151
|
Hansen N, Chaieb L, Derner M, Hampel KG, Elger CE, Surges R, Staresina B, Axmacher N, Fell J. Memory encoding-related anterior hippocampal potentials are modulated by deep brain stimulation of the entorhinal area. Hippocampus 2017; 28:12-17. [DOI: 10.1002/hipo.22808] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Niels Hansen
- Department of Epileptology; University of Bonn; Bonn D-53105 Germany
| | - Leila Chaieb
- Department of Epileptology; University of Bonn; Bonn D-53105 Germany
| | - Marlene Derner
- Department of Epileptology; University of Bonn; Bonn D-53105 Germany
| | - Kevin G. Hampel
- Department of Epileptology; University of Bonn; Bonn D-53105 Germany
| | | | - Rainer Surges
- Department of Epileptology; University of Bonn; Bonn D-53105 Germany
| | | | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology; Ruhr University Bochum; Bochum D-44801 Germany
- German Center for Neurodegenerative Diseases (DZNE); Bonn D-53175 Germany
| | - Juergen Fell
- Department of Epileptology; University of Bonn; Bonn D-53105 Germany
| |
Collapse
|
152
|
Schmidt-Wilcke T, Fuchs E, Funke K, Vlachos A, Müller-Dahlhaus F, Puts NAJ, Harris RE, Edden RAE. GABA-from Inhibition to Cognition: Emerging Concepts. Neuroscientist 2017; 24:501-515. [PMID: 29283020 DOI: 10.1177/1073858417734530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neural functioning and plasticity can be studied on different levels of organization and complexity ranging from the molecular and synaptic level to neural circuitry of whole brain networks. Across neuroscience different methods are being applied to better understand the role of various neurotransmitter systems in the evolution of perception and cognition. GABA is the main inhibitory neurotransmitter in the adult mammalian brain and, depending on the brain region, up to 25% of the total number of cortical neurons are GABAergic interneurons. At the one end of the spectrum, GABAergic neurons have been accurately described with regard to cell morphological, molecular, and electrophysiological properties; at the other end researchers try to link GABA concentrations in specific brain regions to human behavior using magnetic resonance spectroscopy. One of the main challenges of modern neuroscience currently is to integrate knowledge from highly specialized subfields at distinct biological scales into a coherent picture that bridges the gap between molecules and behavior. In the current review, recent findings from different fields of GABA research are summarized delineating a potential strategy to develop a more holistic picture of the function and role of GABA.
Collapse
Affiliation(s)
- T Schmidt-Wilcke
- 1 Institute of Clinical Neuroscience and Medical Psychology, University of Düsseldorf, Düsseldorf, Germany.,2 Mauritius Therapieklinik Meerbusch, Meerbusch, Germany
| | - E Fuchs
- 3 Department of Clinical Neurobiology, Medical Faculty of Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - K Funke
- 4 Department of Neurophysiology, Medical Faculty of Ruhr-University Bochum, Bochum, Germany
| | - A Vlachos
- 5 Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - F Müller-Dahlhaus
- 6 Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany.,7 Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - N A J Puts
- 8 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,9 F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - R E Harris
- 10 Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - R A E Edden
- 8 Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,9 F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
153
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 PMCID: PMC6151493 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 569] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
154
|
McKenzie S. Inhibition shapes the organization of hippocampal representations. Hippocampus 2017; 28:659-671. [PMID: 28921762 DOI: 10.1002/hipo.22803] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/12/2023]
Abstract
Hippocampal neurons become tuned to stimuli that predict behaviorally salient outcomes. This plasticity suggests that memory formation depends upon shifts in how different anatomical inputs can drive hippocampal activity. Here, I present evidence that inhibitory neurons can provide such a mechanism for learning-related changes in the tuning of pyramidal cells. Inhibitory currents arriving on the dendrites of pyramidal cells determine whether an excitatory input can drive action potential output. Specificity and plasticity of this dendritic modulation allows for precise, modifiable changes in how afferent inputs are integrated, a process that defines a neuron's receptive field. In addition, feedback inhibition plays a fundamental role in biasing which excitatory neurons may be co-active. By defining the rules of synchrony and the rules of input integration, interneurons likely play an important role in the organization of memory representation within the hippocampus.
Collapse
Affiliation(s)
- Sam McKenzie
- NYU Langone Medical Center, 450 E29th Street, 9th Floor, New York, New York 10016
| |
Collapse
|
155
|
Hu W, Wu F, Zhang Y, Gong CX, Iqbal K, Liu F. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis. Front Aging Neurosci 2017; 9:311. [PMID: 29021756 PMCID: PMC5623682 DOI: 10.3389/fnagi.2017.00311] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022] Open
Abstract
Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Wen Hu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Feng Wu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Yanchong Zhang
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Cheng-Xin Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
156
|
Li M, Tsien JZ. Neural Code- Neural Self-information Theory on How Cell-Assembly Code Rises from Spike Time and Neuronal Variability. Front Cell Neurosci 2017; 11:236. [PMID: 28912685 PMCID: PMC5582596 DOI: 10.3389/fncel.2017.00236] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/25/2017] [Indexed: 12/05/2022] Open
Abstract
A major stumbling block to cracking the real-time neural code is neuronal variability - neurons discharge spikes with enormous variability not only across trials within the same experiments but also in resting states. Such variability is widely regarded as a noise which is often deliberately averaged out during data analyses. In contrast to such a dogma, we put forth the Neural Self-Information Theory that neural coding is operated based on the self-information principle under which variability in the time durations of inter-spike-intervals (ISI), or neuronal silence durations, is self-tagged with discrete information. As the self-information processor, each ISI carries a certain amount of information based on its variability-probability distribution; higher-probability ISIs which reflect the balanced excitation-inhibition ground state convey minimal information, whereas lower-probability ISIs which signify rare-occurrence surprisals in the form of extremely transient or prolonged silence carry most information. These variable silence durations are naturally coupled with intracellular biochemical cascades, energy equilibrium and dynamic regulation of protein and gene expression levels. As such, this silence variability-based self-information code is completely intrinsic to the neurons themselves, with no need for outside observers to set any reference point as typically used in the rate code, population code and temporal code models. Moreover, temporally coordinated ISI surprisals across cell population can inherently give rise to robust real-time cell-assembly codes which can be readily sensed by the downstream neural clique assemblies. One immediate utility of this self-information code is a general decoding strategy to uncover a variety of cell-assembly patterns underlying external and internal categorical or continuous variables in an unbiased manner.
