - Yu-Jie Zhao
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
- Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Huichuan District, Zunyi 563003, China
| |
Collapse
|
188
|
Costa LA, Eiro N, Fraile M, Gonzalez LO, Saá J, Garcia-Portabella P, Vega B, Schneider J, Vizoso FJ. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cell Mol Life Sci 2020; 78:447-467. [PMID: 32699947 PMCID: PMC7375036 DOI: 10.1007/s00018-020-03600-0] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSC) are present in all organs and tissues. Several studies have shown the therapeutic potential effect of MSC or their derived products. However, the functional heterogeneity of MSC constitutes an important barrier for transferring these capabilities to the clinic. MSC heterogeneity depends on their origin (biological niche) or the conditions of potential donors (age, diseases or unknown factors). It is accepted that many culture conditions of the artificial niche to which they are subjected, such as O2 tension, substrate and extracellular matrix cues, inflammatory stimuli or genetic manipulations can influence their resulting phenotype. Therefore, to attain a more personalized and precise medicine, a correct selection of MSC is mandatory, based on their functional potential, as well as the need to integrate all the existing information to achieve an optimal improvement of MSC features in the artificial niche.
Collapse
Affiliation(s)
- Luis A Costa
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - María Fraile
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Luis O Gonzalez
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain.,Department of Anatomical Pathology, Fundación Hospital de Jove, Gijón, Spain
| | - Jorge Saá
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Pablo Garcia-Portabella
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Belén Vega
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - José Schneider
- Department of Obstetrics and Gynecology, University of Valladolid, Valladolid, Spain
| | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain.
| |
Collapse
|
189
|
Liu H, Huang B, Xue S, U KP, Tsang LL, Zhang X, Li G, Jiang X. Functional crosstalk between mTORC1/p70S6K pathway and heterochromatin organization in stress-induced senescence of MSCs. Stem Cell Res Ther 2020; 11:279. [PMID: 32660632 PMCID: PMC7359252 DOI: 10.1186/s13287-020-01798-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Stem cell senescence has been proposed as one of the major drivers of aging, and MSC senescence contributes to aging-related diseases. Activation of mTORC1 pathway and heterochromatin organization have been characterized as two characteristics of senescent cells; however, whether mTORC1 pathway interacts with heterochromatin organization and contributes to MSC senescence remains unknown. In this study, we investigated the interaction between heterochromatin organization and mTORC1/p70S6K pathway in stress-induced MSC senescence. Methods The stress-induced senescence models were established in human umbilical cord-derived MSCs by doxorubicin (Dox) or H2O2. Cellular senescence was evaluated by β-Gal activity, upregulation of cell cycle suppressor genes, and expression of SASP. Activation of heterochromatin organization and mTORC1 pathway was determined by Western blot and immunofluorescent staining. A D-galactose (D-Gal)-induced aging model was established in rats to evaluate the crosstalk between heterochromatin and mTORC1 pathway in vivo. Results We found that heterochromatin organization was provoked at the early stage of Dox- or H2O2-induced senescence. Disruption of heterochromatin organization led to robust DNA damage response and exacerbated cellular senescence. Suppression of mTORC1/p70S6K pathway by either rapamycin or p70S6K knockdown promoted heterochromatin organization and ameliorated Dox- or H2O2-induced DNA damage and senescence. In contrast, direct activation of mTORC1 by MHY1485 impaired heterochromatin organization and aggravated stress-induced senescence. Moreover, concomitant activation of mTORC1 pathway and heterochromatin organization was found in D-galactose-induced osteoporosis model in rats. Rapamycin alleviated cellular senescence and promoted heterochromatin organization in BMSCs derived from D-galactose-treated rats. Conclusions Altogether, our study indicates the existence of a complex interplay between the mTORC1/p70S6K pathway and the heterochromatin organization during stress-induced MSC senescence, with important implications for the understanding of aging as well as for its prevention and treatment.
