151
|
Del Junco C, Tociu L, Vaikuntanathan S. Energy dissipation and fluctuations in a driven liquid. Proc Natl Acad Sci U S A 2018; 115:3569-3574. [PMID: 29549155 PMCID: PMC5889627 DOI: 10.1073/pnas.1713573115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Minimal models of active and driven particles have recently been used to elucidate many properties of nonequilibrium systems. However, the relation between energy consumption and changes in the structure and transport properties of these nonequilibrium materials remains to be explored. We explore this relation in a minimal model of a driven liquid that settles into a time periodic steady state. Using concepts from stochastic thermodynamics and liquid state theories, we show how the work performed on the system by various nonconservative, time-dependent forces-this quantifies a violation of time reversal symmetry-modifies the structural, transport, and phase transition properties of the driven liquid.
Collapse
Affiliation(s)
- Clara Del Junco
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
- James Franck Institute, The University of Chicago, Chicago, IL 60637
| | - Laura Tociu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637
- James Franck Institute, The University of Chicago, Chicago, IL 60637
| | - Suriyanarayanan Vaikuntanathan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637;
- James Franck Institute, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
152
|
Bier M. Boltzmann-distribution-equivalent for Lévy noise and how it leads to thermodynamically consistent epicatalysis. Phys Rev E 2018; 97:022113. [PMID: 29548153 DOI: 10.1103/physreve.97.022113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Indexed: 11/07/2022]
Abstract
Nonequilibrium systems commonly exhibit Lévy noise. This means that the distribution for the size of the Brownian fluctuations has a "fat" power-law tail. Large Brownian kicks are then more common as compared to the ordinary Gaussian distribution. We consider a two-state system, i.e., two wells and a barrier in between. The barrier is sufficiently high for a barrier crossing to be a rare event. When the noise is Lévy, we do not get a Boltzmann distribution between the two wells. Instead we get a situation where the distribution between the two wells also depends on the height of the barrier that is in between. Ordinarily, a catalyst, by lowering the barrier between two states, speeds up the relaxation to an equilibrium, but does not change the equilibrium distribution. In an environment with Lévy noise, on the other hand, we have the possibility of epicatalysis, i.e., a catalyst effectively altering the distribution between two states through the changing of the barrier height. After deriving formulas to quantitatively describe this effect, we discuss how this idea may apply in nuclear reactors and in the biochemistry of a living cell.
Collapse
Affiliation(s)
- Martin Bier
- Department of Physics, East Carolina University, Greenville, North Carolina 27858, USA
| |
Collapse
|
153
|
Lee AA, Kostinski SV, Brenner MP. Controlling Polyelectrolyte Adsorption onto Carbon Nanotubes by Tuning Ion-Image Interactions. J Phys Chem B 2018; 122:1545-1550. [PMID: 29338265 DOI: 10.1021/acs.jpcb.7b11398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding and controlling polyelectrolyte adsorption onto carbon nanotubes is a fundamental challenge in nanotechnology. Polyelectrolytes have been shown to stabilize nanotube suspensions through adsorbing onto the nanotube surface, and polyelectrolyte-coated nanotubes are emerging as building blocks for complex and addressable self-assembly. Conventional wisdom suggests that polyelectrolyte adsorption onto nanotubes is driven by specific chemical or van der Waals interactions. We develop a simple mean-field model and show that ion-image attraction significantly effects adsorption onto conducting nanotubes at low salt concentrations. Our theory suggests a simple strategy to selectively and reversibly functionalize carbon nanotubes on the basis of their electronic structures, which in turn modify the ion-image attraction.