Collapse
Affiliation(s)
- Meng Li
- Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta UniversityAugusta, GA, United States
- The Brain Decoding Center, BanNa Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan Province, China
| | - Joe Z. Tsien
- Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta UniversityAugusta, GA, United States
- The Brain Decoding Center, BanNa Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan Province, China
| |
Collapse
|
157
|
Abstract
Cortical networks are composed of glutamatergic excitatory projection neurons and local GABAergic inhibitory interneurons that gate signal flow and sculpt network dynamics. Although they represent a minority of the total neocortical neuronal population, GABAergic interneurons are highly heterogeneous, forming functional classes based on their morphological, electrophysiological, and molecular features, as well as connectivity and in vivo patterns of activity. Here we review our current understanding of neocortical interneuron diversity and the properties that distinguish cell types. We then discuss how the involvement of multiple cell types, each with a specific set of cellular properties, plays a crucial role in diversifying and increasing the computational power of a relatively small number of simple circuit motifs forming cortical networks. We illustrate how recent advances in the field have shed light onto the mechanisms by which GABAergic inhibition contributes to network operations.
Collapse
|
158
|
Neuregulin and Dopamine D4 Receptors Contribute Independently to Depotentiation of Schaffer Collateral LTP by Temperoammonic Path Stimulation. eNeuro 2017; 4:eN-NWR-0176-17. [PMID: 28828402 PMCID: PMC5563842 DOI: 10.1523/eneuro.0176-17.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/14/2017] [Accepted: 08/07/2017] [Indexed: 11/21/2022] Open
Abstract
Prior studies have found that dopamine (DA), acting at D4 receptors, and neuregulin (NRG), likely acting at ErbB4 receptors, are involved in a form of depotentiation of long-term potentiation (LTP) at Schaffer collateral (SC) synapses in the hippocampus. Furthermore, DA and NRG actions are intertwined in that NRG induces DA release. We previously found that low-frequency stimulation (LFS) of temperoammonic (TA) inputs to area CA1 also depotentiates previously established SC LTP through a complex signaling pathway involving endocannabinoids, GABA, adenosine, and mitogen-activated protein kinases (MAPKs), but not glutamate. In the present studies, we found that TA-induced SC depotentiation in hippocampal slices from Sprague-Dawley albino rats also involves activation of both D4 receptors and NRG-activated ErbB receptors, but that the roles of these two modulator systems are independent with D4 receptor antagonism failing to alter chemical depotentiation by NRG1β. Furthermore, a selective D4 receptor agonist was unable to depotentiate SC LTP when administered alone, suggesting that D4 receptor activation is necessary but not sufficient for TA-induced SC depotentiation. Chemical depotentiation by NRG1β was inhibited by a Pan-ErbB antagonist and by picrotoxin (PTX), an antagonist of GABA-A receptors (GABAARs), indicating that NRG likely promotes SC depotentiation via effects on GABA and interneurons. These findings have implications for understanding the role of DA and NRG in cognitive dysfunction associated with neuropsychiatric illnesses.
Collapse
|
159
|
Leroy F, Brann DH, Meira T, Siegelbaum SA. Input-Timing-Dependent Plasticity in the Hippocampal CA2 Region and Its Potential Role in Social Memory. Neuron 2017; 95:1089-1102.e5. [PMID: 28823730 DOI: 10.1016/j.neuron.2017.07.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/26/2017] [Accepted: 07/28/2017] [Indexed: 02/01/2023]
Abstract
Input-timing-dependent plasticity (ITDP) is a circuit-based synaptic learning rule by which paired activation of entorhinal cortical (EC) and Schaffer collateral (SC) inputs to hippocampal CA1 pyramidal neurons (PNs) produces a long-term enhancement of SC excitation. We now find that paired stimulation of EC and SC inputs also induces ITDP of SC excitation of CA2 PNs. However, whereas CA1 ITDP results from long-term depression of feedforward inhibition (iLTD) as a result of activation of CB1 endocannabinoid receptors on cholecystokinin-expressing interneurons, CA2 ITDP results from iLTD through activation of δ-opioid receptors on parvalbumin-expressing interneurons. Furthermore, whereas CA1 ITDP has been previously linked to enhanced specificity of contextual memory, we find that CA2 ITDP is associated with enhanced social memory. Thus, ITDP may provide a general synaptic learning rule for distinct forms of hippocampal-dependent memory mediated by distinct hippocampal regions.
Collapse
Affiliation(s)
- Felix Leroy
- Department of Neuroscience, Kavli Institute of Brain Science, Columbia University Medical Center, 1051 Riverside Drive, New York, NY, USA.
| | - David H Brann
- Department of Neuroscience, Kavli Institute of Brain Science, Columbia University Medical Center, 1051 Riverside Drive, New York, NY, USA
| | - Torcato Meira
- Department of Neuroscience, Kavli Institute of Brain Science, Columbia University Medical Center, 1051 Riverside Drive, New York, NY, USA; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Steven A Siegelbaum
- Department of Neuroscience, Kavli Institute of Brain Science, Columbia University Medical Center, 1051 Riverside Drive, New York, NY, USA.