Collapse
Affiliation(s)
- Hailong Liu
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Biao Huang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Shaolong Xue
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Kin Pong U
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Lai Ling Tsang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Xiaohu Zhang
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Gang Li
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China. .,Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
190
|
Bi S, Liu Z, Wu Z, Wang Z, Liu X, Wang S, Ren J, Yao Y, Zhang W, Song M, Liu GH, Qu J. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell 2020; 11:483-504. [PMID: 32504224 PMCID: PMC7305295 DOI: 10.1007/s13238-020-00728-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/19/2020] [Indexed: 12/16/2022] Open
Abstract
SIRT7, a sirtuin family member implicated in aging and disease, is a regulator of metabolism and stress responses. It remains elusive how human somatic stem cell populations might be impacted by SIRT7. Here, we found that SIRT7 expression declines during human mesenchymal stem cell (hMSC) aging and that SIRT7 deficiency accelerates senescence. Mechanistically, SIRT7 forms a complex with nuclear lamina proteins and heterochromatin proteins, thus maintaining the repressive state of heterochromatin at nuclear periphery. Accordingly, deficiency of SIRT7 results in loss of heterochromatin, de-repression of the LINE1 retrotransposon (LINE1), and activation of innate immune signaling via the cGAS-STING pathway. These aging-associated cellular defects were reversed by overexpression of heterochromatin proteins or treatment with a LINE1 targeted reverse-transcriptase inhibitor. Together, these findings highlight how SIRT7 safeguards chromatin architecture to control innate immune regulation and ensure geroprotection during stem cell aging.
Collapse
Affiliation(s)
- Shijia Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
191
|
Forrer Charlier C, Martins RAP. Protective Mechanisms Against DNA Replication Stress in the Nervous System. Genes (Basel) 2020; 11:E730. [PMID: 32630049 PMCID: PMC7397197 DOI: 10.3390/genes11070730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
The precise replication of DNA and the successful segregation of chromosomes are essential for the faithful transmission of genetic information during the cell cycle. Alterations in the dynamics of genome replication, also referred to as DNA replication stress, may lead to DNA damage and, consequently, mutations and chromosomal rearrangements. Extensive research has revealed that DNA replication stress drives genome instability during tumorigenesis. Over decades, genetic studies of inherited syndromes have established a connection between the mutations in genes required for proper DNA repair/DNA damage responses and neurological diseases. It is becoming clear that both the prevention and the responses to replication stress are particularly important for nervous system development and function. The accurate regulation of cell proliferation is key for the expansion of progenitor pools during central nervous system (CNS) development, adult neurogenesis, and regeneration. Moreover, DNA replication stress in glial cells regulates CNS tumorigenesis and plays a role in neurodegenerative diseases such as ataxia telangiectasia (A-T). Here, we review how replication stress generation and replication stress response (RSR) contribute to the CNS development, homeostasis, and disease. Both cell-autonomous mechanisms, as well as the evidence of RSR-mediated alterations of the cellular microenvironment in the nervous system, were discussed.
Collapse
Affiliation(s)
| | - Rodrigo A. P. Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
192
|
Hu H, Ji Q, Song M, Ren J, Liu Z, Wang Z, Liu X, Yan K, Hu J, Jing Y, Wang S, Zhang W, Liu GH, Qu J. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res 2020; 48:6001-6018. [PMID: 32427330 PMCID: PMC7293006 DOI: 10.1093/nar/gkaa425] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/13/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has long been known as a master transcriptional repressor of autophagy. Here, we identify a novel role for ZKSCAN3 in alleviating senescence that is independent of its autophagy-related activity. Downregulation of ZKSCAN3 is observed in aged human mesenchymal stem cells (hMSCs) and depletion of ZKSCAN3 accelerates senescence of these cells. Mechanistically, ZKSCAN3 maintains heterochromatin stability via interaction with heterochromatin-associated proteins and nuclear lamina proteins. Further study shows that ZKSCAN3 deficiency results in the detachment of genomic lamina-associated domains (LADs) from the nuclear lamina, loss of heterochromatin, a more accessible chromatin status and consequently, aberrant transcription of repetitive sequences. Overexpression of ZKSCAN3 not only rescues premature senescence phenotypes in ZKSCAN3-deficient hMSCs but also rejuvenates physiologically and pathologically senescent hMSCs. Together, these data reveal for the first time that ZKSCAN3 functions as an epigenetic modulator to maintain heterochromatin organization and thereby attenuate cellular senescence. Our findings establish a new functional link among ZKSCAN3, epigenetic regulation, and stem cell aging.
