151
|
Fuchs ACD, Maldoner L, Hipp K, Hartmann MD, Martin J. Structural characterization of the bacterial proteasome homolog BPH reveals a tetradecameric double-ring complex with unique inner cavity properties. J Biol Chem 2017; 293:920-930. [PMID: 29183996 PMCID: PMC5777263 DOI: 10.1074/jbc.m117.815258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/10/2017] [Indexed: 01/24/2023] Open
Abstract
Eukaryotic and archaeal proteasomes are paradigms for self-compartmentalizing proteases. To a large extent, their function requires interplay with hexameric ATPases associated with diverse cellular activities (AAA+) that act as substrate unfoldases. Bacteria have various types of self-compartmentalizing proteases; in addition to the proteasome itself, these include the proteasome homolog HslV, which functions together with the AAA+ HslU; the ClpP protease with its partner AAA+ ClpX; and Anbu, a recently characterized ancestral proteasome variant. Previous bioinformatic analysis has revealed a novel bacterial member of the proteasome family Betaproteobacteria proteasome homolog (BPH). Using cluster analysis, we here affirmed that BPH evolutionarily descends from HslV. Crystal structures of the Thiobacillus denitrificans and Cupriavidus metallidurans BPHs disclosed a homo-oligomeric double-ring architecture in which the active sites face the interior of the cylinder. Using small-angle X-ray scattering (SAXS) and electron microscopy averaging, we found that BPH forms tetradecamers in solution, unlike the dodecamers seen in HslV. Although the highly acidic inner surface of BPH was in striking contrast to the cavity characteristics of the proteasome and HslV, a classical proteasomal reaction mechanism could be inferred from the covalent binding of the proteasome-specific inhibitor epoxomicin to BPH. A ligand-bound structure implied that the elongated BPH inner pore loop may be involved in substrate recognition. The apparent lack of a partner unfoldase and other unique features, such as Ser replacing Thr as the catalytic residue in certain BPH subfamilies, suggest a proteolytic function for BPH distinct from those of known bacterial self-compartmentalizing proteases.
Collapse
Affiliation(s)
| | | | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Developmental Biology, Spemannstraße 35, 72076 Tübingen, Germany
| | | | - Jörg Martin
- From the Department of Protein Evolution and
| |
Collapse
|
152
|
Santos RDLA, Bai L, Singh PK, Murakami N, Fan H, Zhan W, Zhu Y, Jiang X, Zhang K, Assker JP, Nathan CF, Li H, Azzi J, Lin G. Structure of human immunoproteasome with a reversible and noncompetitive inhibitor that selectively inhibits activated lymphocytes. Nat Commun 2017; 8:1692. [PMID: 29167449 PMCID: PMC5700161 DOI: 10.1038/s41467-017-01760-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 10/13/2017] [Indexed: 11/13/2022] Open
Abstract
Proteasome inhibitors benefit patients with multiple myeloma and B cell-dependent autoimmune disorders but exert toxicity from inhibition of proteasomes in other cells. Toxicity should be minimized by reversible inhibition of the immunoproteasome β5i subunit while sparing the constitutive β5c subunit. Here we report β5i-selective inhibition by asparagine-ethylenediamine (AsnEDA)-based compounds and present the high-resolution cryo-EM structural analysis of the human immunoproteasome. Despite inhibiting noncompetitively, an AsnEDA inhibitor binds the active site. Hydrophobic interactions are accompanied by hydrogen bonding with β5i and β6 subunits. The inhibitors are far more cytotoxic for myeloma and lymphoma cell lines than for hepatocarcinoma or non-activated lymphocytes. They block human B-cell proliferation and promote apoptotic cell death selectively in antibody-secreting B cells, and to a lesser extent in activated human T cells. Reversible, β5i-selective inhibitors may be useful for treatment of diseases involving activated or neoplastic B cells or activated T cells.