Collapse
Affiliation(s)
- Alpha A Lee
- Cavendish Laboratory, University of Cambridge , Cambridge CB3 0HE, United Kingdom
| | - Sarah V Kostinski
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Michael P Brenner
- School of Engineering and Applied Sciences, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
154
|
Daloglu MU, Luo W, Shabbir F, Lin F, Kim K, Lee I, Jiang JQ, Cai WJ, Ramesh V, Yu MY, Ozcan A. Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume. LIGHT, SCIENCE & APPLICATIONS 2018; 7:17121. [PMID: 30839645 PMCID: PMC6107047 DOI: 10.1038/lsa.2017.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 05/24/2023]
Abstract
We report a high-throughput and label-free computational imaging technique that simultaneously measures in three-dimensional (3D) space the locomotion and angular spin of the freely moving heads of microswimmers and the beating patterns of their flagella over a sample volume more than two orders-of-magnitude larger compared to existing optical modalities. Using this platform, we quantified the 3D locomotion of 2133 bovine sperms and determined the spin axis and the angular velocity of the sperm head, providing the perspective of an observer seated at the moving and spinning sperm head. In this constantly transforming perspective, flagellum-beating patterns are decoupled from both the 3D translation and spin of the head, which provides the opportunity to truly investigate the 3D spatio-temporal kinematics of the flagellum. In addition to providing unprecedented information on the 3D locomotion of microswimmers, this computational imaging technique could also be instrumental for micro-robotics and sensing research, enabling the high-throughput quantification of the impact of various stimuli and chemicals on the 3D swimming patterns of sperms, motile bacteria and other micro-organisms, generating new insights into taxis behaviors and the underlying biophysics.
Collapse
Affiliation(s)
- Mustafa Ugur Daloglu
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| | - Wei Luo
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| | - Faizan Shabbir
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
| | - Francis Lin
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
| | - Kevin Kim
- Chemistry and Biochemistry Department, University of California, Los Angeles, CA 90095, USA
| | - Inje Lee
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
| | - Jia-Qi Jiang
- Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, USA
| | - Wen-Jun Cai
- Department of Mathematics, University of California, Los Angeles, CA 90095, USA
| | - Vishwajith Ramesh
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
| | - Meng-Yuan Yu
- Computer Science Department, University of California, Los Angeles, CA 90095, USA
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA
- Bioengineering Department, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
155
|
Kalziqi A, Yanni D, Thomas J, Ng SL, Vivek S, Hammer BK, Yunker PJ. Immotile Active Matter: Activity from Death and Reproduction. PHYSICAL REVIEW LETTERS 2018; 120:018101. [PMID: 29350941 DOI: 10.1103/physrevlett.120.018101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Unlike equilibrium atomic solids, biofilms-soft solids composed of bacterial cells-do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system. While studies of active matter typically focus on activity via constituent mobility, here, activity is mediated by reproduction and death events in otherwise immobilized cells. Biofilm surface topography is measured in the nearly homeostatic limit via white light interferometry. Although biofilms are far from equilibrium systems, measured surface-height fluctuation spectra resemble the spectra of thermal permeable membranes but with an activity-mediated effective temperature, as predicted by Risler, Peilloux, and Prost [Phys. Rev. Lett. 115, 258104 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.258104]. By comparing the activity of killer strains of V. cholerae with that of genetically modified strains that cannot kill each other and validating with individual-based simulations, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction and that death and reproduction can fluidize biofilms. Together, these observations demonstrate the unique physical consequences of activity mediated by death and reproduction events.