| |
Collapse
|
160
|
Cohen JD, Bolstad M, Lee AK. Experience-dependent shaping of hippocampal CA1 intracellular activity in novel and familiar environments. eLife 2017; 6. [PMID: 28742496 PMCID: PMC5526666 DOI: 10.7554/elife.23040] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/06/2017] [Indexed: 12/28/2022] Open
Abstract
The hippocampus is critical for producing stable representations of familiar spaces. How these representations arise is poorly understood, largely because changes to hippocampal inputs have not been measured during spatial learning. Here, using intracellular recording, we monitored inputs and plasticity-inducing complex spikes (CSs) in CA1 neurons while mice explored novel and familiar virtual environments. Inputs driving place field spiking increased in amplitude – often suddenly – during novel environment exploration. However, these increases were not sustained in familiar environments. Rather, the spatial tuning of inputs became increasingly similar across repeated traversals of the environment with experience – both within fields and throughout the whole environment. In novel environments, CSs were not necessary for place field formation. Our findings support a model in which initial inhomogeneities in inputs are amplified to produce robust place field activity, then plasticity refines this representation into one with less strongly modulated, but more stable, inputs for long-term storage. DOI:http://dx.doi.org/10.7554/eLife.23040.001
Collapse
Affiliation(s)
- Jeremy D Cohen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Mark Bolstad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Albert K Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
161
|
Burton SD. Inhibitory circuits of the mammalian main olfactory bulb. J Neurophysiol 2017; 118:2034-2051. [PMID: 28724776 DOI: 10.1152/jn.00109.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023] Open
Abstract
Synaptic inhibition critically influences sensory processing throughout the mammalian brain, including the main olfactory bulb (MOB), the first station of sensory processing in the olfactory system. Decades of research across numerous laboratories have established a central role for granule cells (GCs), the most abundant GABAergic interneuron type in the MOB, in the precise regulation of principal mitral and tufted cell (M/TC) firing rates and synchrony through lateral and recurrent inhibitory mechanisms. In addition to GCs, however, the MOB contains a vast diversity of other GABAergic interneuron types, and recent findings suggest that, while fewer in number, these oft-ignored interneurons are just as important as GCs in shaping odor-evoked M/TC activity. Here I challenge the prevailing centrality of GCs. In this review, I first outline the specific properties of each GABAergic interneuron type in the rodent MOB, with particular emphasis placed on direct interneuron recordings and cell type-selective manipulations. On the basis of these properties, I then critically reevaluate the contribution of GCs vs. other interneuron types to the regulation of odor-evoked M/TC firing rates and synchrony via lateral, recurrent, and other inhibitory mechanisms. This analysis yields a novel model in which multiple interneuron types with distinct abundances, connectivity patterns, and physiologies complement one another to regulate M/TC activity and sensory processing.
Collapse
Affiliation(s)
- Shawn D Burton
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania; and .,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| |
Collapse
|
162
|
Monday HR, Castillo PE. Closing the gap: long-term presynaptic plasticity in brain function and disease. Curr Opin Neurobiol 2017; 45:106-112. [PMID: 28570863 DOI: 10.1016/j.conb.2017.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/10/2017] [Accepted: 05/15/2017] [Indexed: 11/28/2022]
Abstract
Synaptic plasticity is critical for experience-dependent adjustments of brain function. While most research has focused on the mechanisms that underlie postsynaptic forms of plasticity, comparatively little is known about how neurotransmitter release is altered in a long-term manner. Emerging research suggests that many of the features of canonical 'postsynaptic' plasticity, such as associativity, structural changes and bidirectionality, also characterize long-term presynaptic plasticity. Recent studies demonstrate that presynaptic plasticity is a potent regulator of circuit output and function. Moreover, aberrant presynaptic plasticity is a convergent factor of synaptopathies like schizophrenia, addiction, and Autism Spectrum Disorders, and may be a potential target for treatment.
Collapse
Affiliation(s)
- Hannah R Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
163
|
Yang Q, Song D, Qing H. Neural changes in Alzheimer's disease from circuit to molecule: Perspective of optogenetics. Neurosci Biobehav Rev 2017; 79:110-118. [PMID: 28522119 DOI: 10.1016/j.neubiorev.2017.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/21/2017] [Accepted: 05/12/2017] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD), as a crucial neurodegenerative disorder, affects neural activities at many levels. Synaptic plasticity and neural circuits are most susceptible in AD, but the detailed mechanism is unclear. Optogenetic tools provide unprecedented spatio-temporal specificity to stimulate specific neural circuits or synaptic molecules to reveal the precise function of normal brain and mechanism of deficits in AD models. Furthermore, using optogenetics to stimulate neurons can rescue learning and memory loss caused by AD. It also has possibility to use light to control the Neurotransmitter receptors and their downstream signal pathway. These technical methods have broad therapeutic application prospect.
Collapse
Affiliation(s)
- Qinghu Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Da Song
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
164
|
Zemla R, Basu J. Hippocampal function in rodents. Curr Opin Neurobiol 2017; 43:187-197. [PMID: 28477511 DOI: 10.1016/j.conb.2017.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/16/2022]
Abstract
The hippocampus is crucial for the formation and recall of long-term memories about people, places, objects, and events. Capitalizing on high-resolution microscopy, in vivo electrophysiology, and genetic manipulation, recent research in rodents provides evidence for hippocampal ensemble coding on the spatial, episodic, and contextual dimensions. Here we highlight the functional contribution of newly described long-range connections between hippocampus and cortical areas, and the relative impact of inhibitory and excitatory dynamics in generating behaviorally relevant population activity. Our goal is to provide an integrated view of hippocampal circuit function to understand mnemonic computations at the systems and cellular levels that underlie adaptive learned behaviors.
Collapse
Affiliation(s)
- Roland Zemla
- Neuroscience Institute, New York University School of Medicine, USA; Medical Scientist Training Program, New York University School of Medicine, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University School of Medicine, USA; Department of Neuroscience and Physiology, New York University School of Medicine, USA.
| |
Collapse
|
165
|
Rovira-Esteban L, Péterfi Z, Vikór A, Máté Z, Szabó G, Hájos N. Morphological and physiological properties of CCK/CB1R-expressing interneurons in the basal amygdala. Brain Struct Funct 2017; 222:3543-3565. [PMID: 28391401 DOI: 10.1007/s00429-017-1417-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/30/2017] [Indexed: 12/31/2022]
Abstract
Principal neurons in cortical regions including the basal nucleus of the amygdala (BA) are innervated by several types of inhibitory cells, one of which expresses the neuropeptide cholecystokinin (CCK) and the type 1 cannabinoid receptor (CB1R). CCK/CB1R-expressing interneurons may have a profound impact on amygdalar function by controlling its output. However, very little is known about their properties, and therefore their role in circuit operation cannot be predicted. To characterize the CCK/CB1R-expressing interneurons in the BA, we combined in vitro electrophysiological recordings and neuroanatomical techniques in a transgenic mouse that expresses DsRed fluorescent protein under the control of the CCK promoter. We found that the majority of CCK/CB1R-positive interneurons expressed either the type 3 vesicular glutamate transporter (VGluT3) or the Ca2+ binding protein calbindin (Calb). VGluT3+ CCK/CB1R-expressing interneurons targeted the soma of principal neurons more often than Calb+ CCK/CB1R-expressing interneurons, but the dendritic morphology and membrane properties of these two neurochemically distinct interneuron types were not significantly different. The results of paired recordings showed that the unitary IPSC properties of VGluT3+ or Calb+ CCK/CB1R-expressing interneurons recorded in principal neurons were indistinguishable. We verified that endocannabinoids at the output synapses of CCK/CB1R-expressing interneurons could potently reduce the unitary IPSC magnitude. In summary, independent of the neurochemical content, CCK/CB1R-expressing interneurons have similar physiological and morphological properties, providing an endocannabinoid-sensitive synaptic inhibition onto the amygdalar principal neurons.