Collapse
Affiliation(s)
- Huifang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaobin Jing
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
193
|
Chiche A, Chen C, Li H. The crosstalk between cellular reprogramming and senescence in aging and regeneration. Exp Gerontol 2020; 138:111005. [PMID: 32561400 DOI: 10.1016/j.exger.2020.111005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/17/2020] [Accepted: 06/10/2020] [Indexed: 02/09/2023]
Abstract
Aging is associated with diminished regenerative capacity and increased risk of chronic diseases. There is now compelling evidence suggests that aging process is reversible. Besides metabolic modification and systematic factors, both senescence elimination and cellular reprogramming showed beneficial effects on tissue regeneration and rejuvenation. Here we review recent studies on the interplay between cellular senescence and reprogramming. We discuss how both strategies could impact aging process and the possibility of combine them for more efficient regeneration and rejuvenation.
Collapse
Affiliation(s)
- Aurélie Chiche
- Cellular Plasticity and Disease Modelling, Department of Developmental and Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, 25 Rue du Dr Roux, Paris 75015, France
| | - Cheng Chen
- Cellular Plasticity and Disease Modelling, Department of Developmental and Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, 25 Rue du Dr Roux, Paris 75015, France
| | - Han Li
- Cellular Plasticity and Disease Modelling, Department of Developmental and Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, 25 Rue du Dr Roux, Paris 75015, France.
| |
Collapse
|
194
|
Abdisalaam S, Bhattacharya S, Mukherjee S, Sinha D, Srinivasan K, Zhu M, Akbay EA, Sadek HA, Shay JW, Asaithamby A. Dysfunctional telomeres trigger cellular senescence mediated by cyclic GMP-AMP synthase. J Biol Chem 2020; 295:11144-11160. [PMID: 32540968 DOI: 10.1074/jbc.ra120.012962] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
Defective DNA damage response (DDR) signaling is a common mechanism that initiates and maintains the cellular senescence phenotype. Dysfunctional telomeres activate DDR signaling, genomic instability, and cellular senescence, but the links among these events remains unclear. Here, using an array of biochemical and imaging techniques, including a highly regulatable CRISPR/Cas9 strategy to induce DNA double strand breaks specifically in the telomeres, ChIP, telomere immunofluorescence, fluorescence in situ hybridization (FISH), micronuclei imaging, and the telomere shortest length assay (TeSLA), we show that chromosome mis-segregation due to imperfect DDR signaling in response to dysfunctional telomeres creates a preponderance of chromatin fragments in the cytosol, which leads to a premature senescence phenotype. We found that this phenomenon is caused not by telomere shortening, but by cyclic GMP-AMP synthase (cGAS) recognizing cytosolic chromatin fragments and then activating the stimulator of interferon genes (STING) cytosolic DNA-sensing pathway and downstream interferon signaling. Significantly, genetic and pharmacological manipulation of cGAS not only attenuated immune signaling, but also prevented premature cellular senescence in response to dysfunctional telomeres. The findings of our study uncover a cellular intrinsic mechanism involving the cGAS-mediated cytosolic self-DNA-sensing pathway that initiates premature senescence independently of telomere shortening.
Collapse
Affiliation(s)
- Salim Abdisalaam
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Souparno Bhattacharya
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shibani Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Debapriya Sinha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kalayarasan Srinivasan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mingrui Zhu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hesham A Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
195
|
Ren X, Hu B, Song M, Ding Z, Dang Y, Liu Z, Zhang W, Ji Q, Ren R, Ding J, Chan P, Jiang C, Ye K, Qu J, Tang F, Liu GH. Maintenance of Nucleolar Homeostasis by CBX4 Alleviates Senescence and Osteoarthritis. Cell Rep 2020; 26:3643-3656.e7. [PMID: 30917318 DOI: 10.1016/j.celrep.2019.02.088] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/27/2019] [Accepted: 02/21/2019] [Indexed: 01/12/2023] Open
Abstract
CBX4, a component of polycomb repressive complex 1 (PRC1), plays important roles in the maintenance of cell identity and organ development through gene silencing. However, whether CBX4 regulates human stem cell homeostasis remains unclear. Here, we demonstrate that CBX4 counteracts human mesenchymal stem cell (hMSC) aging via the maintenance of nucleolar homeostasis. CBX4 protein is downregulated in aged hMSCs, whereas CBX4 knockout in hMSCs results in destabilized nucleolar heterochromatin, enhanced ribosome biogenesis, increased protein translation, and accelerated cellular senescence. CBX4 maintains nucleolar homeostasis by recruiting nucleolar protein fibrillarin (FBL) and heterochromatin protein KRAB-associated protein 1 (KAP1) at nucleolar rDNA, limiting the excessive expression of rRNAs. Overexpression of CBX4 alleviates physiological hMSC aging and attenuates the development of osteoarthritis in mice. Altogether, our findings reveal a critical role of CBX4 in counteracting cellular senescence by maintaining nucleolar homeostasis, providing a potential therapeutic target for aging-associated disorders.