Collapse
Affiliation(s)
- Arben Kalziqi
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - David Yanni
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Jacob Thomas
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Siu Lung Ng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Skanda Vivek
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Brian K Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
156
|
Kimmel JC, Chang AY, Brack AS, Marshall WF. Inferring cell state by quantitative motility analysis reveals a dynamic state system and broken detailed balance. PLoS Comput Biol 2018; 14:e1005927. [PMID: 29338005 PMCID: PMC5786322 DOI: 10.1371/journal.pcbi.1005927] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 01/26/2018] [Accepted: 12/13/2017] [Indexed: 02/02/2023] Open
Abstract
Cell populations display heterogeneous and dynamic phenotypic states at multiple scales. Similar to molecular features commonly used to explore cell heterogeneity, cell behavior is a rich phenotypic space that may allow for identification of relevant cell states. Inference of cell state from cell behavior across a time course may enable the investigation of dynamics of transitions between heterogeneous cell states, a task difficult to perform with destructive molecular observations. Cell motility is one such easily observed cell behavior with known biomedical relevance. To investigate heterogenous cell states and their dynamics through the lens of cell behavior, we developed Heteromotility, a software tool to extract quantitative motility features from timelapse cell images. In mouse embryonic fibroblasts (MEFs), myoblasts, and muscle stem cells (MuSCs), Heteromotility analysis identifies multiple motility phenotypes within the population. In all three systems, the motility state identity of individual cells is dynamic. Quantification of state transitions reveals that MuSCs undergoing activation transition through progressive motility states toward the myoblast phenotype. Transition rates during MuSC activation suggest non-linear kinetics. By probability flux analysis, we find that this MuSC motility state system breaks detailed balance, while the MEF and myoblast systems do not. Balanced behavior state transitions can be captured by equilibrium formalisms, while unbalanced switching between states violates equilibrium conditions and would require an external driving force. Our data indicate that the system regulating cell behavior can be decomposed into a set of attractor states which depend on the identity of the cell, together with a set of transitions between states. These results support a conceptual view of cell populations as dynamical systems, responding to inputs from signaling pathways and generating outputs in the form of state transitions and observable motile behaviors.
Collapse
Affiliation(s)
- Jacob C. Kimmel
- Dept. of Biochemistry and Biophysics, Center for Cellular Construction, University of California San Francisco, San Francisco, CA, United States of America
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States of America
| | - Amy Y. Chang
- Dept. of Biochemistry and Biophysics, Center for Cellular Construction, University of California San Francisco, San Francisco, CA, United States of America
| | - Andrew S. Brack
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, United States of America
- Dept. of Orthopedic Surgery, University of California San Francisco, San Francisco, CA, United States of America
| | - Wallace F. Marshall
- Dept. of Biochemistry and Biophysics, Center for Cellular Construction, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
157
|
Pegoraro AF, Janmey P, Weitz DA. Mechanical Properties of the Cytoskeleton and Cells. Cold Spring Harb Perspect Biol 2017; 9:9/11/a022038. [PMID: 29092896 DOI: 10.1101/cshperspect.a022038] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARYThe cytoskeleton is the major mechanical structure of the cell; it is a complex, dynamic biopolymer network comprising microtubules, actin, and intermediate filaments. Both the individual filaments and the entire network are not simple elastic solids but are instead highly nonlinear structures. Appreciating the mechanics of biopolymer networks is key to understanding the mechanics of cells. Here, we review the mechanical properties of cytoskeletal polymers and discuss the implications for the behavior of cells.
Collapse
Affiliation(s)
- Adrian F Pegoraro
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| | - Paul Janmey
- Institute for Medicine and Engineering and Department of Physiology, Perelman School of Medicine, and Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David A Weitz
- Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
158
|
Guirao B, Bellaïche Y. Biomechanics of cell rearrangements in Drosophila. Curr Opin Cell Biol 2017; 48:113-124. [DOI: 10.1016/j.ceb.2017.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/05/2017] [Accepted: 06/24/2017] [Indexed: 10/19/2022]
|
159
|
Hess H, Ross JL. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev 2017; 46:5570-5587. [PMID: 28329028 PMCID: PMC5603359 DOI: 10.1039/c7cs00030h] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.
Collapse
Affiliation(s)
- H Hess
- Department of Biomedical Engineering, Columbia University, USA.