Collapse
Affiliation(s)
- Laura Rovira-Esteban
- Lendület Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltán Péterfi
- Lendület Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila Vikór
- Lendület Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltán Máté
- Division of Medical Gene Technology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Division of Medical Gene Technology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Norbert Hájos
- Lendület Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
166
|
Leake J, Zinn R, Corbit L, Vissel B. Dissociation between complete hippocampal context memory formation and context fear acquisition. ACTA ACUST UNITED AC 2017; 24:153-157. [PMID: 28298553 PMCID: PMC5362699 DOI: 10.1101/lm.044578.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/20/2017] [Indexed: 11/24/2022]
Abstract
Rodents require a minimal time period to explore a context prior to footshock to display plateau-level context fear at test. To investigate whether this rapid fear plateau reflects complete memory formation within that short time-frame, we used the immediate-early gene product Arc as an indicator of hippocampal context memory formation-related activity. We found that hippocampal Arc expression continued to increase well past the minimal time required for plateau-level fear. This raises the possibility that context fear conditioning occurs more rapidly than complete memory formation. Thus, animals may be able to condition robustly to both complete and incomplete contextual representations.
Collapse
Affiliation(s)
- Jessica Leake
- Neurodegenerative Disorders, Neuroscience Department, Garvan Institute of Medical Research, Sydney 2010, Australia.,School of Psychology, The University of Sydney, Sydney 2006, Australia
| | - Raphael Zinn
- Neurodegenerative Disorders, Neuroscience Department, Garvan Institute of Medical Research, Sydney 2010, Australia.,Faculty of Medicine, University of New South Wales, Sydney 2052, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia
| | - Laura Corbit
- School of Psychology, The University of Sydney, Sydney 2006, Australia
| | - Bryce Vissel
- Neurodegenerative Disorders, Neuroscience Department, Garvan Institute of Medical Research, Sydney 2010, Australia.,Faculty of Medicine, University of New South Wales, Sydney 2052, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney 2007, Australia
| |
Collapse
|
167
|
Pantazopoulos H, Wiseman JT, Markota M, Ehrenfeld L, Berretta S. Decreased Numbers of Somatostatin-Expressing Neurons in the Amygdala of Subjects With Bipolar Disorder or Schizophrenia: Relationship to Circadian Rhythms. Biol Psychiatry 2017; 81:536-547. [PMID: 27259817 PMCID: PMC5065936 DOI: 10.1016/j.biopsych.2016.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Growing evidence points to a key role for somatostatin (SST) in schizophrenia (SZ) and bipolar disorder (BD). In the amygdala, neurons expressing SST play an important role in the regulation of anxiety, which is often comorbid in these disorders. We tested the hypothesis that SST-immunoreactive (IR) neurons are decreased in the amygdala of subjects with SZ and BD. Evidence for circadian SST expression in the amygdala and disrupted circadian rhythms and rhythmic peaks of anxiety in BD suggest a disruption of rhythmic expression of SST in this disorder. METHODS Amygdala sections from 12 SZ, 15 BD, and 15 control subjects were processed for immunocytochemistry for SST and neuropeptide Y, a neuropeptide partially coexpressed in SST-IR neurons. Total numbers (Nt) of IR neurons were measured. Time of death was used to test associations with circadian rhythms. RESULTS SST-IR neurons were decreased in the lateral amygdala nucleus in BD (Nt, p = .003) and SZ (Nt, p = .02). In normal control subjects, Nt of SST-IR neurons varied according to time of death. This pattern was altered in BD subjects, characterized by decreases of SST-IR neurons selectively in subjects with time of death corresponding to the day (6:00 am to 5:59 pm). Numbers of neuropeptide Y-IR neurons were not affected. CONCLUSIONS Decreased SST-IR neurons in the amygdala of patients with SZ and BD, interpreted here as decreased SST expression, may disrupt responses to fear and anxiety regulation in these individuals. In BD, our findings raise the possibility that morning peaks of anxiety depend on a disruption of circadian regulation of SST expression in the amygdala.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Jason T Wiseman
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont
| | - Matej Markota
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Lucy Ehrenfeld
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Program in Neuroscience, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
168
|
A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning. Nat Neurosci 2017; 20:559-570. [PMID: 28263300 DOI: 10.1038/nn.4517] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
Lateral and medial parts of entorhinal cortex (EC) convey nonspatial 'what' and spatial 'where' information, respectively, into hippocampal CA1, via both the indirect EC layer 2→ hippocampal dentate gyrus→CA3→CA1 and the direct EC layer 3→CA1 paths. However, it remains elusive how the direct path transfers distinct information and contributes to hippocampal learning functions. Here we report that lateral EC projection neurons selectively form direct excitatory synapses onto a subpopulation of morphologically complex, calbindin-expressing pyramidal cells (PCs) in the dorsal CA1 (dCA1), while medial EC neurons uniformly innervate all dCA1 PCs. Optogenetically inactivating the distinct lateral EC-dCA1 connections or the postsynaptic dCA1 calbindin-expressing PC activity slows olfactory associative learning. Moreover, optetrode recordings reveal that dCA1 calbindin-expressing PCs develop more selective spiking responses to odor cues during learning. Thus, our results identify a direct lateral EC→dCA1 circuit that is required for olfactory associative learning.