Collapse
Affiliation(s)
| | - Lin Bai
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Pradeep K Singh
- Department of Biochemistry and Milstein Chemistry Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Naoka Murakami
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hao Fan
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Wenhu Zhan
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Yingrong Zhu
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Xiuju Jiang
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kaiming Zhang
- National Center for Macromolecular Imaging and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jean Pierre Assker
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Carl F Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.
| | - Jamil Azzi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
153
|
Gaczynska M, Osmulski PA. Targeting Protein-Protein Interactions in the Ubiquitin-Proteasome Pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:123-165. [PMID: 29412995 DOI: 10.1016/bs.apcsb.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) is a major venue for controlled intracellular protein degradation in Eukaryota. The machinery of several hundred proteins is involved in recognizing, tagging, transporting, and cleaving proteins, all in a highly regulated manner. Short-lived transcription factors, misfolded translation products, stress-damaged polypeptides, or worn-out long-lived proteins, all can be found among the substrates of UPP. Carefully choreographed protein-protein interactions (PPI) are involved in each step of the pathway. For many of the steps small-molecule inhibitors have been identified and often they directly or indirectly target PPI. The inhibitors may destabilize intracellular proteostasis and trigger apoptosis. So far this is the most explored option used as an anticancer strategy. Alternatively, substrate-specific polyubiquitination may be regulated for a precise intervention aimed at a particular metabolic pathway. This very attractive opportunity is moving close to clinical application. The best known drug target in UPP is the proteasome: the end point of the journey of a protein destined for degradation. The proteasome alone is a perfect object to study the mechanisms and roles of PPI on many levels. This giant protease is built from multisubunit modules and additionally utilizes a service from transient protein ligands, for example, delivering substrates. An elaborate set of PPI within the highest-order proteasome assembly is involved in substrate recognition and processing. Below we will outline PPI involved in the UPP and discuss the growing prospects for their utilization in pharmacological interventions.
Collapse
Affiliation(s)
- Maria Gaczynska
- Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| | - Pawel A Osmulski
- Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
154
|
The versatility of boron in biological target engagement. Nat Chem 2017; 9:731-742. [DOI: 10.1038/nchem.2814] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
|
155
|
LaMonte GM, Almaliti J, Bibo-Verdugo B, Keller L, Zou BY, Yang J, Antonova-Koch Y, Orjuela-Sanchez P, Boyle CA, Vigil E, Wang L, Goldgof GM, Gerwick L, O'Donoghue AJ, Winzeler EA, Gerwick WH, Ottilie S. Development of a Potent Inhibitor of the Plasmodium Proteasome with Reduced Mammalian Toxicity. J Med Chem 2017; 60:6721-6732. [PMID: 28696697 PMCID: PMC5554889 DOI: 10.1021/acs.jmedchem.7b00671] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Naturally derived chemical compounds
are the foundation of much
of our pharmacopeia, especially in antiproliferative and anti-infective
drug classes. Here, we report that a naturally derived molecule called
carmaphycin B is a potent inhibitor against both the asexual and sexual
blood stages of malaria infection. Using a combination of in silico
molecular docking and in vitro directed evolution in a well-characterized
drug-sensitive yeast model, we determined that these compounds target
the β5 subunit of the proteasome. These studies were validated
using in vitro inhibition assays with proteasomes isolated from Plasmodium falciparum. As carmaphycin B is toxic to mammalian
cells, we synthesized a series of chemical analogs that reduce host
cell toxicity while maintaining blood-stage and gametocytocidal antimalarial
activity and proteasome inhibition. This study describes a promising
new class of antimalarial compound based on the carmaphycin B scaffold,
as well as several chemical structural features that serve to enhance
antimalarial specificity.