| | | |
Collapse
|
160
|
|
161
|
Alvarado J, Sheinman M, Sharma A, MacKintosh FC, Koenderink GH. Force percolation of contractile active gels. SOFT MATTER 2017; 13:5624-5644. [PMID: 28812094 DOI: 10.1039/c7sm00834a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Living systems provide a paradigmatic example of active soft matter. Cells and tissues comprise viscoelastic materials that exert forces and can actively change shape. This strikingly autonomous behavior is powered by the cytoskeleton, an active gel of semiflexible filaments, crosslinks, and molecular motors inside cells. Although individual motors are only a few nm in size and exert minute forces of a few pN, cells spatially integrate the activity of an ensemble of motors to produce larger contractile forces (∼nN and greater) on cellular, tissue, and organismal length scales. Here we review experimental and theoretical studies on contractile active gels composed of actin filaments and myosin motors. Unlike other active soft matter systems, which tend to form ordered patterns, actin-myosin systems exhibit a generic tendency to contract. Experimental studies of reconstituted actin-myosin model systems have long suggested that a mechanical interplay between motor activity and the network's connectivity governs this contractile behavior. Recent theoretical models indicate that this interplay can be understood in terms of percolation models, extended to include effects of motor activity on the network connectivity. Based on concepts from percolation theory, we propose a state diagram that unites a large body of experimental observations. This framework provides valuable insights into the mechanisms that drive cellular shape changes and also provides design principles for synthetic active materials.
Collapse
Affiliation(s)
- José Alvarado
- Systems Biophysics Department, AMOLF, 1098 XG Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
162
|
Abstract
Many biological systems are appropriately viewed as passive inclusions immersed in an active bath: from proteins on active membranes to microscopic swimmers confined by boundaries. The nonequilibrium forces exerted by the active bath on the inclusions or boundaries often regulate function, and such forces may also be exploited in artificial active materials. Nonetheless, the general phenomenology of these active forces remains elusive. We show that the fluctuation spectrum of the active medium, the partitioning of energy as a function of wavenumber, controls the phenomenology of force generation. We find that, for a narrow, unimodal spectrum, the force exerted by a nonequilibrium system on two embedded walls depends on the width and the position of the peak in the fluctuation spectrum, and oscillates between repulsion and attraction as a function of wall separation. We examine two apparently disparate examples: the Maritime Casimir effect and recent simulations of active Brownian particles. A key implication of our work is that important nonequilibrium interactions are encoded within the fluctuation spectrum. In this sense, the noise becomes the signal.
Collapse
|
163
|
Gladrow J, Broedersz CP, Schmidt CF. Nonequilibrium dynamics of probe filaments in actin-myosin networks. Phys Rev E 2017; 96:022408. [PMID: 28950472 DOI: 10.1103/physreve.96.022408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Active dynamic processes of cells are largely driven by the cytoskeleton, a complex and adaptable semiflexible polymer network, motorized by mechanoenzymes. Small dimensions, confined geometries, and hierarchical structures make it challenging to probe dynamics and mechanical response of such networks. Embedded semiflexible probe polymers can serve as nonperturbing multiscale probes to detect force distributions in active polymer networks. We show here that motor-induced forces transmitted to the probe polymers are reflected in nonequilibrium bending dynamics, which we analyze in terms of spatial eigenmodes of an elastic beam under steady-state conditions. We demonstrate how these active forces induce correlations among the mode amplitudes, which furthermore break time-reversal symmetry. This leads to a breaking of detailed balance in this mode space. We derive analytical predictions for the magnitude of resulting probability currents in mode space in the white-noise limit of motor activity. We relate the structure of these currents to the spatial profile of motor-induced forces along the probe polymers and provide a general relation for observable currents on two-dimensional hyperplanes.
Collapse
Affiliation(s)
- J Gladrow
- Third Institute of Physics, University of Göttingen, 37077 Göttingen, Germany
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, England, United Kingdom
| | - C P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - C F Schmidt
- Third Institute of Physics, University of Göttingen, 37077 Göttingen, Germany
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
164
|
Fritzsche M. Self-organizing actin patterns shape cytoskeletal cortex organization. Commun Integr Biol 2017; 10:e1303591. [PMID: 28702125 PMCID: PMC5501213 DOI: 10.1080/19420889.2017.1303591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 11/14/2022] Open
Abstract
Living systems rely, for biological function, on the spatiotemporal organization of their structures. Cellular order naturally emerges by dissipation of energy. Consequently, energy-consuming processes operating far from thermodynamic equilibrium are a necessary condition to enable biological systems to respond to environmental cues that allow their transitions between different steady-states. Such self-organization was predicted for the actin cytoskeleton in theoretical considerations and has repeatedly been observed in cell-free systems. We now demonstrate in our recent work how self-organizing actin patterns such as vortices, stars, and asters may allow cells to adjust their membrane architecture without affecting their cell mechanical properties.