Collapse
|
169
|
Muñoz W, Tremblay R, Levenstein D, Rudy B. Layer-specific modulation of neocortical dendritic inhibition during active wakefulness. Science 2017; 355:954-959. [PMID: 28254942 DOI: 10.1126/science.aag2599] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 02/06/2017] [Indexed: 10/25/2024]
Abstract
γ-Aminobutyric acid (GABA)ergic inputs are strategically positioned to gate synaptic integration along the dendritic arbor of pyramidal cells. However, their spatiotemporal dynamics during behavior are poorly understood. Using an optical-tagging electrophysiological approach to record and label somatostatin-expressing (Sst) interneurons (GABAergic neurons specialized for dendritic inhibition), we discovered a layer-specific modulation of their activity in behaving mice. Sst interneuron subtypes, residing in different cortical layers and innervating complementary laminar domains, exhibited opposite activity changes during transitions to active wakefulness. The relative weight of vasoactive intestinal peptide-expressing (Vip) interneuron-mediated inhibition of distinct Sst interneurons and cholinergic modulation determined their in vivo activity. These results reveal a state-dependent laminar influence of Sst interneuron-mediated inhibition, with implications for the compartmentalized regulation of dendritic signaling in the mammalian neocortex.
Collapse
Affiliation(s)
- William Muñoz
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Robin Tremblay
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Daniel Levenstein
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Bernardo Rudy
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
170
|
The Dendrites of CA2 and CA1 Pyramidal Neurons Differentially Regulate Information Flow in the Cortico-Hippocampal Circuit. J Neurosci 2017; 37:3276-3293. [PMID: 28213444 DOI: 10.1523/jneurosci.2219-16.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/27/2016] [Accepted: 02/07/2017] [Indexed: 12/29/2022] Open
Abstract
The impact of a given neuronal pathway depends on the number of synapses it makes with its postsynaptic target, the strength of each individual synapse, and the integrative properties of the postsynaptic dendrites. Here we explore the cellular and synaptic mechanisms responsible for the differential excitatory drive from the entorhinal cortical pathway onto mouse CA2 compared with CA1 pyramidal neurons (PNs). Although both types of neurons receive direct input from entorhinal cortex onto their distal dendrites, these inputs produce a 5- to 6-fold larger EPSP at the soma of CA2 compared with CA1 PNs, which is sufficient to drive action potential output from CA2 but not CA1. Experimental and computational approaches reveal that dendritic propagation is more efficient in CA2 than CA1 as a result of differences in dendritic morphology and dendritic expression of the hyperpolarization-activated cation current (Ih). Furthermore, there are three times as many cortical inputs onto CA2 compared with CA1 PN distal dendrites. Using a computational model, we demonstrate that the differences in dendritic properties of CA2 compared with CA1 PNs are necessary to enable the CA2 PNs to generate their characteristically large EPSPs in response to their cortical inputs; in contrast, CA1 dendritic properties limit the size of the EPSPs they generate, even to a similar number of cortical inputs. Thus, the matching of dendritic integrative properties with the density of innervation is crucial for the differential processing of information from the direct cortical inputs by CA2 compared with CA1 PNs.SIGNIFICANCE STATEMENT Recent discoveries have shown that the long-neglected hippocampal CA2 region has distinct synaptic properties and plays a prominent role in social memory and schizophrenia. This study addresses the puzzling finding that the direct entorhinal cortical inputs to hippocampus, which target the very distal pyramidal neuron dendrites, provide an unusually strong excitatory drive at the soma of CA2 pyramidal neurons, with EPSPs that are 5-6 times larger than those in CA1 pyramidal neurons. We here elucidate synaptic and dendritic mechanisms that account quantitatively for the marked difference in EPSP size. Our findings further demonstrate the general importance of fine-tuning the integrative properties of neuronal dendrites to their density of synaptic innervation.
Collapse
|
171
|
Manita S, Miyakawa H, Kitamura K, Murayama M. Dendritic Spikes in Sensory Perception. Front Cell Neurosci 2017; 11:29. [PMID: 28261060 PMCID: PMC5309249 DOI: 10.3389/fncel.2017.00029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/31/2017] [Indexed: 11/13/2022] Open
Abstract
What is the function of dendritic spikes? One might argue that they provide conditions for neuronal plasticity or that they are essential for neural computation. However, despite a long history of dendritic research, the physiological relevance of dendritic spikes in brain function remains unknown. This could stem from the fact that most studies on dendrites have been performed in vitro. Fortunately, the emergence of novel techniques such as improved two-photon microscopy, genetically encoded calcium indicators (GECIs), and optogenetic tools has provided the means for vital breakthroughs in in vivo dendritic research. These technologies enable the investigation of the functions of dendritic spikes in behaving animals, and thus, help uncover the causal relationship between dendritic spikes, and sensory information processing and synaptic plasticity. Understanding the roles of dendritic spikes in brain function would provide mechanistic insight into the relationship between the brain and the mind. In this review article, we summarize the results of studies on dendritic spikes from a historical perspective and discuss the recent advances in our understanding of the role of dendritic spikes in sensory perception.
Collapse
Affiliation(s)
- Satoshi Manita
- Laboratory for Behavioral Neurophysiology, Brain Science Institute, RIKENWako City, Saitama, Japan; Department of Neurophysiology, Division of Medicine, University of YamanashiChuo-shi, Japan
| | - Hiroyoshi Miyakawa
- Laboratory of Cellular Neurobiology, Tokyo University of Pharmacy and Life Sciences Hachioji, Japan
| | - Kazuo Kitamura
- Department of Neurophysiology, Division of Medicine, University of Yamanashi Chuo-shi, Japan
| | - Masanori Murayama
- Laboratory for Behavioral Neurophysiology, Brain Science Institute, RIKEN Wako City, Saitama, Japan
| |
Collapse
|
172
|
Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. eLife 2016; 5:e18566. [PMID: 28009257 DOI: 10.7554/elife.18566.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/15/2016] [Indexed: 05/25/2023] Open
Abstract
The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations.