Collapse
Affiliation(s)
- Gregory M LaMonte
- Department of Pediatrics, School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Jehad Almaliti
- Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California 92093, United States.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan , Amman 11942, Jordan
| | - Betsaida Bibo-Verdugo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Faculty of Pharmacy, and School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Lena Keller
- Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California 92093, United States
| | - Bing Yu Zou
- Department of Pediatrics, School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Jennifer Yang
- Department of Pediatrics, School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Yevgeniya Antonova-Koch
- Department of Pediatrics, School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Pamela Orjuela-Sanchez
- Department of Pediatrics, School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Colleen A Boyle
- Department of Pediatrics, School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Edgar Vigil
- Department of Pediatrics, School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Lawrence Wang
- Department of Pediatrics, School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Gregory M Goldgof
- Department of Pediatrics, School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Lena Gerwick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Faculty of Pharmacy, and School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Faculty of Pharmacy, and School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| | - William H Gerwick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Faculty of Pharmacy, and School of Medicine, University of California, San Diego , La Jolla, California 92093, United States.,Scripps Institution of Oceanography, University of California, San Diego , La Jolla, California 92093, United States
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
156
|
Abstract
INTRODUCTION Despite a major positive impact of proteasome inhibitors (PI), such as bortezomib and carfilzomib, on the survival of patients with multiple myeloma (MM) over the last few years, their use in clinical practice is limited by the development of drug resistance, significant side-effects or constraining administration schedules. Ixazomib is the first, and for now the only, oral PI, which was approved by the US Food and Drug Administration in 2015 and by the European Medicines Agency in 2016. Areas covered: In this review, we provide an overview of the preclinical and early-phase studies of ixazomib used as single-agent and in combination. Furthermore, we discuss the results of a recently published pivotal trial, which evaluated the safety profile and clinical benefit of the combination of ixazomib, lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in 722 patients with relapsed/refractory MM. Expert opinion: Ixazomib combines the comfort of oral administration, substantial clinical efficacy and a good safety profile with manageable side-effects, which mainly comprise low-grade hematological, digestive or cutaneous events, and the agent will therefore play an active part in long-term treatment strategies, both as single agent and as part of combination regimens. Ongoing phase III trials are currently defining its place in first-line, maintenance and relapse settings.
Collapse
Affiliation(s)
- Antoine Bonnet
- a Department of Hematology , University Hospital Hôtel-Dieu , Nantes , France
| | - Philippe Moreau
- a Department of Hematology , University Hospital Hôtel-Dieu , Nantes , France
| |
Collapse
|
157
|
Xiao F, Lin X, Tian J, Wang X, Chen Q, Rui K, Ma J, Wang S, Wang Q, Wang X, Liu D, Sun L, Lu L. Proteasome inhibition suppresses Th17 cell generation and ameliorates autoimmune development in experimental Sjögren's syndrome. Cell Mol Immunol 2017; 14:cmi20178. [PMID: 28690324 PMCID: PMC5675963 DOI: 10.1038/cmi.2017.8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022] Open
Abstract
Immunoproteasome activation in immune cells is involved in the modulation of immune responses. Increasing evidence indicates that proteasome inhibitors show beneficial effects in treating autoimmune diseases, but it remains unclear whether proteasome inhibition is an effective approach for suppressing autoimmune development in Sjögren's syndrome (SS). Our previous work has demonstrated a critical role for Th17 cells in the development of experimental SS (ESS) in mice. In this study, we detected high levels of low-molecular-weight protein 7 (LMP7), a key subunit of the immunoproteasome, in Th17 cells from ESS mice. Moreover, treatment with bortezomib (BTZ), a proteasome inhibitor, markedly suppressed Th17 differentiation in both murine and human naive T cells in culture. Furthermore, ESS mice treated with BTZ displayed significantly higher saliva flow rates and a reduction in tissue destruction in the salivary glands compared with vehicle-treated ESS mice. Notably, BTZ-treated ESS mice showed markedly decreased Th17 cells, germinal center B cells and plasma cells in the peripheral lymphoid organs. In addition, adoptively transferred wild type naive CD4+ T cells rapidly differentiated into Th17 cells and induced salivary dysfunction in IL-17-deficient mice immunized for ESS induction. However, BTZ treatment profoundly suppressed the donor T-cell-derived Th17 response and ameliorated the reduction in salivary secretion in IL-17-deficient recipient mice. Taken together, our findings demonstrate that proteasome inhibition can effectively ameliorate ESS by suppressing the Th17 response, which may contribute to the development of a novel therapeutic strategy for the treatment of SS.Cellular &Molecular Immunology advance online publication, 10 July 2017; doi:10.1038/cmi.2017.8.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Xiang Lin