Collapse
Affiliation(s)
- Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
165
|
Imag(in)ing growth and form. Mech Dev 2017; 145:13-21. [DOI: 10.1016/j.mod.2017.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/03/2023]
|
166
|
Ghanta A, Neu JC, Teitsworth S. Fluctuation loops in noise-driven linear dynamical systems. Phys Rev E 2017; 95:032128. [PMID: 28415227 DOI: 10.1103/physreve.95.032128] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Indexed: 11/07/2022]
Abstract
Understanding the spatiotemporal structure of most probable fluctuation pathways to rarely occurring states is a central problem in the study of noise-driven, nonequilibrium dynamical systems. When the underlying system does not possess detailed balance, the optimal fluctuation pathway to a particular state and relaxation pathway from that state may combine to form a looplike structure in the system phase space called a fluctuation loop. Here, fluctuation loops are studied in a linear circuit model consisting of coupled RC elements, where each element is driven by its own independent noise source. Using a stochastic Hamiltonian approach, we determine the optimal fluctuation pathways, and analytically construct corresponding fluctuation loops. To quantitatively characterize fluctuation loops, we study the time-dependent area tensor that is swept out by individual stochastic trajectories in the system phase space. At long times, the area tensor scales linearly with time, with a coefficient that precisely vanishes when the system satisfies detailed balance.
Collapse
Affiliation(s)
- Akhil Ghanta
- Duke University, Department of Physics, Box 90305 Durham, North Carolina 27708-0305, USA
| | - John C Neu
- Duke University, Department of Biomedical Engineering, Box 90281 Durham, North Carolina 27708-0281, USA
| | - Stephen Teitsworth
- Duke University, Department of Physics, Box 90305 Durham, North Carolina 27708-0305, USA
| |
Collapse
|
167
|
Paijmans J, Lubensky DK, ten Wolde PR. A thermodynamically consistent model of the post-translational Kai circadian clock. PLoS Comput Biol 2017; 13:e1005415. [PMID: 28296888 PMCID: PMC5371392 DOI: 10.1371/journal.pcbi.1005415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/29/2017] [Accepted: 02/15/2017] [Indexed: 11/18/2022] Open
Abstract
The principal pacemaker of the circadian clock of the cyanobacterium S. elongatus is a protein phosphorylation cycle consisting of three proteins, KaiA, KaiB and KaiC. KaiC forms a homohexamer, with each monomer consisting of two domains, CI and CII. Both domains can bind and hydrolyze ATP, but only the CII domain can be phosphorylated, at two residues, in a well-defined sequence. While this system has been studied extensively, how the clock is driven thermodynamically has remained elusive. Inspired by recent experimental observations and building on ideas from previous mathematical models, we present a new, thermodynamically consistent, statistical-mechanical model of the clock. At its heart are two main ideas: i) ATP hydrolysis in the CI domain provides the thermodynamic driving force for the clock, switching KaiC between an active conformational state in which its phosphorylation level tends to rise and an inactive one in which it tends to fall; ii) phosphorylation of the CII domain provides the timer for the hydrolysis in the CI domain. The model also naturally explains how KaiA, by acting as a nucleotide exchange factor, can stimulate phosphorylation of KaiC, and how the differential affinity of KaiA for the different KaiC phosphoforms generates the characteristic temporal order of KaiC phosphorylation. As the phosphorylation level in the CII domain rises, the release of ADP from CI slows down, making the inactive conformational state of KaiC more stable. In the inactive state, KaiC binds KaiB, which not only stabilizes this state further, but also leads to the sequestration of KaiA, and hence to KaiC dephosphorylation. Using a dedicated kinetic Monte Carlo algorithm, which makes it possible to efficiently simulate this system consisting of more than a billion reactions, we show that the model can describe a wealth of experimental data. Circadian clocks are biological timekeeping devices with a rhythm of 24 hours in living cells pertaining to all kingdoms of life. They help organisms to coordinate their behavior with the day-night cycle. The circadian clock of the cyanobacterium Synechococcus elongatus is one of the simplest and best characterized clocks in biology. The central clock component is the protein KaiC, which is phosphorylated and dephosphorylated in a cyclical manner with a 24 hr period. While we know from elementary thermodynamics that oscillations require a net turnover of fuel molecules, in this case ATP, how ATP hydrolysis drives the clock has remained elusive. Based on recent experimental observations and building on ideas from existing models, we construct the most detailed mathematical model of this system to date. KaiC consists of two domains, CI and CII, which each can bind ATP, yet only CII can be phosphorylated. Moreover, KaiC can exist in two conformational states, an active one in which the phosphorylation level tends to rise, and an inactive one in which it tends to fall. Our model predicts that ATP hydrolysis in the CI domain is the principal energetic driver of the clock, driving the switching between the two conformational states, while phosphorylation in the CII domain provides the timer for the conformational switch. The coupling between ATP hydrolysis in the CI domain and phosphorylation in the CII domain leads to novel testable predictions.