Collapse
Affiliation(s)
- Marianne J Bezaire
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Raikov
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
- Department of Neurosurgery, Stanford University, Stanford, United States
| | - Kelly Burk
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Dhrumil Vyas
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, United States
| |
Collapse
|
173
|
Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. eLife 2016; 5. [PMID: 28009257 PMCID: PMC5313080 DOI: 10.7554/elife.18566] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/15/2016] [Indexed: 12/16/2022] Open
Abstract
The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations. DOI:http://dx.doi.org/10.7554/eLife.18566.001
Collapse
Affiliation(s)
- Marianne J Bezaire
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Raikov
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States.,Department of Neurosurgery, Stanford University, Stanford, United States
| | - Kelly Burk
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Dhrumil Vyas
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, United States
| |
Collapse
|
174
|
Dolleman-van der Weel MJ, Lopes da Silva FH, Witter MP. Interaction of nucleus reuniens and entorhinal cortex projections in hippocampal field CA1 of the rat. Brain Struct Funct 2016; 222:2421-2438. [PMID: 28008472 DOI: 10.1007/s00429-016-1350-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/14/2016] [Indexed: 02/03/2023]
Abstract
The nucleus reuniens (RE) and entorhinal cortex (EC) provide monosynaptic excitatory inputs to the apical dendrites of pyramidal cells and to interneurons with dendrites in stratum lacunosum moleculare (LM) of hippocampal field CA1. However, whether the RE and EC inputs interact at the cellular level is unknown. In this electrophysiological in vivo study, low-frequency stimulation was used to selectively activate each projection at its origin; field excitatory postsynaptic potentials (fEPSPs) were recorded in CA1. We applied (1) paired pulses to RE or EC, (2) combined paired pulses to RE and EC, and (3) simultaneously paired pulses to RE/EC. The main findings are that: (a) stimulation of either RE- or EC-evoked subthreshold fEPSPs, displaying paired pulse facilitation (PPF), (b) subthreshold fEPSPs evoked by combined stimulation did not display heterosynaptic PPF, and (c) simultaneous stimulation of RE/EC resulted in enhanced subthreshold fEPSPs in proximal LM displaying a nonlinear interaction. CSD analyses of RE/EC-evoked depth profiles revealed a nonlinear enlargement of the 'LM sink-radiatum source' configuration and the appearance of an additional small sink-source pair close to stratum pyramidale, likely reflecting (peri)somatic inhibition. The nonlinear interaction between both inputs indicates that RE and EC axons form synapses, at least partly, onto the same dendritic compartments of CA1 pyramidal cells. We propose that low-frequency activation of the RE-CA1 input facilitates the entorhinal-hippocampal dialogue, and may synchronize the neocortical-hippocampal slow oscillation which is relevant for hippocampal-dependent memory consolidation.
Collapse
Affiliation(s)
- M J Dolleman-van der Weel
- Department of Anatomy and Neurosciences, VU University Medical Center, 1081 BT, Amsterdam, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - F H Lopes da Silva
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
- Department of Bioengineering, Instituto Superior Técnico, Lisbon Technical University, 1049-001, Lisbon, Portugal
| | - M P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, MTFS, Norwegian University of Science and Technology (NTNU), Postboks 8905, 7491, Trondheim, Norway.
| |
Collapse
|
175
|
Altered Oscillatory Dynamics of CA1 Parvalbumin Basket Cells during Theta-Gamma Rhythmopathies of Temporal Lobe Epilepsy. eNeuro 2016; 3:eN-NWR-0284-16. [PMID: 27896315 PMCID: PMC5114702 DOI: 10.1523/eneuro.0284-16.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 12/23/2022] Open
Abstract
Recent reports in human demonstrate a role of theta–gamma coupling in memory for spatial episodes and a lack of coupling in people experiencing temporal lobe epilepsy, but the mechanisms are unknown. Using multisite silicon probe recordings of epileptic rats engaged in episodic-like object recognition tasks, we sought to evaluate the role of theta–gamma coupling in the absence of epileptiform activities. Our data reveal a specific association between theta–gamma (30–60 Hz) coupling at the proximal stratum radiatum of CA1 and spatial memory deficits. We targeted the microcircuit mechanisms with a novel approach to identify putative interneuronal types in tetrode recordings (parvalbumin basket cells in particular) and validated classification criteria in the epileptic context with neurochemical identification of intracellularly recorded cells. In epileptic rats, putative parvalbumin basket cells fired poorly modulated at the falling theta phase, consistent with weaker inputs from Schaffer collaterals and attenuated gamma oscillations, as evaluated by theta-phase decomposition of current–source density signals. We propose that theta–gamma interneuronal rhythmopathies of the temporal lobe are intimately related to episodic memory dysfunction in this condition.
Collapse
|
176
|
Brandalise F, Carta S, Helmchen F, Lisman J, Gerber U. Dendritic NMDA spikes are necessary for timing-dependent associative LTP in CA3 pyramidal cells. Nat Commun 2016; 7:13480. [PMID: 27848967 PMCID: PMC5116082 DOI: 10.1038/ncomms13480] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/07/2016] [Indexed: 01/12/2023] Open
Abstract
The computational repertoire of neurons is enhanced by regenerative electrical signals initiated in dendrites. These events, referred to as dendritic spikes, can act as cell-intrinsic amplifiers of synaptic input. Among these signals, dendritic NMDA spikes are of interest in light of their correlation with synaptic LTP induction. Because it is not possible to block NMDA spikes pharmacologically while maintaining NMDA receptors available to initiate synaptic plasticity, it remains unclear whether NMDA spikes alone can trigger LTP. Here we use dendritic recordings and calcium imaging to analyse the role of NMDA spikes in associative LTP in CA3 pyramidal cells. We show that NMDA spikes produce regenerative branch-specific calcium transients. Decreasing the probability of NMDA spikes reduces LTP, whereas increasing their probability enhances LTP. NMDA spikes and LTP occur without back-propagating action potentials. However, action potentials can facilitate LTP induction by promoting NMDA spikes. Thus, NMDA spikes are necessary and sufficient to produce the critical postsynaptic depolarization required for associative LTP in CA3 pyramidal cells.