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Jie Tian
- Department of Immunology, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013 China
| | - Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Qian Chen
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Ke Rui
- Department of Immunology, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013 China
| | - Jie Ma
- Department of Immunology, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013 China
| | - Shengjun Wang
- Department of Immunology, Jiangsu University Medical School, Zhenjiang, Jiangsu 212013 China
| | - Qingwen Wang
- Department of Rheumatology and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xiaoqi Wang
- Department of Rheumatology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Dongzhou Liu
- Department of Rheumatology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
158
|
Haselbach D, Schrader J, Lambrecht F, Henneberg F, Chari A, Stark H. Long-range allosteric regulation of the human 26S proteasome by 20S proteasome-targeting cancer drugs. Nat Commun 2017; 8:15578. [PMID: 28541292 PMCID: PMC5458511 DOI: 10.1038/ncomms15578] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/07/2017] [Indexed: 01/03/2023] Open
Abstract
The proteasome holoenzyme is the major non-lysosomal protease; its proteolytic activity is essential for cellular homeostasis. Thus, it is an attractive target for the development of chemotherapeutics. While the structural basis of core particle (CP) inhibitors is largely understood, their structural impact on the proteasome holoenzyme remains entirely elusive. Here, we determined the structure of the 26S proteasome with and without the inhibitor Oprozomib. Drug binding modifies the energy landscape of conformational motion in the proteasome regulatory particle (RP). Structurally, the energy barrier created by Oprozomib triggers a long-range allosteric regulation, resulting in the stabilization of a non-productive state. Thereby, the chemical drug-binding signal is converted, propagated and amplified into structural changes over a distance of more than 150 Å from the proteolytic site to the ubiquitin receptor Rpn10. The direct visualization of changes in conformational dynamics upon drug binding allows new ways to screen and develop future allosteric proteasome inhibitors.
Collapse
Affiliation(s)
- David Haselbach
- Department for Structural Dynamics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jil Schrader
- Department for Structural Dynamics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Felix Lambrecht
- Department for Structural Dynamics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Fabian Henneberg
- Department for Structural Dynamics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Ashwin Chari
- Department for Structural Dynamics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Holger Stark
- Department for Structural Dynamics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
159
|
Towards Selective Mycobacterial ClpP1P2 Inhibitors with Reduced Activity against the Human Proteasome. Antimicrob Agents Chemother 2017; 61:AAC.02307-16. [PMID: 28193668 PMCID: PMC5404560 DOI: 10.1128/aac.02307-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/28/2017] [Indexed: 12/02/2022] Open
Abstract
Mycobacterium tuberculosis is responsible for the greatest number of deaths worldwide due to a bacterial agent. We recently identified bortezomib (Velcade; compound 1) as a promising antituberculosis (anti-TB) compound. We showed that compound 1 inhibits the mycobacterial caseinolytic proteases P1 and P2 (ClpP1P2) and exhibits bactericidal activity, and we established compound 1 and ClpP1P2 as an attractive lead/target couple. However, compound 1 is a human-proteasome inhibitor currently approved for cancer therapy and, as such, exhibits significant toxicity. Selective inhibition of the bacterial protease over the human proteasome is desirable in order to maintain antibacterial activity while reducing toxicity. We made use of structural data in order to design a series of dipeptidyl-boronate derivatives of compound 1. We tested these derivatives for whole-cell ClpP1P2 and human-proteasome inhibition as well as bacterial-growth inhibition and identified compounds that were up to 100-fold-less active against the human proteasome but that retained ClpP1P2 and mycobacterial-growth inhibition as well as bactericidal potency. The lead compound, compound 58, had low micromolar ClpP1P2 and anti-M. tuberculosis activity, good aqueous solubility, no cytochrome P450 liabilities, moderate plasma protein binding, and low toxicity in two human liver cell lines, and despite high clearance in microsomes, this compound was only moderately cleared when administered intravenously or orally to mice. Higher-dose oral pharmacokinetics indicated good dose linearity. Furthermore, compound 58 was inhibitory to only 11% of a panel of 62 proteases. Our work suggests that selectivity over the human proteasome can be achieved with a drug-like template while retaining potency against ClpP1P2 and, crucially, anti-M. tuberculosis activity.