Collapse
Affiliation(s)
- Xiaoqing Ren
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Hu
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhichao Ding
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujiao Dang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Qianzhao Ji
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruotong Ren
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjian Ding
- Army Diagnosis and Treatment Center for Oral Disease, 306th Hospital of the PLA, Beijing 100101, China
| | - Piu Chan
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Keqiong Ye
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China; Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China.
| | - Guang-Hui Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
196
|
Metformin: Sentinel of the Epigenetic Landscapes That Underlie Cell Fate and Identity. Biomolecules 2020; 10:biom10050780. [PMID: 32443566 PMCID: PMC7277648 DOI: 10.3390/biom10050780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
The biguanide metformin is the first drug to be tested as a gerotherapeutic in the clinical trial TAME (Targeting Aging with Metformin). The current consensus is that metformin exerts indirect pleiotropy on core metabolic hallmarks of aging, such as the insulin/insulin-like growth factor 1 and AMP-activated protein kinase/mammalian Target Of Rapamycin signaling pathways, downstream of its primary inhibitory effect on mitochondrial respiratory complex I. Alternatively, but not mutually exclusive, metformin can exert regulatory effects on components of the biologic machinery of aging itself such as chromatin-modifying enzymes. An integrative metabolo-epigenetic outlook supports a new model whereby metformin operates as a guardian of cell identity, capable of retarding cellular aging by preventing the loss of the information-theoretic nature of the epigenome. The ultimate anti-aging mechanism of metformin might involve the global preservation of the epigenome architecture, thereby ensuring cell fate commitment and phenotypic outcomes despite the challenging effects of aging noise. Metformin might therefore inspire the development of new gerotherapeutics capable of preserving the epigenome architecture for cell identity. Such gerotherapeutics should replicate the ability of metformin to halt the erosion of the epigenetic landscape, mitigate the loss of cell fate commitment, delay stochastic/environmental DNA methylation drifts, and alleviate cellular senescence. Yet, it remains a challenge to confirm if regulatory changes in higher-order genomic organizers can connect the capacity of metformin to dynamically regulate the three-dimensional nature of epigenetic landscapes with the 4th dimension, the aging time.
Collapse
|
197
|
Lee HY, Hong IS. Metabolic Regulation and Related Molecular Mechanisms in Various Stem Cell Functions. Curr Stem Cell Res Ther 2020; 15:531-546. [PMID: 32394844 DOI: 10.2174/1574888x15666200512105347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Recent studies on the mechanisms that link metabolic changes with stem cell fate have deepened our understanding of how specific metabolic pathways can regulate various stem cell functions during the development of an organism. Although it was originally thought to be merely a consequence of the specific cell state, metabolism is currently known to play a critical role in regulating the self-renewal capacity, differentiation potential, and quiescence of stem cells. Many studies in recent years have revealed that metabolic pathways regulate various stem cell behaviors (e.g., selfrenewal, migration, and differentiation) by modulating energy production through glycolysis or oxidative phosphorylation and by regulating the generation of metabolites, which can modulate multiple signaling pathways. Therefore, a more comprehensive understanding of stem cell metabolism could allow us to establish optimal culture conditions and differentiation methods that would increase stem cell expansion and function for cell-based therapies. However, little is known about how metabolic pathways regulate various stem cell functions. In this context, we review the current advances in metabolic research that have revealed functional roles for mitochondrial oxidative phosphorylation, anaerobic glycolysis, and oxidative stress during the self-renewal, differentiation and aging of various adult stem cell types. These approaches could provide novel strategies for the development of metabolic or pharmacological therapies to promote the regenerative potential of stem cells and subsequently promote their therapeutic utility.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Department of Biomedical Science, Jungwon University, 85 Goesan-eup, Munmu-ro, Goesan-gun, Chungcheongbuk-do 367-700, Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
198
|
|
199
|