Collapse
Affiliation(s)
- Federico Brandalise
- Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, ETH Zurich, CH-8057 Zurich, Switzerland
| | - Stefano Carta
- Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, ETH Zurich, CH-8057 Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, ETH Zurich, CH-8057 Zurich, Switzerland
| | - John Lisman
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Urs Gerber
- Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, ETH Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
177
|
Xie K, Fox GE, Liu J, Lyu C, Lee JC, Kuang H, Jacobs S, Li M, Liu T, Song S, Tsien JZ. Brain Computation Is Organized via Power-of-Two-Based Permutation Logic. Front Syst Neurosci 2016; 10:95. [PMID: 27895562 PMCID: PMC5108790 DOI: 10.3389/fnsys.2016.00095] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022] Open
Abstract
There is considerable scientific interest in understanding how cell assemblies—the long-presumed computational motif—are organized so that the brain can generate intelligent cognition and flexible behavior. The Theory of Connectivity proposes that the origin of intelligence is rooted in a power-of-two-based permutation logic (N = 2i–1), producing specific-to-general cell-assembly architecture capable of generating specific perceptions and memories, as well as generalized knowledge and flexible actions. We show that this power-of-two-based permutation logic is widely used in cortical and subcortical circuits across animal species and is conserved for the processing of a variety of cognitive modalities including appetitive, emotional and social information. However, modulatory neurons, such as dopaminergic (DA) neurons, use a simpler logic despite their distinct subtypes. Interestingly, this specific-to-general permutation logic remained largely intact although NMDA receptors—the synaptic switch for learning and memory—were deleted throughout adulthood, suggesting that the logic is developmentally pre-configured. Moreover, this computational logic is implemented in the cortex via combining a random-connectivity strategy in superficial layers 2/3 with nonrandom organizations in deep layers 5/6. This randomness of layers 2/3 cliques—which preferentially encode specific and low-combinatorial features and project inter-cortically—is ideal for maximizing cross-modality novel pattern-extraction, pattern-discrimination and pattern-categorization using sparse code, consequently explaining why it requires hippocampal offline-consolidation. In contrast, the nonrandomness in layers 5/6—which consists of few specific cliques but a higher portion of more general cliques projecting mostly to subcortical systems—is ideal for feedback-control of motivation, emotion, consciousness and behaviors. These observations suggest that the brain’s basic computational algorithm is indeed organized by the power-of-two-based permutation logic. This simple mathematical logic can account for brain computation across the entire evolutionary spectrum, ranging from the simplest neural networks to the most complex.
Collapse
Affiliation(s)
- Kun Xie
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta UniversityAugusta, GA, USA; The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan, China
| | - Grace E Fox
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Jun Liu
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta UniversityAugusta, GA, USA; The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan, China
| | - Cheng Lyu
- Department of Computer Science and Brain Imaging Center, University of GeorgiaAthens, GA, USA; School of Automation, Northwestern Polytechnical UniversityXi'an, China
| | - Jason C Lee
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Hui Kuang
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Stephanie Jacobs
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Meng Li
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta UniversityAugusta, GA, USA; The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan, China
| | - Tianming Liu
- Department of Computer Science and Brain Imaging Center, University of Georgia Athens, GA, USA
| | - Sen Song
- McGovern Institute for Brain Research and Center for Brain-Inspired Computing Research, Tsinghua University Beijing, China
| | - Joe Z Tsien
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta UniversityAugusta, GA, USA; The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan, China
| |
Collapse
|
178
|
Shim Y, Philippides A, Staras K, Husbands P. Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP. PLoS Comput Biol 2016; 12:e1005137. [PMID: 27760125 PMCID: PMC5070787 DOI: 10.1371/journal.pcbi.1005137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/12/2016] [Indexed: 01/28/2023] Open
Abstract
We propose a biologically plausible architecture for unsupervised ensemble learning in a population of spiking neural network classifiers. A mixture of experts type organisation is shown to be effective, with the individual classifier outputs combined via a gating network whose operation is driven by input timing dependent plasticity (ITDP). The ITDP gating mechanism is based on recent experimental findings. An abstract, analytically tractable model of the ITDP driven ensemble architecture is derived from a logical model based on the probabilities of neural firing events. A detailed analysis of this model provides insights that allow it to be extended into a full, biologically plausible, computational implementation of the architecture which is demonstrated on a visual classification task. The extended model makes use of a style of spiking network, first introduced as a model of cortical microcircuits, that is capable of Bayesian inference, effectively performing expectation maximization. The unsupervised ensemble learning mechanism, based around such spiking expectation maximization (SEM) networks whose combined outputs are mediated by ITDP, is shown to perform the visual classification task well and to generalize to unseen data. The combined ensemble performance is significantly better than that of the individual classifiers, validating the ensemble architecture and learning mechanisms. The properties of the full model are analysed in the light of extensive experiments with the classification task, including an investigation into the influence of different input feature selection schemes and a comparison with a hierarchical STDP based ensemble architecture.
Collapse
Affiliation(s)
- Yoonsik Shim
- Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton, United Kingdom
| | - Andrew Philippides
- Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton, United Kingdom
| | - Kevin Staras
- Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Phil Husbands
- Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, Brighton, United Kingdom
| |
Collapse
|
179
|
Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics. Prog Neurobiol 2016; 151:237-253. [PMID: 27634227 DOI: 10.1016/j.pneurobio.2016.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/18/2016] [Accepted: 09/10/2016] [Indexed: 01/18/2023]
Abstract
Monoamines are key neuromodulators involved in a variety of physiological and pathological brain functions. Classical studies using physiological and pharmacological tools have revealed several essential aspects of monoaminergic involvement in regulating the sleep-wake cycle and influencing sensory responses but many features have remained elusive due to technical limitations. The application of optogenetic tools led to the ability of monitoring and controlling neuronal populations with unprecedented temporal precision and neurochemical specificity. Here, we focus on recent advances in revealing the roles of some monoamines in brain state control and sensory information processing. We summarize the central position of monoamines in integrating sensory processing across sleep-wake states with an emphasis on research conducted using optogenetic techniques. Finally, we discuss the limitations and perspectives of new integrated experimental approaches in understanding the modulatory mechanisms of monoaminergic systems in the mammalian brain.