Collapse
|
160
|
Johnson HWB, Anderl JL, Bradley EK, Bui J, Jones J, Arastu-Kapur S, Kelly LM, Lowe E, Moebius DC, Muchamuel T, Kirk C, Wang Z, McMinn D. Discovery of Highly Selective Inhibitors of the Immunoproteasome Low Molecular Mass Polypeptide 2 (LMP2) Subunit. ACS Med Chem Lett 2017; 8:413-417. [PMID: 28435528 DOI: 10.1021/acsmedchemlett.6b00496] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/09/2017] [Indexed: 11/29/2022] Open
Abstract
Building upon the success of bortezomib (VELCADE) and carfilzomib (KYPROLIS), the design of a next generation of inhibitors targeting specific subunits within the immunoproteasome is of interest for the treatment of autoimmune disease. There are three catalytic subunits within the immunoproteasome (low molecular mass polypeptide-7, -2, and multicatalytic endopeptidase complex subunit-1; LMP7, LMP2, and MECL-1), and a campaign was undertaken to design a potent and selective LMP2 inhibitor with sufficient properties to allow for sustained inhibition in vivo. Screening a focused library of epoxyketones revealed a series of potent dipeptides that were optimized to provide the highly selective inhibitor KZR-504 (12).
Collapse
Affiliation(s)
- Henry W. B. Johnson
- Kezar Life Sciences, 300 Utah
Avenue, Suite 105, South San Francisco, California 94080, United States
| | - Janet L. Anderl
- Kezar Life Sciences, 300 Utah
Avenue, Suite 105, South San Francisco, California 94080, United States
| | - Erin K. Bradley
- Onyx Pharmaceuticals, An Amgen Subsidiary, 249 East Grand Avenue, South
San Francisco, California 94080, United States
| | - John Bui
- Onyx Pharmaceuticals, An Amgen Subsidiary, 249 East Grand Avenue, South
San Francisco, California 94080, United States
| | - Jeffrey Jones
- Onyx Pharmaceuticals, An Amgen Subsidiary, 249 East Grand Avenue, South
San Francisco, California 94080, United States
| | - Shirin Arastu-Kapur
- Onyx Pharmaceuticals, An Amgen Subsidiary, 249 East Grand Avenue, South
San Francisco, California 94080, United States
| | - Lisa M. Kelly
- Onyx Pharmaceuticals, An Amgen Subsidiary, 249 East Grand Avenue, South
San Francisco, California 94080, United States
| | - Eric Lowe
- Kezar Life Sciences, 300 Utah
Avenue, Suite 105, South San Francisco, California 94080, United States
| | - David C. Moebius
- Onyx Pharmaceuticals, An Amgen Subsidiary, 249 East Grand Avenue, South
San Francisco, California 94080, United States
| | - Tony Muchamuel
- Kezar Life Sciences, 300 Utah
Avenue, Suite 105, South San Francisco, California 94080, United States
| | - Christopher Kirk
- Kezar Life Sciences, 300 Utah
Avenue, Suite 105, South San Francisco, California 94080, United States
| | - Zhengping Wang
- Onyx Pharmaceuticals, An Amgen Subsidiary, 249 East Grand Avenue, South
San Francisco, California 94080, United States
| | - Dustin McMinn
- Kezar Life Sciences, 300 Utah
Avenue, Suite 105, South San Francisco, California 94080, United States
| |
Collapse
|
161
|
Hewings DS, Flygare JA, Wertz IE, Bogyo M. Activity-based probes for the multicatalytic proteasome. FEBS J 2017; 284:1540-1554. [PMID: 28107776 DOI: 10.1111/febs.14016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/22/2016] [Accepted: 01/16/2017] [Indexed: 12/17/2022]
Abstract
Proteasomes are multisubunit protease complexes responsible for degrading most intracellular proteins. In addition to removing damaged proteins, they regulate many important cellular processes through the controlled degradation of transcription factors, cell cycle regulators, and enzymes. Eukaryotic proteasomes have three catalytic subunits, β1, β2, and β5, that each has different substrate specificities. Additionally, although we know that diverse cell types express proteasome variants with distinct activity and specificity profiles, the functions of these different pools of proteasomes are not fully understood. Covalent inhibitors of the protease activity of the proteasome have been developed as drugs for hematological malignancies and are currently under investigation for other diseases. Therefore, there is a need for tools that allow direct monitoring of proteasome activity in live cells and tissues. Activity-based probes have proven valuable for biochemical and cell biological studies of the role of individual proteasome subunits, and for evaluating the efficacy and selectivity of proteasome inhibitors. These probes react covalently with the protease active sites, and contain a reporter tag to identify the probe-labeled proteasome subunits. This review will describe the development of broad-spectrum and subunit-specific proteasome activity-based probes, and discuss how these probes have contributed to our understanding of proteasome biology, and to the development of proteasome inhibitors.