Collapse
Affiliation(s)
| | - David K. Lubensky
- Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America
| | | |
Collapse
|
168
|
Herminghaus S, Mazza MG. Phase separation in driven granular gases: exploring the elusive character of nonequilibrium steady states. SOFT MATTER 2017; 13:898-910. [PMID: 28102416 DOI: 10.1039/c6sm02224c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The emergence of patterns and phase separation in many-body systems far from thermal equilibrium is discussed using the example of driven granular gases. It is shown that phase separation follows a similar mechanism as in the systems of active Brownian particles. Depending on the quantities chosen for observation, it may or may not be easy to find functionals analogous to the free energy in equilibrium statistical physics. We argue that although such functionals can always be derived from the dynamics, it is of only limited value for predicting relevant aspects of the nonequilibrium steady state of the system. Consequently, although there is indeed a 'principle' governing the selection of collective nonequilibrium steady states (and the corresponding large deviation functional can be identified), it is not generally useful for predicting the behaviour of the system.
Collapse
Affiliation(s)
- S Herminghaus
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, 37073 Göttingen, Germany.
| | | |
Collapse
|
169
|
Seyed-Allaei H, Schimansky-Geier L, Ejtehadi MR. Gaussian theory for spatially distributed self-propelled particles. Phys Rev E 2017; 94:062603. [PMID: 28085336 DOI: 10.1103/physreve.94.062603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 11/06/2022]
Abstract
Obtaining a reduced description with particle and momentum flux densities outgoing from the microscopic equations of motion of the particles requires approximations. The usual method, we refer to as truncation method, is to zero Fourier modes of the orientation distribution starting from a given number. Here we propose another method to derive continuum equations for interacting self-propelled particles. The derivation is based on a Gaussian approximation (GA) of the distribution of the direction of particles. First, by means of simulation of the microscopic model, we justify that the distribution of individual directions fits well to a wrapped Gaussian distribution. Second, we numerically integrate the continuum equations derived in the GA in order to compare with results of simulations. We obtain that the global polarization in the GA exhibits a hysteresis in dependence on the noise intensity. It shows qualitatively the same behavior as we find in particles simulations. Moreover, both global polarizations agree perfectly for low noise intensities. The spatiotemporal structures of the GA are also in agreement with simulations. We conclude that the GA shows qualitative agreement for a wide range of noise intensities. In particular, for low noise intensities the agreement with simulations is better as other approximations, making the GA to an acceptable candidates of describing spatially distributed self-propelled particles.
Collapse
Affiliation(s)
- Hamid Seyed-Allaei
- Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Iran
| | - Lutz Schimansky-Geier
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany
| | - Mohammad Reza Ejtehadi
- Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Iran.,School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran
| |
Collapse
|
170
|
Topologically protected modes in non-equilibrium stochastic systems. Nat Commun 2017; 8:13881. [PMID: 28071644 PMCID: PMC5234070 DOI: 10.1038/ncomms13881] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/08/2016] [Indexed: 12/02/2022] Open
Abstract
Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function. Energy dissipation characterizes the states far from equilibrium, whilst how it affects the local organization remains elusive. Here, Murugan et al. show that the non-equilibrium systems exhibit topologically protected boundary modes that have been known in electronic and mechanical systems.