Collapse
|
180
|
Salami A, Wåhlin A, Kaboodvand N, Lundquist A, Nyberg L. Longitudinal Evidence for Dissociation of Anterior and Posterior MTL Resting-State Connectivity in Aging: Links to Perfusion and Memory. Cereb Cortex 2016; 26:3953-3963. [PMID: 27522073 PMCID: PMC5028008 DOI: 10.1093/cercor/bhw233] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
Neuroimaging studies of spontaneous signal fluctuations as measured by resting-state functional magnetic resonance imaging have revealed age-related alterations in the functional architecture of brain networks. One such network is located in the medial temporal lobe (MTL), showing structural and functional variations along the anterior–posterior axis. Past cross-sectional studies of MTL functional connectivity (FC) have yielded discrepant findings, likely reflecting the fact that specific MTL subregions are differentially affected in aging. Here, using longitudinal resting-state data from 198 participants, we investigated 5-year changes in FC of the anterior and posterior MTL. We found an opposite pattern, such that the degree of FC within the anterior MTL declined after age 60, whereas elevated FC within the posterior MTL was observed along with attenuated posterior MTL-cortical connectivity. A significant negative change–change relation was observed between episodic-memory decline and elevated FC in the posterior MTL. Additional analyses revealed age-related cerebral blood flow (CBF) increases in posterior MTL at the follow-up session, along with a positive relation of elevated FC and CBF, suggesting that elevated FC is a metabolically demanding alteration. Collectively, our findings indicate that elevated FC in posterior MTL along with increased local perfusion is a sign of brain aging that underlie episodic-memory decline.
Collapse
Affiliation(s)
- Alireza Salami
- Umeå Center for Functional Brain Imaging, S-90187, Umeå, Sweden.,Department of Integrative Medical Biology, Physiology Section, Umeå University, S-901 87 Umeå, Sweden.,Aging Research Center, Karolinska Institutet and Stockholm University, SE-113 30, Stockholm, Sweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging, S-90187, Umeå, Sweden.,Department of Radiation Sciences, Radiation Physics, Umeå University, S-901 87 Umeå, Sweden
| | - Neda Kaboodvand
- Umeå Center for Functional Brain Imaging, S-90187, Umeå, Sweden.,Aging Research Center, Karolinska Institutet and Stockholm University, SE-113 30, Stockholm, Sweden
| | - Anders Lundquist
- Umeå Center for Functional Brain Imaging, S-90187, Umeå, Sweden.,Department of Integrative Medical Biology, Physiology Section, Umeå University, S-901 87 Umeå, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, S-90187, Umeå, Sweden.,Department of Integrative Medical Biology, Physiology Section, Umeå University, S-901 87 Umeå, Sweden.,Department of Radiation Sciences, Diagnostic Radiology, Umeå University, S-901 87 Umeå, Sweden
| |
Collapse
|
181
|
Alexander A, Soltesz I. Hippogate: a break-in from entorhinal cortex. Nat Neurosci 2016; 19:530-2. [DOI: 10.1038/nn.4253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
182
|
Bray N. Coordinating intervals. Nat Rev Neurosci 2016; 17:136-7. [DOI: 10.1038/nrn.2016.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
183
|
Izumi Y, Zorumski CF. GABA and Endocannabinoids Mediate Depotentiation of Schaffer Collateral Synapses Induced by Stimulation of Temperoammonic Inputs. PLoS One 2016; 11:e0149034. [PMID: 26862899 PMCID: PMC4749331 DOI: 10.1371/journal.pone.0149034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/26/2016] [Indexed: 11/21/2022] Open
Abstract
Long-term potentiation (LTP) of Schaffer collateral (SC) synapses in the hippocampus is thought to play a key role in episodic memory formation. Because the hippocampus is a shorter-term, limited capacity storage system, repeated bouts of learning and synaptic plasticity require that SC synapses reset to baseline at some point following LTP. We previously showed that repeated low frequency activation of temperoammonic (TA) inputs to the CA1 region depotentiates SC LTP without persistently altering basal transmission. This heterosynaptic depotentiation involves adenosine A1 receptors but not N-methyl-D-aspartate receptors, metabotropic glutamate receptors or L-type calcium channels. In the present study, we used rat hippocampal slices to explore other messengers contributing to TA-induced SC depotentiation, and provide evidence for the involvement of cannabinoid-1 and γ-aminobutyric acid (GABA) type-A receptors as more proximal signaling events leading to synaptic resetting, with A1 receptor activation serving as a downstream event. Surprisingly, we found that TA-induced SC depotentiation is independent of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate glutamate receptors. We also examined the involvement of mitogen-activated protein kinases (MAPKs), and found a role for extracellular-signal related kinase 1/2 and p38 MAPK, but not c-Jun-N-terminal kinase. These results indicate that low frequency stimulation of TA inputs to CA1 activates a complex signaling network that instructs SC synaptic resetting. The involvement of GABA and endocannabinoids suggest mechanisms that could contribute to cognitive dysfunction associated with substance abuse and neuropsychiatric disorders.
Collapse
MESH Headings
- Animals
- Brain/pathology
- Brain/physiology
- CA1 Region, Hippocampal/physiology
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/physiology
- Cognition Disorders/physiopathology
- Endocannabinoids/chemistry
- Endocannabinoids/metabolism
- Endocannabinoids/physiology
- Hippocampus/metabolism
- Hippocampus/pathology
- Long-Term Potentiation
- Long-Term Synaptic Depression
- MAP Kinase Signaling System
- Rats
- Receptors, AMPA/metabolism
- Receptors, AMPA/physiology
- Receptors, Glutamate/metabolism
- Receptors, Glutamate/physiology
- Receptors, Kainic Acid/metabolism
- Receptors, Kainic Acid/physiology
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/physiology
- Signal Transduction
- Substance-Related Disorders/physiopathology
- Synapses/drug effects
- Synapses/metabolism
- Synapses/physiology
- gamma-Aminobutyric Acid/chemistry
- gamma-Aminobutyric Acid/physiology
- p38 Mitogen-Activated Protein Kinases/metabolism
- p38 Mitogen-Activated Protein Kinases/physiology
Collapse
Affiliation(s)
- Yukitoshi Izumi
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
- Washington University Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America
- Washington University Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|