Collapse
Affiliation(s)
- David S Hewings
- Discovery Chemistry, Genentech, South San Francisco, CA, USA.,Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.,Discovery Oncology, Genentech, South San Francisco, CA, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - John A Flygare
- Discovery Chemistry, Genentech, South San Francisco, CA, USA
| | - Ingrid E Wertz
- Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA.,Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
162
|
Kaplan GS, Torcun CC, Grune T, Ozer NK, Karademir B. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect. Free Radic Biol Med 2017; 103:1-13. [PMID: 27940347 DOI: 10.1016/j.freeradbiomed.2016.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/22/2016] [Accepted: 12/04/2016] [Indexed: 01/10/2023]
Abstract
Proteasomal system plays an important role in protein turnover, which is essential for homeostasis of cells. Besides degradation of oxidized proteins, it is involved in the regulation of many different signaling pathways. These pathways include mainly cell differentiation, proliferation, apoptosis, transcriptional activation and angiogenesis. Thus, proteasomal system is a crucial target for treatment of several diseases including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes and cancer. Over the last fifteen years, proteasome inhibitors have been tested to highlight their mechanisms of action and used in the clinic to treat different types of cancer. Proteasome inhibitors are mainly used in combinational therapy along with classical chemo-radiotherapy. Several studies have proved their significant effects but serious side effects such as peripheral neuropathy, limits their use in required effective doses. Recent studies focus on peripheral neuropathy as the primary side effect of proteasome inhibitors. Therefore, it is important to delineate the underlying mechanisms of peripheral neuropathy and develop new inhibitors according to obtained data. This review will detail the role of proteasome inhibition in cancer therapy and development of peripheral neuropathy as a side effect. Additionally, new approaches to prevent treatment-limiting side effects will be discussed in order to help researchers in developing effective strategies to overcome side effects of proteasome inhibitors.
Collapse
Affiliation(s)
- Gulce Sari Kaplan
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ceyda Corek Torcun
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Tilman Grune
- Department for Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Nesrin Kartal Ozer
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
163
|
Wu K, Cheng R, Zhang J, Meng F, Deng C, Zhong Z. Micellar nanoformulation of lipophilized bortezomib: high drug loading, improved tolerability and targeted treatment of triple negative breast cancer. J Mater Chem B 2017. [DOI: 10.1039/c7tb01297g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lipophilization of bortezomib with pinanediol enables efficacious drug loading and targeted tumor chemotherapy with reduction-sensitive self-crosslinked micellar systems.
Collapse
Affiliation(s)
- Kaiqi Wu
- Biomedical Polymers Laboratory
- and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Ru Cheng
- Biomedical Polymers Laboratory
- and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jian Zhang
- Biomedical Polymers Laboratory
- and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Fenghua Meng
- Biomedical Polymers Laboratory
- and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Chao Deng
- Biomedical Polymers Laboratory
- and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory
- and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
164
|
Yao H, Liu J, Xu S, Zhu Z, Xu J. The structural modification of natural products for novel drug discovery. Expert Opin Drug Discov 2016; 12:121-140. [DOI: 10.1080/17460441.2016.1272757] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Junkai Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, Nottingham, UK
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
165
|
Carmony K, Lee W, Kim KB. High-Resolution Snapshots of Proteasome Inhibitors in Action Revise Inhibition Paradigms and Inspire Next-Generation Inhibitor Design. Chembiochem 2016; 17:2115-2117. [PMID: 27605113 DOI: 10.1002/cbic.201600488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 11/10/2022]
Abstract
New high-resolution crystal structures reported by Schrader and colleagues refine our understanding of how peptide epoxyketone anticancer drugs inactivate their target: the human proteasome. These findings provide important clues for the design of next-generation proteasome inhibitor drugs.
Collapse
Affiliation(s)
- Kimberly Carmony
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA
| |
Collapse
|
166
|
Attack of cancer drugs. Nat Chem Biol 2016. [DOI: 10.1038/nchembio.2198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|