Collapse
|
171
|
Hwang W, Hyeon C. Quantifying the Heat Dissipation from a Molecular Motor's Transport Properties in Nonequilibrium Steady States. J Phys Chem Lett 2017; 8:250-256. [PMID: 27983853 DOI: 10.1021/acs.jpclett.6b02657] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Theoretical analysis, which maps single-molecule time trajectories of a molecular motor onto unicyclic Markov processes, allows us to evaluate the heat dissipated from the motor and to elucidate its dependence on the mean velocity and diffusivity. Unlike passive Brownian particles in equilibrium, the velocity and diffusion constant of molecular motors are closely inter-related. In particular, our study makes it clear that the increase of diffusivity with the heat production is a natural outcome of active particles, which is reminiscent of the recent experimental premise that the diffusion of an exothermic enzyme is enhanced by the heat released from its own catalytic turnover. Compared with freely diffusing exothermic enzymes, kinesin-1, whose dynamics is confined on one-dimensional tracks, is highly efficient in transforming conformational fluctuations into a locally directed motion, thus displaying a significantly higher enhancement in diffusivity with its turnover rate. Putting molecular motors and freely diffusing enzymes on an equal footing, our study offers a thermodynamic basis to understand the heat-enhanced self-diffusion of exothermic enzymes.
Collapse
Affiliation(s)
- Wonseok Hwang
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| |
Collapse
|
172
|
Argun A, Moradi AR, Pinçe E, Bagci GB, Imparato A, Volpe G. Non-Boltzmann stationary distributions and nonequilibrium relations in active baths. Phys Rev E 2016; 94:062150. [PMID: 28085327 DOI: 10.1103/physreve.94.062150] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Indexed: 11/07/2022]
Abstract
Most natural and engineered processes, such as biomolecular reactions, protein folding, and population dynamics, occur far from equilibrium and therefore cannot be treated within the framework of classical equilibrium thermodynamics. Here we experimentally study how some fundamental thermodynamic quantities and relations are affected by the presence of the nonequilibrium fluctuations associated with an active bath. We show in particular that, as the confinement of the particle increases, the stationary probability distribution of a Brownian particle confined within a harmonic potential becomes non-Boltzmann, featuring a transition from a Gaussian distribution to a heavy-tailed distribution. Because of this, nonequilibrium relations (e.g., the Jarzynski equality and Crooks fluctuation theorem) cannot be applied. We show that these relations can be restored by using the effective potential associated with the stationary probability distribution. We corroborate our experimental findings with theoretical arguments.
Collapse
Affiliation(s)
- Aykut Argun
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden.,Soft Matter Lab, Department of Physics, Bilkent University, Cankaya, 06800 Ankara, Turkey
| | - Ali-Reza Moradi
- Soft Matter Lab, Department of Physics, Bilkent University, Cankaya, 06800 Ankara, Turkey.,Department of Physics, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran.,Optics Research Center, Institute for Advanced Studies in Basic Sciences, P.O. Box 45137-66731, Zanjan, Iran
| | - Erçaǧ Pinçe
- Soft Matter Lab, Department of Physics, Bilkent University, Cankaya, 06800 Ankara, Turkey
| | - Gokhan Baris Bagci
- Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey
| | - Alberto Imparato
- Department of Physics and Astronomy, University of Aarhus Ny Munkegade, Building 1520, DK-8000 Aarhus C, Denmark
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden.,Soft Matter Lab, Department of Physics, Bilkent University, Cankaya, 06800 Ankara, Turkey.,UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
173
|
Steffenoni S, Kroy K, Falasco G. Interacting Brownian dynamics in a nonequilibrium particle bath. Phys Rev E 2016; 94:062139. [PMID: 28085452 DOI: 10.1103/physreve.94.062139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Indexed: 11/07/2022]
Abstract
We set up a mesoscopic theory for interacting Brownian particles embedded in a nonequilibrium environment, starting from the microscopic interacting many-body theory. Using nonequilibrium linear-response theory, we characterize the effective dynamical interactions on the mesoscopic scale and the statistics of the nonequilibrium environmental noise, arising upon integrating out the fast degrees of freedom. As hallmarks of nonequilibrium, the breakdown of the fluctuation-dissipation and action-reaction relations for Brownian degrees of freedom is exemplified with two prototypical models for the environment, namely active Brownian particles and stirred colloids.