Zhang W, Zhang S, Yan P, Ren J, Song M, Li J, Lei J, Pan H, Wang S, Ma X, Ma S, Li H, Sun F, Wan H, Li W, Chan P, Zhou Q, Liu GH, Tang F, Qu J. A single-cell transcriptomic landscape of primate arterial aging. Nat Commun 2020; 11:2202. [PMID: 32371953 PMCID: PMC7200799 DOI: 10.1038/s41467-020-15997-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 04/03/2020] [Indexed: 12/31/2022] Open
Abstract
Our understanding of how aging affects the cellular and molecular components of the vasculature and contributes to cardiovascular diseases is still limited. Here we report a single-cell transcriptomic survey of aortas and coronary arteries in young and old cynomolgus monkeys. Our data define the molecular signatures of specialized arteries and identify eight markers discriminating aortic and coronary vasculatures. Gene network analyses characterize transcriptional landmarks that regulate vascular senility and position FOXO3A, a longevity-associated transcription factor, as a master regulator gene that is downregulated in six subtypes of monkey vascular cells during aging. Targeted inactivation of FOXO3A in human vascular endothelial cells recapitulates the major phenotypic defects observed in aged monkey arteries, verifying FOXO3A loss as a key driver for arterial endothelial aging. Our study provides a critical resource for understanding the principles underlying primate arterial aging and contributes important clues to future treatment of age-associated vascular disorders.
Collapse
Affiliation(s)
- Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
| | - Shu Zhang
- College of Life Sciences, Peking University, Beijing, 100871, China
- Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing, 100871, China
| | - Pengze Yan
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Ren
- Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingyi Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinghui Lei
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Huize Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xibo Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CBSR&NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuai Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongyu Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haifeng Wan
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wei Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Piu Chan
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Qi Zhou
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guang-Hui Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Fuchou Tang
- College of Life Sciences, Peking University, Beijing, 100871, China.
- Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China.
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem cell and Regeneration, CAS, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
200
|
Goh KJ, Chen JH, Rocha N, Semple RK. Human pluripotent stem cell-based models suggest preadipocyte senescence as a possible cause of metabolic complications of Werner and Bloom Syndromes. Sci Rep 2020; 10:7490. [PMID: 32367056 PMCID: PMC7198505 DOI: 10.1038/s41598-020-64136-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/08/2020] [Indexed: 11/09/2022] Open
Abstract
Werner Syndrome (WS) and Bloom Syndrome (BS) are disorders of DNA damage repair caused by biallelic disruption of the WRN or BLM DNA helicases respectively. Both are commonly associated with insulin resistant diabetes, usually accompanied by dyslipidemia and fatty liver, as seen in lipodystrophies. In keeping with this, progressive reduction of subcutaneous adipose tissue is commonly observed. To interrogate the underlying cause of adipose tissue dysfunction in these syndromes, CRISPR/Cas9 genome editing was used to generate human pluripotent stem cell (hPSC) lacking either functional WRN or BLM helicase. No deleterious effects were observed in WRN−/− or BLM−/− embryonic stem cells, however upon their differentiation into adipocyte precursors (AP), premature senescence emerged, impairing later stages of adipogenesis. The resulting adipocytes were also found to be senescent, with increased levels of senescent markers and senescence-associated secretory phenotype (SASP) components. SASP components initiate and reinforce senescence in adjacent cells, which is likely to create a positive feedback loop of cellular senescence within the adipocyte precursor compartment, as demonstrated in normal ageing. Such a scenario could progressively attenuate adipose mass and function, giving rise to “lipodystrophy-like” insulin resistance. Further assessment of pharmacological senolytic strategies are warranted to mitigate this component of Werner and Bloom syndromes.
Collapse
Affiliation(s)
- Kim Jee Goh
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Jian-Hua Chen
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Nuno Rocha
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Robert K Semple
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK. .,The National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK. .,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|