Collapse
Affiliation(s)
- Stefano Steffenoni
- Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103 Leipzig, Germany.,Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Klaus Kroy
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Gianmaria Falasco
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| |
Collapse
|
174
|
Brown AI, Sivak DA. Effective dissipation: Breaking time-reversal symmetry in driven microscopic energy transmission. Phys Rev E 2016; 94:032137. [PMID: 27739864 DOI: 10.1103/physreve.94.032137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 06/06/2023]
Abstract
At molecular scales, fluctuations play a significant role and prevent biomolecular processes from always proceeding in a preferred direction, raising the question of how limited amounts of free energy can be dissipated to obtain directed progress. We examine the system and process characteristics that efficiently break time-reversal symmetry at fixed energy loss; in particular for a simple model of a molecular machine, an intermediate energy barrier produces unusually high asymmetry for a given dissipation. We relate the symmetry-breaking factors found in this model to recent observations of biomolecular machines.
Collapse
Affiliation(s)
- Aidan I Brown
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A1S6 Canada
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A1S6 Canada
| |
Collapse
|
175
|
Mandal R, Bhuyan PJ, Rao M, Dasgupta C. Active fluidization in dense glassy systems. SOFT MATTER 2016; 12:6268-6276. [PMID: 27380935 DOI: 10.1039/c5sm02950c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dense soft glasses show strong collective caging behavior at sufficiently low temperatures. Using molecular dynamics simulations of a model glass former, we show that the incorporation of activity or self-propulsion, f0, can induce cage breaking and fluidization, resulting in the disappearance of the glassy phase beyond a critical f0. The diffusion coefficient crosses over from being strongly to weakly temperature dependent as f0 is increased. In addition, we demonstrate that activity induces a crossover from a fragile to a strong glass and a tendency of active particles to cluster. Our results are of direct relevance to the collective dynamics of dense active colloidal glasses and to recent experiments on tagged particle diffusion in living cells.
Collapse
Affiliation(s)
- Rituparno Mandal
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Pranab Jyoti Bhuyan
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Madan Rao
- Raman Research Institute, Bangalore 560080, India and National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| | - Chandan Dasgupta
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
176
|
Gladrow J, Fakhri N, MacKintosh FC, Schmidt CF, Broedersz CP. Broken Detailed Balance of Filament Dynamics in Active Networks. PHYSICAL REVIEW LETTERS 2016; 116:248301. [PMID: 27367410 DOI: 10.1103/physrevlett.116.248301] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 06/06/2023]
Abstract
Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in such biopolymer networks. Here, we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under nonequilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.
Collapse
Affiliation(s)
- J Gladrow
- Third Institute of Physics, Georg August University, 37077 Göttingen, Germany
| | - N Fakhri
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - F C MacKintosh
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
- Department of Physics and Astronomy, Vrije Universiteit, 1081 HV Amsterdam, Netherlands
| | - C F Schmidt
- Third Institute of Physics, Georg August University, 37077 Göttingen, Germany
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - C P Broedersz
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| |
Collapse
|
177
|
Affiliation(s)
| | - Jacques Prost
- Mechanobiology Institute, National University of Singapore, 117411 Singapore. Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS, 75005 Paris, France. Sorbonne Universities, UPMC Univ Paris 06, CNRS, Laboratoire Physico Chimie Curie, 75005 Paris, France.
| |
Collapse
|